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Abstract

Clifford theory of finite groups is generalized to association schemes.
It shows a relation between irreducible complex characters of a scheme
and a strongly normal closed subset of the scheme. The restriction of
an irreducible character of a scheme to a strongly normal closed sub-
set coniatns conjugate characters with same multiplicities. Moreover
some strong relations are obtained.

1 Introduction

Let K be an algebraically closed field. Let G be a finite group, N a normal
subgroup of G. The usual Clifford theory for finite groups shows that

(CF1) the restriction of an irreducible KG-module to KN is a direct sum of G-
conjugates of an irreducible KN -module L with the same multiplicities,

(CF2) there exists a natural bijection between the set of irreducible KG-
modules over L and the set of KT -modules over L, where T is the
stabilizer of L in G,

(CF3) and there exists a natural bijection between the set of irreducible KT -
modules over L and the set of irreducible modules of a generalized
group algebra of T/N .

In this article, we will generalize them to association schemes. But we only
consider module over the complex number field C. The arguments also hold
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for modules over an arbitrary algebraically closed field of characteristic zero.
To do this, the assumption “normal” is too weak. There exists an example
of a scheme with a normal closed subset such that (CF1) does not hold for it
(see [3]). So we consider “strongly normal” closed subsets. When a scheme
is commutative, the author has already shown the results in [3].

Let (X,S) be an association scheme, T a strongly normal closed subset
of S. Then the quotient S//T can be regarded as a finite group. So we
use the theory of group-graded algebras by Dade [1]. Then we can define
S//T -conjugates of CT -modules and prove generalizations of (CF1), (CF2),
and (CF3) for association schemes. Dade’s theory is very essential in our
arguments, but we need only a very spacial case of his theory. So we restrict
our attention to the spacial case and give easier proofs to the theory in section
2. In section 3, we apply Dade’s theory to association schemes, and in section
4, we state our main theorems. The statement (CF1) will be generalized in
Theorem 4.1, (CF2) in Theorem 4.2, and (CF3) in Theorem 4.3. In section 5,
we consider the multiplicities of irreducible complex characters of association
schemes in the standard characters. Finally, in section 6, we will give an
application on a combinatorial property of schemes.

2 Group-graded algebras and their modules

In this section, we state some results in theory of group-graded algebras and
their modules by Dade [1]. It is not so easy to understand all of his theory.
So we restrict our attention to a spacial case which is needed later, and give
proofs to the results.

Let K be a field, G a finite group, and A a finite dimensional K-algebra
with the identity element. We say that A is a G-graded algebra if A has a
decomposition

A =
⊕
g∈G

Ag

of K-subspaces such that
AgAh ⊂ Agh

for any g, h ∈ G. Obviously A1 is a subalgebra of A and Ag is a both left
and right A1-submodule of A.
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Let A =
⊕

g∈G Ag be a G-graded algebra. A right A-module M is said to
be a G-graded A-module if M has a decomposition

M =
⊕
g∈G

Mg

of K-subspaces such that
MgAh ⊂ Mgh

for g, h ∈ G. We call Mg the g-component of M .
In this paper, we only consider finite dimensional modules over K.
Let A be a G-graded algebra, and M a G-graded A-module. For g ∈ G,

we define the conjugate M g of M as follows. Let M g = M as an A-module
and put (M g)h = Mgh. Then M g is again a G-graded A-module by

(M g)hAk = MghAk ⊂ Mghk = (M g)hk

for g, h, k ∈ G. We say that M and M ′ are G-conjugate if there exists g ∈ G
such that M ′ ∼= M g.

Let M =
⊕

g∈G Mg and N =
⊕

g∈G Ng be G-graded A-modules. An A-
homomorphism f : M → N is said to be a G-graded A-homomorphism if
f(Mg) ⊂ Ng for all g ∈ G.

Let M =
⊕

g∈G Mg be a G-graded A-module. For a subset H of G, we say
that M is H-null if Mh = 0 for all h ∈ H. The sum of all H-null G-graded A-
submodules of M is also H-null. So there exists the unique maximal H-null
G-graded A-submodule of M . We call it the H-null socle of M and write it
SH(M).

Now we consider the induction of an A1-module to A. Let L be a right
A1-module, and consider the decomposition

L ⊗A1 A =
⊕
g∈G

L ⊗ Ag.

We call L ⊗A1 A the induction of L to A. Then L ⊗A1 A becomes a graded
A-module with (L ⊗A1 A)g = L ⊗ Ag. We can see that L ⊗ Ag is an A1-
submodule of L ⊗A1 A for any g ∈ G and the decomposition is a direct sum
decomposition of an A1-module L⊗A1 A. Especially, L⊗A1 is isomorphic to
L as an A1-module. Here L⊗Ag is considered as a subset of L⊗A1 A. Since
Ag has an (A1, A1)-bimodule structure, we can consider a right A1-module
L ⊗A1 Ag. Then L ⊗ Ag

∼= L ⊗A1 Ag as right A1-modules.
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Proposition 2.1. Suppose L is a simple A1-module. Let M be a proper
G-graded A-submodule of L ⊗A1 A. Then M is 1-null. So the 1-null socle
S1(L ⊗A1 A) is the unique maximal G-graded A-submodule of L ⊗A1 A.

Proof. First, we note that L ⊗A1 A is not 1-null since (L ⊗ A)1
∼= L. Let

M be a G-graded A-submodule of L ⊗A1 A. Suppose M is not 1-null. Then
M1 ̸= 0. Since L ∼= L ⊗A1 A1 is a simple A1-module, M1 contains L ⊗A1 A1.
But (L ⊗A1 A1)A = L ⊗A1 A. So M = L ⊗A1 A.

For a simple A1-module L, define

L⊗̄A = (L ⊗A1 A)/S1(L ⊗A1 A).

Then Proposition 2.1 shows that L⊗̄A is a simple G-graded A-module.

Proposition 2.2. Let M be a simple G-graded A-module. Then Mg is a
simple A1-module or 0 for every g ∈ G. Moreover if M is not 1-null, then
M1⊗̄A ∼= M .

Proof. Let M be a simple G-graded A-module and suppose Mg ̸= 0. Since
the conjugate M g is also a simple G-graded A-module, it is enough to show
that M1 is simple if M is not 1-null. Suppose M is not 1-null and let L be a
simple A1-submodule of M1. Then LA =

∑
g∈G LAg and LAg ⊂ Mg for any

g ∈ G. So LA =
⊕

g∈G LAg and LA is a G-graded A-submodule of M . Since
M is a simple G-graded A-module, LA = M holds. Then L = (LA)1 = M1.
So M1 is a simple A1-module.

Let M be a simple G-graded A-module and suppose M is not 1-null. Then
M = M1A. There exists a G-graded A-epimorphism f : M1 ⊗A1 A → M1A
such that f(m ⊗ a) = ma. But the 1-null socle of M1 ⊗A1 A is the unique
maximal G-graded A-submodule. So we have M1⊗̄A ∼= M .

Proposition 2.2 shows that every non 1-null simple G-graded A-module
is of the form L⊗̄A for some simple A1-module L. So we have a bijection
between the set of simple A1-modules and the set of non 1-null simple G-
graded A-modules.

Let M =
⊕

g∈G Mg be a simple G-graded A-module. Then Mg is a simple
A1-module or 0 for any g ∈ G. Put

Supp(M) = {g ∈ G | Mg ̸= 0}
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and call this the support of M . Note that Supp(M) is not necessary a sub-
group of G. For g, h ∈ Supp(M), we say that simple A1-modules Mg and Mh

are G-conjugate. In this case, Mg⊗̄A and Mh⊗̄A are G-conjugate G-graded
A-modules. So being G-conjugate is an equivalence relation on the set of
isomorphism classes of simple A1-modules.

For a simple A1-module L, define the stabilizer

G{L} = {g ∈ G | (L⊗̄A)g
∼= L}

of L in G. Then G{L} is a subgroup of G and the support Supp(L⊗̄A) is a
union of some left G{L}-cosets.

3 Adjacency algebras of association schemes

We fix some notations for association schemes. In this paper an association
scheme or a scheme means a finite scheme in [5].

Let (X,S) be a scheme, K be a field. The valency of s ∈ S is denoted by
ns. For a subset T of S, we also use the notation nT =

∑
t∈T nt. Especially,

nS = |X|. For s ∈ S, let σs denote the adjacency matrix of s. The adjacency
matrix will be considered as a matrix over a suitable field. The adjacency
algebra

⊕
s∈S Kσs of (X,S) over K will be denoted by KS. Mainly, we

will consider the adjacency algebra over the complex number field C. The
structure constant will be denoted by pu

st, namely σsσt =
∑

u∈S pu
stσu in CS.

Since the adjacency algebra CS is closed by the transpose conjugate, CS is a
semisimple algebra. Let Irr(S) denote the set of all irreducible characters of
CS. For χ ∈ Irr(S), the central primitive idempotent corresponding to χ will
be denoted by eχ. Naturally, we can regard the vector space CX as a right
CS-module. Let γS be the character of the CS-module CX. We call CX and
γS the standard module and the standard character of (X,S), respectively.
The multiplicity of χ ∈ Irr(S) in γS will be called the multiplicity of χ and
denoted by mχ.

For (strongly normal) closed subsets, quotient (factor) schemes, and so
on, see the Zieschang’s book [5].
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3.1 The Casimir element

Let (X,S) be a scheme. We consider the adjacency algebra CS of (X,S).
Define a map ζ : CS → CS by

ζ(a) =
∑
s∈S

1

ns

σs∗aσs.

We call ζ the Casimir operator of CS.

Lemma 3.1 ([5, Theorem 4.2.1]). For any a ∈ CS, ζ(a) is in the center
Z(CS) of CS.

The element v = ζ(1) =
∑

s∈S ns
−1σs∗σs is called the Casimir element of

CS. By Lemma 3.1 v is in the center of CS. We remark that the Casimir
element is in COθ(S), where Oθ(S) is the thin residue of S (see [5, §2.3]).

Proposition 3.2. The Casimir element of CS is invertible in CS.

Proof. Put v =
∑

s∈S ns
−1σs∗σs. We write the regular character of CS by

reg. Then reg(σs) =
∑

χ∈Irr(S) χ(1)χ(σs) =
∑

t∈S pt
ts. So we have

v =
∑
s∈S

1

ns

∑
t∈S

pt
s∗sσt =

∑
s∈S

∑
t∈S

1

nt

ps
st∗σt

=
∑
t∈S

1

nt

reg(σt∗)σt =
∑
t∈S

∑
χ∈Irr(S)

1

nt

χ(1)χ(σt∗)σt

=
∑

χ∈Irr(S)

nSχ(1)

mχ

eχ.

and
v−1 =

∑
χ∈Irr(S)

mχ

nSχ(1)
eχ

since 1 =
∑

χ∈Irr(S) eχ is an orthogonal idempotent decomposition.

3.2 Graded modules and simple modules

Let K be a field. Let (X,S) be a scheme and T a strongly normal closed
subset of S. Then S//T is thin and we can regard it as a finite group. Then

KS =
⊕

sT∈S//T

K(TsT )
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is an S//T -graded K-algebra, where K(TsT ) =
⊕

u∈TsT Kσu. Obviously
(KS)1T = KT . We can apply Dade’s theory for KS, but we restrict our
attention to the case K = C. We will show that every S//T -graded CS-
module is semisimple.

Proposition 3.3. Let M and N be S//T -graded CS-modules and f : M → N
a C-linear map such that f(MsT ) ⊂ NsT for any sT ∈ S//T . Define f̃ : M →
N by

f̃(m) =
∑
s∈S

1

ns

f(mσs)σs∗ .

Then f̃ is an S//T -graded CS-homomorphism.

Proof. First we show that f̃ is a CS-homomorphism. For t ∈ S, we have

f̃(mσt) =
∑
s∈S

1

ns

f(mσtσs)σs∗ =
∑
s∈S

∑
u∈S

1

ns

pu
tsf(mσu)σs∗

=
∑
s∈S

∑
u∈S

1

nu

ps∗

u∗tf(mσu)σs∗ =
∑
u∈S

1

nu

f(mσu)σu∗σt

= f̃(m)σt.

So f̃ is a CS-homomorphism.
Now we show that f̃ is an S//T -graded CS-homomorphism. Suppose

m ∈ MuT . Then

f(mσs∗)σs ∈ f(MuT (CS)(s∗)T )(CS)sT ⊂ f(MuT (s∗)T )(CS)sT

⊂ NuT (s∗)T (CS)sT ⊂ NuT .

So f̃(m) ∈ NuT . This means that f̃ is S//T -graded.

Proposition 3.4. Let M be an S//T -graded CS-module and N an S//T -
graded CS-submodule of M . Then there exists an S//T -graded CS-submodule
L such that M = N ⊕ L.

Proof. For every sT ∈ S//T , there exists a C-subspace LsT of MsT such that
MsT = NsT ⊕ LsT as a C-space. Put L =

⊕
sT∈S//T LsT . Then M = N ⊕ L

as a C-space. Let f : M → N be the projection with respect to this direct
sum. Then f(MsT ) ⊂ NsT for any sT ∈ S//T . Define p : M → M by

p(m) = f̃(m)v−1,
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where f̃ is defined in Proposition 3.3 and v =
∑

s∈S ns
−1σsσs∗ is the Casimir

element of CS. Note that v is invertible in CS by Proposition 3.2. Then
p is a CS-homomorphism by Proposition 3.3 and that v is in the center of
CS. Note that v ∈ (CS)1T = CT since v ∈ COθ(S) and T ⊃ Oθ(S). Also
v−1 ∈ CT . Then clearly p(M) ⊂ N and if n ∈ N , then

p(n) = f̃(n)v−1 =
∑
s∈S

1

ns

f(nσs)σs∗v
−1

=
∑
s∈S

1

ns

nσsσs∗v
−1 = nvv−1 = n.

So p(M) = N . It is easy to see that M = N ⊕ (1 − p)(M) as a CS-
module. Now it is enough to show that p(MuT ) ⊂ MuT for any uT ∈ S//T .
Suppose m ∈ MuT . Then mσs ∈ MuT sT , f(mσs) ∈ NuT sT , and f(mσs)σs∗ ∈
NuT . So f(mσs)σs∗v

−1 ∈ NuT . Now p(m) ∈ NuT ⊂ MuT and the proof is
completed.

Theorem 3.5. For a simple CT -module L, L⊗CT CS is a simple S//T -graded
CS-module. Especially L⊗̄CS ∼= L ⊗CT CS.

Proof. If L ⊗CT CS is not a simple S//T -graded CS-module, then it is a
direct sum of some S//T -graded CS-submodules by Proposition 3.4. But
Proposition 2.1 says that the 1T -null socle is the unique maximal S//T -graded
CS-submodule of L ⊗CT CS. This is a contradiction.

Combining Proposition 2.2 and Theorem 3.5, we have the following fact.

Theorem 3.6. For any simple CT -module L and s ∈ S, L ⊗ C(TsT ) is a
simple CT -module or 0.

For any simple CT -module L, the set of S//T -conjugates is {L⊗C(TsT ) |
s ∈ S, L ⊗ C(TsT ) ̸= 0}. We remark that there exist examples such that
L and L′ are S//T -conjugate simple CT -modules but their dimensions are
different. In general, characters of S//T -conjugate simple CT -modules have
the same multiplicities (see section 5).

4 Clifford Theory

First, we state some notations. Let K be a field, A a finite dimensional
K-algebra, B an subalgebra of A. For a right B-module L, the induction
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L⊗B A of L to A will be denoted by L↑A. For a right A-module M , we write
M ↓B if M is considered as a B-module and we call M ↓B the restriction of
M to B. The Frobenius reciprocity holds, namely

HomA(L↑A,M) ∼= HomB(L,M ↓B)

as K-spaces (for example, see [4, Theorem I.11.3]). Let IRR(A) denote a
complete set of representatives for the isomorphism classes of irreducible
(simple) A-modules. Suppose both A and B are semisimple. For a simple
B-module L, define

IRR(A | L) = {M ∈ IRR(A) | HomA(L↑A,M) ̸= 0}.

For any M ∈ IRR(A), there exists L ∈ IRR(B) such that M ∈ IRR(A | L).
For a scheme (X,S), its closed subset T , a right CT -module L, and a

right CS-module M , we write L ↑S and M ↓T instead of L ↑CS and M ↓CT ,
respectively.

In the rest of this section, we fix a scheme (X,S) and its strongly normal
closed subset T .

Let M ∈ IRR(CS). Then M ∈ IRR(CS | L) for some L ∈ IRR(CT ).
Since M is a direct summand of L ↑S, any simple submodule of M ↓T is an
S//T -conjugate of L. If L and L′ are S//T -conjugate, then L ↑S∼= L′ ↑S as
CS-modules. So

dimC HomCT (L,M ↓T ) = dimC HomCS(L↑S,M)

= dimC HomCS(L′ ↑S,M) = dimC HomCT (L′,M ↓T ).

This shows the following theorem.

Theorem 4.1. Let M ∈ IRR(CS). There exists L ∈ IRR(CT ) such that
M ∈ IRR(CS | L). Then there exists a positive integer e such that

M ↓T
∼= e

(⊕
L′

L′

)
,

where L′ runs over all S//T -conjugates of L.

Remark. Theorem 4.1 is true for over not only C but also an arbitrary
coefficient field K, by [1, Theorem 12.4 and 12.10]. See also [2, Theorem 2].
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Fix a simple CT -module L. Put U//T the stabilizer of L in S//T . Then⊕
sT∈S//T

L ⊗ C(TsT ) = L ⊗CT CS ⊃ L ⊗CT CU =
⊕

uT∈U//T

L ⊗ C(TuT )

and, by Theorem 3.6, ⊕
uT∈U//T

L ⊗ C(TuT ) ∼= nU//T L

as a CT -module. So dimC HomCU(L ↑U , L ↑U) = dimC HomCT (L,L ↑U↓T ) =
nU//T . On the other hand, by the Frobenius reciprocity, we have

dimC HomCS(L↑S, L↑S) = dimC HomCT (L,L↑S↓T ) = nU//T .

So dimC HomCS(L↑S, L↑S) = dimC HomCU(L↑U , L↑U). Let L↑U∼=
⊕

i miMi

be the irreducible decomposition of L↑U , with the property that Mi
∼= Mj if

and only if i = j. Then

dimC HomCU(L↑U , L↑U) = dimC HomCU(
⊕

i

miMi,
⊕

i

miMi)

≤ dimC HomCS(
⊕

i

miMi ↑S,
⊕

i

miMi ↑S)

= dimC HomCS(L↑S, L↑S).

This means that dimC HomCS(Mi ↑S, Mi ↑S) = 1 and Mi ↑S is a simple
CS-module for every i. Also Mi ↑S∼= Mj ↑S if and only if i = j. Obviously
Mi ∈ IRR(CU | L) and Mi ↑S∈ IRR(CS | L).

Conversely, let N ∈ IRR(CS | L). Then N is a direct summand of L↑S.
So there exists some Mi such that N is a direct summand of Mi ↑S. Since
Mi ↑S is simple, such Mi is uniquely determined. This shows the following
theorem.

Theorem 4.2. Fix a simple CT -module L. Put U//T the stabilizer of L
in S//T . Then there exists a bijection τ : IRR(CU | L) → IRR(CS | L)
such that τ(M) = M ↑S and τ−1(N) is the unique direct summand of N ↓U

contained in IRR(CU | L).

Next, we consider IRR(CU | L). Since L↑U∼=
⊕

i miMi, we have

mi = dimC HomCU(L↑U , Mi) = dimC HomCT (L,Mi ↓T )
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and
EndCU(L↑U) ∼=

⊕
i

Matmi
(C).

We have that dimC EndCU(L ↑U) =
∑

i mi
2 = nU//T . We consider another

description of the structure of EndCU(L↑U).
Consider the grading

L↑U=
⊕

uT∈U//T

(L↑U)uT =
⊕

uT∈U//T

L ⊗ C(TuT ).

For uT ∈ U//T , put

EuT = {ρ ∈ EndCU(L↑U) | ρ((L↑U)vT ) ⊂ (L↑U)uT vT for any vT ∈ S//T}.

Put E =
∑

uT∈U//T EuT . Then the sum is direct, the identity map is in E1T ,

and EuT EvT ⊂ EuT vT . So E is a U//T -graded C-algebra.
For uT ∈ U//T , we define ρuT ∈ EuT . Actually, this is a conjugation,

but we explain its details. We know that (L ↑U)vT
∼= L as CT -modules for

vT ∈ U//T . So we fix isomorphisms τvT : (L ↑U)vT → L for all vT ∈ U//T .
Note that τvT is not unique. But, through τvT , we identify (L↑U)vT with L.
For ℓ ∈ L↑U , write ℓ =

∑
vT ℓvT , ℓvT ∈ (L↑U)vT . Define ρuT by putting

(ρuT (ℓ))vT = ℓuT vT .

Clearly ρuT is a C-linear isomorphism. For w ∈ U , we have

(ρuT (ℓσw))vT = (ℓσw)uT vT ,

(ρuT (ℓ)σw)vT = ((ρuT (ℓ))vT (w∗)T )σw = ℓuT vT (w∗)T σw = (ℓσw)uT vT .

So ρuT is a CU -homomorphism. Now ρuT ∈ EuT by the definition and ρuT

is invertible in EndCU(L ↑U). Especially dimC EuT ≥ 1 for any uT ∈ U//T .
Thus

nU//T = dimC EndCU(L↑U) ≥ dimC E ≥ nU//T .

This shows that E = EndCU(L↑U). Now E =
⊕

uT∈U//T CρuT is a generalized

group ring C(α)(U//T ) for some factor set α (see [4, §II.8]). Now we have the
following theorem.

Theorem 4.3. Fix a simple CT -module L. Put U//T the stabilizer of L
in S//T . Then there exists a factor set α of U//T and a bijection µ :
IRR(C(α)(U//T )) → IRR(CU | L) such that dimC µ(N) = (dimC L)(dimC N)
for N ∈ IRR(C(α)(U//T )).
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Suppose there exists a simple C(α)(U//T )-module of dimension one. Let
Γ be the corresponding representation. Then

Γ(ρuT )Γ(ρvT ) = Γ(ρuT ρvT ) = α(uT , vT )Γ(ρuT vT ).

This means that α is a coboundary and C(α)(U//T ) ∼= C(U//T ).

Corollary 4.4. In Theorem 4.3, if there is M ∈ IRR(CU | L) such that
M ↓T

∼= L, then the factor set α can be chosen to be the trivial one.

If the quotient U//T is a cyclic group, then the second cohomology group
H2(U//T, C×) is trivial and L is extendible to U (see [4, Lemma III.5.4]).

5 Multiplicities of induced characters

In this section, we will give a formula on the multiplicities of induced char-
acters, though it is not related to Clifford theory. This formula shows that
multiplicities of conjugate characters are the same as we said in the end of
section 3. In this section, we will use characters instead of modules, but they
are essentially the same.

For a character η and an irreducible character χ of a scheme, let m(χ in η)
denote the multiplicity of χ in η. Usually we consider the multiplicity mχ

only for an irreducible character χ. It is defined by m(χ in γS) for χ ∈ Irr(S).
Let η be an arbitrary character of S. Let we define the multiplicity mη of η
by

mη =
∑

χ∈Irr(S)

m(χ in η) mχ.

If η is irreducible, then mη is same as the original one. We have the following
theorem.

Theorem 5.1. Let (X,S) be a scheme and T a closed subset of S. Let φ be
a character of T . Then mφ↑S = (nS/nT )mφ.

Proof. Without loss of generality, we may assume that φ is irreducible. By
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the orthogonality relations [5, Theorem 4.1.5 (ii)], we have

mφ↑S =
∑

χ∈Irr(S)

m(χ in φ ↑S) mχ =
∑

χ∈Irr(S)

m(φ in χ ↓T ) mχ

=
∑

χ∈Irr(S)

mχ
mφ

nT φ(1)

∑
t∈T

1

nt

φ(σt)χ(σt∗)

=
mφ

nT φ(1)

∑
t∈T

1

nt

φ(σt)
∑

χ∈Irr(S)

mχχ(σt∗)

=
mφ

nT φ(1)

∑
t∈T

1

nt

φ(σt)γS(σt∗) =
mφ

nT φ(1)
φ(1)nS =

nS

nT

mφ.

This shows the assertion.

Let T be a strongly normal closed subset of S, φ and ψ are S//T -conjugate.
Then we know that φ↑S= ψ↑S. So Theorem 5.1 shows that mφ = mψ.

6 An application

In this final section, we will give an application of our arguments. This is an
answer to a question by Mikhail Muzychuk.

Theorem 6.1. Let (X,S) be a scheme, T a strongly normal closed subset of
S. Then |TsT | ≤ |T | for any s ∈ S.

Proof. Let s ∈ S. We have

C(TsT ) ∼= CT ⊗CT C(TsT ) ∼=
⊕

L∈IRR(CT )

(dimC L)L ⊗ C(TsT ).

Note that, for L, L′ ∈ IRR(CT ), L ⊗ C(TsT ) ∼= L′ if and only if L′ ⊗
C(Ts∗T ) ∼= L. So L ⊗ C(TsT ) ∼= L′ ⊗ C(TsT ) if and only if L ∼= L′

for L, L′ ∈ IRR(CT ) with the property L ⊗ C(TsT ) ̸= 0. We define a
bijection f : IRR(CT ) → IRR(CT ) as follows. Put f(L) = L ⊗ C(TsT ) if
L ⊗ C(TsT ) ̸= 0. Keeping f to be an injection, we define f(L) arbitrarily
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for the other L. Then we have

|TsT | = dimC C(TsT ) =
∑

L∈IRR(CT )

(dimC L)(dimC L ⊗ C(TsT ))

≤
∑

L∈IRR(CT )

(dimC L)(dimC f(L)) ≤
∑

L∈IRR(CT )

(dimC L)2

= dimC CT = |T |

as desired.
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