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Abstract. Through a study of the structure of the modular adjacency algebra

over a field of positive characteristic p for a scheme of prime order p and
utilizing the fact that every scheme of prime order is commutative, we show
that every association scheme of prime square order having a non-trivial thin

closed subset is commutative.

1. Introduction

In [7], the first and the third authors proved that all association schemes of
prime order are commutative. It is natural to ask whether association schemes of
prime square order are commutative. To our knowledge, there is no known non-
commutative association schemes of prime square order. Only a certain class of
association schemes of prime square order has been shown to be commutative. If a
scheme of prime square order is Schurian, then the scheme is commutative (Theorem
4.6). Also if a scheme of prime square order has a proper strongly normal closed
subset, then the first author showed in [6] that it is commutative. In this article,
we consider a scheme of prime square order having a non-trivial thin closed subset,
and show that the scheme is commutative (Theorem 5.4). The assumption is very
strong and we can use many facts on finite groups since a thin closed subset can be
considered as a finite group.

In section 3, we determine the structure of the modular adjacency algebra, that
is the adjacency algebra over a field of positive characteristic p, of a scheme of prime
order p. In section 4, we consider a combinatorial structure of schemes of prime
square order having non-trivial thin closed subsets. We show that there are two
types of structures, and that one of them gives commutative schemes. In section
5, we prove that the other type gives also commutative schemes. To see this, the
results in modular representation theory obtained in section 3 are useful.

2. Preliminaries

Throughout this paper, let (X,S) denote an association scheme in the sense
of a finite scheme in [9]. An association scheme is called a scheme in short. All
unexplained notations and symbols used in what follows may be found in [9] or [7].
For s ∈ S, we put s∗ = {(y, x) | (x, y) ∈ s}. Then s∗ is also an element of S. The
adjacency matrix of s ∈ S will be denoted by σs. Namely σs is a matrix whose
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rows and columns are indexed by the elements of X and (σs)xy = 1 if (x, y) ∈ s
and (σs)xy = 0 otherwise. For s, t, u ∈ S, the structure constant will be denoted
by astu, namely σsσt =

∑
u∈S astuσu. The valency of s ∈ S will be denoted by

ns, which is given by ass∗1. We call the cardinality of X the order of (X,S). For
s, t ∈ S, we define the complex product of s and t by st = {u ∈ S | astu ̸= 0}.

Let A and B be subsets of S. We write σA for
∑

s∈A σs, nA for
∑

s∈A ns,
and aABu for

∑
s∈A

∑
t∈B astu. We also use aA,B,u instead of aABu. Obviously

σAσB =
∑

u∈S aABuσu. The complex product of A and B is defined by AB = {u ∈
S | aABu ̸= 0} =

∪
s∈A

∪
t∈B st. We also use the notations sA and As instead of

{s}A and A{s} for s ∈ S, respectively. Since the associative law holds for complex
products [9, Lemma 1.3.1], we can use the notation AsB, and so on. A nonempty
subset T of S is called a closed subset if TT = T . A closed subset T of S is called
a normal closed subset if sT = Ts for any s ∈ S.

An element s ∈ S is said to be thin if ns = 1. A closed subset T of S is called
a thin closed subset if every element of T is thin. A thin closed subset can be
considered as a finite group (See [9, Preface]).

By the definition of a scheme,
⊕

s∈S Zσs is a matrix ring. For any commutative
unitary ring R, we can define an R-algebra R ⊗Z

(⊕
s∈S Zσs

)
. We call this R-

algebra the adjacency algebra of (X,S) over R and write it RS (In [9], Zieschang
calls this ring the scheme ring). A scheme (X,S) is said to be commutative if the
ring ZS is a commutative ring.

Now we consider the complex adjacency algebra CS. It is known that CS is
a semisimple algebra [9, Theorem 9.1.5 (ii)]. We write Irr(S) for the set of all
irreducible characters of CS. Every scheme (X,S) has the trivial character 1S :
σs 7→ ns. We write Irr∗(S) for Irr(S) − {1S}. The matrix (χ(σs))χ∈Irr(S),s∈S is
called the character table of (X,S). We say that a field K of characteristic zero
is a splitting field of (X,S) if K is a splitting field of the Q-algebra QS. If (X,S)
is commutative, then K is a splitting field if and only if K contains all character
values χ(σs), χ ∈ Irr(S), s ∈ S. So Q(χ(σs) | χ ∈ Irr(S), s ∈ S) is the minimal
splitting field of (X,S).

3. Modular adjacency algebras of schemes of prime order

In this section, we suppose (X,S) is a scheme of prime order p and determine
the structure of the adjacency algebra of (X,S) over a field of characteristic p. Put
|S| = d + 1 and k = (p − 1)/d. Then, it is shown in [7] that ns = k for every 1 ̸=
s ∈ S. Also all non-trivial irreducible characters of S are algebraically conjugate.
Let K be the minimal splitting field of (X,S). Since (X,S) is commutative, we
have K = Q(χ(σs) | χ ∈ Irr(S), s ∈ S). Obviously K/Q is a Galois extension and
we put G the Galois group of this extension. Then [7, Lemma 3.1] shows that G
acts on Irr∗(S) transitively. Let P be a prime ideal of the ring of integers of K
lying above pZ. In this section, the letter T is used to denote the inertia group of
P, whereas T denotes a subset of S in the other sections. Let KT be the inertia
field of P. Since p is unramified in KT /Q, the same argument as [7, Lemma 3.1]
shows that T acts on Irr∗(S) transitively.

Lemma 3.1. The following statements hold.

(1) The Galois group G acts on Irr∗(S) faithfully.
(2) The Galois group G is a p′-group, a finite group of order not divisible by p.
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(3) The inertia group T is cyclic.

Proof. If an element in G stabilizes all irreducible characters, then it stabilizes all
elements in K. This shows that (1) holds. By (1), G is isomorphic to a subgroup
of the symmetric group on Irr∗(S). Since |Irr∗(S)| = d < p, it is a p′-group and
(2) holds. In general, the inertia group T has a normal Sylow p-subgroup with a
cyclic quotient group [8, Theorem 5.34 and Proposition 6.6]. But, in our case, T is
a p′-group, so it is a cyclic group and (3) holds. ¤

We fix χ ∈ Irr∗(S), and put H = {τ ∈ G | χτ = χ}. Then KH = Q(χ(σs) | s ∈
S) is the Galois correspondent of H.

Lemma 3.2. The following statements hold.

(1) HT = G.
(2) H ∩ T = 1.
(3) |T | = dimQ KH = d. Thus the ramification index of P in K/Q is d.
(4) The prime ideal P is unramified in the extension K/KH .

Proof. For any ρ ∈ G, there exists τ ∈ T such that χρ = χτ . Then ρ = (ρτ−1)τ
and ρτ−1 ∈ H. This means (1) holds. Suppose ρ ∈ H ∩ T . For any φ ∈ Irr∗(S),
there exists τ ∈ T such that φ = χτ . Then, since T is cyclic,

φρ = χτρ = χρτ = χτ = φ.

This means that ρ stabilizes all irreducible characters and it must be the identity.
This shows (2) holds. By (1) and (2), we have |T | = |G|/|H|. Since G is a
permutation group on d elements and H is a stabilizer, we have |T | = d and (3)
holds. Now (4) is clear since the inertia group of P in K/KH is H ∩ T = 1. ¤

We write the P-valuation of K by νP. Since the ramification index of P is d, we
have νP(p) = d. Let P denote the character table of (X,S). Note that we regard
P as a matrix.

Lemma 3.3. We have νP(detP ) = d(d + 1)/2.

Proof. By [7], the Frame number F(S) is equal to pd+1. Also, by [1, p. 74],
(detP )(detP ) = F(S). The complex conjugate induces a permutation of the rows
of P . So det P is real or purely imaginary. This shows the statement. ¤

Consider the localization of K by P, and write the ring of P-integers by OP.

Lemma 3.4. There exists an element s ∈ S such that νP(χ(σs) − k) = 1.

Proof. Let τ be a generator of the cyclic group T . Since the action of T on Irr∗(S)
is regular, we can write

P =


1 k k · · · k
1 β1 β2 · · · βd

1 β1
τ β2

τ · · · βd
τ

· · · · · · · · ·
1 β1

τd−1
β2

τd−1
· · · βd

τd−1

 ,
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for some βi ∈ OP (i = 1, · · · , d). Put γi = βi − k. Then

det P =

∣∣∣∣∣∣∣∣∣∣

1 k k · · · k
0 β1 − k β2 − k · · · βd − k
0 β1

τ − k β2
τ − k · · · βd

τ − k
· · · · · · · · ·

0 β1
τd−1

− k β2
τd−1

− k · · · βd
τd−1

− k

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
γ1 γ2 · · · γd

γ1
τ γ2

τ · · · γd
τ

· · · · · ·
γ1

τd−1
γ2

τd−1 · · · γd
τd−1

∣∣∣∣∣∣∣∣ .

We fix π ∈ OP such that νP(π) = 1. Since τ is contained in the inertia group
of P, we have νP(πτj

) = 1 for j ∈ {0, 1, · · · , d − 1}. Define γi,1 by πγi,1 = γi. By
[4], βi is congruent to k modulo P. This means that γi,1 ∈ OP. Since τ is in the
inertia group, we can define γi,j ∈ OP inductively by

πγi,j+1 = γi,j
τ − γi,j (j = 1, 2, · · · , d − 1).

Then ∣∣∣∣∣∣∣∣
γ1 γ2 · · · γd

γ1
τ γ2

τ · · · γd
τ

· · · · · ·
γ1

τd−1
γ2

τd−1 · · · γd
τd−1

∣∣∣∣∣∣∣∣ =
d−1∏
i=0

πτ i

∣∣∣∣∣∣∣∣
γ1,1 γ2,1 · · · γd,1

γ1,1
τ γ2,1

τ · · · γd,1
τ

· · · · · ·
γ1,1

τd−1
γ2,1

τd−1 · · · γd,1
τd−1

∣∣∣∣∣∣∣∣
=

d−1∏
i=0

πτ i

∣∣∣∣∣∣∣∣
γ1,1 γ2,1 · · · γd,1

γ1,1
τ − γ1,1 γ2,1

τ − γ2,1 · · · γd,1
τ − γd,1

· · · · · ·
γ1,1

τd−1 − γ1,1
τd−2

γ2,1
τd−1 − γ2,1

τd−2 · · · γd,1
τd−1 − γd,1

τd−2

∣∣∣∣∣∣∣∣
=

d−1∏
i=0

πτ i

∣∣∣∣∣∣∣∣
γ1,1 γ2,1 · · · γd,1

πγ1,2 πγ2,2 · · · πγd,2

· · · · · ·
πτd−2

γ1,2
τd−2

πτd−2
γ2,2

τd−2 · · · πτd−2
γd,2

τd−2

∣∣∣∣∣∣∣∣
=

d−1∏
i=0

πτ i
d−2∏
i=0

πτ i

∣∣∣∣∣∣∣∣
γ1,1 γ2,1 · · · γd,1

γ1,2 γ2,2 · · · γd,2

· · · · · ·
γ1,2

τd−2
γ2,2

τd−2 · · · γd,2
τd−2

∣∣∣∣∣∣∣∣ .

Repeat this process. Then we have

detP =

∣∣∣∣∣∣∣∣
γ1 γ2 · · · γd

γ1
τ γ2

τ · · · γd
τ

· · · · · ·
γ1

τd−1
γ2

τd−1 · · · γd
τd−1

∣∣∣∣∣∣∣∣ =
d−1∏
ℓ=0

ℓ∏
i=0

πτ i

∣∣∣∣∣∣∣∣
γ1,1 γ2,1 · · · γd,1

γ1,2 γ2,2 · · · γd,2

· · · · · ·
γ1,d γ2,d · · · γd,d

∣∣∣∣∣∣∣∣ .

By Lemma 3.3, νP(detP ) = d(d + 1)/2. So, if νP(γi) > 1 for all i ∈ {1, · · · , d},
then we can write γi = π2γ′

i,1 for some γ′
i,1 ∈ OP for every i ∈ {1, 2, · · · , d}. This

gives a contradiction. We have νP(γi) = 1 for some i. The corresponding element
in S satisfies the required condition. ¤

Now we can show the main theorem in this section.
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Theorem 3.5. Let F be a field of positive characteristic p, and (X,S) an as-
sociation scheme of order p. Then there exists s ∈ S such that FS = F [σs] ∼=
F [x]/(xd+1), where σs is the natural image of σs in FS.

Proof. Let χ ∈ Irr∗(S). By Lemma 3.4, there exists s ∈ S such that νP(χ(σs)−k) =
1. Put γ = σs −kσ1 ∈ ZS. Then νP(χ(γ)d−1) = d−1, so γd−1 ̸∈ pZS. This means
γd−1 ̸= 0 in FS. By [4], γ is contained in the Jacobson radical of FS. So, if we
prove γd ̸= 0, then the statement holds.

By [4], FS is a local symmetric algebra, so its socle is F (
∑

s∈S σs). If FS is not a
serial algebra, then γd−1 is in the socle. This means γd−1 ∈ Z(

∑
s∈S σs)+pZS. But

then χ(γ)d−1 ∈ pOP and this is a contradiction. So FS is serial and γd ̸= 0. ¤

4. Combinatorial structures

In this section, we consider combinatorial structures of schemes of prime square
order having nontrivial thin closed subsets. We show that there are two types of
structures and for one of them the scheme is commutative. Commutativity of the
other type is considered in the next section. First, we give a general fact.

Theorem 4.1. Let (X,S) be an association scheme having a closed subset T .
Suppose nS/nT is the smallest prime divisor of nS. Then T is a normal closed
subset.

Proof. By [9, Lemma 2.3.1 (1)], we have σT σs = aT,s,sσTs and σTsσT = aTs,T,sσTsT

for any s ∈ S. These show that nT nsnT = aT,s,saTs,T,snTsT . So we have

nsT =
nTsT

nT
=

nT ns

aT,s,saTs,T,s
.

For any x ∈ X, xs∗ is partitioned into xs∗ ∩ yT where y ranges in xs∗ and |xs∗ ∩
yT | = as∗,T,s∗ = aT,s,s. This shows that aT,s,s | ns. Since nsT < nS//T = nS/nT

and we are assuming that nS/nT is the smallest prime divisor of nS , we have
nT | aTs,T,s. Especially nT ≤ aTs,T,s. For x, y ∈ X such that (x, y) ∈ s, aTs,T,s =
|xTs ∩ yT | ≤ |yT | = nT . So xTs ⊃

∪
y∈xs yT ⊃ xsT . By using the equation

nT nsnT = as,T,saT,sT,snTsT , we have xsT ⊃ xTs similarly. Hence xsT = xTs and
sT = Ts. Since s ∈ S is arbitrarily taken, we can conclude that T is a normal
closed subset. ¤

In what follows in this section, we consider a scheme (X,S) of prime square
order p2 which has a nontrivial thin closed subset T . If nT = p2, namely S is thin,
then obviously (X,S) is commutative. So we assume nT = p. Then T is normal by
Theorem 4.1.

In general, for s, t ∈ S, the complex product st is a subset of S. But in our case,
for t ∈ T and s ∈ S, |st| = 1 and |ts| = 1 since t is thin. So we regard st and ts as
elements of S. We note that ns = nst = nts in this case. Also T can be considered
as a group of order p. Then T acts on S from left and right. We consider T -orbits
of S. Since T is normal, every T -orbit of the left action is also a T -orbit of the right
action. So every T -orbit is of the form TsT for some s ∈ S. The length of every
T -orbit is 1 or p since the order of T is p.

Lemma 4.2. If there exists s ∈ S such that |TsT | = 1, then |Ts′T | = 1 for every
s′ ∈ S − T .
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Proof. Suppose there exists s′ ∈ S − T such that |Ts′T | = p. Then ns′ < p by
nS = p2. Since the quotient scheme S//T is primitive, there exists a positive integer
i such that sT ∈ (s′T )i. Then s ∈ (s′)i by TsT = {s}. Note that p | nTsT = ns.
This contradicts to [9, Theorem 3.1.6]. ¤

Now we have the following.

Proposition 4.3. Let p be a prime number, (X,S) an association scheme of order
p2. Suppose that (X,S) has a thin closed subset T with nT = p. Put k = (p −
1)/(|S//T | − 1). Then one of the following holds.

(1) Every T -orbit by the right or left action of S − T has length 1. Moreover,
we have ns = kp for every s ∈ S − T and |S| = |S//T | + p − 1.

(2) Every T -orbit by the right or left action of S − T has length p. Moreover,
we have ns = k for every s ∈ S − T and |S| = p|S//T |.

Proof. By Lemma 4.2, it is enough to determine the valencies. By [7], nsT = k for
every s ∈ S − T . So the result is clear by nTsT = nsT nT = kp. ¤

We show that (X,S) is commutative for the case (1) in Proposition 4.3. In this
case, easily we can see that the scheme is isomorphic to the wreath product of the
thin scheme of order p and a scheme of order p. This fact shows the commutativity
of the scheme. But we will give an elementary proof. Commutativity for the case
(2) will be proved in the next section.

Proposition 4.4. In the case (1) in Proposition 4.3, the scheme (X,S) is com-
mutative.

Proof. For s ∈ S and t ∈ T , σsσt = σtσs since TsT = s or s ∈ T .
Let s, s′ ∈ S − T . We know that the quotient scheme S//T is commutative. So,

by [9, Theorem 4.1.3 (ii)], we have

ass′w = nT asT s′T wT = nT as′T sT wT = as′sw

for any w ∈ S. This means that (X,S) is commutative. ¤

We note that the case (2) in Proposition 4.3, the scheme (X,S) is p′-valenced,
namely the valency of every s ∈ S is a p′-number.

Proposition 4.5. In the case (2) in Proposition 4.3, ZT is in the center of ZS.

Proof. Fix s ∈ S and define a group homomorphism ρ : T → T by ts = sρ(t). Then

σtσsσs∗σt∗ = σsσρ(t)σρ(t)∗σs∗ = σsσs∗ .

So we have∑
u∈S

as,s∗,uσu = σsσs∗ = σtσsσs∗σt∗ =
∑
u∈S

as,s∗,uσtut∗ =
∑
u∈S

as,s∗,t∗utσu

for t ∈ T . This means as,s∗,u = as,s∗,tut∗ for any s, u ∈ S and t ∈ T . So we have
au∗,s,s = atu∗t∗,s,s by [9, Lemma 1.1.3 (ii)].

Suppose tu∗ ̸= u∗t for some u ∈ S and t ∈ T . Then u∗, tu∗t∗, · · · , and
tp−1u∗(t∗)p−1 are all different. So, if u ∈ ss∗ for some s ∈ S, then au∗,s,s > 0
and

p ≤
∑
v∈S

av,s,s = ns < p.

This is a contradiction. So we can say that tu = ut if u ∈ ss∗ for some s ∈ S.
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If ss∗ ⊂ T for any s ∈ S, then T is in the thin residue of (X,S). So (X,S) is
commutative by [6] in this case. So we may assume that there exists v ∈ S − T
such that v ∈ ss∗ for some s ∈ S. Then σtσvσvσt∗ = σvσv. Similar argument as
above shows that any u ∈ vv satisfies tu = ut for any t ∈ T . Repeat this process,
and we can show that, for any positive integer i, any u ∈ vi satisfies tu = ut for
any t ∈ T .

Let u be an arbitrary element in S. Since S//T is primitive, there exists a positive
integer i such that TuT ∩ vi ̸= ϕ. Take u′ ∈ TuT ∩ vi. Then u′ = ut′ for some
t′ ∈ T . So u also satisfies tu = ut for any t ∈ T . This completes the proof. ¤

Now we show that any Schurian scheme of prime square order is commutative.
An association scheme induced by a transitive permutation group [1, Example II.2.1
(1)] is said to be Schurian. This definition seems to be different from that in [9], but
they are equivalent [9, Corollary 6.3.2]. Permutation groups of prime square degree
are considered, for example, in [3]. The next theorem follows from the results in [3]
but we give a proof.

Theorem 4.6. Every Schurian scheme of prime square order is commutative.

Proof. Let p be a prime number, G a transitive permutation group of degree p2, H
a stabilizer of a point, and let P be a Sylow p-subgroup of G. Put |G| = paq where
a and q are rational integers and p - q. Then

|G| ≥ |HP | =
|H| · |P |
|H ∩ P |

=
pa−2

|H ∩ P |
|G|.

Of course, |H ∩ P | ≤ pa−2. This shows that HP = G, and so P is transitive.
This means that the adjacency algebra of the scheme induced by G is a subalgebra
of that induced by P . So it is enough to show that the scheme induced by P is
commutative.

Let (X,S) be the scheme induced by P . Then the valency of every element of S
is a p-power, since P is a p-group. If (X,S) is thin, then obviously it is commutative
since a finite group of prime square order is commutative. If (X,S) is not thin,
then it satisfies the condition of the case (1) in Proposition 4.3. So the result holds
by Proposition 4.4. ¤

We can identify a thin scheme with the corresponding finite group. So there are
two isomorphism classes of thin schemes of order p2 and they are commutative. We
can see that any Schurian scheme of order p2 is a fusion scheme of one of them by
the above arguments.

5. Commutativity

In this section, we will prove the commutativity of a scheme of order p2 with a
non-trivial thin closed subset satisfying (2) in Proposition 4.3. So we may assume
(X,S) is p′-valenced and every valency is less than p.

Let F be a field of characteristic p. By Theorem 3.5, there exists s ∈ S such
that F (S//T ) = F [σsT ]. We will fix such s ∈ S. Let t be a generator of the cyclic
group T . We write the Jacobson radical of FT by Rad(FT ). Then it is proved in
[2, Theorem 5.24] that Rad(FT ) =

⊕p−1
j=1 F (1 − σt

j) .
By [5], there exists an algebra homomorphism

π : ZS → Z(S//T ), σs 7→ ns

nsT

σsT .
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This induces an F -algebra homomorphism π : FS → F (S//T ). Since (X,S) is
p′-valenced, π is an epimorphism.

Lemma 5.1. In the above notations, the kernel of π is (FS)Rad(FT ) and its
dimension is |S|(p − 1)/p.

Proof. By the definition of π, it is easy to see that (FS)Rad(FT ) is contained
in the kernel. Also dimF (FS)Rad(FT ) = |S|(p − 1)/p is clear by the structure
of (X,S). Since π is an epimorphism and dimF F (S//T ) = |S|/p, the kernel is
(FS)Rad(FT ). ¤

Lemma 5.2. We have FS = F [σs](FT ). Especially, FS is commutative.

Proof. Since π(F [σs](FT )) = F [σsT ] = F (S//T ) and ker(π) = (FS)Rad(FT ), we
have

FS = F [σs](FT ) + (FS)Rad(FT ).
Regard the both sides of this equation as FT -modules. Then Nakayama’s Lemma
[2, Lemma 5.7] shows that FS = F [σs](FT ).

Since FT is contained in the center of FS by Proposition 4.5, FS is commutative.
¤

Proposition 5.3. Under the above assumptions, (X,S) is commutative.

Proof. Note that every valency of an element of S is less than p. For s, t, u ∈ S,
it holds that

∑
t∈S astu = ns by [9, Lemma 1.1.3 (iii)] and astu ≥ 0. So we have

0 ≤ astu ≤ ns < p, and similarly 0 ≤ atsu ≤ ns < p. Since FS is commutative,
we have astu ≡ atsu (mod p) for any s, t, u ∈ S. This means that astu = atsu and
(X,S) is commutative. ¤

Now we have proved all parts of our main result.

Theorem 5.4. Let p be a prime number, and (X,S) an association scheme of
order p2 having a non-trivial thin closed subset T . Then (X,S) is commutative.
Moreover, if nT = p, then |S| = |S//T | + p − 1 or |S| = p|S//T | holds.
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