COHEN-MACAULAY MODULES AND HOLONOMIC MODULES
OVER FILTERED RINGS

HIROKI MIYAHARA®™) AND KENJI NISHIDA (**)

ABSTRACT. We study Gorenstein dimension and grade of a module M over a filtered
ring whose assosiated graded ring is a commutative Noetherian ring. An equality or
an inequality between these invariants of a filtered module and its associated graded
module is the most valuable property for an investigation of filtered rings. We prove
an inequality G-dimM < G-dimgrM and an equality gradeM = grade grM, whenever
Gorenstein dimension of grM is finite (Theorems 2.3 and 2.8). We would say that the
use of G-dimension adds a new viewpoint for studying filtered rings and modules. We
apply these results to a filtered ring with a Cohen-Macaulay or Gorenstein associated
graded ring and study a Cohen-Macaulay, perfect or holonomic module.

1. INTRODUCTION

Homological theory of filtered (non-commutative) rings grew in studying , among oth-
ers, D-modules, i.e., rings of differential operators (cf. [4], [17] etc.). The use of an
invariant ‘grade’ is a core of the theory for Auslander regular or Gorenstein filtered rings
([4], 5], [6], [7], [14]). In particular, its invariance under forming associated graded mod-
ules is essential. Using Gorenstein dimension ([1], [9]), we extend the class of rings for
which the invariance holds.

Let A be a left and right Noetherian ring. Let modA (respectively, modA°P?) be the
category of all finitely generated left (respectively, right) A-modules. We denote the stable
category by modA, the syzygy functor by € : modA — modA, and the transpose functor
by Tr : modA — modA°P (see [2], Chapter 4, §1 or [1], Chapter 2, §1). For M € modA,
we put M* := Homy (M, A) € modA°P.

Gorenstein dimension, one of the most valuable invariants of the homological study of
rings and modules, is introduced in [1]. A A-module M is said to have Gorenstein dimen-
sion zero, denoted by G-dimyM = 0, if M** = M and Extk (M, A) = Extho,(M*, A) =0
for £ > 0. It follows from [1], Proposition 3.8 that G-dim M = 0 if and only if
Exth (M, A) = Extk.,(TrM,A) = 0 for & > 0. For a positive integer k, M is said to
have Gorenstein dimension less than or equal to k, denoted by G-dim M < k, if there
exists an exact sequence 0 — G, — -+ — Gg — M — 0 with G-dim G; =0 for 0 <1 < k.
We have that G-dim M < k if and only if G-dim Q*M = 0 by [1], Theorem 3.13. It is
also proved in [1] that if G-dim M < oo then G-dim M = sup{k : Extk (M, A) # 0}. In
the following, we abbreviate ‘Gorenstein dimension’ to G-dimension.

We define another important invariant ‘grade’. Let M € modA. We put gradey, M :=
inf{k : Exth (M, A) # 0}.
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In this paper we study G-dimension and grade of a filtered module over a filtered ring
whose assiciated graded ring is commutative and Noetherian and apply the results to a
filtered ring with a Gorenstein or Cohen-Macaulay associated graded ring.

In section two, we study G-dimension and grade of modules over a filtered ring. As

usual, we analyze them by using the properties of assiciated graded modules. We start
from studying G-dimension. When an associated graded ring grA of a filtered ring A is
commutative and Noetherian, a filtered A-module M whose associated graded module
grM has finite G-dimension has also finite G-dimension and an inequality G-dimM <
G-dim grM holds true (Theorem 2.3). However, it is open whether an equality holds or not
in general. As for G-dimension zero, we show that if G-dimgrM = 0, then G-dimM = 0
and the converse holds whenever some additional conditions for M are assumed (Theorem
2.5). Assume further that grA is a *local ring with the condition (P) (see Appendix), then
‘Auslander-Bridger formula’ holds for a filtered module M such that grM has finite G-
dimension and G-dimM = G-dim grM: G-dimM + *depth grM = *depth grA (Proposition
2.6).
To handle grade in the literatures, a kind of ‘finitary’ condition over a ring such as
‘regularity’ or ‘Gorensteiness’ is setted ([7], §5 and [14], Chapter II, §2, 2.5). We find
out that only the finiteness of G-dimension of grM implies gradeM = gradegrM for a
filtered module with a good filtration (Theorem 2.8). Suppose that grA is Gorenstein.
Then all finite grA-modules have finite G-dimension. Thus all filtered modules with a
good filtration satisfy the equality. Since regularity implies Gorensteiness, our results
also cover regular filtered rings.

In section three, we apply the results obtained in the previous section to Cohen-
Macaulay modules over filtered rings with a Cohen-Macaulay associated graded ring and
holonomic modules over Gorenstein filtered rings. When grA is a Cohen-Macaulay *local
ring with the condition (P), we define Cohen-Macaulay filtered modules and see that they
are perfect. Then they satisfy a duality (Theorem 3.2). Moreover, assume that A is Goren-
stein. Then injective dimension of A is finite, say d, so that we can define a holonomic
module. A filtered module M with a good filtration is holonomic, if gradeM = d. We
generalize some results in [14], Chapter I, §4 and give a characterization of a holonomic
module M by a property of Min(grM). An example of a filtered (non-regular) Gorenstein
ring is given in 3.8.

The summary of commutative graded Noetherian rings, especially, *local rings are
stated in Appendix.

2. GORENSTEIN DIMENSION AND GRADE FOR MODULES OVER FILTERED
NOETHERIAN RINGS

Let A be a ring. A family F = {F,A : p € N} of additive subgroups of A is called a
filtration of A, if
(i) 1 € FoA,
(ii) FpA C FpuA,
(iii) (FpA)(FA) C FpigA,
(iv) A = UpenFpA.
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A pair (A, F) is called a filtered ring. In the following, a ring A is always a filtered ring
for some filtration F, so that we only say that A is a filtered ring.
Let o, : F,A — F,A/F,_1A be a natural homomorphism. Put

gt = grpA == @D FA/Fpi A (FLA=0).
p=0
Then grA is a graded ring with multiplication
op(a)oy(b) = opiq(ab), a € F,A, be FA.

We always assume that grA is a commutative Noetherian ring. Therefore, A is a right
and left Noetherian ring. Our main objective is to study A by relating G-dimension and
grade of modA and those of mod(grA). Sometimes we assume further that grA is a *local
ring with the condition (P) (see Appendix).

Let M be a (left) A-module. A family F = {F,M : p € Z} of additive subgroups of M
is called a filtration of M, if

(i) FpM C FpriM,

(il) F_pM =0 for p >> 0,

(iii) (FpA)(FeM) C FpegM,

(iv) M = UpezFpM.

A pair (M, F) is called a filtered A-module. Similar to A, we sometimes abbreviate and

say that M is a filtered module. Let 7, : F,M — F,M/F, 1M be a natural homomor-
phism. Put

grM = gr .M := @pr/fp,lM.
PEZL

Then grM is a graded grA-module by
op(a)Ty(x) = Tpig(az), a € F,A, x € F,M.

As for filtered rings and module, the reader is referred to [14] or [20]. We only state here
some definitions and facts. For a filtered module (M, F), we call F to be a good filtration,
if there exist p € Z and my, € M (1 < k < r) such that

T

FpM = Z(}—p—pk/\)mk

k=1
for all p € Z. Then the following three conditions are equivalent ([14], Chapter I, 5.2 and
[20], Chapter D, IV.3)

(a) M has a good filtration.

(b) grzM is a finite grA-module for a filtration F.

(c) M is a finitely generated A-module.

Therefore, we only consider a good filtration for a finitely generated A-module M, so
that grM is a finite grA-module.

Let M, N be filtered A-modules. A A-homomorphism f : M — N is called a filtered
homomorphism, it f(F,M) C F,N for all p € Z. Further, f is called strict, if f(F,M) =
Imf N F,N for all p € Z. If M’ is a submodule of M, then {M' N F,M : p € Z},
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respectively {F,M + M'/M': p € Z} is a good filtration on M’, respectively M/M'. We
call them induced filtration on M’ or M /M’ and note that the canonical homomorphisms
M'"— M and M — M/M" are strict.

For a filtered homomorphism f : M — N, we define a map f, : F,M/F,_1M —
F,N/F,_1N by f,(1p(x)) = 1,(f(x)) for x € F,M. Then we define a grA-homomorphism

grf . ng = @pr/fp_lM — gI‘N = @FPN/FP—IN

by grf = @&f,, so that grf(r,(z)) = 7,(f(z)) for x € F,M. It is easily seen that
grfg = (grf)(grg) for filtered homomorphisms f: M — N and g : K — M.
For a filtered module M, an exact sequence

%ELLFOAM%O

is called a filtered free resolution of M, if all F; are filtered free A-modules and all homo-
morphisms are strict filtered homomorphisms. We can always constract such a resolution
with all F; of finite rank for a finitely generated A-module (see [20], Chapter D, IV).

Let M, N be filtered A-modules. We put, for p € 7Z,

F,Homp (M, N) = {f € Homy (M, N) : f(F,M) C FpioN for all g € Z}
Then we have an ascending chain
-+ C FpHomp (M, N) C Fpy1Homp(M,N) C ---
of additive subgroups of Homy (M, N). Set
grHom, (M, N) := @B F,Homy (M, N)/F,_1Hom, (M, N)
pel

Define an additive homomorphism
o = $(M, N) : gr Homy (M, N) — Homga (850, grN), 9(1,(£)) (1)) = Tpsq(F(2))
for f € F,Homy(M,N), = € F,M, where
7, : FpHomp (M, N) — F,Homp (M, N)/F,_1Homy (M, N)

is a natural homomorphism for every p € Z. When M is a filtered module with a good
filtration, the following facts hold (see [14], Chapter I, 6.9 or [20], Chapter D, VIL.6):

(1) Homp (M, N) = UpezF,Homp (M, N).

(2) F_p,Homp(M,N) =0 for p >> 0.

(3) ¢ is injective. Moreover, if M is a filtered free module, then it is bijective.

(4) When N = A, an additive group Homa (M, A) is a filtered A°P-module with a good
filtration F := {F,Homp(M,A) : p € Z} and ¢ is a grA-homomorphism.

Let M L N % K be an exact sequence of filtered modules and filtered homomorphisms.
Then grM o grN 4 grK is exact (in mod grA) if and only if f and g are strict (see [14],
Chapter I, 4.2.4 or [20], Chapter D, II.3).

The following proposition is well-known.

2.1. PROPOSITION. Let M be a filtered A-module with a good filtation. Then
grExt}y (M, A) is a subfactor of Exty,,(grM, grA) for i > 0.
Proof. See [4], Chapter 2, 6.10 or [14], Chapter II, 2.2.4. [
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When G-dimgrM = 0, the functor Tr commutes with associated gradation.

2.2. LEMMA. Let M be a filtered A-module with a good filtation. Then there exists
an epimorphism o : Trgp(grM) — gr(TraM).

Moreover, if G-dimgrM = 0 or gradegrM > 1, then « is an isomorphism.

Proof. Take a filtered free resolution of M:

NN ) REECIRG AJSELINY - ASELIY ) SN}
By definition, we have an exact sequence
Fr I mr 2 T M = Cokfi — 0,

where ¢ is a canonical epimorphism. Let Try M be equipped with the induced filtration
by g. Then g is a strict filtered epimorphism. Let us consider the following diagrams in
mod grA with the commutative squares and all the ¢’s isomorphisms:

(grfi)*

Homyg,p (grFy, grA) ——  Homgn(grFi, grA) — Trga(grM) —  0(exact)

(1) @1 o1
o F sy o F; B9 e (TeyaM) — 0
(grfi)* (grf2)*
Homg,a(grFp, grA) ——  Homga(grFi, grA) ——  Homyg,a (grEh, grA)
(2) @1 ¢ 1 @1
grFy ) grF o) orFy

Since the induced sequence --- — grF} gy grfy — grM — 0 is a free resolution of

grM, the first row of (1) is exact. Since g is strict, grg is surjective. Hence there ex-
ists a graded epimorphism o : Trga(grM) — gr(TraM). By assumption, we see that
Exty.(grM, grA) = 0, so that the first row of (2) is exact. There exists a filtered ho-
momorphism h : TraM — Fj such that f; = hog. Since grf; = grh o grg, we
have Imgrf; C Kergrg C Kergrf;. The exactness of the second row of (2) implies
Imgrf; = Kergrfy. Thus Imgrf; = Kergrg, hence the second row of (1) is also exact,
which implies that « is an isomorphism. [

2.3. THEOREM. Let M be a filtered A-module with a good filtration such that grM is
of finite G-dimension. Then G-dimM < G-dimgrM .

Proof. We show that if G-dimgrM = k < oo, then G-dimM < k. Let k = 0. Assume
that G-dim grM = 0. For i > 0, since gr Ext}, (M, A) is a subfactor of Exty, , (grM, grA), we

have gr Ext’ (M, A) = 0. Hence Ext) (M, A) = 0. By Lemma 2.2, Ext;m(gr TryM,grA) =
ExtérA(TrgrA(ng),grA) = 0 for i > 0. Hence Ext’.,(TraM,A) = 0 as above. Thus
G-dimM = 0.

Let k > 0. Since gr(Q2*M) and QF(grM) are stably isomorphic(see [10], p.226 for the
definition), the following holds:

G-dimgrM < k < G-dim Q*(grM) = 0 & G-dim gr(Q*M) = 0.
Thus the statement holds by the case of £k = 0. I

2.4. COROLLARY. Assume that grA is a *local ring with the condition (P). If grA is
Gorenstein, then idyA = idpee A < *depth grA.
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Proof. Let M be a finitely generated A-module. Then M is a filtered module with a
good filtration. Then G-dimgrM < oo by Theorem A.9. Hence
G-dimM < G-dimgrM = *depthgrA — *depthgrM < *depth grA.
Therefore, Ext’ (M, A) = 0 for all i > *depth grA, so that idyA < co. Similarly, we have
idpyor A < 00. Thus idpyA = idper A < *depth grA. OJ

Thanks to Corollary 2.4, we call a filtered ring A a ” Gorenstein filtered ring”’, if grA is
a Gorenstein *local ring with the condition (P).

We give a necessary and sufficient condition when G-dim grM = 0.

2.5. THEOREM. Let M be a filtered A-module with a good filtration. Then the
following (1) and (2) are equivalent.

(1) G-dim grM = 0.
(2) (2.1) G-dimM = 0.
fi fo

(2.2) Suppose that --- — F| — Fy — M — 0 is a filtered free resolution of M,
then all ff (i > 0) are strict.

(2.2*) Suppose that --- — Gy 2= Gy 25 M* — 0 is a filtered free resolution of
M, then all g} (i > 0) are strict.

(2.3) A canonical map 0 : M — M** is strict.

Moreover, under the above conditions, ¢y : grM* — (grM)* and oy @ grM™ —
(grM*)* are isomorphisms, where oy = @(M, A), oy = @(M*,A).

Proof. (1) = (2): It follows from Theorem 2.3 that G-dimM = 0. ;jFrom a filtered free
resolution of M in (2.2), we get an exact sequence
0— M L0 g o
This exact sequence and an exact sequence in mod grA:
- — grf} — grky — grM — 0
induced from a resolution in (2.2) give the following commutative diagram

0 — grM* e Us) grFy i) grfFy —

(%) el ©o | e1 |
0 — (erM)* — (grFy)* — (grFy)* —

where ¢ = (M, A), v; = ¢(F;,A). Since G-dimgrM = 0, the second row is exact. For
1 > 0, ; are isomorphisms. Thus a sequence

grky i) grFYy ZU) grFy — -
is exact, and so ff, fy,--- are strict. Hence (2.2) holds. Since fy is a strict filtered
epimorphism, f§ is a strict filtered monomorphism. Thus the first row of (%) is exact.
Therefore, ¢ : grM* — (grM)* is an isomorphism. Since G-dim(grM)* = 0, we have
G-dim grM* = 0. Hence (2.2*) holds and ¢+ is an isomorphism.
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Let n : grM — (grM)** be a canonical homomorphism. Consider the commutative
diagram

grM &, grM™**
() nl | o
(grM)™ 5 (grMe)".
Since 7, ¢}, pum+ are isomorphisms, gr is also an isomorphism. Thus 6 is strict.

(2) = (1): By (2.1) and (2.2), the first row of the diagram (x) is exact. Thus the
second row of (*) is exact, so that Extg,(grM,grA) = 0 for 7 > 0 and (grM)* = grM™.
Since G-dimM* = 0, using the diagram (x) obtained from (2.2*), we can show that
Extg  (grM*, grA) = 0 fori > 0 and (grM™*)* = grM™**. Thus we have Extg, , ((grM)*, grA)
0 for i > 0. By (2.3) and the above argument, the maps grf, ¢}, and ¢y« are isomor-
phisms in the diagram (%), so that 7 is an isomorphism. Thus G-dimgrM = 0. O

Let filA be a category of all filtered A-modules with a good filtration and filtered
homomorphisms. Let G be a subcategory of filA consisting of all filtered modules M
whose associated graded module grM has finite G-dimension. It holds from Theorem 2.3
that a module in G has finite G-dimension. We further put a subcategory G, of G

Ge :={M € G : G-dimM = G-dim grM for some good filtration of M}.

2.6. PROPOSITION. Assume that grA is a *local ring with the condition (P). Let
M € G.. Then the following equality holds.

G-dimM + *depth grM = *depth grA.

Proof. The statement follows from Theorem A.8. [J

2.7. REMARKS. (i) It is interesting to know when G, = G. If this is true, then we see
that G-dimM = 0 if and only if G-dimgrM = 0 for M € G. Hence the condition (2.2),
(2.2*), (2.3) in Theorem 2.5 are superfluous.

(i) Suppose that 0 — M’ — M — M" — 0 is a strict exact sequence of filA. Then the
followings are easy consequence of [9], Corollary 1.2.9 (b).

It M’ M" € G, and G-dimM’ > G-dimM", then M € G,.

If M,M" € G, and G-dimM > G-dimM"”, then M’ € G..

We shall study the another valuable invariant ‘grade’. Its nicest feature that an equation
gradey M = grade,,  grM holds for a good filtered A-module M is proved when grA is
regular (see e.g. [14]). We prove this equation under ‘module-wise’ conditions by which
we can apply this equation fairly wide classes of filtered rings.

2.8. THEOREM. Let A be a filtered ring such that grA is a commutative Noetherian
ring and M a filtered A-module with a good filtration. Assume that grM has finite
G-dimension. Then an equality gradey M = grade,, grM holds.

Proof. Put s = grade,, ,grM. In order to show that gradey M = s, we must prove:

() Exti (M, A) £0,
(ii) Exty (M, A) = 0 for i < s.
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2.8.1. (cf. [14], Chapter I, §1) Let --- — F; L DBy 28 A 0 be a filtered free
resolution of M. Applying (—)* to it, we get a complex

Foooom i g e e

K3 (2

with each F filtered free and f; a filtered homomorphism. We put, for p,r,7 € N,
Z0(i) = () (For )N FFyy,  Z3°(i) :=Kerff N F,F} 4,

p

B;(i) = fi*—l(',Ferrlei*—Q) NFpby, BX(i) ==Imf N Vo

P
Then the following sequence of inclusions holds:

Z,(i) D Z,(i) D -+ D Z°(i) D B)(i) D -+ D By(i) D B,(i).
We put

Zr(i) + Fpr F7

E(i) == =2 L Er =R E ().

) Br(i) + FpaFf @ (0
p

Then E] is a grA-module for r,7 > 0. When r = 0, we have

E} = @ (fi*)_l(fpﬂ*) N pri*,l + fp—lﬂtl — % =

Hence we get a complex
EY:0— gtFf — - — grFf — .
which is an associated graded complex of F,. We show, for r > 1, that { E] };>¢ also gives
a complex E.. To do so, we define morphisms. By computation, it holds that
Z (1
U 0 —
B;(z) + 2,7 (1)
Thus the following hold:
(1) f7(Z,(0) = Byt o (i+1) € Zy_ (i + 1),
(2) f7(By(i)) =0and f7(Z,21(i) = By_,(i+1).
We can show that f; induces a map f;(z) D E(i) — E) (14 1), by
fy @)@ + By(i) + FporFiy) = fi(2) + By (i +1) + Z,Z0 (i + 1) (2 € Z;(0)).
Hence f;(i)(p € N) give a graded grA-homomorphism

I E=@Ei)— E,=PE+1)
p p

JH(Z)(0) = Fpr Ef OV fH(FpFy) = B0+ 1),

of degree —r. It is easily seen that E] : --- — E7 A, i1 — -+ is a complex.

2.8.2. LEMMA. (cf. [14], p.130 (6)) Under the above notation, we have H'(E}) = E/ L.
Proof. We show

H(E (i —1) -1 Er() < Er_ (i +1)) = EZF (),
where we put f := ~ZZJH,(Z‘ —1), g:= f;(z) Using (1) and (2), we can show that
x+ B)(i) + Fp1 Ffy € Kerg <= x € (f7)(B)_ (i + 1) + Fpr 1 FY).
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Thus we get
Zy (i) N (fF)"HBy_ (i +1) + Fpoyp i FY) + Fpr F
Br( ) + ]:p 1By

Kerg =

Further, we have
f (Z;Jrr(-_ ))+fp 1Fz‘*—1

I p—
mf Br(i) + FpiF s

Hence the desired homology is
Kerg  (Zy(i) N (f7) (B (i + 1) + Fpmrr F7) + Fpr Iy
Imf fi (Z£+r(' D)+ Fpa by
2y () + Zy(6) 0 () (Fper i YY) + Fpa B
B f (Z;+T(. )) + fp—lﬂ*—l
20+ ) + FoF
B f 1(Zp1r (1= 1)) +‘,FP*1F11'—1
Zr+1( )+ Fp 1 Fr
BT+1( )+ FpiF7
= E;" (),

where (2) (respectively, (1)) is used to show the second (respectively, fourth) equality. O

2.8.3. COROLLARY. Assume that E! | = 0. Then we have Ef | = 0 for r > 1 and
there exists an exact sequence

r+1 T r
0—E" — E — E

of grA-modules for each r > 1.

Proof. The first assertion directly follows from Lemma 2.8.2. Then the complex E;
yields an exact sequence 0 — H'(E}) — EI — EI',. Since H(E}) = E/*' by lemma
2.8.2, we get the desired exact sequence. [

2.8.4. We will show in this subsection that £ ; # 0.

Condider the following commutative diagram

E2=gr(F}): 0 — gFf — -+ — gff —
! ]
0~ (@R — = (@E) -
where rows are complexes and the second row is obtained by applying Homg, (—, gri)
to a free resolution --- — grFy — grFy — grM — 0 of grM. Hence an isomorphism
B}, = Bxtl,,(grM, grA) holds by Lemma 2.8.2. (Note that E = grF; ,.)

By assumption, we can apply A.15 to grM and get the fact that grade Ext}, \ (grd, grA) =
s. Hence it holds that gradeEL, | = s and E},; = 0 for ¢ < s. By Corollary 2.8.3, we get
an exact sequence of grA-modules

(3) 0— Egill - E§+1 - E§+2

By Lemma 2.8.2, E,, is a subfactor of E7,, for 7 > 1. Thus every grA-submodule U of
E’., is also a subfactor of E},, = Extng1 (grM, grA), so that there exist grA-submodules

X, Y C Extgj/\l(ng, grA) such that U = X/Y. Since gradeX > s+ 1 and gradeY > s+1
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by A.14, it holds that gradeU > s+ 1. Therefore, grade(Imy,) > s+1 for r > 1. Consider
the exact sequence induced from (3):

0— EIfl — El, — Imp, — 0.

Assume that gradeE”,; = s. Then gradeE. ]| = s holds. Hence gradeE",; = s holds for
all 7 > 1 by induction. Especially, B, # 0 holds for all r > 1.

2.8.5. LEMMA There is an isomorphism El,; = gr(Ext} (M, A)) for i > 0 and r >> 0.

Proof. Since the filtration F of A is Zariskian (see [14], Chapter I, §2, 2.4; §3, 3.3 and
Chapter I, §2, 2.1, and Proposition 2.2.1), the lemma follows from [14], Chapter II, §2,
Lemma 2.2.1(p. 150) and §1, Corollary 1.1.7(p. 133). O

2.8.6.  We have shown that £} ; # 0. Hence Ext}(M,A) # 0 by Lemma 2.8.5.
Therefore, (i) holds.

Conversely, since gradegrM = s, we have Ext;rA(ng, grA) = 0 for i < s. Since
gr Ext’ (M, A) is a subfactor of Extém (grM, grA) by Proposition 2.1, we have gr Ext’ (M, A) =
0 for i < s. Therefore, Ext)(M,A) = 0 for i < s, so that (ii) holds. This accomplishes
the proof of 2.8. [J

2.9. REMARKS. (i) Let M € G. Then it follows from 2.3 and 2.8 that
G-dimgrM > G-dimM > gradeM = grade grM.
If grM is perfect, then above inequalities are equalities. Hence M € G..

(ii) Let M € G, with G-dimM = d. Then every syzygy QM of M is also in G,. For, as
gr(Q'M) and Q(grM) are stably isomorphic, we see that G-dim Q' M = G-dim gr(Q2'M) =
max{0, d —i}.

Applying Theorem 2.8 to the case that grA is a Gorenstein ring, we get the following.

2.10. COROLLARY. Let A be a filtered ring such that grA is a commutative Gorenstein
ring and M a filtered A-module with a good filtration. Then the equality grade,M =
gradey, ygrM holds.

Proof. Since all the finitely generated grA-modules have finite G-dimension (see the
proof of [1], Theorem 4.20), this follows from Theorem 2.8. J

2.11. THEOREM. Let A be a Gorenstein filtered ring. Let M be a filtered A-module
with a good filtration. Then the following equality holds.

gradeM + *dimgrM = *dimgrA = *id grA.

Proof. This follows from A.9, A.10, A.12 and 2.8. [J

When A is a Gorenstein filtered ring, due to the above equality, we can define a holo-
nomic module. Put *idgrA = n and idA = d. Let M be a filtered A-module with a good
filtration. Since gradeM < idA = d, we have n — *dim grM < d, hence

*dimgrM > n —d.

This inequality is a generalization of Bernstein’s inequality for a Weyl algebra ([4]).
According to the case of Weyl algebras, we call a finitely generated filtered A-module
M a holonomic module, if *dim grM =n — d.
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3. COHEN-MACAULAY MODULES AND HOLONOMIC MODULES

Throughout this section, we assume that A is a filtered ring such that grA is a Cohen-
Macaulay *local ring with the condition (P) (cf. Appendix). Let M be a finitely generated
filtered A-module such that M € G, i.e., G-dimgrM < oo. It follows from 2.3, 2.8, A.8
and A.12 that the following holds:

(1) G-dimM + *depthgrM <n
(2) gradeM + *dimgrM = n,

where we put n := *depthgrA = *dimgrA. We say that M € G is a Cohen-Macaulay
A-module of codimension k, if *depthgrM = *dimgrM = n — k. Then it is easily seen
that if M is Cohen-Macaulay of codimension k then it is perfect of grade k, where, due
to [1], Definition 4.34, we call M perfect if G-dimM = gradeM. Note also that M is
Cohen-Macaulay if and only if grM is a perfect grA-module by A.8 and A.12. We put

Cr(A) :={M € G : M is a Cohen-Macaulay A-module of codimension k}.
The following is an easy consequence of (1) and (2).
3.1. PROPOSITION. Let M € Ci(A). Then Ext’ (M,A) =0 for all i # k (i > 0).
We slightly generalize [16], Lemma 2.7 and Theorem 2.8, and [15], as follows.
3.2. THEOREM. Let M € G.
i) If M € Cp(A), then Extk (M, A) € Cp(AP).
i) The functor Ext (—, A) induces a duality between the categories C,,(A) and C,,(A°P).

3.2.1. LEMMA. Let N be a finitely generated filtered A-module of gradegrN = s.
If the G-dimension of grN is finite, then we have an embedding gr(Exti(N,A)) —
Ext; s (grN, grA). Moreover, if grN is perfect, then the embedding is an isomorphism.

Proof. Let --- — F} — Fy — N — 0 be a filtered free resolution of N. We use the
notation of 2.8.1. It follows from 2.8.2 and 2.8 that

E! = H*(E)) = H*'(F,) = Ext® (grN, grA) = 0,

grA
where a complex F, : 0 — Fy — F;" — --- is as in 2.8.1. There exists an exact sequence
r+41 T T
0— Es+1 - Es+1 - Es+2

for all r > 1 by 2.8.3, so that EI,; C El  for all » > 1. It follows from Lemma 2.8.5
that, for » >> 0,
E = gr(Exti(N,A)).
Thus, by 2.8.2, we get
gr(Exty (N, A)) C Ey,; = Extgy (grV, grh).

Assume further that grN is perfect. Since E7,, is a subfactor of EL,, & Ext}/| (grN, grA) =
0, we see ], = 0, which shows that the embedding is an isomorphism. []

3.2.2. PROOF OF 3.2. i) Since grM is perfect of grade k, it holds that Ext’g“rA(ng, grA)

is perfect of grade k by [1], Proposition 4.35 and its proof, and so gr Ext (M, A) is perfect
by Lemma 3.2.1. Hence Ext} (M, A) € C,(A°P). ii) Consider the exact sequence

0 — Exth (M, A) — TrQ* M — QTrQ*M — 0
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(see, for example, the proof of [13], Lemma 2.1) and apply (—)* to it. Then we get a long
exact sequence

Exth i (TrQ M, A) — Extho, (TrQ" 1M, A) — Extho, (Exth (M, A), A) — ExtiE2(TrQ* M, A).

Since G-dimTrQ*M = 0 by assumption, the first and fourth terms of the above exact
sequence vanishes. Hence M 2 Exth., (TrQF 1M, A) = Exth., (Exth (M, A), A) by [13],
Lemma 2.5. Therefore, there is a natural isomorphism M 2= Extk,, (Exth (M, A), A) for
M € Ci(A), which induces a duality between the categories C,.(A) and C,(A°P). O

3.2.3. REMARK. The proof 3.2.2 ii) only needs M to be perfect with gradeM = k.
Hence we see that if M is perfect of grade k then M = Ext ., (Exth (M, A), A).

We shall study holonomic modules when A is a Gorenstein filtered ring, that is, grA is
Gorenstein, and generalize the former theory which is under the assumption of regularity
(cf. [14], Chapter I, §4). The assumption that A is Gorenstein implies that G = filA by
A9, where filA is the category of all finitely generated filtered (left) A-modules. We recall
from Corollary 2.4 and the end of section two that idyA = idper A(= d) and M € filA
is called holonomic, if *dimgrM = n — d, where n = *depthgrA = *dimgrA = *id grA.
We see that if M € C4(A) then M is holonomic. We also note that M is holonomic
if and only if gradeM = d (or gradegrM = d) if and only if M is perfect of grade d.
We keep to assume A to be a Gorenstein filtered ring and d = idyA in the rest of this
section. According to [6], Theorem 3.9, if A is a Gorenstein filtered ring, then A satisfies
‘Auslander condition’ :

For every finitely generated A-module M and integer k& > 0,
it holds that grade,o, N > k for all A°P-submodules N C Extk (M, A).

3.3. PROPOSITION. Let M be a finitely generated filtered A-module. Let M be
holonomic and N a A-submodule of M. Then N, M/N are holonomic.

Proof. 1t follows from [13], Lemma 2.11 (cf. also [6], Theorem 3.9) that gradeN > d
and gradeM /N > d, so that gradeN = d and gradeM /N =d. O

3.4. PROPOSITION. A holonomic module is artinian. Therefore, it is of finite length.

We use the following easy lemma for a proof.

3.4.1. LEMMA. Let M; (i =0,1,--+) beamodule over aring and f; : M; — M;; (i =
0,1,--+) is a homomorphism. Assume that My is Noetherian and f; (i = 0,1,---) is
surjective. Then there exists an interger m such that f; is an isomorphism for all i > m.

3.4.2. PROOF OF 3.4. Let M be a holonomic A-module and M = My D M; D --- a
descending chain of A-submodules of M. Then M;, M;_1/M; are holonomic (i > 1), and
so, from an exact sequence 0 — M; — M;_1 — M;_1/M; — 0, we get an exact sequence

0— E(Mz_l/MZ> — EMi—l — EMZ — 0,

where we put E(—) = Ext4(—,A). By Lemma 3.4.1, there exists an integer m such that
EM; 1 — EM,; is an isomorphism for ¢ > m + 1. Hence E(M;_1/M;) = 0 for i > m + 1.
Hence M; 1/M; = 0 for i > m + 1 by Remark 3.2.3, that is, M,, = M,,41 = ---. This
completes the proof. [
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We generalize [14], Chapter I, 4.2.18 Theorem (p. 194), which characterizes a holo-
nomic module by its associated graded module. We put Min(grM) = {p : p is a minimal
element of Supp(grM)} for M € filA.

3.5. THEOREM. Let M € filA. Then the following are equivalent.
(1) M is holonomic,
(2) htp = d for all p € Min(grM).

A finitely generated module M over a two-sided Noetherian ring is called pure, if
grade N = gradeM for all nonzero submodules N of M.

3.5.1. LEMMA. Let M € filA. Then M is pure if and only if grM is a pure grA-module
under a suitable filtration on M.

Proof. Let M be pure. Put s = gradeM and N := Ext}(M,A). Since A satisfies
Auslander condition, it follows that gradeN = s by [13], Lemma 2.8, so that grade grNV = s
by 2.8, hence Extg ,(grN,grA) is pure by [13], Proposition 2.13. By 3.2.1, we have
grExtiop (N, A) C Extg ,(grV,grA). Hence grExtjo,(N,A) is a pure grA-module. By
[13], Theorem 2.3, there exists an exact sequence

0 — ExtihH(TrQ M, A) — M — Extio, (N, A).

Since grade Ext (TrQ*M,A) > s+ 1 by Auslander condition and M is pure, we see
Extiha (TrQ* M, A) = 0. Therefore, M C Ext}o,(N,A). According to a filtration on M
induced from that of Extj.,(N,A), we get an inclusion grM C gr Extio, (N, A), hence
grM is pure. The converse is obvious by Theorem 2.8. [

3.5.2. LEMMA. Let R be a commutative Gorenstein ring and M’ a pure R-module.
Then gradeM’ = dimR,, for each p € Min(M’).

Proof. Since Ry is a Gorenstein local ring, we have an equality gradeM‘; + dimM, =
dimR, (cf. [11], Proposition 4.11). Since p is minimal, dimMF; = 0, so that, gradeMF; =
dim Rp.

Put g = grade]\/[F;, ¢ = gradeM’. Since Ext%(M’', R), = Ext%p(MF;,Rp) # 0, we have
Ext%(M',R) # 0. Hence g > ¢ holds. Suppose that Exth(Exth(M', R), R) # 0 for
k > ¢. Then there exists N C M’ such that gradeN = k > ¢’ by [13], Theorem 2.3,
which contradicts the purity of M’. Hence Exth(Ext%(M’,R),R) = 0 for all k > ¢'.
But by A.15, grade Ext%p(MFl,,Rp) = g. Therefore, we see g < ¢, and so, g = ¢’. This
completes the proof. [

3.5.3. PROOF OF THEOREM 3.5. Put R = grA.

(1)=(2): Assume that M is holonomic. Since M is pure by Proposition 3.3, grM is
pure by 3.5.1. Thus d = gradegrM = dimR, for all p € Min(grM) by 3.5.2. Therefore,
htp = d for all p € Min(grM).

(2)=(1): Put I = [0 :5 grM]. Since R is Cohen-Macaulay, we have htI = gradeR/I by
8], Corollary 2.1.4. It follows from [8], Proposition 1.2.10(e) that gradeR/I = grade grM.
By assumption, ht/ = d, so that, gradegrM = d, that is, gradeM = d by 2.8. Hence M
is holonomic. [J

A module having higher grade has a good property.
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3.6. PROPOSITION. Let M be a finitely generated filtered A-module with gradeM = ¢,
where ¢ = d — 1 ord— 2. Then M is a perfect A-module if and only if there exists a
finitely generated filtered A°°-module M’ of grade ¢ with M = Ext'.,(M’, A).

Proof. Assume that M = Ext.,(M’, A) with gradeM’ = /.

The case ¢/ = d—1: We see gradeM = d—1 by assumption. It follows that grade Extj{(M JA) =
grade Ext} (Ext$ ' (M’, A), A) > d+2 by [13], Corollary 2.10. This shows that Ext% (M, A) =
0, that is, G-dimM < d — 1. Hence G-dimM = gradeM = d — 1, so that M is perfect.

The case ¢ = d — 2: It follows from the similar computations as the above case
that grade Extf(M,A) > d + 2 and grade Ext% (M, A) > d + 1. Hense Ext}(M,A) =
Ext$ ' (M,A) = 0, so that G-dimM = gradeM = d — 2, i.e., M is perfect.

The converse follows from [15], Theorem 4. [J

3.7. Following [14], Chapter I, 4.3, we call a filtered A-module M geometrically pure
(geo-pure for short), if dimgpgrM = dim(grA/p) for all p € Min(grM). Then we have
the following proposition which is a generalization of [14], Chapter I, 4.3.6 Corollary.

3.7.1. PROPOSITION. Let M be a finitely generated filtered A-module, and put
AsshgrM := {p € SuppgrM | dimgrA/p = dimgrM }. Then the following conditions
are equivalent.

(1) M is pure,
(2) M is geo-pure and grM has no embedded prime.

(3) AssgrM = AsshgrM

Proof. (1)=(2): Let M be pure. Then grM is pure by 3.5.1. Take any p € Min(grM).
Since p € AssgrM, we have grA/p < grM, so grade grA/p = gradegrM. Using Theorem
A.12, we have dim grA/p = dimgrM. Hence M is geo-pure. Take any p € AssgrM, then
grA/p — grM. Thus dimgrA/p = dimgrM, by A.12. Therefore, AssgrM = MingrM,
i.e., grM has no embedded primes.

(2)=(3): The former condition implies Assh grM = Min grM, and the latter one implies
MingrM = AssgrM.

(3)=(1): By 3.5.1, it suffices to prove that grM is pure. Let N be a grA-submodule of
grM. Take any p € AssN. Then grA/p < N. Thus, by A.12 and assumption, we have
grade grA/p = gradegrM. By [13], Lemma 2.11, we have

grade grM < gradeN < gradegrA/p = grade grM.
Hence grade grM = gradeN. This completes the proof. [J

3.8. ExaMPLE. We provide an example of a Gorenstein filtered ring A.

Let R = k[[x?, 2®]] be a subring of a formal power series ring k[[z]], where k is a field of
characteristic zero. Then (R, m) is a local Gorenstein (non-regular) ring of dimR = 1,
where m = (z?, z3). Let a differential operator T' = zd with 0 = d/dz. Let A be a subring
of the first Weyl algebra (see [4], [14]) generated by R and T". Then every element of A is
written as Ya,T", a; € R. Note that Tz* = 2'T +i2?, i > 2. For P = Ya,T" € A, we put
ordP = max{i : a; # 0}, an order of P. Let F;A := {P € A : ordP < i}. Then {F;A}
is a filtration of A and grA = RJ[t], where ¢t = 04(T"). Thus grA is Gorenstein *local of
dimension 2. Note that m 4 ¢R][t] is a unique *maximal ideal.

1) idA =2
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Let I := AT + Az? be a left ideal of A. Then I # A. We put induced filtrations to I and
A/ | ie.,

Fl=INnFAN FNI)=(FAN+1)/I, i>0.
Then 0 — I — A — A/I — 0 is a strict exact sequence. Hence 0 — grl/ — grA —
gr(A/I) — 0 is exact. Since grl contains ¢ and z?, gr(A/I) = grA/grl is an Artinian
grA-module. Hence dimggr(A/I) = 0. Thus grade A/I = 2 by Theorem 2.11, and then
idA = 2 by Corollary 2.4. So A/I is holonomic.

2) gldimA = oo
It is easily seen that gr(A/Am) = R/m][t], where a filtration of Am is given by F;(Am) =
(FiA)m. Thus pdyA/Am = oo, and gl dimA = co.

APPENDIX
In Appendix, we provide the fact about graded rings, especially *local rings .

1. SUMMARY FOR *LOCAL RINGS

Let R be a commutative Noetherian ring. We gather some facts about a graded ring.
For the detail, the reader is referred to [8], [12], and [20].
A ring R is called a graded ring, if

i) R = ®;ezR; as an additive group,

ii) RiR; C Ry, for all 4,5 € Z.

An R-module M is called a graded module, if
i) M = ®;ezM; as an additive groups,

ii) RiM; C M,y for all 4, j € Z.

An R-homomorphism f : M — N of graded modules is called a graded homomorphism,
if f(M;) C N; for all i € Z. All graded modules in modR and all graded homomorphisms
form the category of graded modules, which we denote by modyR.

A graded submodule of a graded ring R is called a graded ideal. For any ideal I of R,
we denote by [* the graded ideal generated by all homogeneous elements of I. A graded
ideal m of R is called *mazimal, if it is a maximal element of all proper graded ideals of R.
We say that R is a *local ring, if R has a unique *maximal ideal m. A *local ring R with
the *maximal ideal m is denoted by (R, m). The theory of *local ring is well developed
and a lot of facts that hold for local rings also hold for *local rings (see [8] and [12]).

Let M be a finite R-module. For an ideal I, we denote I-depth of M by depth(I, M)([18]).
Let (R, m) be a *local ring and M € modR. We put *depthM := depth(m, M). We shall
use *depth as a substitute of depth for a local ring.

A graded module M over a graded ring R is called a *injective module, if it is an
injective object in modgR([8], §3.6). We denote by *idM the *injective dimension of M.
By definition, *idM < k if and only if there exists a minimal *injective resolution

0— M — *E°(M) — --- — "E¥(M) — 0.
It is easily seen that *idM < k if and only if Ext%(N, M) = 0 for all i > k and all

N € modgR.
Let (R, m) be a *local ring. Consider the following condition.
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(P) There exists an element of positive degree in R — p
for any graded prime ideal p # m

A positively graded ring satisfies the condition (P). The other examples are seen in [20],
Chapter B, I, 3.2.
The following is known.

A.1. PROPOSITION. Let (R, m) be a *local ring with the condition (P). Then, for every
graded ideal a and every set of graded prime ideals pi,--- ,p,, there exists ¢ such that
a C p;, whenever all homogeneous elements of a are contained in U} ;p;.

Proof. See [19], Lemma 2. [

Using Proposition A.1, the following is proved as the local case.

A.2. PROPOSITION. Let (R,m) be a *local ring with the condition (P). Let M be a
finite graded module with *depthM = t. Then there exists an M-sequence xy,--- ,;
consisting of homogeneous elements in m.

We note the following graded version of Nakayama’s Lemma.

A.3. LEMMA. Let (R, m) be a*local ring and M a finite graded R-module. If mM = M,
then M = 0.

In the following, we assume that (R, m) is a *local ring with the condition (P).

A.4. LEMMA. Let M, N be the non-zero finite graded R-module with *depth/N = 0.
Then Hompg(M, N) # 0.
Proof. 1t is well-known, so we omit the proof. [J

A.5. COROLLARY. Assume that *depthR = 0. Let M be a finite graded R-module.
Then M* = 0 implies M = 0.

We state the graded version of [1], 4.11-13 in the following A.6-A.8.

A.6. PROPOSITION. Assume that *depthR = 0. Let M be a finite graded R-module.
Then G-dimM < oo if and only if G-dimM = 0.

Proof. Tt suffices to prove that G-dimM < oo implies G-dimM = 0.

Suppose that G-dimM < 1. We have an exact sequence 0 — L; — Ly — M — 0 with
G-dimL; =0 (: = 0,1). Hence we have an exact sequence

0— M*— L5 — L} — Exth(M,R) — 0
and Ext’ (M, R) = 0 for i > 1. By this sequence, we have an exact sequence
0 — Exty(M, R)* — Ly — Ly,

where L; — Lg is monic. Thus Exty(M, R)* = 0, and so Extp(M,R) = 0 by A.5
Corollary.

Suppose that G-dimM < n. Let 0 — L, L Ly — M — 0 be exact with
G-dimL; =0 (0 <7 < n). Since G-dim(Imf,,—1) < 1, we have G-dim(Imf,_1) = 0 by the
above argument. Repeating this process, we get G-dimM = 0. [J

We want to generalize [1], Theorem 4.13 (b) to the graded case. The proof of it needs
a part of [1], Proposition 4.12. Thus we adapt this proposition as follows.

A.7. PROPOSITION. Assume that *depthR = t. Let M be a finite graded R-module
with G-dimM < oco. Then the following are equivalent.



COHEN-MACAULAY MODULES AND HOLONOMIC MODULES OVER FILTERED RINGS 17
(1) G-dimM = 0.
(2) *depthM > *depthR.
(3) *depthM = *depthR.

Proof. (1) = (2): Let z1,--- ,z; be a homogeneous regular sequence in m. We show
that z1,---,x; is an M-sequence by induction on ¢. Let ¢ = 1. Since M = M™ is
torsionfree, x; is M-regular.

Suppose that ¢ > 1 and the assertion holds for ¢ — 1. Then zy,--- ,2;_1 is an M-

sequence. Put I = (z,--- ,2,_1), R=R/I, M = M/IM. Then (R,m/I) is a *local ring
with the condition (P). By [1], Lemma 4.9, G-dimzM = G-dimpM = 0. Since 7; € R
is a regular element, Z; is M-regular, hence zi,--- ,x; is an M-sequence. Therefore,
*depthM > *depthR.

(2) = (1): By assumption, it suffices to prove that Ext’ (M, R) = 0 for i > 0. We show
the assertion by induction on ¢t = *depthR.

Let t = 0. Then G-dimM = 0 by Proposition A.6

Let t > 0. Then *depthM > *depthR > 1. We take a homogeneous element x € m
which is R and M-regular. Then, by [8], 1.2.10 (d),

“depthp . gk M/xM = *depthpM — 1 > *depthR — 1 = “depthR/zR.
Hence we have Exty, n(M/xM, R/zR) = 0 for i > 0 by induction. This gives Exty(M, R/zR) =

0 for i > 0. From an exact sequence 0 — R > R — R/xR — 0, we get an exact sequence
Ext’ (M, R) % Ext’ (M, R) — BExth(M, R/zR) = 0.

By Nakayama’s Lemma, it holds that Ext% (M, R) = 0 for i > 0.

(2) = (3): When *depthR = 0, we have G-dimM = 0 by Proposition A.6. Since
*depthR = 0, we have an exact sequence 0 — R/m — R which gives an exact sequence

0 — Hompg(M*, R/m) — M™ = M.

Since M* # 0, we have Homg(M*, R/m) # 0. Since mHompg(M*, R/m) = 0, we see that
m has no M-regular element, so that *depthM = 0. Thus (3) holds.

Let *depthR > 0. We have *depthM > *depthR > 1, so that there is a homo-

geneous element # € m which is R and M-regular. By [1], Lemma 4.9, we have G-
dimp/,gM /M < co. We have

“depthp gk M/xM = “depthpM —1 > *depthR — 1 = “depthR/zR.

Hence, by induction on *depthR, we have *depthg/, M /M = *depthR/zR, and then
*depthM = *depthR.
Since (3) = (2) is obvious, we accomplish the proof. [J

A.8. THEOREM. Let M be a finite graded R-module with G-dimM < oc. Then we

have an equality
G-dimM + *depthM = *depthR

Proof. We state the proof which is an adaptation of [1]. If G-dimM = 0, we are
done by the previous proposition. Suppose that G-dimM = n > 0 and the equation
holds for n — 1. Let 0 - K — F — M — 0 be exact with F' graded free and K a
graded module. Since G-dimK = n — 1, we have G-dimK + *depthK = *depthR by
induction. Suppose that *depthM > *depthF = *depthR. Then G-dimM = 0 holds by
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the previous proposition. This contradicts to G-dimM > 0. Hence *depthM < *depthF,
so *depthK = *depthM + 1 by, e.g., [8], 1.2.9. Therefore, n + *depthM = *depthR. O

Let M be a finite graded R-module. Then the similar argument to [1], 4.14 and 4.15
shows that G-dimM < n if and only if G-dimM, < n for all graded prime (respectively,
graded maximal) ideals p of R. Note that all the prime ideals in AssM are graded ideals
(e.g. [8], Lemma 1.5.6). Thus, in *local case, we have that G-dimM < n if and only if
G-dimM,, < n. Thus we give the following characterization of Gorensteiness.

A.9. THEOREM. Let (R, m) be a *local ring with the condition (P). Then the following
are equivalent.

(1) R is Gorenstein.
(2) Every finite graded R-module has finite G-dimension.
Under these equivalent conditions, the equality *idR = *depthR holds.

Proof. (1) = (2): Since Ry is Gorenstein, we have G-dimMy, < oo, hence G-dimM <
oo by above.

(2) = (1): Let t = *depthR. Take any finite graded R-module M. Since G-dimM = t—
*depthM < t by Theorem A.8, we have that Ext’ (M, R) = 0 for all i > . Hence *idR < t.
It holds from [8], Theorem 3.6.5 or [20], Chapter B, III.1.7 that idR < *IdR+ 1 <t + 1.
Hence R is Gorenstein.

The second statement follows from the similar argument to the local case (cf. [8],Theorem
3.1.17). We note that ‘the residue field” in the local case should be replaced by ‘the unique
graded simple module R/m’ in *local case and the use of the graded version of Bass’s
Lemma (see e.g. [20], Chapter B, II1.1.9) is effective. [J

Let (R, m) be a *local ring. Then one of the following cases occurs ([12], §1 or [8], §1.5):
A. R/mis a field,

B. R/m = k[t,t™!], where k is a field and ¢ is a homogeneous element of positive degree
and transcendental over k.

We put *dimR := htm the *dimension of a *local ring (R, m). Note that *dimR equals
the supremum of all numbers h such that there exists a chain of graded prime ideals
po C Py C -+ C ppin R [8]. Let M be a finite graded R-module. It is easily seen that
[0:z M] is a graded ideal. Thus we put *dimM = *dimR/[0 :p M].

A.10. LEMMA. Let (R,m) be a Cohen-Macaulay *local ring with the condition (P)
and dimR = n, and M a finite graded R-module. Then we have

o . [ for Case A,
dimR = “depthR = { n—1 for CaseB.
dimM for Case A,
dimM —1 for Case B.

Moreover, assume that R is Gorenstein, then idR = dimR = n, where idR stands for the
injective dimension of R.

*dimM = {
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Proof. Case A. Let n be a maximal ideal with ht n = n. If n = m, then ht m = n.
Suppose that n is not equal to m. Then n is not graded, so ht n/n* = 1. Since R, is
Cohen-Macaulay,

ht n* Ry + dimRp/n* Ry, = dimR, = n
([18], Theorem 17.4). Hence ht n* R, = n—1,so ht n* =n—1. Thus ht m > ht n*+1 = n,
so that ht m = n. Therefore,

*depthR = depthRy, = dimRy, = ht m = n.

Case B. Let n be the same as in Case A. Since n is not graded, we have ht n* =n—1 by
the similar way to Case A. By assumption, we have that m D n* and m is not maximal,
so m = n*. Therefore, ht m = n — 1, hence we get *depthR = n — 1 by the similar way to
Case A.

The equality concerning *dimM follows from the fact that cases A and B are preserved
modulo [0 :g M].

The latter statement is proved in [3] more generally. [J

A.11. LEMMA Let (R, m) be a Cohen-Macaulay *local ring with the condition (P) and
x a homogeneous element in m. If x is regular, then dimR/zR = dimR — 1.

Proof. The well-known induction argument works due to A.10 Lemma. [J

A.12. THEOREM Let (R, m) be a Cohen-Macaulay *local ring with the condition (P)
and M a finite graded R-module. Then

gradeM + dimM = dimR

Proof. We follow the proof of [11], Proposition 4.11. Put n = dimR. We prove the
statement by induction on n. Suppose that dimM = n and take p € SuppM with
dimR/p = n. Then dimR, = 0, so that depthR, = 0. Thus pR, € AssR,. Hence
Homp, (My, Ry/pRp) # 0 implies Hompg, (M, By) # 0. Thus Hompg(M, R) # 0, ie.,
gradeM = 0.

When n = 0, we have dimM = 0. Then the equality holds by above. Let n > 0. Then
we can assume dimM < n. Since dimR/p = n for any minimal prime ideal p of R, it
holds from the assumption that [0 :g M| ¢ p for any minimal prime ideal p of R. Thus
0 :r M] ¢ p for any p € AssR. Since [0 :g M] is a graded ideal, [0 :g M] contains
a homogeneous regular element x by A.1 Proposition. We have that Exth(M, R) =
Ext’};/;R(M, R/xR) for i > 0. Thus gradep,, gk M = gradezgM — 1. By Lemma A.11 and
induction, we get dimp/,rp M +gradeg,,pM = n—1, hence dimpM +gradeg M —1 = n—1,
which gives the desired equality. [

We state a characterization of a Cohen-Macaulay graded module over a *local ring by
means of the *depth and *dimension.

A.13. THEOREM Let (R, m) be a *local ring with the condition (P) and M € modyR.
Then M is Cohen-Macaulay if and only if *depthM = *dimM.

Proof. Put I = [0 :x M] and R = R/I, m = m/I. Then we have that *dimM =
dimRm = dimRy /[0 :r,, Mm] = dimMj,. It holds from [19] or [20], Chapter B, Theorem
II1.2.1 that M is Cohen-Macaulay if and only if My, is Cohen-Macaulay. Look at the
following inequalities

*depthM = depth(m, M) < depthMy, < dimMy, = *dimM.
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If *depthM = *dimM, then My, is Cohen-Macaulay by above. Conversely, suppose M to
be Cohen-Macaulay. Then depth(m, M) = depthMy holds by [18], Theorem 17.3. Thus
we get *depthM = *dimM from the above inequalities. [J

A.14. LEMMA. ([1], Proposition 4.16) Let R be a commutative Noetherian ring and X
a finite R-module with G-dimX < oco. Then gradeU > i for allt > 0 and all R-submodules
U of Exth(X, R).

Proof. Let p € SuppU. Then Exty (Xp, Ry) # 0. Hence G-dimg,X, > i. By
Auslander-Bridger formula ([1], Theorem 4.13 (b) or [9], Theorem 1.4.8), it follows that

depthRy = depth Xy, + G-dimpg, X, > G-dimpg, X, > i.
Hence gradeU = min{depthR, : p € SuppU} > i by [1], Corollary 4.6. O

A.15. LEMMA. Let R be a commutative Noetherian ring and X a finite R-module of
grade s. Assume G-dimX to be finite. Then the equality grade Exth(X, R) = s holds
true.

Proof. When s = 0, that is, X* # 0, then X*** # 0. Hence X** # 0.

We assume that s > 0. By A.14, it holds that grade Ext%(X, R) > s. The converse
inequality follows from [13], Lemma 4.4 (Its proof contains trivial misprints : in the last
line of p.182, X should be read (2"X)* and three places in line 3-5 of p.183 should be
read similarly). Hence we get the desired equality. [
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