Orbifold family unification in $S O(2 N)$ gauge theory

Yoshiharu Kawamura* and Takashi Miura ${ }^{\dagger}$
Department of Physics, Shinshu University, Matsumoto, Nagano 390-8621, Japan

(Received 13 December 2009; published 15 April 2010)

Abstract

We study the possibility of family unification on the basis of $S O(2 N)$ gauge theory on the fivedimensional space-time, $M^{4} \times S^{1} / Z_{2}$. Several $S O(10), S U(4) \times S U(2)_{L} \times S U(2)_{R}$, or $S U(5)$ multiplets come from a single bulk multiplet of $S O(2 N)$ after the orbifold breaking. Other multiplets including brane fields are necessary to compose three families of quarks and leptons.

DOI: 10.1103/PhysRevD.81.075011
PACS numbers: 12.10.Dm, 11.25.Mj

I. INTRODUCTION

The family unification or flavor unification based on a large symmetry group can provide a possible solution for the origin of the family replication [1-4]. However, we encounter difficulty in the unification on the fourdimensional Minkowski space, because of extra fields such as "mirror particles" existing in the higherdimensional representation. The mirror particles are particles with opposite quantum numbers under the standard model (SM) gauge group. If the idea of family or flavor unification is to be realized in nature, extra particles must disappear from the low-energy spectrum around the weak scale. Several interesting mechanisms have been proposed to get rid of the unwelcomed particles. One is to adopt the "survival hypothesis," which is the assumption that if a symmetry is broken down to a smaller symmetry at a scale M_{SB}, then any fermion mass terms invariant under the smaller group induce fermion masses of order $O\left(M_{\mathrm{SB}}\right)$ [2,5]. Georgi investigated whether an anomaly free set of no-repeated representations in $S U(N)$ models can lead to families based on the survival hypothesis, and found that three families are derived from $[11,4]+[11,8]+$ $[11,9]+[11,10]$ in the $S U(11)$ model in four dimensions [2]. Another possibility is to confine extra particles at a high-energy scale by some strong interaction [6].

If we move from four dimensions to higher dimensions, there is a possibility to reduce substances including mirror particles using the symmetry reduction concerning extra dimensions, as originally discussed in superstring theory $[7,8]$. Hence it is meaningful to reexamine the idea of family or flavor unification using grand unified theories (GUTs) on a higer-dimensional space-time. ${ }^{1}$ We refer to the family unification using orbifolds for extra dimensions as the orbifold family unification. There are several preceding studies on the orbifold family unification. The complete family unification has been suggested in E_{8} GUT on $M^{4} \times T^{2} / Z_{3}$ [11]. The model in which three

[^0]families come from a combination of a bulk gauge multiplet and a few brane fields in $S O(10)$ GUT on $M^{4} \times T^{2} / Z_{3}$ has been examined [12]. The gauge, Higgs, and matter unification has been proposed in $S U(8)$ GUT on $M^{4} \times$ T^{2} / Z_{6} [13] and $M^{4} \times T^{2} / Z_{3}$ [14] and $S O(16)$ on $M^{4} \times$ T^{2} / Z_{6} [15]. The orbifold family unification has been studied in $S U(N)$ on $M^{4} \times S^{1} / Z_{2}$ [16].

In this paper, we study the possibility of orbifold family unification on the basis of $S O(2 N)$ gauge theory on $M^{4} \times$ S^{1} / Z_{2} using the method in Ref. [16]. ${ }^{2}$ We investigate whether or not three families are derived from a single bulk multiplet of $S O(2 N)$ for several orbifold symmetry breaking patterns.

The contents of this paper are as follows. In Sec. II, we review and provide general arguments on the orbifold breaking on S^{1} / Z_{2}. In Sec. III, we investigate unification of quarks and leptons in $S O(2 N)$ gauge theory on $M^{4} \times$ S^{1} / Z_{2}. Section IV is devoted to conclusions and discussions. We discuss the gauge equivalence of boundary conditions (BCs) in Appendix A and the symmetry breaking of $S O(2 N+1)$ in Appendix B.

II. $\boldsymbol{S}^{\mathbf{1}} / Z_{\mathbf{2}}$ ORBIFOLD BREAKING

In this section, we study the orbifold symmetry breaking mechanism in $S O(2 N)$ gauge theory on $M^{4} \times S^{1} / Z_{2}$, where M^{4} is the four-dimensional Minkowski space.

A. Boundary conditions and symmetry reduction on S^{1} / Z_{2}

First we review the symmetry reduction mechanism on S^{1} / Z_{2} briefly [20]. Let x (or $x^{\mu}, \mu=0, \ldots, 3$) and y (or x^{5}) be coordinates of M^{4} and S^{1} / Z_{2}, respectively. The S^{1} / Z_{2} is obtained by dividing the circle S^{1} (with the identification $y \sim y+2 \pi R$) by the Z_{2} transformation $y \rightarrow-y$ so that the point y is identified with $-y$. Here, R is the radius of S^{1}. Then the S^{1} / Z_{2} is regarded as an interval with length πR. Both end points $y=0$ and πR are fixed points under the Z_{2} transformation. For the operations:

[^1]\[

$$
\begin{equation*}
s_{0}: y \rightarrow-y, \quad s_{1}: y \rightarrow 2 \pi R-y, \quad t: y \rightarrow y+2 \pi R \tag{1}
\end{equation*}
$$

\]

the following relations hold:

$$
\begin{equation*}
s_{0}^{2}=s_{1}^{2}=I, \quad t=s_{1} s_{0} \tag{2}
\end{equation*}
$$

where I is the identity operation. The operation s_{1} is the reflection at the end point $y=\pi R$ and the S^{1} / Z_{2} can be defined using s_{0} and s_{1}.

Although the point y is identified with the points $-y$ and $2 \pi R-y$ on S^{1} / Z_{2}, a field does not necessarily take an identical value at these points. We require that the Lagrangian density should be single valued. Then the following BCs of the field $\Phi(x, y)$ are allowed:

$$
\begin{align*}
\Phi(x,-y) & =T_{\Phi}\left[s_{0}\right] \Phi(x, y) \\
\Phi(x, 2 \pi R-y) & =T_{\Phi}\left[s_{1}\right] \Phi(x, y) \\
\Phi(x, y+2 \pi R) & =T_{\Phi}[t] \Phi(x, y) \tag{3}
\end{align*}
$$

where $T_{\Phi}\left[s_{0}\right], T_{\Phi}\left[s_{1}\right]$, and $T_{\Phi}[t]$ represent appropriate representation matrices for s_{0}, s_{1}, and t operations, respectively. The $T_{\Phi}[*]$ belong to the group elements of transformations which keep the action integral invariant and satisfy the counterparts of (2):

$$
\begin{equation*}
T_{\Phi}\left[s_{0}\right]^{2}=T_{\Phi}\left[s_{1}\right]^{2}=I, \quad T_{\Phi}[t]=T_{\Phi}\left[s_{0}\right] T_{\Phi}\left[s_{1}\right] \tag{4}
\end{equation*}
$$

where I stands for the unit matrix. For the eigenstates of $T_{\Phi}\left[s_{0}\right]$ and $T_{\Phi}\left[s_{1}\right]$, the eigenvalues are interpreted as the Z_{2} parity for the fifth coordinate flip and take +1 or -1 by definition. Then the eigenvalues of $T_{\Phi}[t]$ also take +1 or -1 . As the assignment of Z_{2} parity determines BCs of each multiplet on S^{1} / Z_{2}, we use " Z_{2} parity" as a parallel expression of "BCs on S^{1} / Z_{2} " in the remainder of the paper.

Let $\phi^{\left(\mathcal{P}_{0}, \mathcal{P}_{1} ; \mathcal{U}\right)}(x, y)$ be a component in a multiplet $\Phi(x, y)$ and have definite eigenvalues $\left(\mathcal{P}_{0}, \mathcal{P}_{1} ; \mathcal{U}\right)$ for s_{0}, s_{1}, and t operations. The Fourier expansion of $\phi^{\left(\mathcal{P}_{0}, \mathcal{P}_{1} ; \mathcal{U}\right)}(x, y)$ is given by

$$
\begin{align*}
\phi^{(++;+)}(x, y) & =\frac{1}{\sqrt{\pi R}} \phi_{0}(x)+\sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \phi_{n}(x) \cos \frac{n y}{R} \tag{5}\\
\phi^{(--;+)}(x, y) & =\sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \phi_{n}(x) \sin \frac{n y}{R} \tag{6}\\
\phi^{(+-;-)}(x, y) & =\sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \phi_{n}(x) \cos \frac{\left(n-\frac{1}{2}\right) y}{R} \tag{7}\\
\phi^{(-+;-)}(x, y) & =\sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \phi_{n}(x) \sin \frac{\left(n-\frac{1}{2}\right) y}{R} \tag{8}
\end{align*}
$$

where \pm indicates the eigenvalues ± 1.

In the above expansions (5)-(8), the coefficients $\phi_{0}(x)$ and $\phi_{n}(x)(n=1,2, \ldots)$ are four-dimensional fields, which are called zero mode and Kaluza-Klein (KK) modes, respectively. The KK modes $\phi_{n}(x)$ acquire the mass n / R for $\left(\mathcal{P}_{0}, \mathcal{P}_{1} ; \mathcal{U}\right)=(\pm 1, \pm 1 ;+1)$, and $\left(n-\frac{1}{2}\right) / R$ for $\left(\mathcal{P}_{0}, \mathcal{P}_{1} ; \mathcal{U}\right)=(\pm 1, \mp 1 ;-1)$ upon compactification. Unless all components of the nonsinglet field have a common Z_{2} parity, a symmetry reduction occurs upon compactification because $\phi_{0}(x)$ are absent in fields with an odd parity. This kind of symmetry breaking is called "orbifold breaking" [21].

Our four-dimensional world is assumed to be a Minkowski space at one of the fixed points, on the basis of the "brane world scenario." There exist two kinds of four-dimensional fields in our low-energy theory. One is the brane field which lives only at the boundary, and the other is the zero mode stemming from the bulk field. The massive modes $\phi_{n}(x)$ do not appear in our low-energy world because they have heavy masses of $O(1 / R)$, with the same magnitude as the unification scale. Chiral anomalies may arise at the boundaries with the advent of chiral fermions. Those anomalies must be canceled in the fourdimensional effective theory by the contribution of brane chiral fermions and/or counterterms such as the ChernSimons term [22,23].

B. Orbifold symmetry breaking of $\mathrm{SO}(2 \mathrm{~N})$

The $S O(2 N)$ is the orthogonal group whose determinant is 1 and number of elements are $N(2 N-1)$. The representation matrices of $S O(2 N)$ are expressed as $e^{i \theta^{\alpha} T^{\alpha}}$, where θ^{α} is a real parameter and T^{α} are elements of the Lie algebra $\operatorname{so}(2 N)$. The generators $T^{\alpha} \quad(\alpha=$ $1, \ldots, N(2 N-1))$ are pure imaginary antisymmetric matrices, i.e., $\left(T^{\alpha}\right)^{t}=-T^{\alpha}$ and $\left(T^{\alpha}\right)^{*}=-T^{\alpha}$. The generators for vector representation $\mathbf{2 N}$ are written by the direct product of the 2×2 matrix and the $N \times N$ matrix:

$$
\begin{gather*}
\sigma_{2} \otimes S_{N},\left(\frac{N(N+1)}{2}-1\right) ; \quad \sigma_{0} \otimes A_{N},\left(\frac{N(N-1)}{2}\right) \\
\sigma_{2} \otimes I_{N},(1) ; \quad \sigma_{1} \otimes A_{N},\left(\frac{N(N-1)}{2}\right) \\
\sigma_{3} \otimes A_{N},\left(\frac{N(N-1)}{2}\right) \tag{9}
\end{gather*}
$$

where $\sigma_{i}(i=1,2,3)$ are Pauli matrices, σ_{0} is the 2×2 unit matrix, S_{N}, A_{N}, and I_{N} stand for $N \times N$ symmetric matrices (whose components are real), $N \times N$ antisymmetric matrices (whose components are pure imaginary), and the $N \times N$ unit matrix and the numbers in the parentheses represent the numbers of elements. The elements of subalgebra $s u(N)$ are $\sigma_{2} \otimes S_{N}$ and $\sigma_{0} \otimes A_{N}$.

As a warm-up, we consider the breakdown of $S O(2 N)$ by the Z_{2} projection with the following type of $2 \mathrm{~N} \times 2 \mathrm{~N}$ matrix:

$$
\begin{equation*}
P=\sigma_{0} \otimes I_{m, n} \quad \text { or } \quad \sigma_{2} \otimes I_{m, n} \tag{10}
\end{equation*}
$$

where $I_{m, n}$ is defined by

$$
\begin{equation*}
I_{m, n} \equiv \operatorname{diag}(\underbrace{+1, \ldots,+1}_{m}, \underbrace{-1, \ldots,-1}_{n(=N-m)}) . \tag{11}
\end{equation*}
$$

(1) $P=\sigma_{0} \otimes I_{m, n}$

The generators for unbroken symmetry commute with P, i.e., $\left[P, T^{a}\right]=0$, and they are given by

$$
\begin{gather*}
\sigma_{2} \otimes S_{m} ; \quad \sigma_{0} \otimes A_{m} ; \quad \sigma_{2} \otimes I_{m} ; \quad \sigma_{1} \otimes A_{m} ; \\
\sigma_{3} \otimes A_{m} ; \quad \sigma_{2} \otimes S_{n} ; \quad \sigma_{0} \otimes A_{n} ; \\
\sigma_{2} \otimes I_{n} ; \quad \sigma_{1} \otimes A_{n} ; \quad \sigma_{3} \otimes A_{n} \tag{12}
\end{gather*}
$$

where $S_{m}\left(S_{n}\right), A_{m}\left(A_{n}\right)$, and $I_{m}\left(I_{n}\right)$ stand for $m \times m(n \times$ $n)$ symmetric submatrices, $m \times m(n \times n)$ antisymmetric submatrices, and the $m \times m(n \times n)$ unit submatrix. Hence the unbroken symmetry is $S O(2 m) \times S O(2 n)$.
(2) $P=\sigma_{2} \otimes I_{m, n}$

The generators which commute with P are given by

$$
\begin{array}{llcc}
\sigma_{2} \otimes S_{m} ; & \sigma_{0} \otimes A_{m} ; & \sigma_{2} \otimes I_{m} ; & \sigma_{2} \otimes S_{n} \\
\sigma_{0} \otimes A_{n} ; & \sigma_{2} \otimes I_{n} ; & \sigma_{1} \otimes A_{m, n} ; & \sigma_{3} \otimes A_{m, n} \tag{13}
\end{array}
$$

where $A_{m, n}$ are antisymmetric matrices composed by offdiagonal $m \times n$ and $n \times m$ submatrices and commute with $I_{m, n}$. Hence the unbroken symmetry is $S U(N) \times U(1)$.

We study the combination of Z_{2} projections with $\sigma_{0} \otimes$ $I_{m, n}$ and $\sigma_{2} \otimes I_{m, n}$. The generators which simultaneously commute with $\sigma_{0} \otimes I_{m, n}$ and $\sigma_{2} \otimes I_{m, n}$ are given by

$$
\begin{array}{lll}
\sigma_{2} \otimes S_{m} ; & \sigma_{0} \otimes A_{m} ; & \sigma_{2} \otimes I_{m} \tag{14}\\
\sigma_{2} \otimes S_{n} ; & \sigma_{0} \otimes A_{n} ; & \sigma_{2} \otimes I_{n}
\end{array}
$$

The unbroken symmetry is $S U(m) \times S U(n) \times U(1)^{2}$. The same intersections can be obtained with the combination of $\sigma_{0} \otimes I_{m, n}$ and $\sigma_{2} \otimes I_{N}$ or that of $\sigma_{2} \otimes I_{m, n}$ and $\sigma_{2} \otimes I_{N}$.

We study the BCs in $S O(2 N)$ gauge theory on $M^{4} \times$ S^{1} / Z_{2}. The BCs on S^{1} / Z_{2} are specified by the $2 N \times 2 N$ matrices $\left(P_{0}, P_{1}, U\right)$, where $P_{0}^{2}=P_{1}^{2}=I$ and $U=P_{0} P_{1}$. For $\left(P_{0}, P_{1}, U\right)$, we use the following type of matrices:

$$
\begin{equation*}
P^{(0)} \equiv \sigma_{0} \otimes \tilde{I} \quad \text { or } \quad P^{(2)} \equiv \sigma_{2} \otimes \tilde{I}^{\prime} \tag{15}
\end{equation*}
$$

where \tilde{I} and \tilde{I}^{\prime} are $N \times N$ diagonal matrices whose diagonal components take +1 or -1 . In this case, the relations $P_{0} P_{1}=P_{1} P_{0}=U$ and $U^{2}=I$ hold and the symmetry breaking patterns are classified into the following two types.
(Type I) All matrices belong to the $P^{(0)}$ type. By the arrangement of the rows and columns, $\left(P_{0}, P_{1}, U\right)$ are written by

$$
\begin{equation*}
\left(P_{0}, P_{1}, U\right)=\left(\sigma_{0} \otimes \tilde{I}_{1}, \sigma_{0} \otimes \tilde{I}_{2}, \sigma_{0} \otimes \tilde{I}_{3}\right) \tag{16}
\end{equation*}
$$

where $\tilde{I}_{1}, \tilde{I}_{2}$, and $\tilde{I}_{3}\left(=\tilde{I}_{1} \tilde{I}_{2}\right)$ are defined by

$$
\begin{align*}
& \tilde{I}_{1} \equiv \operatorname{diag}(\overbrace{+1, \ldots,+1,+1, \ldots,+1,-1, \ldots,-1,-1, \ldots,-1}^{-1}), \\
& \tilde{I}_{2} \equiv \operatorname{diag}(+1, \ldots,+1,-1, \ldots,-1,+1, \ldots,+1,-1, \ldots,-1), \\
& \tilde{I}_{3} \equiv \operatorname{diag}(\underbrace{+1, \ldots,+1}_{p}, \underbrace{-1, \ldots,-1}_{q}, \underbrace{-1, \ldots,-1}_{r}, \underbrace{+1, \ldots,+1}_{s(=N-p-q-r)}), \tag{17}
\end{align*}
$$

where $p, q, r, s \geq 0$, and $N=p+q+r+s$. We denote the above $\mathrm{BC}(16)$ as $[p, q ; r, s]^{\mathrm{I}}$. The symmetry of $[p, q ; r, s]^{I}$ becomes

$$
\begin{equation*}
S O(2 N) \rightarrow S O(2 p) \times S O(2 q) \times S O(2 r) \times S O(2 s) \tag{18}
\end{equation*}
$$

where $S O(0)$ means nothing.
(Type II) Two of P_{0}, P_{1}, and U belong to the $P^{(2)}$ type and the remaining one is a $P^{(0)}$ type, and they are classified into the three subtypes:

$$
\begin{align*}
\left(P_{0}, P_{1}, U\right) & =\left(\sigma_{0} \otimes \tilde{I}_{1}, \sigma_{2} \otimes \tilde{I}_{2}, \sigma_{2} \otimes \tilde{I}_{3}\right) \quad \text { (type IIa) } \tag{19}\\
& =\left(\sigma_{2} \otimes \tilde{I}_{1}, \sigma_{0} \otimes \tilde{I}_{2}, \sigma_{2} \otimes \tilde{I}_{3}\right) \quad(\text { type IIb) } \tag{20}\\
& =\left(\sigma_{2} \otimes \tilde{I}_{1}, \sigma_{2} \otimes \tilde{I}_{2}, \sigma_{0} \otimes \tilde{I}_{3}\right) \quad \text { (type IIc) } \tag{21}
\end{align*}
$$

where $\tilde{I}_{1}, \tilde{I}_{2}$, and \tilde{I}_{3} are defined by (17). We denote the above BCs (19)-(21) as $[p, q ; r, s]^{\text {IIa }},[p, q ; r, s]^{\mathrm{IIb}}$, and $[p, q ; r, s]^{\mathrm{IIc}}$, respectively. The symmetries of $[p, q ; r, s]^{\text {IIa }},[p, q ; r, s]^{\text {IIb }}$, and $[p, q ; r, s]^{\text {IIc }}$ become

$$
\begin{gather*}
S O(2 N) \rightarrow S U(p+q) \times S U(r+s) \times U(1)^{2-k} \tag{22}\\
\quad(\text { type IIa) } \\
S O(2 N) \rightarrow S U(p+r) \times S U(q+s) \times U(1)^{2-k} \\
\quad(\text { type IIb }), \tag{23}\\
S O(2 N) \rightarrow S U(p+s) \times S U(q+r) \times U(1)^{2-k}
\end{gather*}
$$

(type IIc),
where k is a sum of the number of $S U(0)$ and $S U(1), S U(0)$ means nothing, and $S U(1)$ unconventionally stands for $U(1)$. Because type IIa, type IIb, and type IIc are interchanged among them by the interchange of P_{0}, P_{1}, and U and the same results for the numbers of each species are obtained, we use type IIa as the representative of type II. If two BCs are transformed into each other by a global $S O(2 N)$ transformation and/or a gauge transformation, they are equivalent. The $[p, q ; r, s]^{\text {IIa }}$ is transformed into $\left[p+\ell_{1}, q-\ell_{1}, r+\ell_{2}, s-\ell_{2}\right]^{\text {IIa }}$ using the global $S O(2 N)$ symmetry which changes σ_{2} into $-\sigma_{2}$ partially. Here, ℓ_{1} and ℓ_{2} are arbitrary integers which satisfy $p+\ell_{1}, q-\ell_{1}$, $r+\ell_{2}$, and $s-\ell_{2} \geq 0$. Hence we use $[m, 0, n, 0]^{\text {IIa }}$ ($N=$ $m+n)$ in place of $[p, q ; r, s]^{\text {IIa }}$ with $m=p+q$ and $n=$ $r+s$. In Appendix A, we discuss the gauge invariance of

BCs and the equivalence relations for the sake of completeness.

Strictly speaking, we must find the minimum of the effective potential for the Wilson line phases in order to know physical gauge symmetry [24]. It requires a modeldependent analysis because the effective potential depends on the particle contents and their BCs. In the following discussion, we suppose that the BC belongs to the same equivalence class of $\left(P_{0}^{\text {sym }}, P_{1}^{\text {sym }}, U^{\text {sym }}\right)$ defined by Eq. (A6).

C. Z_{2} parity assignment

We study the Z_{2} parity assignment for gauge fields and matter fermions for two types.
(Type I) The BCs of gauge fields, $A_{M}(x, y)=$ $A_{M}^{\alpha}(x, y) T^{\alpha}$, are given by

$$
\begin{align*}
s_{0}: A_{\mu}(x,-y) & =P_{0} A_{\mu}(x, y) P_{0}^{-1} \\
A_{y}(x,-y) & =-P_{0} A_{y}(x, y) P_{0}^{-1} \\
s_{1}: A_{\mu}(x, 2 \pi R-y) & =P_{1} A_{\mu}(x, y) P_{1}^{-1} \tag{25}\\
A_{y}(x, 2 \pi R-y) & =-P_{1} A_{y}(x, y) P_{1}^{-1} \\
t: A_{M}(x, y+2 \pi R) & =U A_{M}(x, y) U^{-1}
\end{align*}
$$

where $M=0, \ldots, 3,5$. Using the relation $\operatorname{tr}\left(T^{\alpha} T^{\beta}\right)=$ $\delta^{\alpha \beta} / 2$, the BCs for four-dimensional components of gauge bosons, $A_{\mu}(x, y)=A_{\mu}^{\alpha}(x, y) T^{\alpha}$, are rewritten as

$$
\begin{align*}
A_{\mu}^{\alpha}(x,-y) & =2 \operatorname{tr}\left(T^{\alpha} P_{0} T^{\beta} P_{0}^{-1}\right) A_{\mu}^{\beta}(x, y), \\
A_{\mu}^{\alpha}(x, 2 \pi R-y) & =2 \operatorname{tr}\left(T^{\alpha} P_{1} T^{\beta} P_{1}^{-1}\right) A_{\mu}^{\beta}(x, y), \tag{26}\\
A_{\mu}^{\alpha}(x, y+2 \pi R) & =2 \operatorname{tr}\left(T^{\alpha} U T^{\beta} U^{-1}\right) A_{\mu}^{\beta}(x, y) .
\end{align*}
$$

Under the BC $[p, q, r, s]^{\mathrm{I}}, A_{\mu}^{\alpha}$ is decomposed into a sum of multiplets of the subgroup $S O(2 N) \rightarrow S O(2 p) \times$ $S O(2 q) \times S O(2 r) \times S O(2 s)(N=p+q+r+s)$ as

$$
\begin{align*}
\mathbf{N}(\mathbf{2 N}-\mathbf{1})= & (\mathbf{p}(\mathbf{2} \mathbf{p}-\mathbf{1}), \mathbf{1}, \mathbf{1}, \mathbf{1})^{++;+} \\
& +(\mathbf{1}, \mathbf{q}(\mathbf{2 q}-\mathbf{1}), \mathbf{1}, \mathbf{1})^{++;+} \\
& +(\mathbf{1}, \mathbf{1}, \mathbf{r}(\mathbf{2} \mathbf{r}-\mathbf{1}), \mathbf{1})^{++;+} \\
& +(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{s}(\mathbf{2 s}-\mathbf{1}))^{++;+} \\
& +(\mathbf{2} \mathbf{p}, \mathbf{2} \mathbf{q}, \mathbf{1}, \mathbf{1})^{+-;-}+(\mathbf{2} \mathbf{p}, \mathbf{1}, \mathbf{2} \mathbf{r}, \mathbf{1})^{-+;-} \\
& +(\mathbf{2} \mathbf{p}, \mathbf{1}, \mathbf{1}, \mathbf{2} \mathbf{s})^{--;+}+(\mathbf{1}, \mathbf{2} \mathbf{q}, \mathbf{2 r}, \mathbf{1})^{--;+} \\
& +(\mathbf{1}, \mathbf{2} \mathbf{q}, \mathbf{1}, \mathbf{2} \mathbf{s})^{-+;-}+(\mathbf{1}, \mathbf{1}, \mathbf{2} \mathbf{r}, \mathbf{2} \mathbf{s})^{+-;-} \tag{27}
\end{align*}
$$

where Z_{2} parities are obtained using Eq. (26), and $\mathbf{p}(\mathbf{2 p}-$ 1) and $\mathbf{2 p}$ represent the components of A_{μ}^{α} with adjoint and vector representation of $S O(2 p)$, respectively. The index + or - stands for Z_{2} parity +1 or -1 . The A_{y}^{α} have the opposite Z_{2} parities \mathcal{P}_{0} and \mathcal{P}_{1} to those of A_{μ}^{α}.

We require the Z_{2} parity invariance for the interaction between the gauge fields and a matter fermion ψ :

$$
\begin{equation*}
\mathcal{P}_{0}\left(\bar{\psi} \gamma^{M} A_{M}^{\alpha} T^{\alpha} \psi\right)=\mathcal{P}_{1}\left(\bar{\psi} \gamma^{M} A_{M}^{\alpha} T^{\alpha} \psi\right)=+1 \tag{28}
\end{equation*}
$$

The invariance under the shift $y \rightarrow y+2 \pi R$, i.e., $\mathcal{U}\left(\bar{\psi} \gamma^{M} A_{M}^{\alpha} T^{\alpha} \psi\right)=+1$, is automatically satisfied from $\mathcal{P}_{0} \mathcal{P}_{1} \mathcal{U}=+1$.

There are two inequivalent spinor representations $\mathbf{2}_{1}^{N-1}$ and 2_{2}^{N-1} in $S O(2 N)$. For $N=4 \ell+1$ and $4 \ell+3(\ell \in$ $\{\mathbb{N}, 0\}), \mathbf{2}_{a}^{N-1}$ are complex representations and they are conjugate to each other, i.e., $\overline{\mathbf{2}}_{1}^{N-1}=\mathbf{2}_{2}^{N-1}$ and $\overline{\mathbf{2}}_{2}^{N-1}=$ $\mathbf{2}_{1}^{N-1}$. For $N=4 \ell(\ell \in \mathbb{N}), \mathbf{2}_{a}^{N-1}(a=1,2)$ are real representations and self-conjugate, i.e., $\overline{\mathbf{2}}_{a}^{N-1}=\mathbf{2}_{a}^{N-1}$. For $4 \ell+2(\ell \in\{\mathbb{N}, 0\}), \mathbf{2}_{a}^{N-1}$ are pseudoreal representations and self-conjugate. If the matter fermion forms the spinor representations $\mathbf{2}_{a}^{N-1}$ or the vector representation $\mathbf{2 N}$, the following relations hold:

$$
\begin{align*}
& \mathcal{P}_{0}\left(\overline{\mathbf{2}}_{a}^{N-1} \times \mathbf{N}(\mathbf{2} \mathbf{N}-\mathbf{1}) \times \mathbf{2}_{a}^{N-1}\right) \\
& \quad=\mathcal{P}_{1}\left(\overline{\mathbf{2}}_{a}^{N-1} \times \mathbf{N}(\mathbf{2} \mathbf{N}-\mathbf{1}) \times \mathbf{2}_{a}^{N-1}\right)=+1 \tag{29}\\
& \quad \mathcal{P}_{0}(\mathbf{2} \mathbf{N} \times \mathbf{N}(\mathbf{2} \mathbf{N}-\mathbf{1}) \times \mathbf{2 N}) \\
& \quad=\mathcal{P}_{1}(\mathbf{2} \mathbf{N} \times \mathbf{N}(\mathbf{2} \mathbf{N}-\mathbf{1}) \times \mathbf{2} \mathbf{N})=+1
\end{align*}
$$

By the Z_{2} projection with $P_{0}, S O(2 N)$ is broken down to $S O(2(p+q)) \times S O(2(r+s))$ and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1}^{N-1} & =\left(\mathbf{2}_{1}^{p+q-1}, \mathbf{2}_{1}^{r+s-1}\right)+\left(\mathbf{2}_{2}^{p+q-1}, \mathbf{2}_{2}^{r+s-1}\right) \\
\mathbf{2}_{2}^{N-1} & =\left(\mathbf{2}_{1}^{p+q-1}, \mathbf{2}_{2}^{r+s-1}\right)+\left(\mathbf{2}_{2}^{p+q-1}, \mathbf{2}_{1}^{r+s-1}\right) \\
\mathbf{2 N} & =(\mathbf{2}(\mathbf{p}+\mathbf{q}), \mathbf{1})+(\mathbf{1}, \mathbf{2}(\mathbf{r}+\mathbf{s})) . \tag{31}
\end{align*}
$$

Using (27), (29), and (30), we find that each multiplet has a definite \mathcal{P}_{0} as

$$
\begin{gather*}
\mathcal{P}_{0}\left(\left(\mathbf{2}_{1}^{p+q-1}, \mathbf{2}_{1}^{r+s-1}\right)\right)=+\eta_{1}^{0} \\
\mathcal{P}_{0}\left(\left(\mathbf{2}_{2}^{p+q-1}, \mathbf{2}_{2}^{r+s-1}\right)\right)=-\eta_{1}^{0} \\
\mathcal{P}_{0}\left(\left(\mathbf{2}_{1}^{p+q-1}, \mathbf{2}_{2}^{r+s-1}\right)\right)=+\eta_{2}^{0} \tag{32}\\
\mathcal{P}_{0}\left(\left(\mathbf{2}_{2}^{p+q-1}, \mathbf{2}_{1}^{r+s-1}\right)\right)=-\eta_{2}^{0} \\
\quad \mathcal{P}_{0}((\mathbf{2}(\mathbf{p}+\mathbf{q}), \mathbf{1}))=+\eta_{\mathrm{v}}^{0} \\
\quad \mathcal{P}_{0}((\mathbf{1}, \mathbf{2}(\mathbf{r}+\mathbf{s})))=-\eta_{\mathrm{v}}^{0}
\end{gather*}
$$

where $\eta_{1}^{0}, \eta_{2}^{0}$, and η_{v}^{0} are intrinsic Z_{2} parities. In the same way, $S O(2 N)$ is broken down to $S O(2(p+r)) \times$ $S O(2(q+s))$ by P_{1}, and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1}^{N-1} & =\left(\mathbf{2}_{1}^{p+r-1}, \mathbf{2}_{1}^{q+s-1}\right)+\left(\mathbf{2}_{2}^{p+r-1}, \mathbf{2}_{2}^{q+s-1}\right), \\
\mathbf{2}_{2}^{N-1} & =\left(\mathbf{2}_{1}^{p+r-1}, \mathbf{2}_{2}^{q+s-1}\right)+\left(\mathbf{2}_{2}^{p+r-1}, \mathbf{2}_{1}^{q+s-1}\right), \tag{33}\\
\mathbf{2 N} & =(\mathbf{2}(\mathbf{p}+\mathbf{r}), \mathbf{1})+(\mathbf{1}, \mathbf{2}(\mathbf{q}+\mathbf{s})) .
\end{align*}
$$

Each multiplet has a definite \mathcal{P}_{1} as

$$
\begin{array}{ccc}
\mathcal{P}_{1}\left(\left(\mathbf{2}_{1}^{p+r-1}, \mathbf{2}_{1}^{q+s-1}\right)\right)=+\eta_{1}^{1}, & \mathcal{P}_{1}\left(\left(\mathbf{2}_{2}^{p+r-1}, \mathbf{2}_{2}^{q+s-1}\right)\right)=-\eta_{1}^{1}, & \mathcal{P}_{1}\left(\left(\mathbf{2}_{1}^{p+r-1}, \mathbf{2}_{2}^{q+s-1}\right)\right)=+\eta_{2}^{1}, \\
\mathcal{P}_{1}\left(\left(\mathbf{2}_{2}^{p+r-1}, \mathbf{2}_{1}^{q+s-1}\right)\right)=-\eta_{2}^{1}, & \mathcal{P}_{1}((\mathbf{2}(\mathbf{p}+\mathbf{r}), \mathbf{1}))=+\eta_{v}^{1}, & \mathcal{P}_{1}((\mathbf{1}, \mathbf{2}(\mathbf{q}+\mathbf{s})))=-\eta_{v}^{1}, \tag{34}
\end{array}
$$

where $\eta_{1}^{1}, \eta_{2}^{1}$, and η_{v}^{1} are intrinsic Z_{2} parities. The same argument holds for U.
Combining the Z_{2} projections with P_{0} and $P_{1}, S O(2 N)$ is broken down to $S O(2 p) \times S O(2 q) \times S O(2 r) \times S O(2 s)$, and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1}^{N-1}= & \left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right) \\
& +\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right), \\
\mathbf{2}_{2}^{N-1}= & \left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right) \\
& +\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{s-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right), \\
\mathbf{2 N}= & (\mathbf{2} \mathbf{p}, \mathbf{1}, \mathbf{1}, \mathbf{1})+(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{1} \mathbf{s}) . \tag{35}
\end{align*}
$$

The Z_{2} parities of each multiplet are listed in Table I. The eigenvalues of \mathcal{U} are determined from $\mathcal{P}_{0} \mathcal{P}_{1} \mathcal{U}=+1$.

In the case with $s=0, \mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1}^{N-1}= & \left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right) \\
& +\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right), \\
\mathbf{2}_{2}^{N-1}= & \left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right)+\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right) \\
& +\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right), \\
\mathbf{2 N}= & (\mathbf{(2 p}, \mathbf{1}, \mathbf{1})+(\mathbf{1}, \mathbf{2 q}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{2}), \tag{36}
\end{align*}
$$

under $S O(2 p) \times S O(2 q) \times S O(2 r)$. In the case with $r=$ $s=0, \mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

TABLE I. $\quad Z_{2}$ parities of matter fermions in type I.

Representation		\mathcal{P}_{0}	\mathcal{P}_{1}	u
$\mathbf{2}_{1}^{N-1}$	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(2_{2}^{p-1}, 2_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{\underline{q}-1}, \mathbf{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	+ $\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, 2_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{\text {s-1 }}\right.$)	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(2_{2}^{p-1}, 2_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
2_{2}^{N-1}	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$+\eta_{2}^{0}$	$+\eta_{2}^{1}$	$+\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$+\eta_{2}^{0}$	$-\eta_{2}^{1}$	$-\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{\text {s-1 }}\right.$)	$+\eta_{2}^{0}$	$-\eta_{2}^{1}$	$-\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{\underline{q}-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$+\eta_{2}^{0}$	$+\eta_{2}^{1}$	$+\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{\underline{q}-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$-\eta_{2}^{0}$	$+\eta_{2}^{1}$	$-\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$-\eta_{2}^{0}$	$-\eta_{2}^{1}$	+ $\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right.$)	$-\eta_{2}^{0}$	$-\eta_{2}^{1}$	+ $\eta_{2}^{0} \eta_{2}^{1}$
	$\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)$	$-\eta_{2}^{0}$	$+\eta_{2}^{1}$	$-\eta_{2}^{0} \eta_{2}^{1}$
2N	(2p, 1, 1, 1)	$+\eta_{v}^{0}$	$+\eta_{v}^{1}$	$+\eta_{v}^{0} \eta_{v}^{1}$
	(1, 2q, 1, 1)	$+\eta_{v}^{0}$	$-\eta_{v}^{1}$	$-\eta_{v}^{0} \eta_{v}^{1}$
	(1, 1, 2r, 1)	$-\eta_{v}^{0}$	$+\eta_{v}^{1}$	$-\eta_{v}^{0} \eta_{v}^{1}$
	(1, 1, 1, 2s)	$-\eta_{v}^{0}$	$-\eta_{v}^{1}$	$+\eta_{v}^{0} \eta_{V}^{1}$

$$
\begin{align*}
\mathbf{2}_{1}^{N-1} & =\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{1}^{q-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{2}^{q-1}\right), \\
\mathbf{2}_{2}^{N-1} & =\left(\mathbf{2}_{1}^{p-1}, \mathbf{2}_{2}^{q-1}\right)+\left(\mathbf{2}_{2}^{p-1}, \mathbf{2}_{1}^{q-1}\right), \tag{37}\\
\mathbf{2 N} & =(\mathbf{2} \mathbf{p}, \mathbf{1})+(\mathbf{1}, \mathbf{2 q}),
\end{align*}
$$

under $S O(2 p) \times S O(2 q)$. The Z_{2} parities of each multiplet are understood from those for the corresponding representations in Table I.
(Type II) Under the $\mathrm{BC}[m, 0, n, 0]^{\text {IIa }}, A_{\mu}^{\alpha}$ is decomposed into a sum of multiplets of the subgroup $S O(2 N) \rightarrow$ $S U(m) \times S U(n) \times U(1)^{2-k}(N=m+n)$ as

$$
\begin{align*}
\mathbf{N}(\mathbf{2} \mathbf{N}-\mathbf{1})= & \left(\mathbf{m}^{\mathbf{2}}-\mathbf{1}, \mathbf{1}\right)^{++;+}+\left(\mathbf{1}, \mathbf{n}^{\mathbf{2}}-\mathbf{1}\right)^{++;+} \\
& +(\mathbf{1}, \mathbf{1})^{++;+}+(\mathbf{1}, \mathbf{1})^{++;+}+(\mathbf{m}, \overline{\mathbf{n}})^{-+;-} \\
& +(\overline{\mathbf{m}}, \mathbf{n})^{-+;-}+(\mathbf{m}(\mathbf{m}-\mathbf{1}) / \mathbf{2}, \mathbf{1})^{+-;-} \\
& +(\mathbf{1}, \mathbf{n}(\mathbf{n}-\mathbf{1}) / \mathbf{2})^{+-;-}+(\overline{\mathbf{m}(\mathbf{m}-\mathbf{1}) / \mathbf{2}, \mathbf{1}})^{+-;-} \\
& +(\mathbf{1}, \overline{\mathbf{n}(\mathbf{n}-\mathbf{1}) / \mathbf{2}})^{+-;-}+(\mathbf{m}, \mathbf{n})^{--;+} \\
& +(\overline{\mathbf{m}}, \overline{\mathbf{n}})^{--;+}, \tag{38}
\end{align*}
$$

where Z_{2} parities are obtained using Eq. (26), $U(1)$ charges are omitted, and $\mathbf{m}^{2}-\mathbf{1}\left(\mathbf{n}^{2}-\mathbf{1}\right), \mathbf{m}(\mathbf{n})$, and $\mathbf{m}(\mathbf{m}-$ $\mathbf{1}) / \mathbf{2}(\mathbf{n}(\mathbf{n}-\mathbf{1}) / \mathbf{2})$ represent the components of A_{μ}^{α} with adjoint, vector, and rank 2 antisymmetric representation of $\operatorname{SU}(m)$ [$S U(n)$], respectively. The representations with the overline stand for the complex conjugate ones.

By the Z_{2} projection with $P_{1}, S O(2 N)$ is broken down to its subgroup including $S U(N)$ whose adjoint representation $\mathbf{N}^{2}-\mathbf{1}$ is given by

$$
\begin{align*}
\mathbf{N}^{\mathbf{2}-\mathbf{1}=}= & \left(\mathbf{m}^{\mathbf{2}-\mathbf{1}, \mathbf{1})^{++;+}+\left(\mathbf{1}, \mathbf{n}^{2}-\mathbf{1}\right)^{++;+}}\right. \\
& +(\mathbf{1}, \mathbf{1})^{++;+}+(\mathbf{m}, \overline{\mathbf{n}})^{-+;-}+(\overline{\mathbf{m}}, \mathbf{n})^{-+;--} . \tag{39}
\end{align*}
$$

In the same way, by $U, S O(2 N)$ is broken down to its subgroup including $S U(N)$ whose adjoint representation $\mathbf{N}^{2}-\mathbf{1}$ is given by

$$
\begin{align*}
\mathbf{N}^{2}-\mathbf{1}= & \left(\mathbf{m}^{\mathbf{2}}-\mathbf{1}, \mathbf{1}\right)^{++;+}+\left(\mathbf{1}, \mathbf{n}^{2}-\mathbf{1}\right)^{++;+} \\
& +(\mathbf{1}, \mathbf{1})^{++;+}+(\mathbf{m}, \mathbf{n})^{--;+}+(\overline{\mathbf{m}}, \overline{\mathbf{n}})^{--;+} \tag{40}
\end{align*}
$$

Under the exchange of P_{1} and U, the adjoint representations (39) and (40) are exchanged. It corresponds to the relation between the Georgi-Glashow type $S U(5)$ [25] and the flipped type $S U(5)$ [26] in $S O(10)$ GUTs [27,28].

We study the Z_{2} parity assignment for matter fermions. By the Z_{2} projection with $P_{0}, S O(2 N)$ is broken down to $S O(2 m) \times S O(2 n)$, and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1}^{N-1} & =\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{1}^{n-1}\right)+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{2}^{n-1}\right), \\
\mathbf{2}_{2}^{N-1} & =\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{2}^{n-1}\right)+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{1}^{n-1}\right), \\
\mathbf{2 N} & =(\mathbf{2 m}, \mathbf{1})+(\mathbf{1}, \mathbf{2 n}) . \tag{41}
\end{align*}
$$

Using (27), (29), and (30), we find that each multiplet has a definite \mathcal{P}_{0} as

$$
\begin{align*}
\mathcal{P}_{0}\left(\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{1}^{n-1}\right)\right)=+\eta_{1}^{0}, & \mathcal{P}_{0}\left(\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{2}^{n-1}\right)\right)=-\eta_{1}^{0}, \\
\mathcal{P}_{0}\left(\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{2}^{n-1}\right)\right)=+\eta_{2}^{0}, & \mathcal{P}_{0}\left(\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{1}^{n-1}\right)\right)=-\eta_{2}^{0}, \\
\mathcal{P}_{0}((\mathbf{2 m}, \mathbf{1}))=+\eta_{\mathrm{v}}^{0}, & \mathcal{P}_{0}((\mathbf{1}, \mathbf{2 n}))=-\eta_{\mathrm{v}}^{0} . \tag{42}
\end{align*}
$$

In the same way, $S O(2 N)$ is broken down to $S U(N) \times U(1)$ by P_{1}, and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{gather*}
\mathbf{2}_{1}^{N-1}=\sum_{k=0}^{[N / 2]}[N, 2 k], \quad \mathbf{2}_{2}^{N-1}=\sum_{k=0}^{[(N-1) / 2]}[N, 2 k+1], \\
\mathbf{2 N}=\mathbf{N}+\overline{\mathbf{N}}, \tag{43}
\end{gather*}
$$

where $[N / 2]$ and $[(N-1) / 2]$ represent Gauss's symbol, and $[N, 2 k]\left(={ }_{N} C_{2 k}\right)$ and $[N, 2 k+1]\left(={ }_{N} C_{2 k+1}\right)$ are the rank $2 k+1$ totally antisymmetric representations of the $S U(N)$ gauge group and the $U(1)$ charge is omitted. Each multiplet has a definite \mathcal{P}_{1} as

$$
\begin{align*}
\mathcal{P}_{1}([N, 2 k]) & =(-1)^{k} \eta_{1}^{1}, \\
\mathcal{P}_{1}([N, 2 k+1]) & =(-1)^{k} \eta_{2}^{1}, \\
\mathcal{P}_{1}(\mathbf{N}) & =+\eta_{\mathrm{v}}^{1}, \\
\mathcal{P}_{1}(\overline{\mathbf{N}}) & =-\eta_{\mathrm{v}}^{1} . \tag{44}
\end{align*}
$$

The same argument holds for U.
Combining the Z_{2} projections with P_{0} and $P_{1}, S O(2 N)$ is broken down to $S U(m) \times S U(n) \times U(1)^{2-k}$, and $\mathbf{2}_{a}^{N-1}$ and $\mathbf{2 N}$ are decomposed into

$$
\begin{gather*}
\mathbf{2}_{1}^{N-1}=\sum_{k=0}^{[N / 2]} \sum_{\ell=0}^{2 k}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell}\right)=\sum_{k=0}^{[N / 2]} \sum_{\ell=\text { even }}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell}\right)+\sum_{k=0}^{[N / 2]} \sum_{\ell=\mathrm{odd}}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell}\right), \\
\mathbf{2}_{2}^{N-1}=\sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=0}^{2 k+1}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell+1}\right)=\sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\text { even }}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell+1}\right)+\sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\mathrm{odd}}\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell+1}\right), \tag{45}\\
\mathbf{2 N}=(\mathbf{m}, \mathbf{1})+(\mathbf{1}, \mathbf{n})+(\overline{\mathbf{m}}, \mathbf{1})+(\mathbf{1}, \overline{\mathbf{n}}) .
\end{gather*}
$$

The Z_{2} parities of each multiplet are listed in Table II. The Z_{2} parity assignments for types IIb and IIc are obtained by the exchange of $\mathcal{P}_{0}, \mathcal{P}_{1}$, and \mathcal{U}, i.e., $\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{U}\right)^{\text {IIa }}=$ $\left(\mathcal{P}_{1}, \mathcal{P}_{0}, \mathcal{U}\right)^{\mathrm{II}}=\left(\mathcal{U}, \mathcal{P}_{0}, \mathcal{P}_{1}\right)^{\text {IIc }}$.

A fermion with spin $1 / 2$ in five dimensions is regarded as a Dirac fermion or a pair of Weyl fermions with opposite chiralities in four dimensions. The representations of each Weyl fermion are decomposed in the same way, but lefthanded Weyl fermions and right-handed ones should have opposite Z_{2} parities to each other, i.e., $\left(\mathcal{P}_{0 R}, \mathcal{P}_{1 R} ; \mathcal{U}_{R}\right)=$

TABLE II. $\quad Z_{2}$ parities of matter fermions in type IIa.

Representation	\mathcal{P}_{0}	\mathcal{P}_{1}	\mathcal{U}	
$\mathbf{2}_{1}^{N-1}$	$\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell}\right)_{\ell=\mathrm{even}}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
	$\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell}\right)_{\ell=\text { odd }}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{2}_{2}^{N-1}$	$\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell+1}\right)_{\ell=\text { even }}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
	$\left({ }_{m} C_{\ell},{ }_{n} C_{2 k-\ell+1}\right)_{\ell=\text { odd }}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{2 N}$	$(\mathbf{m}, \mathbf{1})$	$+\eta_{\mathrm{v}}^{0}$	$+\eta_{\mathrm{v}}^{1}$	$+\eta_{\mathrm{v}}^{0} \eta_{\mathrm{v}}^{1}$
	$(\mathbf{1}, \mathbf{n})$	$-\eta_{\mathrm{v}}^{0}$	$+\eta_{\mathrm{v}}^{1}$	$-\eta_{\mathrm{v}}^{0} \eta_{\mathrm{v}}^{1}$
	$(\overline{\mathbf{m}}, \mathbf{1})$	$+\eta_{\mathrm{v}}^{0}$	$-\eta_{\mathrm{v}}^{1}$	$-\eta_{\mathrm{v}}^{0} \eta_{\mathrm{v}}^{1}$
	$(\mathbf{1}, \overline{\mathbf{n}})$	$-\eta_{\mathrm{v}}^{0}$	$-\eta_{\mathrm{v}}^{1}$	$+\eta_{\mathrm{v}}^{0} \eta_{\mathrm{v}}^{1}$

$\left(-\mathcal{P}_{0 L},-\mathcal{P}_{1 L} ;-\mathcal{U}_{L}\right)$, from the requirement that the kinetic term is invariant under the Z_{2} parity transformation. Here, $\left(\mathcal{P}_{0 R}, \mathcal{P}_{1 R} ; \mathcal{U}_{R}\right)$ and $\left(\mathcal{P}_{0 L}, \mathcal{P}_{1 L} ; \mathcal{U}_{L}\right)$ are Z_{2} parities for right-handed Weyl fermions and left-handed ones, respectively. Zero modes for not only left-handed Weyl fermions but also right-handed ones, having even Z_{2} parities, compose chiral fermions in the SM.

In supersymmetry (SUSY) models, the hypermultiplet is the fundamental quantity concerning bulk matter fields in five dimensions. The hypermultiplet is equivalent to a pair of chiral multiplets with opposite gauge quantum numbers such as the representation \mathbf{R} and the conjugate one $\overline{\mathbf{R}}$ in four dimensions. The chiral multiplet with $\overline{\mathbf{R}}$ contains a left-handed Weyl fermion with $\overline{\mathbf{R}}_{L}$. This Weyl fermion is regarded as a right-handed one with \mathbf{R}_{R} by the use of the charge conjugation. Hence our analysis works on SUSY models as well as non-SUSY ones.

III. UNIFICATION OF QUARKS AND LEPTONS BASED ON SO(2 N)

Now let us investigate unification of quarks and leptons in $S O(2 N)$ gauge theory on S^{1} / Z_{2}. We count the numbers

ORBIFOLD FAMILY UNIFICATION IN $S O(2 N)$ GAUGE ...
of fermion species coming from a single multiplet $\mathbf{2}_{1}^{N-1}$ or $\mathbf{2}_{2}^{N-1}$ based on the survival hypothesis for the following breaking patterns:

$$
\begin{gather*}
S O(2 N) \rightarrow S O(10) \times H_{1}, \tag{46}\\
S O(2 N) \rightarrow S O(6) \times S O(4) \times H_{2} \\
\simeq S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R} \times H_{2}, \tag{47}\\
S O(2 N) \rightarrow S U(5) \times S U(N-5) \times U(1)^{2}, \tag{48}
\end{gather*}
$$

where H_{1} and H_{2} are some product groups such as $S O\left(2 r_{1}\right) \times \cdots \times S O\left(2 r_{n}\right)$.

A. $S O(2 N) \supset S O(10)$

First, we study the symmetry breaking pattern $S O(2 N) \rightarrow S O(10) \times H_{1}$. In the case with the breaking pattern $S O(2 N) \rightarrow S O(10) \times S O(2(N-5))$, Weyl fermions with $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ are decomposed into

$$
\begin{align*}
& \mathbf{2}_{1 L}^{N-1}=\left(\mathbf{1 6}, \mathbf{2}_{1}^{N-6}\right)_{L}+\left(\overline{\mathbf{1 6}}, \mathbf{2}_{2}^{N-6}\right)_{L}, \tag{49}\\
& \mathbf{2}_{1 R}^{N-1}=\left(\mathbf{1 6}, \mathbf{2}_{1}^{N-6}\right)_{R}+\left(\overline{\mathbf{1 6}}, \mathbf{2}_{2}^{N-6}\right)_{R},
\end{align*}
$$

and the Z_{2} parities of each multiplet are given in Table III. If we take $\eta_{1}^{1}=\eta_{1}^{0}=+1$, no mirror particles appear and

PHYSICAL REVIEW D 81, 075011 (2010)
TABLE III. Z_{2} parity assignment for $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ in $S O(10) \times S O(2(N-5))$.

Representation		\mathcal{P}_{0}	\mathcal{P}_{1}	\mathcal{U}
$\mathbf{2}_{1 L}^{N-1}$	$\left(\mathbf{1 6}, \mathbf{2}_{1}^{N-6}\right)_{L}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{1 6}, \mathbf{2}_{2}^{N-6}\right)_{L}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{2}_{1 R}^{N-1}$	$\left(\mathbf{1 6}, \mathbf{2}_{1}^{N-6}\right)_{R}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{1 6}, \mathbf{2}_{2}^{N-6}\right)_{R}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$

$\left(\mathbf{1 6}, \mathbf{2}_{1}^{N-6}\right)_{L}$ survives. Then the number of $\mathbf{1 6}_{L}$ is regarded as that of families. Hence we have 2^{N-6} families for the $S O(10)$ multiplets. The same argument holds for the case with $\mathbf{2}_{2}^{N-1}$.

We find that no massless fermions survive in the case in which $H_{1}=S O\left(2 r_{1}\right) \times \operatorname{SO}\left(2 r_{2}\right) \times \operatorname{SO}\left(2 r_{3}\right) \quad$ or $\quad H_{1}=$ $S O\left(2 r_{1}\right) \times S O\left(2 r_{2}\right)$ after the survival hypothesis is imposed.

B. $S O(2 N) \supset S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R}$

Next, we study the symmetry breaking pattern $S O(2 N) \rightarrow G_{\mathrm{PS}} \times \mathrm{H}_{2}$ where G_{PS} is the Pati-Salam gauge group $S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R}$ [29].

In the case with $S O(2 N) \rightarrow G_{\mathrm{PS}} \times S O(2 q) \times S O(2 s)$, Weyl fermions with $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1 L}^{N-1}= & \left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{L}+\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{L},+\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{L} \\
& +\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{L}, \\
\mathbf{2}_{1 R}^{N-1}= & \left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{R}+\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{R},+\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{R} \\
& +\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{q-1}, \mathbf{2}_{2}^{r-1}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{q-1}, \mathbf{2}_{1}^{r-1}\right)_{R}, \tag{50}
\end{align*}
$$

and the Z_{2} parities of each multiplet are given in Table IV. If we take $\eta_{1}^{1}=\eta_{1}^{0}=+1, \quad\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{s-1}\right)_{L}$, $\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{L}, \quad\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right)_{R} \quad$ and $\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{R}$ have zero modes. Hence we have 2^{N-6} families for the G_{PS} multiplets. The same argument holds for the case with $\mathbf{2}_{2}^{N-1}$.

In the case with $S O(2 N) \rightarrow G_{\mathrm{PS}} \times S O(2(N-5))$, Weyl fermions with $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1 L}^{N-1}= & \left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{N-6}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{N-6}\right)_{L} \\
& +\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{N-6}\right)_{L}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{N-6}\right)_{L}, \\
\mathbf{2}_{1 R}^{N-1}= & \left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{N-6}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{N-6}\right)_{R} \tag{51}\\
& +\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{N-6}\right)_{R}+\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{N-6}\right)_{R}
\end{align*}
$$

and the Z_{2} parities of each multiplet are given in Table V . If we take $\eta_{1}^{1}=\eta_{1}^{0}=+1, \quad\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{N-6}\right)_{L} \quad$ and $\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{N-6}\right)_{R}$ have zero modes. Then the number of such pairs is regarded as that of families. Hence we have 2^{N-6} families for the $G_{\text {PS }}$ multiplets. The same argument holds for the case with $\mathbf{2}_{2}^{N-1}$.

TABLE IV. Z_{2} parity assignment for $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ in $G_{\mathrm{PS}} \times$ $S O(2 q) \times S O(2 s)$.

Representation		\mathcal{P}_{0}	\mathcal{P}_{1}	U
$\mathbf{2}_{1 L}^{N-1}$	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{L}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{L}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{L}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{L}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{L}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{L}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{L}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{L}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{2}_{1 R}^{N-1}$	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{R}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{R}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{R}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{R}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{R}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{\text {s-1 }}\right)_{R}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{r-1}, \mathbf{2}_{2}^{s-1}\right)_{R}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{r-1}, \mathbf{2}_{1}^{s-1}\right)_{R}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$

YOSHIHARU KAWAMURA AND TAKASHI MIURA
TABLE V. Z_{2} parity assignment for $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ in $G_{\mathrm{PS}} \times$ $S O(2(N-5))$.

Representation		\mathcal{P}_{0}	\mathcal{P}_{1}	\mathcal{U}
$\mathbf{2}_{1 L}^{N-1}$	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{N-6}\right)_{L}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{N-6}\right)_{L}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{N-6}\right)_{L}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{N-6}\right)_{L}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{2}_{1 R}^{N-1}$	$\left(\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{1}^{N-6}\right)_{R}$	$-\eta_{1}^{0}$	$-\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{1}^{N-6}\right)_{R}$	$-\eta_{1}^{0}$	$+\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\mathbf{4}, \mathbf{1}, \mathbf{2}, \mathbf{2}_{2}^{N-6}\right)_{R}$	$+\eta_{1}^{0}$	$+\eta_{1}^{1}$	$+\eta_{1}^{0} \eta_{1}^{1}$
	$\left(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}, \mathbf{2}_{2}^{N-6}\right)_{R}$	$+\eta_{1}^{0}$	$-\eta_{1}^{1}$	$-\eta_{1}^{0} \eta_{1}^{1}$

C. $S O(2 N) \supset S U(5)$

Finally, we study the symmetry breaking pattern $S O(2 N) \rightarrow S U(5) \times S U(N-5) \times U(1)^{2}$. In this case, Weyl fermions with $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{1 L}^{N-1}= & \sum_{k=0}^{[N / 2]} \sum_{\ell=\text { even }}\left({ }_{5} C_{\ell},{ }_{N-5} C_{2 k-\ell}\right)_{L} \\
& +\sum_{k=0}^{[N / 2]} \sum_{\ell=\text { odd }}\left({ }_{5} C_{\ell},{ }_{N-5} C_{2 k-\ell}\right)_{L}, \tag{52}\\
\mathbf{2}_{1 R}^{N-1}= & \sum_{k=0}^{[N / 2]} \sum_{\ell=\text { even }}\left({ }_{5} C_{\ell,}{ }_{N-5} C_{2 k-\ell}\right)_{R} \\
& +\sum_{k=0}^{[N / 2]} \sum_{\ell=\text { odd }}\left({ }_{5} C_{\ell},{ }_{N-5} C_{2 k-\ell}\right)_{R},
\end{align*}
$$

and the Z_{2} parities of each multiplet are given in Table VI.
Using the equivalence of $\left(\mathbf{5}_{R}\right)^{c}$ and $\left(\overline{\mathbf{1 0}}_{R}\right)^{c}$ with $\overline{\mathbf{5}}_{L}$ and $\mathbf{1 0}_{L}$, respectively, the numbers of species $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ are given by

$$
\begin{align*}
n_{\mathbf{1}} & =\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k}+\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-5}, \tag{53}\\
n_{\mathbf{1 0}_{L}} & =\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-2}+\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-3} \tag{54}\\
n_{\overline{\mathbf{5}}_{L}} & =\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-4}+\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-1}, \tag{55}
\end{align*}
$$

in the case with $\eta_{1}^{0}=\eta_{1}^{1}=+1$ and

$$
\begin{align*}
n_{\mathbf{1}} & =\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k}+\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-5}, \tag{56}\\
n_{\mathbf{1 0}_{L}} & =\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-2}+\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-3}, \tag{57}\\
n_{\overline{\mathbf{5}}_{L}} & =\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-4}+\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-1}, \tag{58}
\end{align*}
$$

in the case with $\eta_{1}^{0}=-\eta_{1}^{1}=+1$. Here $n_{\mathbf{1}}$ is the total number of $S U(5)$ singlets $\mathbf{1}$. They are regarded as the so-

PHYSICAL REVIEW D 81, 075011 (2010)
TABLE VI. Z_{2} parity assignment for $\mathbf{2}_{1 L}^{N-1}$ and $\mathbf{2}_{1 R}^{N-1}$ in $S U(5) \times S U(N-5) \times U(1)^{2}$.

Representation	\mathcal{P}_{0}	\mathcal{P}_{1}	\mathcal{U}	
$\mathbf{1}_{L}$	$\left({ }_{5} C_{0},{ }_{N-5} C_{2 k}\right)_{L}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{1}_{R}$	$\left({ }_{5} C_{0},{ }_{N-5} C_{2 k}\right)_{R}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{5}_{L}$	$\left({ }_{5} C_{1},{ }_{N-5} C_{2 k-1}\right)_{L}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{5}_{R}$	$\left({ }_{5} C_{1},{ }_{N-5} C_{2 k-1}\right)_{R}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{1 0}_{L}$	$\left({ }_{5} C_{2},{ }_{N-5} C_{2 k-2}\right)_{L}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{1 0}_{R}$	$\left({ }_{5} C_{2},{ }_{N-5} C_{2 k-2}\right)_{R}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\overline{\mathbf{1 0}}_{L}$	$\left({ }_{5} C_{3},{ }_{N-5} C_{2 k-3}\right)_{L}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\mathbf{1 0}_{R}$	$\left({ }_{5} C_{3},{ }_{N-5} C_{2 k-3}\right)_{R}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\overline{\mathbf{5}}_{L}$	$\left({ }_{5} C_{4},{ }_{N-5} C_{2 k-4}\right)_{L}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\overline{\mathbf{5}}_{R}$	$\left({ }_{5} C_{4},{ }_{N-5} C_{2 k-4}\right)_{R}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\overline{\mathbf{1}}_{L}$	$\left({ }_{5} C_{5},{ }_{N-5} C_{2 k-5}\right)_{L}$	$-\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$-(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$
$\overline{\mathbf{1}}_{R}$	$\left({ }_{5} C_{5},{ }_{N-5} C_{2 k-5}\right)_{R}$	$+\eta_{1}^{0}$	$(-1)^{k} \eta_{1}^{1}$	$+(-1)^{k} \eta_{1}^{0} \eta_{1}^{1}$

called right-handed neutrinos which can obtain heavy Majorana masses among themselves as well as the Dirac masses with left-handed neutrinos. Some of them can be involved in a seesaw mechanism [30].

In the same way, Weyl fermions with $\mathbf{2}_{2 L}^{N-1}$ and $\mathbf{2}_{2 R}^{N-1}$ are decomposed into

$$
\begin{align*}
\mathbf{2}_{2 L}^{N-1}= & \sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\text { even }}\left({ }_{5} C_{\ell},{ }_{N-5} C_{2 k-\ell+1}\right)_{L} \\
& +\sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\text { odd }}\left({ }_{5} C_{\ell},{ }_{N-5} C_{2 k-\ell+1}\right)_{L}, \tag{59}\\
\mathbf{2}_{2 R}^{N-1}= & \sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\text { even }}\left({ }_{5} C_{\ell,}{ }_{N-5} C_{2 k-\ell+1}\right)_{R} \\
& +\sum_{k=0}^{[(N-1) / 2]} \sum_{\ell=\text { odd }}\left({ }_{5} C_{\ell+1},{ }_{N-5} C_{2 k-\ell}\right)_{R},
\end{align*}
$$

and the Z_{2} parities of each multiplet are given in Table VII. The numbers of species $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ are given by

$$
\begin{align*}
& n_{\mathbf{1}}=\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k+1}+\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-4}, \tag{60}\\
& n_{\mathbf{1 0}_{L}}=\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-1}+\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-2}, \tag{61}\\
& n_{\overline{\mathbf{S}}_{L}}=\sum_{k=\mathrm{evve}}{ }_{N-5} C_{2 k-3}+\sum_{k=\mathrm{odd}} N-5 \tag{62}\\
& C_{2 k}
\end{align*}
$$

in the case with $\eta_{2}^{0}=\eta_{2}^{1}=+1$ and

$$
\begin{align*}
& n_{\mathbf{1}}=\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k+1}+\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k-4} \tag{63}\\
& n_{10_{L}}=\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-1}+\sum_{k=\mathrm{even}} N-5 C_{2 k-2} \tag{64}
\end{align*}
$$

TABLE VII. $\quad Z_{2}$ parity assignment for $\mathbf{2}_{2 L}^{N-1}$ and $\mathbf{2}_{2 R}^{N-1}$ in $S U(5) \times S U(N-5) \times U(1)^{2}$.

Representation	\mathcal{P}_{0}	\mathcal{P}_{1}	\mathcal{U}	
$\mathbf{1}_{L}$	$\left({ }_{5} C_{0},{ }_{N-5} C_{2 k+1}\right)_{L}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{1}_{R}$	$\left({ }_{5} C_{0},{ }_{N-5} C_{2 k+1}\right)_{R}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{5}_{L}$	$\left({ }_{5} C_{1},{ }_{N-5} C_{2 k}\right)_{L}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{5}_{R}$	$\left({ }_{5} C_{1},{ }_{N-5} C_{2 k}\right)_{R}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{1 0}_{L}$	$\left({ }_{5} C_{2},{ }_{N-5} C_{2 k-1}\right)_{L}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{1 0}_{R}$	$\left({ }_{5} C_{2},{ }_{N-5} C_{2 k-1}\right)_{R}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\overline{\mathbf{1 0}}_{L}$	$\left.{ }_{5} C_{3},{ }_{N-5} C_{2 k-2}\right)_{L}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\mathbf{1 0}_{R}$	$\left({ }_{5} C_{3},{ }_{N-5} C_{2 k-2}\right)_{R}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\overline{\mathbf{5}}_{L}$	$\left({ }_{5} C_{4},{ }_{N-5} C_{2 k-3}\right)_{L}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\overline{\mathbf{5}}_{R}$	$\left({ }_{5} C_{4},{ }_{N-5} C_{2 k-3}\right)_{R}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\overline{\mathbf{1}}_{L}$	$\left.{ }_{5} C_{5},{ }_{N-5} C_{2 k-4}\right)_{L}$	$-\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$-(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$
$\overline{\mathbf{1}}_{R}$	$\left({ }_{5} C_{5},{ }_{N-5} C_{2 k-4}\right)_{R}$	$+\eta_{2}^{0}$	$(-1)^{k} \eta_{2}^{1}$	$+(-1)^{k} \eta_{2}^{0} \eta_{2}^{1}$

TABLE VIII. The numbers of $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ for $S O(14)$.

	$\eta_{1}^{0}=\eta_{1}^{1}=+1$	$\eta_{1}^{0}=-\eta_{1}^{1}=+1$	$\eta_{2}^{0}=\eta_{2}^{1}=+1$	$\eta_{2}^{0}=-\eta_{2}^{1}=+1$
$n_{\mathbf{1}}$	3	1	3	1
$n_{10_{L}}$	1	3	1	3
$n_{\overline{\mathbf{5}}_{L}}$	3	1	3	1

TABLE IX. The numbers of $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ for $S O(16)$.

	$\eta_{1}^{0}=\eta_{1}^{1}=+1$	$\eta_{1}^{0}=-\eta_{1}^{1}=+1$	$\eta_{2}^{0}=\eta_{2}^{1}=+1$	$\eta_{2}^{0}=-\eta_{2}^{1}=+1$
$n_{\mathbf{1}}$	4	4	6	2
$n_{10_{L}}$	4	4	2	6
$n_{\overline{5}_{L}}$	4	4	6	2

TABLE X. The numbers of $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ for $S O(18)$.

	$\eta_{1}^{0}=\eta_{1}^{1}=+1$	$\eta_{1}^{0}=-\eta_{1}^{1}=+1$	$\eta_{2}^{0}=\eta_{2}^{1}=+1$	$\eta_{2}^{0}=-\eta_{2}^{1}=+1$
$n_{\mathbf{1}}$	6	10	10	6
$n_{\mathbf{1 0}_{L}}$	10	6	6	10
$n_{\overline{5}_{L}}$	6	10	10	6

$$
\begin{equation*}
n_{\overline{\mathbf{s}}_{L}}=\sum_{k=\mathrm{odd}}{ }_{N-5} C_{2 k-3}+\sum_{k=\mathrm{even}}{ }_{N-5} C_{2 k}, \tag{65}
\end{equation*}
$$

in the case with $\eta_{2}^{0}=-\eta_{2}^{1}=+1$.
As examples, the numbers of species $\mathbf{1}, \mathbf{1 0}_{L}$, and $\overline{\mathbf{5}}_{L}$ for $S O(14), S O(16)$, and $S O(18)$ are listed in Tables VIII, IX, and X .

IV. CONCLUSIONS AND DISCUSSIONS

We have studied the possibility of family unification on the basis of $S O(2 N)$ gauge theory on the five-dimensional space-time, $M^{4} \times S^{1} / Z_{2}$. We have found that several $S O(10), S U(4) \times S U(2)_{L} \times S U(2)_{R}$, or $S U(5)$ multiplets come from a single bulk multiplet of $S O(2 N)$ after the orbifold breaking and obtained the numbers of species. As a result, we have found that there is no single bulk spinor
multiplet of $S O(2 N)$ on $M^{4} \times S^{1} / Z_{2}$, which leads to three families of $S O(10), S U(4) \times S U(2)_{L} \times S U(2)_{R}$, or $S U(5)$ multiplets only as zero modes using the orbifold breaking with the Z_{2} projection such as $P=\sigma_{0} \otimes I_{m, n}$ and/or $\sigma_{2} \otimes$ $I_{m, n}$. Other multiplets including brane fields are necessary to compose complete three families of quarks and leptons which we observe. Specifically, four families of $S O(10)$ or $S U(4) \times S U(2)_{L} \times S U(2)_{R}$ multiplets are obtained as zero modes from a single spinor bulk fermion of $S O(16)$ through particular breaking patterns with suitable Z_{2} parity assignments. In this case, a mirror brane family would be necessary to couple to members of the fourth family and to give them a heavy mass of order $O(100) \mathrm{GeV}$ or bigger than that because they have not been discovered. The magnitude of masses for members of the fourth family is not predicted in our framework.

Most of our results are unique to models on $M^{4} \times$ S^{1} / Z_{2}, but some of them can be generalized to models on other types of space-time. For example, we have the nogo theorem such that there is no single bulk spinor multiplet of $S O(2 N)$ on a higher-dimensional space-time, which leads to three families of $S O(10)$ or $S U(4) \times S U(2)_{L} \times$ $S U(2)_{R}$ multiplets only as zero modes through the orbifold breaking mechanism using the projection operators such as $\sigma_{0} \otimes I_{m, n}$ and/or $\sigma_{2} \otimes I_{m, n}$. This comes from the group theoretical feature that even numbers of $\mathbf{1 6}$ of $S O(10)$ or $(\mathbf{4}, \mathbf{2}, \mathbf{1})$ and $(\mathbf{4}, \mathbf{1}, \mathbf{2})$ of $S U(4) \times S U(2)_{L} \times S U(2)_{R}$ always appear after the breakdown of $S O(2 N)$ with the above projection operators. Our results including the above nogo theorem can be a starting point for the construction of a more realistic model.

There are several open questions, which are left for future work.

The unwanted matter degrees of freedom can be successfully made massive thanks to the orbifolding. However, some extra gauge fields remain massless even after the symmetry breaking due to the Hosotani mechanism. In most cases, this kind of non-Abelian gauge subgroup plays the role of family symmetry. These massless degrees of freedom must be made massive by further breaking of the family symmetry. Here, we point out that brane fields can be key to the solutions. Most models have chiral anomalies at the four-dimensional boundaries and we have a choice to introduce appropriate brane fields to cancel these anomalies. Further, scalar components of some brane superfields can play a role of Higgs fields for the breakdown of extra gauge symmetries including nonAbelian gauge symmetries. As a result, extra massless fields including the family gauge bosons can be massive.

In general, there appear D-term contributions to scalar masses in supersymmetric models after the breakdown of such extra gauge symmetries and the D-term contributions lift the mass degeneracy. [31-33]. The mass degeneracy for each squark and slepton species in the first two families is favorable for suppressing flavor-changing neutral current (FCNC) processes. The dangerous FCNC processes can be avoided if the sfermion masses in the first two families are rather large or the fermion and its superpartner mass matrices are aligned. The requirement of degenerate masses would yield a constraint on the D-term condensations and/ or SUSY breaking mechanism unless other mechanisms work. If we consider the Scherk-Schwarz mechanism [34] for $N=1$ SUSY breaking, the D-term condensations can vanish for the gauge symmetries broken at the orbifold breaking scale, because of a universal structure of the soft SUSY breaking parameters. The D-term contributions have been studied in the framework of $\operatorname{SU}(N)$ orbifold GUTs [35].

Fermion mass hierarchy and generation mixings can also occur through the Froggatt-Nielsen mechanism [36] on the breakdown of extra gauge symmetries and the
suppression of brane-localized Yukawa coupling constants among brane weak Higgs doublets and bulk matters with the volume suppression factor [37].

The orbifold GUT is more naturally realized in warped space; see e.g. [38] for a review. The Hosotani mechanism has been studied in warped space [39] and it has been applied on the gauge-Higgs unification [40]. It would be interesting to look for the orbifold family unification based on warped space and/or other types of orbifolds. ${ }^{3}$

It has been shown that $S O(1, D-1)$ space-time symmetry can lead to family structure [43]. Hence it would be interesting to study theories on a higher-dimensional space-time with a view to the synergy of $S O(2 N)$ gauge symmetry and $S O(1, D-1)$ space-time symmetry.

Furthermore, it would be interesting to study cosmological implications of the class of models presented in this paper, see e.g. [44] and references therein for useful articles toward this direction.

ACKNOWLEDGMENTS

This work was supported in part by scientific grants from the Ministry of Education, Culture, Sports, Science and Technology under No. 18204024 and No. 18540259 (Y. K.).

APPENDIX A: GAUGE INVARIANCE AND EQUIVALENCE RELATIONS

We discuss the gauge invariance on S^{1} / Z_{2}. Given the BCs $\left(P_{0}, P_{1}, U\right)$, there still remains residual gauge invariance. Under the gauge transformation with $\Omega(x, y), A_{M}$ transforms as

$$
\begin{equation*}
A_{M} \rightarrow A_{M}^{\prime}=\Omega A_{M} \Omega^{-1}-\frac{i}{g} \Omega \partial_{M} \Omega^{-1} \tag{A1}
\end{equation*}
$$

where g is a gauge coupling and A_{M}^{\prime} satisfies, instead of (25),

$$
\begin{align*}
s_{0}: A_{\mu}^{\prime}(x,-y) & =P_{0}^{\prime} A_{\mu}^{\prime}(x, y) P_{0}^{\prime-1}, \\
A_{y}^{\prime}(x,-y) & =-P_{0}^{\prime} A_{y}^{\prime}(x, y) P_{0}^{\prime-1}, \\
s_{1}: A_{\mu}^{\prime}(x, 2 \pi R-y) & =P_{1}^{\prime} A_{\mu}^{\prime}(x, y) P_{1}^{\prime-1}, \tag{A2}\\
A_{y}^{\prime}(x, 2 \pi R-y) & =-P_{1}^{\prime} A_{y}^{\prime}(x, y) P_{1}^{\prime-1}, \\
t: A_{M}^{\prime}(x, y+2 \pi R) & =U^{\prime} A_{M}^{\prime}(x, y) U^{\prime-1}
\end{align*}
$$

The $P_{0}^{\prime}, P_{1}^{\prime}$, and U^{\prime} are given by

[^2]\[

$$
\begin{align*}
& P_{0}^{\prime}=\Omega(x,-y) P_{0} \Omega^{-1}(x, y) \\
& P_{1}^{\prime}=\Omega(x, 2 \pi R-y) P_{1} \Omega^{-1}(x, y) \tag{A3}\\
& U^{\prime}=\Omega(x, y+2 \pi R) U \Omega^{-1}(x, y)
\end{align*}
$$
\]

where we assume that $P_{0}^{\prime}, P_{1}^{\prime}$, and U^{\prime} are independent of y.
Theories with different BCs should be equivalent with regard to physical content if they are connected by gauge transformations. The key observation is that the physics should not depend on the gauge chosen. The equivalence is guaranteed in the Hosotani mechanism [24] and the two sets of BCs are equivalent:

$$
\begin{equation*}
\left(P_{0}, P_{1}, U\right) \sim\left(P_{0}^{\prime}, P_{1}^{\prime}, U^{\prime}\right) \tag{A4}
\end{equation*}
$$

The equivalence relation (A4) defines equivalence classes of the BCs.

The physical symmetry is understood from the analysis including the Wilson line phases as follows. The Wilson line phases are phases of $W U$ given by

$$
\begin{equation*}
W U=\mathbf{P} \exp \left(i g \int_{C} A_{y}(x, y) d y\right) \cdot U \tag{A5}
\end{equation*}
$$

where \mathbf{P} is path ordering along a noncontractible loop on S^{1}. The eigenvalues of $W U$ are gauge invariant and become physical degrees of freedom. The dynamical phases are given by $\theta^{b}=2 \pi R g A_{y}^{b}$ related to the generators T^{b} which anticommute with $\left(P_{0}, P_{1}\right)$, i.e., $\left\{T^{b}, P_{0}\right\}=\left\{T^{b}, P_{1}\right\}=0$. They correspond to the parts of A_{y} with even Z_{2} parities. The physical vacuum is given by the configuration of θ^{b} which minimizes the effective potential. Suppose that the effective potential is minimized at $\left\langle A_{y}\right\rangle$ such that $W \equiv$ $\exp \left(i g 2 \pi R\left\langle A_{y}\right\rangle\right) \neq I$ with $\left(P_{0}, P_{1}, U\right)$. Perform the gauge transformation with $\Omega=\exp \left[\operatorname{ig}(y+\alpha)\left\langle A_{y}\right\rangle\right]$, which brings $\left\langle A_{y}\right\rangle$ to $\left\langle A_{y}^{\prime}\right\rangle=0$. Then the BCs change to

$$
\begin{align*}
& \left(P_{0}^{\mathrm{sym}}, P_{1}^{\mathrm{sym}}, U^{\mathrm{sym}}\right) \\
& \quad \equiv\left(P_{0}^{\prime}, P_{1}^{\prime}, U^{\prime}\right) \\
& \quad=\left(e^{2 i g \alpha\left\langle A_{y}\right\rangle} P_{0}, e^{2 i g(\alpha+\pi R)\left\langle A_{y}\right\rangle} P_{1}, e^{i g 2 \pi R\left\langle A_{y}\right\rangle} U(=W U)\right) \tag{A6}
\end{align*}
$$

Since $\left\langle A_{y}^{\prime}\right\rangle$ vanishes in the new gauge, the unbroken symmetry is spanned by the generators T^{a} which commute with $\left(P_{0}^{\text {sym }}, P_{1}^{\text {sym }}\right)$, i.e., $\left[T^{a}, P_{0}^{\text {sym }}\right]=\left[T^{a}, P_{1}^{\text {sym }}\right]=0$.

Let us derive the equivalence relations among BCs based on types I and II. We consider $S O(4)$ gauge theory. For the gauge transformation with $\Omega(y)$ given by

$$
\begin{equation*}
\Omega(y)=\exp \left[i\left(a \sigma_{1} \otimes \tau_{2}+b \sigma_{3} \otimes \tau_{2}\right) y / 2 \pi R\right] \tag{A7}
\end{equation*}
$$

we find the equivalence relations:
type I: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{1} \otimes \tau_{2}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{3} \otimes \tau_{2}\right)\right] \sigma_{0} \otimes \tau_{3}\right)
$$

type IIa: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{0}\right) \sim\left(\sigma_{0} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{1} \otimes \tau_{2}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{3} \otimes \tau_{2}\right)\right] \sigma_{2} \otimes \tau_{0}\right)
$$

type IIb: $\left(\pm \sigma_{2} \otimes \tau_{0}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\pm \sigma_{2} \otimes \tau_{0}, \exp \left[i\left(a \sigma_{1} \otimes \tau_{2}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{3} \otimes \tau_{2}\right)\right] \sigma_{0} \otimes \tau_{3}\right)
$$

type IIc: $\left(\pm \sigma_{2} \otimes \tau_{0}, \sigma_{2} \otimes \tau_{0}\right) \sim\left(\pm \sigma_{2} \otimes \tau_{0}, \exp \left[i\left(a \sigma_{1} \otimes \tau_{2}\right.\right.\right.$

$$
\begin{equation*}
\left.\left.\left.+b \sigma_{3} \otimes \tau_{2}\right)\right] \sigma_{2} \otimes \tau_{0}\right) \tag{A8}
\end{equation*}
$$

where $a, b \in \mathbb{R}$ and $\tau_{i}(i=1,2,3)$ are also Pauli matrices. When $\sqrt{a^{2}+b^{2}}=\pi \bmod 2 \pi$, the equivalence relations become as
type I: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3},-\sigma_{0} \otimes \tau_{3}\right)$,
type IIa: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{0}\right) \sim\left(\sigma_{0} \otimes \tau_{3},-\sigma_{2} \otimes \tau_{0}\right)$,
type IIb: $\left(\pm \sigma_{2} \otimes \tau_{0}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\pm \sigma_{2} \otimes \tau_{0},-\sigma_{0} \otimes \tau_{3}\right)$, type IIc: $\left(\pm \sigma_{2} \otimes \tau_{0}, \sigma_{2} \otimes \tau_{0}\right) \sim\left(\pm \sigma_{2} \otimes \tau_{0},-\sigma_{2} \otimes \tau_{0}\right)$.

Because $\left(\pm \sigma_{2} \otimes \tau_{0},-\sigma_{0} \otimes \tau_{3}\right)$ equals $\left(\pm \sigma_{2} \otimes \tau_{0}, \sigma_{0} \otimes\right.$ τ_{3}), we obtain no relation concerning Eq. (A7) for type IIb. Using (A9), the following relations in $S O(2 N)$ gauge theory are derived:

$$
\begin{align*}
{[p, q ; r, s]^{\mathrm{I}} } & \sim[p-1, q+1 ; r+1, s-1]^{\mathrm{I}} \quad \text { for } p, s \geq 1 \\
& \sim[p+1, q-1 ; r-1, s+1]^{\mathrm{I}} \quad \text { for } q, r \geq 1 \tag{A10}
\end{align*}
$$

$$
\begin{align*}
& {[p, q ; r, s]^{\mathrm{IIa}} } \sim[p-1, q+1 ; r-1, s+1]^{\mathrm{IIa}} \\
& \text { for } p, s \geq 1, \tag{A11}\\
& \sim[p+1, q-1 ; r+1, s-1]^{\mathrm{IIa}} \\
& \text { for } q, r \geq 1
\end{align*}
$$

$$
\begin{array}{rll}
{[p, q ; r, s]^{\mathrm{II}}} & \sim[p-2, q+2 ; r, s]^{\mathrm{IIc}} & \text { for } p \geq 2 \\
& \sim[p+2, q-2 ; r, s]^{\mathrm{IIc}} & \text { for } q \geq 2 \\
& \sim[p, q ; r-2, s+2]^{\mathrm{II}} & \text { for } r \geq 2 \\
& \sim[p, q ; r+2, s-2]^{\mathrm{II}} & \text { for } s \geq 2 \tag{A12}
\end{array}
$$

For another gauge transformation with $\Omega(y)$ given by

$$
\begin{equation*}
\Omega(y)=\exp \left[i\left(a \sigma_{2} \otimes \tau_{1}+b \sigma_{0} \otimes \tau_{2}\right) y / 2 \pi R\right] \tag{A13}
\end{equation*}
$$

we find the equivalence relations:
type I: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{2} \otimes \tau_{1}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{0} \otimes \tau_{2}\right)\right] \sigma_{0} \otimes \tau_{3}\right)
$$

type IIa: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{2} \otimes \tau_{1}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{0} \otimes \tau_{2}\right)\right] \sigma_{2} \otimes \tau_{3}\right)
$$

type IIb: $\left(\sigma_{2} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{2} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{2} \otimes \tau_{1}\right.\right.\right.$

$$
\left.\left.\left.+b \sigma_{0} \otimes \tau_{2}\right)\right] \sigma_{0} \otimes \tau_{3}\right)
$$

type IIc: $\left(\sigma_{2} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{3}\right) \sim\left(\sigma_{2} \otimes \tau_{3}, \exp \left[i\left(a \sigma_{2} \otimes \tau_{1}\right.\right.\right.$

$$
\begin{equation*}
\left.\left.\left.+b \sigma_{0} \otimes \tau_{2}\right)\right] \sigma_{2} \otimes \tau_{3}\right) \tag{A14}
\end{equation*}
$$

When $\sqrt{a^{2}+b^{2}}=\pi \bmod 2 \pi$, the equivalence relations become as
type I: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3},-\sigma_{0} \otimes \tau_{3}\right)$,
type IIa: $\left(\sigma_{0} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{3}\right) \sim\left(\sigma_{0} \otimes \tau_{3},-\sigma_{2} \otimes \tau_{3}\right)$,
type IIb: $\left(\sigma_{2} \otimes \tau_{3}, \sigma_{0} \otimes \tau_{3}\right) \sim\left(\sigma_{2} \otimes \tau_{3},-\sigma_{0} \otimes \tau_{3}\right)$,
type IIc: $\left(\sigma_{2} \otimes \tau_{3}, \sigma_{2} \otimes \tau_{3}\right) \sim\left(\sigma_{2} \otimes \tau_{3},-\sigma_{2} \otimes \tau_{3}\right)$.
(A15)
Using (A5), the following relations in $\mathrm{SO}(2 \mathrm{~N})$ gauge theory are derived:
$[p, q ; r, s]^{I} \sim[p-1, q+1 ; r+1, s-1]^{I} \quad$ for $p, s \geq 1$,

$$
\sim[p+1, q-1 ; r-1, s+1]^{I} \quad \text { for } q, r \geq 1
$$

(A16)
$[p, q ; r, s]^{\mathrm{IIa}} \sim[p-1, q+1 ; r+1, s-1]^{\mathrm{IIa}}$ for $p, s \geq 1$,

$$
\sim[p+1, q-1 ; r-1, s+1]^{\text {IIa }} \text { for } q, r \geq 1
$$

(A17)
$[p, q ; r, s]^{\mathrm{IIb}} \sim[p-1, q+1 ; r+1, s-1]^{\mathrm{IIb}}$ for $p, s \geq 1$,

$$
\begin{equation*}
\sim[p+1, q-1 ; r-1, s+1]^{\mathrm{II}} \text { for } q, r \geq 1 \tag{A18}
\end{equation*}
$$

$[p, q ; r, s]^{\mathrm{IIc}} \sim[p-1, q+1 ; r+1, s-1]^{\mathrm{IIc}}$ for $p, s \geq 1$, $\sim[p+1, q-1 ; r-1, s+1]^{\text {IIc }}$ for $q, r \geq 1$.
(A19)

APPENDIX B: $S^{\mathbf{1}} / Z_{2}$ ORBIFOLD BREAKING OF $S O(2 N+1)$

We study the orbifold symmetry breaking in $S O(2 N+$ 1). Because $S O(2 N+1) \supset S O(2 N)$, the generators of $S O(2 N+1)$ are written as

$$
\left(\begin{array}{cc}
" s o(2 N) " & (*) \tag{B1}\\
(*)^{t} & 0
\end{array}\right)
$$

where $\operatorname{so}(2 N)$ represents generators of $S O(2 N)$ and (*) are $2 N \times 1$ matrix.

As an example, let us take the following representation matrices:

$$
P_{0}=\left(\begin{array}{cc}
\sigma_{0} \otimes I_{N} & 0 \tag{B2}\\
0 & -1
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
\sigma_{0} \otimes I_{m, n} & 0 \\
0 & \eta
\end{array}\right)
$$

where $\eta= \pm 1$. Then we obtain the breaking pattern:

$$
\begin{equation*}
S O(2 N+1) \rightarrow S O(2 m) \times S O(2 n) \tag{B3}
\end{equation*}
$$

and the Z_{2} parities for gauge bosons A_{μ}^{α} are assigned as

$$
\begin{align*}
\mathbf{N}(\mathbf{2 N}+\mathbf{1})= & (\mathbf{m}(\mathbf{2} \mathbf{m}-\mathbf{1}), \mathbf{1})^{++;+}+(\mathbf{1}, \mathbf{n}(\mathbf{2} \mathbf{n}-\mathbf{1}))^{++;+} \\
& +(\mathbf{2} \mathbf{m}, \mathbf{2 n})^{+-;-}+(\mathbf{2} \mathbf{m}, \mathbf{1})^{-\mp ; \pm} \\
& +(\mathbf{1}, \mathbf{2} \mathbf{n})^{- \pm ; \mp} . \tag{B4}
\end{align*}
$$

There is one spinor representation 2^{N} in $S O(2 N+1)$, which is decomposed into

$$
\begin{align*}
\mathbf{2}_{L}^{N}= & \left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{1}^{n-1}\right)_{L}^{++;+}+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{2}^{n-1}\right)_{L}^{+-;-} \\
& +\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{2}^{n-1}\right)_{L}^{- \pm ; \mp}+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{1}^{n-1}\right)_{L}^{-\mp ; \pm} \tag{B5}
\end{align*}
$$

$$
\begin{align*}
\mathbf{2}_{R}^{N}= & \left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{1}^{n-1}\right)_{R}^{--;-}+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{2}^{n-1}\right)_{R}^{-+;+} \\
& +\left(\mathbf{2}_{1}^{m-1}, \mathbf{2}_{2}^{n-1}\right)_{R}^{+\mp ; \pm}+\left(\mathbf{2}_{2}^{m-1}, \mathbf{2}_{1}^{n-1}\right)_{R}^{+ \pm ; \mp} \tag{B6}
\end{align*}
$$

where we take an appropriate intrinsic Z_{2} parity assignment. Using the above assignment, we find 2^{N-5} families with $\eta=+1$ and no family with $\eta=-1$ for $S O(10)$ multiplets $\mathbf{1 6}_{L}$ after the breaking $S O(2 N+1) \rightarrow$ $S O(10) \times S O(2(N-5))$.
[1] P. Ramond, hep-ph/9809459.
[2] H. Georgi, Nucl. Phys. B156, 126 (1979).
[3] P.H. Frampton, Phys. Lett. 88B, 299 (1979); 89, 352 (1980).
[4] T. Kugo and T. Yanagida, Phys. Lett. 134B, 313 (1984).
[5] R. Barbieri, D. V. Nanopoulos, G. Morchio, and F. Strocchi, Phys. Lett. 90B, 91 (1980).
[6] M. Gell-Mann, P. Ramond, and R. Slansky, in

ORBIFOLD FAMILY UNIFICATION IN $S O(2 N)$ GAUGE ...
Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979); F. Wilczek and A. Zee, Phys. Rev. D 25, 553 (1982).
[7] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258, 46 (1985).
[8] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261, 678 (1985); B274, 285 (1986).
[9] Y. Kawamura, Prog. Theor. Phys. 105, 999 (2001).
[10] L. Hall and Y. Nomura, Phys. Rev. D 64, 055003 (2001).
[11] K. S. Babu, S. M. Barr, and B. Kyae, Phys. Rev. D 65, 115008 (2002).
[12] T. Watari and T. Yanagida, Phys. Lett. B 532, 252 (2002).
[13] I. Gogoladze, Y. Mimura, and S. Nandi, Phys. Lett. B 562, 307 (2003); I. Gogoladze, T. Li, Y. Mimura, and S. Nandi, Phys. Rev. D 72, 055006 (2005).
[14] I. Gogoladze, C. A. Lee, Y. Mimura, and Q. Shafi, Phys. Lett. B 649, 212 (2007).
[15] I. Gogoladze, Y. Mimura, and S. Nandi, Phys. Rev. Lett. 91, 141801 (2003).
[16] Y. Kawamura, T. Kinami, and K. Oda, Phys. Rev. D 76, 035001 (2007).
[17] T. Asaka, W. Buchmüller, and L. Covi, Phys. Lett. B 523, 199 (2001); 540, 295 (2002); L. Hall, Y. Nomura, T. Okui, and D. Smith, Phys. Rev. D 65, 035008 (2002).
[18] S.M. Barr and I. Dorsner, Phys. Rev. D 66, 065013 (2002); B. Kyae, C. Lee, and Q. Shafi, Nucl. Phys. B683, 105 (2004).
[19] I. Gogoladze, Y. Mimura, and S. Nandi, Phys. Lett. B 560, 204 (2003).
[20] N. Haba, M. Harada, Y. Hosotani, and Y. Kawamura, Nucl. Phys. B657, 169 (2003); B669, 381(E) (2003); N. Haba, Y. Hosotani, and Y. Kawamura, Prog. Theor. Phys. 111, 265 (2004).
[21] Y. Kawamura, Prog. Theor. Phys. 103, 613 (2000).
[22] C. G. Callan and J.A. Harvey, Nucl. Phys. B250, 427 (1985); N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B 516, 395 (2001).
[23] H. D. Kim, J. E. Kim, and H. M. Lee, J. High Energy Phys. 06 (2002) 048.
[24] Y. Hosotani, Phys. Lett. 126B, 309 (1983); Ann. Phys. (N.Y.) 190, 233 (1989).
[25] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[26] S.M. Barr, Phys. Lett. 112B, 219 (1982); J.-P. Derendinger, J.E. Kim, and D. V. Nanopoulos, Phys. Lett. 139, 170 (1984).
[27] H. Georgi, AIP Conf. Proc. 23, 575 (1975); H. Fritzsch
and P. Minkowski, Ann. Phys. (N.Y.) 93, 193 (1975).
[28] For reviews, see P. Langacker, Phys. Rep. 72C, 185 (1981); G. G. Ross, Grand Unified Theories (AddisonWesley, Reading, MA, 1984).
[29] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[30] P. Minkowski, Phys. Lett. 67B, 421 (1977); T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto (KEK Report No. 79-18, 1979); Prog. Theor. Phys. 64, 1870 (1980); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979); S. L. Glashow, in Proceedings of the Cargése Summer Institute, 1979, edited by M. Lévy et al. (Plenum, New York, 1980); R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980).
[31] M. Drees, Phys. Lett. B 181, 279 (1986).
[32] J. S. Hagelin and S. Kelley, Nucl. Phys. B342, 95 (1990).
[33] Y. Kawamura, H. Murayama, and M. Yamaguchi, Phys. Lett. B 324, 52 (1994); Phys. Rev. D 51, 1337 (1995); Y. Kawamura and M. Tanaka, Prog. Theor. Phys. 91, 949 (1994).
[34] J. Scherk and J. H. Schwarz, Phys. Lett. 82B, 60 (1979); Nucl. Phys. B153, 61 (1979).
[35] Y. Kawamura and T. Kinami, Int. J. Mod. Phys. A 22, 4617 (2007); Prog. Theor. Phys. 119, 285 (2008); Y. Kawamura, T. Kinami, and T. Miura, J. High Energy Phys. 01 (2009) 064.
[36] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277 (1979).
[37] K. Yoshioka, Mod. Phys. Lett. A 15, 29 (2000).
[38] Y. Nomura, arXiv:hep-ph/0410348.
[39] K. Oda and A. Weiler, Phys. Lett. B 606, 408 (2005).
[40] Y. Hosotani and M. Mabe, Phys. Lett. 615, 257 (2005); Y. Hosotani, S. Noda, Y. Sakamura, and S. Shimasaki, Phys. Rev. D 73, 096006 (2006).
[41] Y. Hosotani, S. Noda, and K. Takenaga, Phys. Rev. D 69, 125014 (2004).
[42] Y. Kawamura, T. Kinami, and T. Miura, Prog. Theor. Phys. 120, 815 (2008); Y. Kawamura and T. Miura, Prog. Theor. Phys. 122, 847 (2009).
[43] N. M. Borštnik and H. B. Nielsen, J. Math. Phys. (N.Y.) 44, 4817 (2003); A. B. Bračič and N. M. Borštnik, Phys. Rev. D 74, 073013 (2006).
[44] M. Y. Khlopov, Cosmoparticle Physics (World Scientific, Singapore, 1999), p. 577.

[^0]: *haru@azusa.shinshu-u.ac.jp
 ${ }^{\dagger}$ s09t302@shinshu-u.ac.jp
 ${ }^{1}$ Five-dimensional supersymmetric GUTs on $M^{4} \times S^{1} / Z_{2}$ possess the attractive feature that the triplet-doublet splitting of Higgs multiplets is elegantly realized $[9,10]$.

[^1]: ${ }^{2} S O(10)$ GUTs on $M^{4} \times T^{2} / Z_{2}$ [17] and $M^{4} \times S^{1} / Z_{2}$ [18] and $S O$ (12) GUT on $M^{4} \times S^{1} / Z_{2}$ [19] have been constructed and their phenomenological implications have been studied.

[^2]: ${ }^{3}$ Equivalence classes of BCs in $\operatorname{SU}(N)$ gauge theory have been studied based on six-dimensional space-time including T^{2} / Z_{2} in Ref. [41] and other two-dimensional orbifolds in Ref. [42].

