PHYSICAL REVIEW D 81, 075011 (2010)
Orbifold family unification in SO(2N) gauge theory
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We study the possibility of family unification on the basis of SO(2N) gauge theory on the five-
dimensional space-time, M* X S'/Z,. Several SO(10), SU(4) X SU(2), X SU(2)g, or SU(5) multiplets
come from a single bulk multiplet of SO(2N) after the orbifold breaking. Other multiplets including brane
fields are necessary to compose three families of quarks and leptons.
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L. INTRODUCTION

The family unification or flavor unification based on a
large symmetry group can provide a possible solution for
the origin of the family replication [1-4]. However, we
encounter difficulty in the unification on the four-
dimensional Minkowski space, because of extra fields
such as “mirror particles” existing in the higher-
dimensional representation. The mirror particles are parti-
cles with opposite quantum numbers under the standard
model (SM) gauge group. If the idea of family or flavor
unification is to be realized in nature, extra particles must
disappear from the low-energy spectrum around the weak
scale. Several interesting mechanisms have been proposed
to get rid of the unwelcomed particles. One is to adopt the
“survival hypothesis,” which is the assumption that if a
symmetry is broken down to a smaller symmetry at a scale
Mgg, then any fermion mass terms invariant under the
smaller group induce fermion masses of order O(Mgg)
[2,5]. Georgi investigated whether an anomaly free set of
no-repeated representations in SU(N) models can lead to
families based on the survival hypothesis, and found that
three families are derived from [11,4]+[11,8]+
[11,9] +[11, 10] in the SU(11) model in four dimensions
[2]. Another possibility is to confine extra particles at a
high-energy scale by some strong interaction [6].

If we move from four dimensions to higher dimensions,
there is a possibility to reduce substances including mirror
particles using the symmetry reduction concerning extra
dimensions, as originally discussed in superstring theory
[7,8]. Hence it is meaningful to reexamine the idea of
family or flavor unification using grand unified theories
(GUTs) on a higer-dimensional space-time." We refer to
the family unification using orbifolds for extra dimensions
as the orbifold family unification. There are several pre-
ceding studies on the orbifold family unification. The
complete family unification has been suggested in Ejg
GUT on M* X T?/Z; [11]. The model in which three
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"Five-dimensional supersymmetric GUTs on M* X §'/Z,
possess the attractive feature that the triplet-doublet splitting
of Higgs multiplets is elegantly realized [9,10].
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families come from a combination of a bulk gauge multi-
plet and a few brane fields in SO(10) GUT on M* X T?/Z,
has been examined [12]. The gauge, Higgs, and matter
unification has been proposed in SU(8) GUT on M* X
T?/Z¢ [13] and M* X T?/Z; [14] and SO(16) on M* X
T?/Z¢ [15]. The orbifold family unification has been
studied in SU(N) on M* X §'/Z, [16].

In this paper, we study the possibility of orbifold family
unification on the basis of SO(2N) gauge theory on M* X
S'/Z, using the method in Ref. [16].> We investigate
whether or not three families are derived from a single
bulk multiplet of SO(2N) for several orbifold symmetry
breaking patterns.

The contents of this paper are as follows. In Sec. II, we
review and provide general arguments on the orbifold
breaking on S'/Z,. In Sec. III, we investigate unification
of quarks and leptons in SO(2N) gauge theory on M* X
§'/Z,. Section 1V is devoted to conclusions and discus-
sions. We discuss the gauge equivalence of boundary con-
ditions (BCs) in Appendix A and the symmetry breaking of
SO(2N + 1) in Appendix B.

II. S'/Z, ORBIFOLD BREAKING

In this section, we study the orbifold symmetry breaking
mechanism in SO(2N) gauge theory on M* X §'/Z,,
where M* is the four-dimensional Minkowski space.

A. Boundary conditions and symmetry reduction on
S'/z,

First we review the symmetry reduction mechanism on
S'/Z, briefly [20]. Let x (or x*, w = 0, ..., 3) and y (or x°)
be coordinates of M* and S'/Z,, respectively. The S'/Z, is
obtained by dividing the circle S! (with the identification
y ~y + 27R) by the Z, transformation y — —y so that the
point y is identified with —y. Here, R is the radius of S'.
Then the S'/Z, is regarded as an interval with length 7R.
Both end points y = 0 and 7R are fixed points under the Z,
transformation. For the operations:

250(10) GUTs on M* X T2/Z, [17] and M* X S'/Z, [18] and
SO(12) GUT on M* X §'/Z, [19] have been constructed and
their phenomenological implications have been studied.
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So- Yy =W s1:y—2m7R —y, t:y—y+27R,
ey
the following relations hold:
ss=si=1  1=s5, 2)

where [ is the identity operation. The operation s; is the
reflection at the end point y = 7R and the S'/Z, can be
defined using s, and s;.

Although the point y is identified with the points —y and
2mR —y on §'/Z,, a field does not necessarily take an
identical value at these points. We require that the
Lagrangian density should be single valued. Then the
following BCs of the field d(x, y) are allowed:

(I)()C, _)’) = Tq)[S()](I)(X, )’);
O(x, 2R — y) = Tols]D(x, y),
O(x,y + 27R) = Tplr]P(x, y), (3)

where Tglsol, Tols,], and Tg[t] represent appropriate
representation matrices for s, s1, and ¢ operations, respec-
tively. The T[*] belong to the group elements of trans-
formations which keep the action integral invariant and
satisfy the counterparts of (2):

TolsolF = Tolsi > =1, Tolt] = TolsolTolsi], 4

where [ stands for the unit matrix. For the eigenstates of
Tolso] and Te[s;], the eigenvalues are interpreted as the
Z, parity for the fifth coordinate flip and take +1 or —1 by
definition. Then the eigenvalues of T[7] also take +1 or
—1. As the assignment of Z, parity determines BCs of each
multiplet on S'/Z,, we use “Z, parity” as a parallel
expression of “BCs on S'/Z,” in the remainder of the
paper.

Let ¢PoPiW(x y) be a component in a multiplet
®(x, y) and have definite eigenvalues (P, P;; U) for s,
sy, and t operations. The Fourier expansion of
dTPoPrW(x, y) is given by

ot _ 1 2«
T (x, y) = \/T—RQ%(X) + \’ﬁ; ¢, (x) COS%,
(5)

2 o0
¢ (xy) = \/ﬂ—_RZI b, (%) sin%y, (©6)

0 1
P (x,y) = ‘/WZR Zl () cos” Rz)y , (7)

00 _1
T (x,y) = \/%_an; ¢, (x) Sin(nTz)y, (8)

where * indicates the eigenvalues *1.
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In the above expansions (5)—(8), the coefficients ¢(x)
and ¢,(x) (n=1,2,...) are four-dimensional fields,
which are called zero mode and Kaluza-Klein (KK) modes,
respectively. The KK modes ¢, (x) acquire the mass n/R
for (Py, Py;U) = (x1,=1;+1), and (n—4)/R for
(Po, Py;U) = (=1, ¥1;—1) upon compactification.
Unless all components of the nonsinglet field have a com-
mon Z, parity, a symmetry reduction occurs upon compac-
tification because ¢((x) are absent in fields with an odd
parity. This kind of symmetry breaking is called ‘““orbifold
breaking” [21].

Our four-dimensional world is assumed to be a
Minkowski space at one of the fixed points, on the basis
of the “brane world scenario.” There exist two kinds of
four-dimensional fields in our low-energy theory. One is
the brane field which lives only at the boundary, and the
other is the zero mode stemming from the bulk field. The
massive modes ¢,(x) do not appear in our low-energy
world because they have heavy masses of O(1/R), with
the same magnitude as the unification scale. Chiral anoma-
lies may arise at the boundaries with the advent of chiral
fermions. Those anomalies must be canceled in the four-
dimensional effective theory by the contribution of brane
chiral fermions and/or counterterms such as the Chern-
Simons term [22,23].

B. Orbifold symmetry breaking of SO(2N)

The SO(2N) is the orthogonal group whose determinant
is 1 and number of elements are N(2N — 1). The repre-
sentation matrices of SO(2N) are expressed as e!?"T",
where 0¢ is a real parameter and 7 are elements of the
Lie algebra so(2N). The generators 7% (a =
l,...,N(2N — 1)) are pure imaginary antisymmetric ma-
trices, i.e., (T%)" = —T% and (T%)* = —T*“. The genera-
tors for vector representation 2N are written by the direct
product of the 2 X 2 matrix and the N X N matrix:

o) ® SN’ (W — 1); o ®AN’ (W)’
g ® IN’ (1)’ g ® ANJ (1\](1\72_1))5
38 Ay, (LN; 1)), ©)

where o; (i = 1, 2, 3) are Pauli matrices, o is the 2 X 2
unit matrix, Sy, Ay, and Iy stand for N X N symmetric
matrices (whose components are real), N X N antisymmet-
ric matrices (whose components are pure imaginary), and
the N X N unit matrix and the numbers in the parentheses
represent the numbers of elements. The elements of sub-
algebra su(N) are o, ® Sy and o, ® Ay.

As a warm-up, we consider the breakdown of SO(2N)
by the Z, projection with the following type of 2N X 2N
matrix:
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P=oy®l,, o 0,01l,, (10)
where 1, , is defined by
Im,nEdiag(j—l,...,+1},k—1,...,—11). a1
M n(=N—m)

HP=0y®1,,
The generators for unbroken symmetry commute with
P,ie., [P, T%] = 0, and they are given by

0-2®Sm; 0-0®Am; 0'2®Im; (2] ®Am;
g3 ®Am, 0'2®Sn; 0'0®An,
O'z@[n; (T]@An; g3 ®An, (12)

where S,, (S,), A,, (A,), and I,, (1)) stand for m X m (n X
n) symmetric submatrices, m X m (n X n) antisymmetric
submatrices, and the m X m (n X n) unit submatrix. Hence
the unbroken symmetry is SO(2m) X SO(2n).
QP=0,01,,
The generators which commute with P are given by

g,®8,,; agy® A, g, ®1,; g, ®8,;

U()@An; 0-2®In; g ®Am,n; g3 ®Am,n:

13)

where A,,,, are antisymmetric matrices composed by off-
diagonal m X n and n X m submatrices and commute with
I, ,. Hence the unbroken symmetry is SU(N) X U(1).
We study the combination of Z, projections with o ®
I, and 0, ® [, ,. The generators which simultaneously
commute with oy ® [, , and o, ® [, , are given by

O'2®Sm; 0'0®Am, O'2®Im;

(14)

0-2®Sn; O'0®An; O'2®In.

The unbroken symmetry is SU(m) X SU(n) X U(1)?. The
same intersections can be obtained with the combination of
09®1,,and o, ® Iy or thatof o, ® [,,,,, and o, ® I.
We study the BCs in SO(2N) gauge theory on M* X
§'/Z,. The BCs on S'/Z, are specified by the 2N X 2N
matrices (P, Py, U), where P = P2 = [ and U = P,P,.
For (Py, Py, U), we use the following type of matrices:

P(()) = 0, ® i or P(2) =0, ® i/’ (15)

where I and I’ are N X N diagonal matrices whose diago-
nal components take +1 or —1. In this case, the relations
PyP, = PP, = U and U? =1 hold and the symmetry
breaking patterns are classified into the following two
types.

(Type I) All matrices belong to the P type. By the
arrangement of the rows and columns, (Py, Py, U) are
written by

(PO’PI’ U)=(0'0®I~1,0'0®i2, 0'0®i3), (16)
where I}, I, and I5(= I,I,) are defined by
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N
I,=diag(+1,...,+1,+1,..,+1,—1,...,—1,—1,...,—1),
L =diag(+1,...,+1,—1,..,—1,+1,...,+1,—1,...,—1),
Iy=diag(+1,...,+1,—1,..,—1,—1,...,—1, +1,...,+1),

—_— ) —
I q r s(=N=p—q—r)
(17)

where p, g, r,s =0,and N = p + g + r + s. We denote
the above BC (16) as [p, ¢;r, s]'. The symmetry of
[p, g;r, s]' becomes
SO(2N) — SO(2p) X SO(2g) X SO2r) X SO(2s),
(18)
where SO(0) means nothing.
(Type II) Two of Py, P,, and U belong to the P type

and the remaining one is a P) type, and they are classified
into the three subtypes:

(Po, P, U) = (0g®I},0,® 1, 0,®13) (typeIla), (19)
:(0'2®i1,0'0®i2,0'2®i3) (type IIb), (20)

=(,®l, 0,81, 00®1;) (type Ilc), (21)

where I,, I,, and I; are defined by (17). We denote the
above BCs (19)—(21) as [p, ¢;r, sI", [p, ¢;r, s]™, and
[p,q;r, s,  respectively. ~The symmetries of
(p, q;r, s1", [p, g; r, s]™, and [p, g; r, s]" become

SOQN) — SU(p + q) X SU(r + 5) X U(1)>7*

22
(type IIa), 2
SO(2N) — SU(p + r) X SU(qg + s) X U(1)>* -
(type IIb), )

SO(2N) — SU(p + s) X SU(q + r) X U(1)>7F
(24)

(type IIc),

where k is a sum of the number of SU(0) and SU(1), SU(0)
means nothing, and SU(1) unconventionally stands for
U(1). Because type Ila, type IIb, and type Ilc are inter-
changed among them by the interchange of P, P;, and U
and the same results for the numbers of each species are
obtained, we use type Ila as the representative of type II. If
two BCs are transformed into each other by a global
SO(2N) transformation and/or a gauge transformation,
they are equivalent. The [p, g; r, s]"® is transformed into
[p+£€,q— €, r+ €, s — €,]"™ using the global SO(2N)
symmetry which changes o, into — o, partially. Here, €,
and ¢, are arbitrary integers which satisfy p + €, ¢ — €4,
r+ €5, and s — €, = 0. Hence we use [m, 0, n, 0]™ (N =
m + n) in place of [p, g;r, s]"™ with m = p + g and n =
r + s. In Appendix A, we discuss the gauge invariance of

075011-3



YOSHIHARU KAWAMURA AND TAKASHI MIURA

BCs and the equivalence relations for the sake of
completeness.

Strictly speaking, we must find the minimum of the
effective potential for the Wilson line phases in order to
know physical gauge symmetry [24]. It requires a model-
dependent analysis because the effective potential depends
on the particle contents and their BCs. In the following
discussion, we suppose that the BC belongs to the same
equivalence class of (P, PY™, U%™) defined by Eq. (A6).

C. Z, parity assignment
We study the Z, parity assignment for gauge fields and
matter fermions for two types.
(Type I) The BCs of gauge fields, Ay(x,y) =
A§(x, y)T®, are given by
S0t Au(x, —y) = PoA,(x, y) Py,
Ay(x’ _)’) = _POAy(x’ y)P_],
512 A, (x, 2R — y) = P1A,(x, y)P{ !, (25)
Ay(x, 2R — y) = —P1A,(x, y) Py},
t: Ay(x,y + 27R) = UAy(x, y)U ™!,
where M =0,...,3,5. Using the relation tr(T*TF) =
5%B /2, the BCs for four-dimensional components of gauge
bosons, A M(x, y) = A;‘,{(x, y)T®, are rewritten as
A% (x, —y) = 2t(T*P TP Py )AL (x, y),
A% (x, 2R — y) = 2tr(T*P, TPy )AL (x, y), (26)
A%(x,y + 27R) = 2t(T*UTPU )AL (x, ).
Under the BC [p, ¢, r, s]', A% is decomposed into a sum of
multiplets of the subgroup SO(Q2N)— SO(2p) X
SOQ2q) X SO2r) X SOQ2s) (N=p+qg+r+s)as
NeN-1)=(p2p—-1),L1L1)"""
+(1,q2q—1),1,1)" "
+(1,LrQ2r—1), )"+
+(1,1,1,s(2s — 1)) " +*
+(2p,2q,1,1)" " +(2p,1,2r, 1)+~
+(2p,1,1,2s)" " +(1,2q,2r, 1) 7
+(1,2q,1,2s)" " +(1,1,2r,28) 77, (27)
where Z, parities are obtained using Eq. (26), and p(2p —
1) and 2p represent the components of Af; with adjoint and
vector representation of SO(2p), respectively. The index +
or — stands for Z, parity +1 or —1. The Af have the
opposite Z, parities P and P, to those of Af.

We require the Z, parity invariance for the interaction
between the gauge fields and a matter fermion :

PHYSICAL REVIEW D 81, 075011 (2010)
Po(yMALT ) = Pi(pyMAGT ) = +1.  (28)

The invariance under the shift y— y + 27R, i.e.,
U(pyMAG T ) = +1, is automatically satisfied from
T() ?1 U = +1

There are two inequivalent spinor representations 2/~
and 20)"1 in SO2N). For N=4€+ 1 and 4¢ +3 (£ €
{N, 0}), 28=1 are complex representations and they are

conjugate to each other, i.e., 27! =2)"1 and 2} =
2071 For N =4¢ (¢ € N), 2) 7! (a = 1, 2) are real rep-
resentations and self-conjugate, i.e., 2V ! =2V~1 For

4¢ +2 (£ €{N,0}), 2V~ are pseudoreal representations
and self-conjugate. If the matter fermion forms the spinor
representations 22! or the vector representation 2N, the
following relations hold:

P2V X N2N — 1) x 281
= P2V "X NN -1) X2V ) =+1,  (29)

P,(2N X N(2N — 1) X 2N)
= P(2N X N2N — 1) X 2N) = +1. (30)
By the Z, projection with Py, SO(2N) is broken down to

SOQ2(p + q)) X SOQ2(r + 5)) and 2! and 2N are de-
composed into

211\/71 _ (2111‘*"/—1, 2{+s71) + (25‘*’4‘1’ 2£+s71)y
212\/71 _ (2111‘*'(/—1, 2£+s71) + (25‘“1—1’ 21+s71)’
2N=(2(p +q), 1) + (1, 2(r +s)). (31)

Using (27), (29), and (30), we find that each multiplet has a
definite P, as

Po(@F 77 270571) =+,
Po((25707, 25757 1) = —nf,
Po(@)707, 257571) = +), (32)
Po((257 77, 270571)) = —f,
Po((2(p + q), 1)) = +7),
Po((1,2(r +5)) = —n),

where 19, 19, and 7Y are intrinsic Z, parities. In the same
way, SO(2N) is broken down to SOQ(p + r)) X
SO(2(g + s)) by P, and 2! and 2N are decomposed into

2[1\/_1 — (2f+r*1)2§]+3‘*1) + (2§+r71,zg+S7l)’
212\/71 _ (2117+r—1’ 2(21+s—1) + (2§+r—1’ 211]+s—1)’ (33)
2N = (2(p + 1), 1) + (1, 2(q + s)).

Each multiplet has a definite P, as
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r—1 s—1
Py 2077 = 49,
—1 -1
P51 207 = —q),

P20 ) = —ql,
Pi(2(p + 1), 1)) = +7),

PHYSICAL REVIEW D 81, 075011 (2010)
r—1 s—1
P2y 27 = ),

34
P((1,2(q +5)) = =, oY

where 1}, 11, and 7} are intrinsic Z, parities. The same argument holds for U.
Combining the Z, projections with Py and P;, SO(2N) is broken down to SO(2p) X SO(2g) X SO(2r) X SO(2s), and

2N=1 and 2N are decomposed into

V=020 o sy 2 20 ooy 2 2 o sy + (20 2 2 Y

+ @02 2oy + @ 2 ooy @0 20 ooy + (20 20 2 oy,
2t =020 ooy 2 20 o sy 2 2 2 oy + (202 2 2

+ @02 2 sy w2 ooy @ 20 o sy + (20 20 2 2,

2N =(2p,1,1,1) +(1,2q,1,1) + (1,1,2r, 1) + (1, 1, 1, 2s).

The Z, parities of each multiplet are listed in Table I. The
eigenvalues of ‘U are determined from P, P, U = +1.

In the case with s = 0, 2Y~! and 2N are decomposed

into

V-l =p 202y 20 24 2
+ @20 2y (287 297 2,
2N = (2071 207 ety 4 (2071 247 20
+ @y 20y w2y 2g 2,
2N =(2p,1,1) + (1,2q,1) + (1,1, 2r), (36)

under SO(2p) X SO(2qg) X SO(2r). In the case with r =
s = 0,2~ and 2N are decomposed into

TABLE 1. Z, parities of matter fermions in type L.
Representation P P, u
27 @2ty ) 4 i

@y L2l ) -y i
(25728727020 ) -
@127 2727 ) ) i)

@y L297 2025y Sy i
@252 2 - - i)

@ N2 202 =) —m i
@222 - 4~

270 @) Ay my
@ L2022y i)
(25728727128 g -y —mm)
71297027207 )y i)

@~L2 22—l ) i)
27,25 ,27L 27 —mb —my dimy
@202 20—y )
@272 —m) 4my —mdm)

2N (2p.1,1,1) vy vy
(1,2q,1,1) Y Sy

(1,1,2r,1) —my oty

(1,1,1,2s) I

(35)

[
2Vt =@ 20+ 20724
1 I 71 2 42 ’
2= 2+ @2, 37)
2N = (2p. 1) + (1, 2q),

under SO(2p) X SO(2q). The Z, parities of each multiplet
are understood from those for the corresponding represen-
tations in Table I.

(Type II) Under the BC [m, 0, n, 0", A% is decomposed
into a sum of multiplets of the subgroup SO(2N) —
SU(m) X SU@) X U(1)>*™* (N = m + n) as

NeN-1)=m2-1,1) ="+ 1Q,n2—1)" 5"
+1 DT+, DT+ (mn)” T
+(m,n)" " +(m(m—1)/2,1)" 7
+(1,nn—-1)/2) """ +m@m—1)/2,1)" "
+(1,nn—-1)/2)"" +(@m,n) 7"
+(m,n) 7, (38)

where Z, parities are obtained using Eq. (26), U(1) charges
are omitted, and m? — 1(n? — 1), m(n), and m(m —
1)/2(n(n — 1)/2) represent the components of Af with
adjoint, vector, and rank 2 antisymmetric representation
of SU(m) [SU(n)], respectively. The representations with
the overline stand for the complex conjugate ones.

By the Z, projection with P;, SO(2N) is broken down to
its subgroup including SU(N) whose adjoint representation
N? — 1 is given by

N2—1=(m?—-11D""* + (Ln?— 1)+
+ (L)Y + (ma) " + (m,n)

(39)

In the same way, by U, SO(2N) is broken down to its
subgroup including SU(N) whose adjoint representation
N? — 1 is given by
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N2-1=m?-1,1)""" +(1,n2—-1)"""
+ (LD + (mn)” Y + (m,n) T

(40)

Under the exchange of P and U, the adjoint representa-
tions (39) and (40) are exchanged. It corresponds to the
relation between the Georgi-Glashow type SU(5) [25] and
the flipped type SU(5) [26] in SO(10) GUTs [27,28].

We study the Z, parity assignment for matter fermions.
By the Z, projection with Py, SO(2N) is broken down to
SO(2m) X SO(2n), and 2! and 2N are decomposed into

27 =2+ @7 237,
207t =(2m 20l - 2p 2,
= (2m, 1) + (1, 2n). (41)

Using (27), (29), and (30), we find that each multiplet has a
definite P as

P27 =+,
P 27 =+l
Py((2m, 1)) = + 71,

Po((2571,2571) = =),
Po((257,2171) = — b,

Po((1,2n)) = —7).  (42)
|
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In the same way, SO(2N) is broken down to SU(N) X U(1)
by Py, and 2! and 2N are decomposed into

[v/2] [(N=D)/2]
2t = S [N2k] 20t = > [N2k+1]
k=0 k=0

2N=N+N, (43)

where [N/2] and [(N — 1)/2] represent Gauss’s symbol,
and [N, 2k](= yC,,) and [N, 2k + 1](= yC,,,) are the
rank 2k + 1 totally antisymmetric representations of the
SU(N) gauge group and the U(1) charge is omitted. Each
multiplet has a definite P, as

Pi(IN, 2k]) = (=DFny,
Pi([N, 2k + 1)) = (= 1) ns,
Pi(N) = +m5,
Pi(N) = —n.. (44)
The same argument holds for U.
Combining the Z, projections with Py and Py, SO(2N)

is broken down to SU(m) X SU(n) X U(1)>7%, and 2V~!
and 2N are decomposed into

[N/2] 2k [N/2] [N/2]
Z Z(mcg,nc% )= Z Y (wCpnCo) + Z > (wCp nCor_y).
=0 {¢=even =0 ¢=o0dd
. [(N=1)/2]2k+1 [(N=1)/2] [(N=1)/2] (45)
2 = Z mCo nCorgs1) = Z (nConCot—gs1) + Z nConCor—g11):
k=0 =0 k=0  {=even k=0  €=odd

=(m,1) + (1, n)+ (m, 1)+ (1,n).

The Z, parities of each multiplet are listed in Table II. The
Z, parity assignments for types IIb and Ilc are obtained by
the exchange of P,, P,, and U, i.e., (P, P;, U =
(Py, P, W™ = (U, Py, P))™.

A fermion with spin 1/2 in five dimensions is regarded
as a Dirac fermion or a pair of Weyl fermions with opposite
chiralities in four dimensions. The representations of each
Weyl fermion are decomposed in the same way, but left-
handed Weyl fermions and right-handed ones should have
opposite Z, parities to each other, i.e., (Pog, Piz; Ug) =

TABLE II. Z, parities of matter fermions in type Ila.
Representation P, P, u
211\]71 (mC(’ nC2k7()€=even + 77(1) (— l)kTI} (- 1)"771 771

(mce: nCZk_e)fzodd _77(1) (—1)"77' —(= 1)k771 771
212\!71 (mC{” nczk—€+1)€:even +778 (_1)k77% (_1)k77877%
(nzc€’ nczkf(ur])(:odd _77(2) (_])k"’lé _(_1)1(77277%
2N (m, 1) +ny A+ +nymy
(1,m) -ty -y
(ih, 1) + oy -y
(1, n) - - +10my

f
(=Por, —P,;—U,), from the requirement that the ki-
netic term is invariant under the Z, parity transformation.
Here, (Pog, Pig; Ug) and (Py;, P,.; U,) are Z, parities
for right-handed Weyl fermions and left-handed ones,
respectively. Zero modes for not only left-handed Weyl
fermions but also right-handed ones, having even Z, par-
ities, compose chiral fermions in the SM.

In supersymmetry (SUSY) models, the hypermultiplet is
the fundamental quantity concerning bulk matter fields in
five dimensions. The hypermultiplet is equivalent to a pair
of chiral multiplets with opposite gauge quantum numbers
such as the representation R and the conjugate one R in
four dimensions. The chiral multiplet with R contains a
left-handed Weyl fermion with R, . This Weyl fermion is
regarded as a right-handed one with Ry by the use of the
charge conjugation. Hence our analysis works on SUSY
models as well as non-SUSY ones.

II1. UNIFICATION OF QUARKS AND LEPTONS
BASED ON SO(2N)

Now let us investigate unification of quarks and leptons
in SO(2N) gauge theory on S'/Z,. We count the numbers
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of fermion species coming from a single multiplet 2! ! or
2071 based on the survival hypothesis for the following
breaking patterns:

SO(2N) — SO(10) X H,, (46)

SO(2N) — SO(6) X SO(4) X H,
~ SU4)¢ X SUQ2), X SUQ)g X Hyy  (47)

SO(2N) — SU(5) X SU(N — 5) X U(1)?, (48)

where H; and H, are some product groups such as
SOQ2r;) X -+ X S0(2r,).

A. SO(2N) D S0(10)

First, we study the symmetry breaking pattern
SO(2N) — SO(10) X H,. In the case with the breaking
pattern SO(2N) — SO(10) X SO(2(N — 5)), Weyl fermi-
ons with 28! and 2}, ! are decomposed into

2071 =(16,2)7%), + (16,2)79),, 49)
2]1VR_] = (16: 211\]_6)1? + (E) 212v_6)R7

and the Z, parities of each multiplet are given in Table III.
If we take 7} = 7 = +1, no mirror particles appear and
J

PHYSICAL REVIEW D 81, 075011 (2010)

TABLE Ill. Z, parity assignment for 27! and 2);! in
SO(10) X SO2(N —5)).

Representation Py P, u

2y (16,2Y76), +n) +j ) n;
(16,2)7°), +n) - —n\n

2% (16,2)), -7 - +nin;
(16,2 )x —n +j — i

(16,2 ~6), survives. Then the number of 16, is regarded
as that of families. Hence we have 2V~¢ families for the
SO(10) multiplets. The same argument holds for the case
with 2571

We find that no massless fermions survive in the case in
which H, = SOQ2r;) X SOQ2r,) X SOQ2r;) or H, =
SO(2r)) X SO(2r,) after the survival hypothesis is
imposed.

B. SO(2N) D SU@d)¢ X SU(2), X SU(2)g

Next, we study the symmetry breaking pattern
SO(2N) — Gpg X H, where Gpg is the Pati-Salam gauge
group SU4)c X SU(2);, X SU(2)x [29].

In the case with SO(2N) — Gpg X SO(2q) X SO(2s),
Weyl fermions with 2! and 2)5"! are decomposed into

2V =(4,2,1,2071 207, +(4,2,1,207 207, +(34,1,2,207 207, +(8,1,2,207 0 257, +(4,1,2,207 1 257,
+ (41,2207 20, + (4,2,1,207 2070, + (4,2,1,207 20 Y,

2 =212 20 e+ (42120 L2 e + (3 1,2,2) 27 e + (41,229,257 e +(4, 1,221,257,
+ (41,2207 2 e+ (4,2,1,277 27 ) + (4,2,1,207 1,207, (50)

and the Z, parities of each multiplet are given in Table V.
If we take nl=nl=+1, 421272571,
4,1,2,2571 257, 4,1,2,2571 257, and
(4,2,1,2771,257 1), have zero modes. Hence we have
2N=6 families for the Gps multiplets. The same argument
holds for the case with 271

In the case with SO(2N) — Gpg X SO2(N — 5)), Weyl
fermions with 20,1 and 2);! are decomposed into

20T =1(4,2,1,2V7%, + (4,1,2,2)°9),
+(4,1,2,2)7%, +(4,2,1,2)7°9,,

2V = (4,2,1,2) 70, +(4,1,2,2) 7%,
+4,1,2, 212V‘6)R + (Zl, 21, 212V‘6)R,

G1Y)

and the Z, parities of each multiplet are given in Table V. If
we take npl=n)=+1, 4212V %, and
(4,1,2,2)7%), have zero modes. Then the number of
such pairs is regarded as that of families. Hence we have
2N=6 families for the Gpg multiplets. The same argument
holds for the case with 2)'~!.

TABLE IV. Z, parity assignment for 2,71 and 2).! in Gpg X
SO(2q) X SO(2s).

Representation P, P, u

2?’[1 4,21, 2{71,2§7I)L +7]? +77{ +7]?7]}
21270257, +90  —pl —ninl
@r2277h207h,  +ny —mp o —ainy
@4,1,227°5,257h), +n) o+ +n)n|
(4) 1) 2’ 2571’2571)L _77(1) +77{ _17(1)171
41,2227, —m  —mp 4
@212, —m)  —mp dain
@21275287h, -9} +n) —nn|

2 @212 e nd al el
421,227 —m}  +mp i
@12277277)  —m)  Hmp i
@1,227525 ) -} —nl +nn|
(4,1,2,2771, 257 ), +70  —n! —nin|
(4, 1,2,25_1,2‘{_1)R +7](1) +1;} +7](1)7]}
(4,2, I,ZT_I,ZE_I)R +77(1) +7]} +77(1)77}
(‘_'7 2’ 1’ 2571’2§71)R +7](|) 77]{ 717(1)17{
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TABLE V. Z, parity assignment for 27! and 2)5 ! in Gpg X
SO(2(N — 5)).

PHYSICAL REVIEW D 81, 075011 (2010)

TABLE VI. Z, parity assignment for 23! and 2M;! in
SU(5) X SUIN = 5) X U(1)>.

Representation Py P, u Representation Po P, u
2[1\,[1 (‘_"» 2,1, 2'11\/76)L +77(1) +77% +77(1)77} 1, (SC():N_5C2k)L +77(1) (—1)"77} +(_l)k77(1)77}
(4,1,2,2Y7%), +1 - —nim Iy Con—sCade  —m)  (=Dnp —(=Dfninj
41,2207, - —n +niny 5. (Chy—sCy)e —mY  (=Dfnp —(=Dfnin
(4,2,1,25°9), - + —mn Sk GCLy—sCucdr 1) (=Dfmp H(=Dfning
2! (4,2,1,2/7%) -7 - iy 100 (Coy sCyp 1) (=Dfmp +(=DEnin
(4,1,2,20 ) -} + —minp o 10k (Chy sCua)r —m) (=Dfmp = (=Dfnin
(41,2257, +n) +m +niny 10, Gy y_sCyy) —mY  (=Dfnp —(=Dfnin
(4,212 )% ) —7i —nini 10g  (Cyn sCyuzde  +m)  (=Dfnp +(=Dnin
5L (5C4» N_5C2k74)L +77(1) (—1)1‘77} +(_l)k77(1)77%
§R (5C4’ N75C2k74)R 77](1) (71)k77{ 7(71)1{77(])77}
C. SO(2N) D SU(5) L (sCs n—sCoy-s). —m)  (=Dfnp  —(=Dfnin
1 (5Css n—5Coi_s)r +77(1) (_1)k77} +(_1)k77(1)77%

Finally, we study the symmetry breaking pattern
SO(2N) — SU(5) X SUN —5) X U(1)%. In this case,
Weyl fermions with 27! and 2};"! are decomposed into

1 [N/2]
2 = Z Z (Cp n—sCo—o)r
k=0 {=even
[N/2]
+ Z Z (SC{” N75C2k—€)L’
k=0 ¢=odd
52
. [N/2] (52)
2 = Z (5C€’N—5C2k7€)R
k=0 {=even
[Nv/2]
+ Z Z (5C€, N—5C2k—€)R’
k=0 ¢=odd

and the Z, parities of each multiplet are given in Table VI.

Using the equivalence of (5;)¢ and (10g)¢ with 5, and
10, respectively, the numbers of species 1, 10;, and 5, are
given by

ny = Z n—sCou T Z N—sCai—s (53)
k=even k=odd

Ny, = z N—5Con T Z N—s5Co—3 (54)
k=even k=odd

ns, = Z N-5Cous T Z N—5Co—1> (55)
k=even k=odd

in the case with Y = n! = +1 and

ny = Z N-5Cor T Z N-5Car-s (56)
k=odd k=even

o, = Z N—5Coxn T Z N—5Cox—3 (57)
k=odd k=even

ns, = Z N—5Cox—a T+ Z N—5Cok—1; (58)
k=odd k=even

in the case with n{ = —nl = +1. Here n; is the total
number of SU(5) singlets 1. They are regarded as the so-

called right-handed neutrinos which can obtain heavy
Majorana masses among themselves as well as the Dirac
masses with left-handed neutrinos. Some of them can be
involved in a seesaw mechanism [30].

In the same way, Weyl fermions with 25, and 207! are
decomposed into

v [(N=1)/2]
25 = (5C€’N—5C2k—€+1)L
k=0  {=even
[(N=1)/2]
+ Z Z(5C€’N75C2k—€+l)b
k=0 ¢=odd (59)
. [(N=1)/2]
2k = Z Co n—5Co—gs1)R
k=0  {=even
[(N=1)/2]
+ Z Z(SC€+1’N—5C2/¢—€)R’
k=0 ¢=odd

and the Z, parities of each multiplet are given in Table VII.
The numbers of species 1, 10;, and 5; are given by

n = Z Nv-s5Cou1 T Z N—5Cor—a (60)
k=even k=odd

i, = Z N—5Co—1 T Z N—5Cox—2 (61)
k=even k=odd

ns, = Z N-sCu3 T Z v—sCop (62)
k=even k=odd

in the case with nY = n} = +1 and

ny = Z N—5Corr1 T Z N—5Cor—a (63)
k=odd k=even

no, = X n-sCou1t D nosCoun  (64)
k=odd k=even
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TABLE VII.  Z, parity assignment for 2! and 20%"! in SU(5) X SU(N — 5) X U(1)*.

Representation P, u
1, (sco, N75C2k+1)L +n (_l)k”)é +(_1)k77(2)77é
1z (5C0y N_5C2k+1)R _773 (_1)k77£ _(_1)k77877é
5, (5C|’ N—5C2]<)L _778 (_1)1(77% _(_1)1(77877%
5 (5C1: Nfsczk)R +n (_1)1(77% +(_1)k77(2)77£
10, (5Cy n—sCou—1)L +n (—=1)*n} +(—1)*nInl
10, (Cy n—5Cor—r -, (=1)fn} —(=1)fnin}
10, (5C3 y-sCoa)L —m (—=1n} —(=D¥nin]
loR (5C3, N75C2k72)R +n (_1)k77é +(_1)k77(2)77é
5. (5C4 n—5Cou3)L +n (—=1)*n} +(—1)*n9n}
§R (5Cy N—5Co—3)r _77(2) (_1)1(77% _(_1)1(7787&
}L (5C5’ N75C2k74)L _778 (_1)1(775 _(_1)1(77(2)77;
1g (Cs n—5Cox—a)r +7 (=D'nj (=D nimy
TABLE VIII. The numbers of 1, 10;, and 5; for SO(14).

m=m=+1  #=-n=+1 mi=m=+1 mj=-m=+I1
n 3 1 3 1
N, 1 3 1 3
ns, 3 1 3 1

TABLE IX. The numbers of 1, 10,, and 5, for SO(16).

n=ni=+1 npl=-mi=+1 nmi=mi=+1  nf=-n=+I
n 4 4 6 2
nloL 4 4 2 6
ns 4 4 6 2

L
TABLE X. The numbers of 1, 10,, and 5, for SO(18).

m=n=+1  ni=-n=+1 my=m=+1 my=-m=+1
n 6 10 10 6
o, 10 6 6 10
ns 6 10 10 6

L

ns, = > nsCust D nsCu (69
k=odd k=even

in the case with nY = —n} = +1. )

As examples, the numbers of species 1, 10;, and 5; for
SO(14), SO(16), and SO(18) are listed in Tables VIII, IX,
and X.

IV. CONCLUSIONS AND DISCUSSIONS

We have studied the possibility of family unification on
the basis of SO(2N) gauge theory on the five-dimensional
space-time, M* X S'/Z,. We have found that several
SO(10), SU4) X SUQ2);. X SU(2)g, or SU(5) multiplets
come from a single bulk multiplet of SO(2N) after the
orbifold breaking and obtained the numbers of species. As
a result, we have found that there is no single bulk spinor

multiplet of SO(2N) on M* X S'/Z,, which leads to three
families of SO(10), SU(4) X SU((2); X SU(2)g, or SU(5)
multiplets only as zero modes using the orbifold breaking
with the Z, projection such as P = o ® I, , and/or o, ®
I, ,. Other multiplets including brane fields are necessary
to compose complete three families of quarks and leptons
which we observe. Specifically, four families of SO(10) or
SU(4) X SU(2); X SU(2)z multiplets are obtained as zero
modes from a single spinor bulk fermion of SO(16)
through particular breaking patterns with suitable Z, parity
assignments. In this case, a mirror brane family would be
necessary to couple to members of the fourth family and to
give them a heavy mass of order O(100) GeV or bigger
than that because they have not been discovered. The
magnitude of masses for members of the fourth family is
not predicted in our framework.
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Most of our results are unique to models on M* X
§'/Z,, but some of them can be generalized to models
on other types of space-time. For example, we have the no-
go theorem such that there is no single bulk spinor multi-
plet of SO(2N) on a higher-dimensional space-time, which
leads to three families of SO(10) or SU(4) X SU(2); X
SU(2)z multiplets only as zero modes through the orbifold
breaking mechanism using the projection operators such as
0y®1,, and/or o, ® [, ,. This comes from the group
theoretical feature that even numbers of 16 of SO(10) or
(4,2,1) and (4, 1, 2) of SU(4) X SU(2); X SU(2)y always
appear after the breakdown of SO(2N) with the above
projection operators. Our results including the above no-
go theorem can be a starting point for the construction of a
more realistic model.

There are several open questions, which are left for
future work.

The unwanted matter degrees of freedom can be suc-
cessfully made massive thanks to the orbifolding.
However, some extra gauge fields remain massless even
after the symmetry breaking due to the Hosotani mecha-
nism. In most cases, this kind of non-Abelian gauge sub-
group plays the role of family symmetry. These massless
degrees of freedom must be made massive by further
breaking of the family symmetry. Here, we point out that
brane fields can be key to the solutions. Most models have
chiral anomalies at the four-dimensional boundaries and
we have a choice to introduce appropriate brane fields to
cancel these anomalies. Further, scalar components of
some brane superfields can play a role of Higgs fields for
the breakdown of extra gauge symmetries including non-
Abelian gauge symmetries. As a result, extra massless
fields including the family gauge bosons can be massive.

In general, there appear D-term contributions to scalar
masses in supersymmetric models after the breakdown of
such extra gauge symmetries and the D-term contributions
lift the mass degeneracy. [31-33]. The mass degeneracy for
each squark and slepton species in the first two families is
favorable for suppressing flavor-changing neutral current
(FCNC) processes. The dangerous FCNC processes can be
avoided if the sfermion masses in the first two families are
rather large or the fermion and its superpartner mass ma-
trices are aligned. The requirement of degenerate masses
would yield a constraint on the D-term condensations and/
or SUSY breaking mechanism unless other mechanisms
work. If we consider the Scherk-Schwarz mechanism [34]
for N =1 SUSY breaking, the D-term condensations can
vanish for the gauge symmetries broken at the orbifold
breaking scale, because of a universal structure of the soft
SUSY breaking parameters. The D-term contributions
have been studied in the framework of SU(N) orbifold
GUTs [35].

Fermion mass hierarchy and generation mixings can
also occur through the Froggatt-Nielsen mechanism [36]
on the breakdown of extra gauge symmetries and the
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suppression of brane-localized Yukawa coupling constants
among brane weak Higgs doublets and bulk matters with
the volume suppression factor [37].

The orbifold GUT is more naturally realized in warped
space; see e.g. [38] for a review. The Hosotani mechanism
has been studied in warped space [39] and it has been
applied on the gauge-Higgs unification [40]. It would be
interesting to look for the orbifold family unification based
on warped space and/or other types of orbifolds.’

It has been shown that SO(1, D — 1) space-time sym-
metry can lead to family structure [43]. Hence it would be
interesting to study theories on a higher-dimensional
space-time with a view to the synergy of SO(2N) gauge
symmetry and SO(1, D — 1) space-time symmetry.

Furthermore, it would be interesting to study cosmologi-
cal implications of the class of models presented in this
paper, see e.g. [44] and references therein for useful ar-
ticles toward this direction.
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APPENDIX A: GAUGE INVARIANCE AND
EQUIVALENCE RELATIONS

We discuss the gauge invariance on S'/Z,. Given the
BCs (P, P;, U), there still remains residual gauge invari-
ance. Under the gauge transformation with Q(x, y), Ay
transforms as

AM—aAh==QAMQ’L—éQGMQ’R (A1)

where g is a gauge coupling and A}, satisfies, instead of
(25),

sot Ap(x, =) = PpAL (x, y)PG
Alx, —y) = —PhAL(x, )Py,

s10 AL (x, 2R — y) = P{A, (x, y) P,
Al(x, 2R — y) = —P{ A} (x, YPL

r: Ay y + 27R) = U'A}, (x, y)U'™".

(A2)

The P}, P}, and U’ are given by

3Equivalence classes of BCs in SU(N) gauge theory have been
studied based on six-dimensional space-time including T72/Z, in
Ref. [41] and other two-dimensional orbifolds in Ref. [42].
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Py = 0 =3P (3, ),
P\ = Q(x,27R — yP QO (x, y),
U =Q(xy+27R)UQ (x, ),

(A3)

where we assume that P(, P, and U’ are independent of y.
Theories with different BCs should be equivalent with
regard to physical content if they are connected by gauge
transformations. The key observation is that the physics
should not depend on the gauge chosen. The equivalence is
guaranteed in the Hosotani mechanism [24] and the two
sets of BCs are equivalent:
(Py, Py, U) ~ (P, P}, U"). (A4)
The equivalence relation (A4) defines equivalence classes
of the BCs.
The physical symmetry is understood from the analysis

including the Wilson line phases as follows. The Wilson
line phases are phases of WU given by

WU = Pexp(ig /CAy(x, y)dy) - U, (A5)

where P is path ordering along a noncontractible loop on
S'. The eigenvalues of WU are gauge invariant and become
physical degrees of freedom. The dynamical phases are
given by 6° = 2rRgA? related to the generators 7” which
anticommute with (P, P,), i.e., {T?, Py} = {T?, P,} = 0.
They correspond to the parts of A, with even Z, parities.
The physical vacuum is given by the configuration of 6”
which minimizes the effective potential. Suppose that the
effective potential is minimized at (A,) such that W =
exp(ig2mR(A,)) # I with (P, Py, U). Perform the gauge
transformation  with ) = exp[ig(y + a)(A,)], which
brings (A,) to (A}) = 0. Then the BCs change to

— (€2iga<A~">P0, eZ"g(“+’TR)<A}'>P1, eigZWR<A)~>U(: WU))
(A6)

Since (A{}) vanishes in the new gauge, the unbroken sym-
metry is spanned by the generators 7¢ which commute
with (Py"™", PY™), ie., [T% P™] = [T, PY™] = 0.

Let us derive the equivalence relations among BCs based
on types I and II. We consider SO(4) gauge theory. For the
gauge transformation with {)(y) given by

O (y) = explilac; ® 7y + boy ® 75)y/27R], (A7)

we find the equivalence relations:

PHYSICAL REVIEW D 81, 075011 (2010)
type I: (g ® 73, 09 ® 73) ~ (0o ® 73, expli(ac; ® T,
+bo;® 75)]|oy ® 73),
type Ila: (o ® 73, 0, ® 79) ~ (0 ® 73, expli(ao, ® 7,
+bo;® 75)]|o, ® Tp),
type IIb: (X0, ® 7, 0y ® T3) ~ (X0, ® T, explilac; ® 75
+bo;® 75)]|oy® 73),
type Ilc: (0, ® 79, 0, ® 7)) ~ (£ 0, ® 7o, expli(ac; ® 7,
+bo3® 75) |0, ® T),
(A8)

where a, b € Rand 7; (i = 1, 2, 3) are also Pauli matrices.

When va? + b> = mmod 27, the equivalence relations
become as

type I: (0 ® 73, 0 ® 73) ~ (0 ® T3, — 0T ® T3),
type Ila: (oo ® 73, 05 ® 7)) ~ (¢ ® T3, —0» ® T¢),
type IIb: (=0, ® 79, 0 ® 73) ~ (X0, ® T, —0H ® T3),
type Ilc: (X0, ® 79, 0 ® 7)) ~ (X0, ® T, —0, ® 7).
(A9)

Because (o, ® 79, —0 ® 73) equals (X0, ® 79, 0 ®
73), we obtain no relation concerning Eq. (A7) for
type IIb. Using (A9), the following relations in SO(2N)
gauge theory are derived:

(pgirslt~[p—1,g+1;r+1,s—1]' for p,s =1,
~[p+1L,qg—1L;r=1s+1]' forgr=1,
(A10)

(p.g;r, s ~[p—1,g+1;r—1,s+1]" forp,s=1,
~lp+lLg—Lir+1Ls—1]" forg r=1,

(A11)
(pg:r, s ~[p—2,q+2;r,s]" for p=2,
~[p+2q9—2;r, s forqg=2,
~[p,gir—2,5s +2J8 forr=2,
~[pgir+2,s—2% fors=2. (Al2)

For another gauge transformation with {)(y) given by
O(y) = explilac, ® 7) + boy ® 7,)y/27wR],  (A13)

we find the equivalence relations:
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type L: (¢ ® 73, 09 ® T3) ~ (0 ® T3, explilac, ® 7,
+ bay ® 1)]o ® 73),
type Ia: (o) ® 73, 0, ® 73) ~ (0 ® T3, expli(ac, ® 7
+ boy ® 15)]o, ® T3),
type IIb: (o, ® 73, 0y ® T3) ~ (0, ® 73, expli(aoc, ® 7
+boy® 15)]oy ® 73),
type Ilc: (op ® 73, 05 ® 73) ~ (0, ® T3, expli(ac, ® 7,
+ boy ® 15)]o,s ® T3).
(A14)

When va? + b> = mmod 27, the equivalence relations
become as

type I: (0'0®T3, 0'0@7'3)"‘(0'0@7’3, _0'0®’T3),
type Ia: (o) ® 73, 0, ® 73) ~ (o) ® T3, — 0T, ® T3),
type 1Ib: (0, ® 73, 0 ® 73) ~ (0, ® T3, — 0 ® T3),

type Ilc: (0, ® 73, 05, ® 73) ~ (02 ® T3, —0, ® T3).
(A15)

Using (A5), the following relations in SO(2N) gauge the-
ory are derived:

pgirsl'~[p—1,g+1;r+1,s—1]' for p,s =1,
~[p+1L,qg—1L;r=1Ls+1]' forgr=1,

(A16)

g s ~[p—1,q+ L;r+1,s = 1]" forp,s=1,
~p+Lg—Lir—1s+1]" forgr=1,

(A17)

p.g;r,sI®~[p—1g+ L;r+1,5s =11 forp,s=1,
~lp+1L,g—1L;r—=1s+1]" forgr=1,

(A18)

[pgir, s ~[p—1,g+ 1;r+1,s—1]" forp,s=1,
~[p+1L,qg—1Lir—1,s+1]% forgr=1.

(A19)
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APPENDIX B: S!/Z, ORBIFOLD BREAKING OF
SOQ2N +1)

We study the orbifold symmetry breaking in SO(2N +
1). Because SO(2N + 1) D SO(2N), the generators of
SO(2N + 1) are written as

( “so(2N)” (%) )

where so(2N) represents generators of SO(2N) and ( *)
are 2N X 1 matrix.

As an example, let us take the following representation
matrices:

P0:(0'0®IN 0)’

_ 0-O®Im,n 0
0 -1 P, ( )

0 n
(B2)
where 7 = *1. Then we obtain the breaking pattern:
SO@2N + 1) — SO(2m) X SO(2n), (B3)
and the Z, parities for gauge bosons A, are assigned as
N2N+1) = (m2m—1),D)*"" +(1,n(2n — 1))T5*
+(2m,2n)" " + 2m, 1)
+ (1,2n) =7, (B4)

There is one spinor representation 2¥ in SO(2N + 1),
which is decomposed into

2 =@y

+ (2rln—l’ Zg—l)zt;I + (25’1—1’ ZT_])ZI;i: (BS)
2% = (21"_1’21!—1)E7;* + (2;{1—1’ 23—1)[;+;+
+ P2 @ 2T, (B6)

where we take an appropriate intrinsic Z, parity assign-
ment. Using the above assignment, we find 2V~ families
with 7 = +1 and no family with n = —1 for SO(10)
multiplets 16; after the breaking SOQ2N + 1) —
SO(10) X SO2(N — 53)).
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