
A CATEGORY OF ASSOCIATION SCHEMES

AKIHIDE HANAKI

Abstract. We define a category of association schemes and investigate its basic properties.

We characterize monomorphisms and epimorphisms in our category. The category is not
balanced. The category has kernels, cokernels, and epimorphic images. The category is not

an exact category, but we consider exact sequences. Finally, we consider a full subcategory of

our category and show that it is equivalent to the category of finite groups.

1. Introduction

Association schemes are one of the central objects in algebraic combinatorics. They are
related to many mathematical subjects, for instance, to codes, to combinatorial designs, to
distance-regular graphs, finite (permutation) groups, coherent configurations, and to designed
experiments in statistics. However, so far, scheme theory has not yet been investigated from an
abstract categorical point of view. In this article, we shall define two categories of association
schemes. We shall denote these categories by AS and AS0, respectively. Similar to the category
of sets, our category AS does not have zero objects. Our category AS0 of association schemes
with base point is modeled on the category of nonempty sets with base point, and this category
has zero objects. Some of our results on AS0 are also valid for AS, but the arguments are more
involved. To keep this article as self-contained as possible, we shall occasionally recall definitions
from scheme theory which may be found in [4]. Our definition of morphisms inAS0 is the same as
in [4]. In §3, we characterize monomorphisms, epimorphisms, and bimorphisms of AS0. Among
other things we shall see that AS0 is not balanced in the sense that (in AS0) bimorphisms are
not necessarily isomorphisms. In §4.1, we shall see that AS0 has kernels and cokernels. We shall
prove that subschemes and quotient schemes are kernels and cokernels of morphisms, respectively.
In scheme theory, closed subsets and normal closed subsets generalize the group theoretic notions
of subgroups and normal subgroups, respectively. It is known that quotient schemes are defined
over any closed subset, not only over normal closed subsets. However, in our category AS0, each
closed subset defines a normal subobject. So it is natural that it defines a quotient object. Also,
in general, closed subsets may give rise to pairwise non-isomorphic subschemes. But, since the
objects in AS0 have base points, a closed subset determines a unique subscheme. In §4.2, we
show that AS0 has epimorphic images. In §4.3, we consider exact sequences in AS0, although
AS0 is not an exact category. Finally, in §5, we consider the category of finite groups as a full
subcategory of AS0.

2. Definitions of association schemes and their category

In this section, we will first give the definition of association schemes and state some facts
without proofs. The reader is referred to the books of Zieschang [4], [5] and Bannai-Ito [1]. After
that, we will define a category of association schemes. For the general theory of categories, we
refer to the book of Mitchell [3].
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2.1. Association schemes. Let X be a nonempty finite set, and let S be a partition of X×X.
The pair (X,S) is called an association scheme, or briefly a scheme, if the following properties
hold [4, Introduction].

(1) 1X := {(x, x) | x ∈ X} ∈ S.
(2) For each s ∈ S, s∗ := {(y, x) | (x, y) ∈ s} ∈ S.
(3) For s, t, u ∈ S, there exists a nonnegative integer astu such that ]{z ∈ X | (x, z) ∈

s, (z, y) ∈ t} = astu whenever (x, y) ∈ u.

Obviously we have (s∗)∗ = s.
For the remainder of this subsection, the pair (X,S) will stand for an association scheme. We

call an element of X a point and an element of S a relation of the scheme (X,S). For x, y ∈ X,
there exists a uniquely determined s ∈ S such that (x, y) ∈ s since S is a partition of X ×X.
So we can define a surjective map r : X ×X → S by (x, y) ∈ r(x, y). When we want to specify
S, we use the notation rS . For x ∈ X and s ∈ S, we define xs := {y ∈ X | (x, y) ∈ s}. Referring
to this notation, the equation in the condition (3) is |xs ∩ yt∗| = astu. For x ∈ X and T ⊆ S,
we also use the notation xT =

⋃
t∈T xt. For x ∈ X and s ∈ S, ass∗1X

= |xs ∩ x(s∗)∗| = |xs|.
We call this number ass∗1X

the valency of s ∈ S and write ns instead of ass∗1X
. It is easy to see

that ns = ns∗ . The number |X| is called the order of (X,S), and |S| − 1 is called the class of
the scheme S.

Example 2.1 (one-point schemes). Let X = {x} and S = {{(x, x)}}. Then (X,S) is an
association scheme. We call this a one-point scheme and denote it by 0x or 0 (since this is a zero
object in our category defined in §2.2).

Example 2.2 (class-one schemes). Let X be a finite set with |X| > 1. Put S = {{(x, x) | x ∈
X}, {(x, y) | x 6= y}}. Then (X,S) is an association scheme. We call this a class-one scheme.

For t, u ∈ S, we define the complex product tu of t and u by tu = {s ∈ S | atus 6= 0}.
For T,U ⊆ S, we also define the complex product TU by TU =

⋃
t∈T

⋃
u∈U tu. The complex

multiplication is associative [4, Lemma 1.2.1]. We also use the notation tU for {t}U , and so on.

Example 2.3 (thin schemes). Let G be a finite group. For g ∈ G, put [g] = {(x, y) ∈ G×G |
xg = y} and [G] = {[g] | g ∈ G}. Then (G, [G]) is an association scheme. For every [g] ∈ [G], we
have n[g] = 1.

Conversely, assume that ns = 1 for each relation s of an association scheme (X,S). Then S is
a finite group with respect to the complex multiplication (in this case, st = {u} for some u ∈ S,
so we define st = u). We call such a scheme a thin scheme.

Let T be a nonempty subset of S. We call T a closed subset of S if TT = T [4, §1.3].
Note that intersections of closed subsets are closed. For a subset U of S, the intersection of all
closed subsets containing U is called the closed subset generated by U and written by 〈U〉. Also
〈U〉 =

⋃∞
n=1 U

n holds.
Let T be a closed subset of S, and x ∈ X. We put SxT = {s∩(xT×xT ) | s ∈ S, s∩(xT×xT ) 6=

∅}. Then (xT, SxT ) is an association scheme. We call this a subscheme of (X,S) with respect
to x and T [4, §1.5]. Note that a subscheme depends on the choice of a point x ∈ X.

Again, let T be a closed subset of S. Put X/T = {xT | x ∈ X}. Then X/T is a partition
of X. For s ∈ S, we define a relation sT on X/T by sT = {(xT, yT ) | s ∈ rS(xT, yT )}. Put
S//T = {sT | s ∈ S}. Then (X/T, S//T ) is an association scheme [4, Theorem 1.5.4]. We call
this the quotient scheme of (X,S) by T .

Let (X,S) and (X,T ) be association schemes. We say that (X,T ) is a fusion scheme of (X,S)
if for every s ∈ S there exists t ∈ T such that s ⊆ t. In this case, we also say that (X,S) is a
fission scheme of (X,T ).

We will characterize subschemes, quotient schemes, and fusion schemes in our category.
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2.2. Categories. For a general category C, we write f ∈ [M,N ]C , f : M → N , or M
f−→ N to

say that f is a morphism in C from M to N . Let IM denote the identity morphism of an object
M in C.

We define the category S0 of sets with base points. An object of S0 is a pair (A, a) of a
nonempty set A and an element a of A. A morphism f from (A, a) to (B, b) is a map f : A→ B
which satisfies f(a) = b. An object (A, a) of S0 is a zero object if A = {a}. Note that, in contrast
to S0, the category of all sets has no zero object.

We define the category AS of association schemes. An object of AS is an association scheme
(X,S). A morphism f from (X,S) to (Y, T ) is a map f : X ∪ S → Y ∪ T such that f(X) ⊆ Y ,
f(S) ⊆ T , and f(r(x, x′)) = r(f(x), f(x′)) for all x, x′ ∈ X. The definition of morphisms is the
same as in [4, §1.7].

Similar to the category of sets, the category AS has no zero object. So we define the category
AS0 of association schemes with base points. An object of AS0 is (X,S, x), where (X,S) is an
association scheme and x ∈ X. A morphism f from (X,S, x) to (Y, T, y) is a morphism in AS
that satisfies f(x) = y. We also say that an object (X,S, x) of AS0 is an association scheme.

Theorem 2.4. A one-point scheme 0 (defined in Example 2.1) is a zero object in AS0.

Proof. This is clear by definition. �

We note that the zero morphism 0 from (X,S, x0) to (Y, T, y0) is the map defined by 0(x) = y0
for every x ∈ X and 0(s) = 1Y for every s ∈ S.

Now we will give some examples.

Example 2.5. Let (X,S, x) be an association scheme, and T a closed subset of S. Then we
can define the subscheme (xT, SxT , x) as in §2.1. In this case, we can define a natural map from
xT ∪ SxT to X ∪ S and this map gives a morphism from (xT, SxT , x) to (X,S, x) in AS0.

Example 2.6. Let (X,S, x0) be an association scheme, and T a closed subset of S. Then we
can define the quotient scheme (X/T, S//T, x0T ) as in §2.1. In this case, we can define a natural
map from X ∪ S to X/T ∪ S//T by x 7→ xT and s 7→ sT for x ∈ X and s ∈ S. Then this map
gives a morphism from (X,S, x0) to (X/T, S//T, x0T ) in AS0.

Example 2.7. Let (X,T, x0) be a fusion scheme of an association scheme (X,S, x0). We define
a map f from X ∪ S to X ∪ T as follows. For x ∈ X, define f(x) = x. For s ∈ S, there exists
a unique t ∈ T such that s ⊆ t. So define f(s) = t. Then f is a morphism from (X,S, x0) to
(X,T, x0) in AS0.

We define two elementary functors. The covariant functor P : AS0 → S0 is defined by
P (X,S, x) = (X,x) and, for a morphism f : (X,S, x) → (Y, T, y) in AS0, P (f) = f |X , the
restriction of f to X. The covariant functor R : AS0 → S0 is defined by R(X,S, x) = (S, 1X)
and, for a morphism f : (X,S, x)→ (Y, T, y) in AS0, R(f) = f |S , the restriction of f to S. Now
we note that f(1X) = f(r(x, x)) = r(f(x), f(x)) = 1Y . So R(f) is a morphism in S0.

Lemma 2.8. The functor P : AS0 → S0 is faithful.

Proof. Suppose that f, g ∈ [(X,S, x), (Y, T, y)]AS0 and P (f) = P (g). For s ∈ S, there exist
x, x′ ∈ X such that r(x, x′) = s. Then f(s) = f(r(x, x′)) = r(f(x), f(x′)) = r(g(x), g(x′)) =
g(r(x, x′)) = g(s). So f = g holds. �

To simplify our description, we will abuse the following notations in this article. For an object
M = (X,S, x) in AS0, P (M) and R(M) mean X and S, respectively, though they are precisely
(X,x) and (S, 1X).

3. Morphisms

In this section, we will consider basic properties of morphisms in AS0. The following result
is the main theorem in this section. We use the functors P and R defined in §2.2.
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Theorem 3.1. For a morphism f in AS0, the following statements hold.
(1) f is an epimorphism if and only if so is P (f).
(2) f is a monomorphism if and only if so is P (f).
(3) If f is an epimorphism, then so is R(f).
(4) If R(f) is a monomorphism, then so is f .

The converses of (3) and (4) do not hold. We will give such examples in Example 3.5. Note
that epimorphisms in S0 are surjections and monomorphisms in S0 are injections as in the
category of sets.

Proof of Theorem 3.1 (1). If P (f) is an epimorphism, then f is an epimorphism by Lemma 2.8.
Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0 and suppose that P (f) is not an

epimorphism. Then there exists y1 ∈ Y − f(X). Put Z = Y ∪ {z} for some z /∈ Y and consider
the class-one scheme (Z, {1Z , Z×Z− 1Z}, y0). Define g1 : (Y, T, y0)→ (Z, {1Z , Z×Z− 1Z}, y0)
by g1(y) = y for every y ∈ Y , g1(1Y ) = 1Z , and g1(t) = Z × Z − 1Z for every t ∈ T − {1Y }.
Then g1 is a morphism in AS0. Define g2 : (Y, T, y0)→ (Z, {1Z , Z ×Z − 1}, y0) by g2(y) = y for
every y ∈ Y − {y1}, g2(y1) = z, g1(1Y ) = 1Z , and g1(t) = Z × Z − 1Z for every t ∈ T − {1Y }.
Then g2 is a morphism in AS0. Now g1 6= g2 and g1f = g2f . So f is not an epimorphism. �

To prove Theorem 3.1 (2), we will show the following two lemmas.

Lemma 3.2. Let f : (X,S, x0)→ (Y, T, y0) be a morphism in AS0. Then |f−1(y)| = |f−1(y0)|
holds for any y ∈ f(X). Especially, we have |X| = ]{x ∈ X | f(x) = y0}|f(X)|.

Proof. Suppose that y ∈ f(X) and choose x ∈ f−1(y). For x′ ∈ X, f(x) = f(x′) if and only
if 1Y = r(f(x), f(x′)) = f(r(x, x′)). Since ]{x′ ∈ X | r(x, x′) = s} = ns for s ∈ S, we have
|f−1(y)| = ]{x′ ∈ X | f(x′) = f(x)} =

∑
s∈f−1(1Y ) ns. This number is independent of the choice

of y ∈ f(X). So the lemma holds. �

Lemma 3.3. Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0. Then f−1(1Y ) is a closed
subset of S.

Proof. Suppose that s1, s2 ∈ f−1(1Y ) and u ∈ s1s2. There exist x1, x2, x3 ∈ X such that
r(x1, x2) = s1, r(x2, x3) = s2, and r(x1, x3) = u. Then 1Y = f(s1) = f(r(x1, x2)) =
r(f(x1), f(x2)). This means that f(x1) = f(x2). Similarly f(x2) = f(x3). So we have
f(x1) = f(x3). Now f(u) = f(r(x1, x3)) = r(f(x1), f(x3)) = 1Y and u ∈ f−1(1Y ). This
means that f−1(1Y ) is a closed subset of S. �

Lemma 3.3 is a special case of [4, Lemma 1.7.2 (ii)].

Proof of Theorem 3.1 (2). If P (f) is a monomorphism, then f is a monomorphism by Lemma
2.8.

Let f : (X,S, x0)→ (Y, T, y0) be a morphism inAS0 and suppose that P (f) is not a monomor-
phism. Then |f−1(y)| > 1 for some y ∈ Y . By Lemma 3.2, |f−1(y0)| > 1. Choose x0 6= x ∈
f−1(y0). Then r(x0, x) 6= 1X and f(r(x0, x)) = r(f(x0), f(x)) = 1Y . So f−1(1Y ) 6= {1X}. By
Lemma 3.3, f−1(1Y ) is a closed subset of S.

Put U = f−1(1Y ) and consider the subscheme (x0U, Sx0U , x0). Let g be a morphism from
(x0U, Sx0U , x0) to (X,S, x0) defined in Example 2.5. Then fg = 0 = f0 and g 6= 0 by U 6= {1X}.
This means that f is not a monomorphism. �

Theorem 3.1 (2) and the next lemma show Theorem 3.1 (4).

Lemma 3.4. Let f : (X,S, x0)→ (Y, T, y0) be a morphism in AS0. Suppose f−1(1Y ) = {1X}.
Then P (f) is a monomorphism. Especially, if R(f) is a monomorphism, then so is P (f).

Proof. Suppose that f(x) = f(x′) for x, x′ ∈ X. Then f(r(x, x′)) = r(f(x), f(x′)) = 1Y . By the
assumption, we have r(x, x′) = 1X and x = x′. This means that P (f) is a monomorphism. �
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Now we will show the last part of the theorem.

Proof of Theorem 3.1 (3). Let f : (X,S, x0)→ (Y, T, y0) be an epimorphism in AS0. Let t ∈ T .
There exist y, y′ ∈ Y such that t = r(y, y′). By Theorem 3.1 (1), P (f) is an epimorphism. So
there exist x, x′ ∈ X such that f(x) = y and f(x′) = y′. Then f(r(x, x′)) = r(f(x), f(x′)) =
r(y, y′) = t. This shows that R(f) is an epimorphism. �

Example 3.5. (1) Let X and Y be finite sets with 1 < |X| < |Y |, x0 ∈ X, and y0 ∈ Y . Any
injection f : X → Y that satisfies f(x0) = y0 induces a morphism f̃ from the class-one
scheme (X, {1X , X ×X − 1X}, x0) to the class-one scheme (Y, {1Y , Y × Y − 1Y }, y0) in
AS0. Then R(f̃) is an epimorphism and P (f̃) is not.

(2) Let (X,T, x0) be a fusion scheme of (X,S, x0), and let f : (X,S, x0)→ (X,T, x0) be the
morphism defined in Example 2.7. Suppose |S| > |T |. Then P (f) is a monomorphism
and R(f) is not.

Now we will give a characterization of a bimorphism, that is an epimorphism and a monomor-
phism, in AS0.

Theorem 3.6. Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0. Then the following
statements are equivalent.

(1) f is a bimorphism.
(2) P (f) is a bijection.
(3) P (f) is a bijection and, for every s ∈ S, there exists t ∈ T such that (f(x), f(x′)) ∈ t

whenever (x, x′) ∈ s.

Proof. By Theorem 3.1, (1) and (2) are equivalent and obviously (3) implies (2). By the definition
of a morphism, it is also clear that (2) implies (3). �

The above theorem says that a bimorphism in AS0 is essentially the morphism defined in
Example 2.7. So we call a bimorphism in AS0 a fusion scheme.

Obviously a morphism f is an isomorphism if and only if both P (f) and R(f) are bijections.

4. Kernels, cokernels, images, and exact sequences

4.1. Kernels and cokernels. We call a morphism defined in Example 2.5 a subscheme. Of
course, a monomorphism equivalent to such a morphism is also said to be a subscheme. We call
a morphism defined in Example 2.6 a quotient scheme. An epimorphism equivalent to such a
morphism is also said to be a quotient scheme.

We will prove the following theorem.

Theorem 4.1. (1) The category AS0 has kernels.
(2) The category AS0 has cokernels.
(3) A morphism f in AS0 is a normal subobject (a kernel of some morphism) if and only if

f is a subscheme.
(4) A morphism f in AS0 is a conormal quotient object (a cokernel of some morphism) if

and only if f is a quotient scheme.

We begin with some lemmas.

Lemma 4.2. Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0. Then x0f
−1(1Y ) = {x ∈

X | f(x) = y0}.

Proof. This is clear by the proof of Lemma 3.3. �

Lemma 4.3. Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0. Put U = f−1(1Y ). Then
the subscheme ι : (x0U, Sx0U , x0)→ (X,S, x0) is a kernel of f .
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Proof. By Lemma 4.2, fι = 0 is clear.
Suppose that a morphism g : (Z, V, z0) → (X,S, x0) in AS0 satisfies fg = 0. For z ∈ Z,

fg(z) = y0. So g(z) ∈ x0U . Thus we can define a map h′ : Z → x0U by h′(z) = g(z).
Now we define a map h′′ : V → Sx0U by h′′(rV (z1, z2)) = rSx0U

(h′(z1), h′(z2)). It is necessary
to check that h′′ is well-defined. Assume rV (z1, z2) = rV (z3, z4). Then rS(h′(z1), h′(z2)) =
rS(g(z1), g(z2)) = g(rV (z1, z2)) = g(rV (z3, z4)) = rS(g(z3), g(z4)) = rS(h′(z3), h′(z4)). Since
R(ι) is an injection, we have rSx0U

(h′(z1), h′(z2)) = rSx0U
(h′(z3), h′(z4)). This means that h′′ is

well-defined. Now the pair of maps (h, h′) defines a morphism h : (Z, V, z0) → (X0U, Sx0U , x0).
By the construction of h, ιh = g is clear. The uniqueness of h is also clear since ι is a monomor-
phism. Now ι is a kernel of f . �

This lemma shows Theorem 4.1 (1) and a half of (3), a kernel of a morphism in AS0 is a
subscheme. To prove Theorem 4.1 (2), we will show two lemmas. Lemma 4.4 follows from [4,
Lemma 1.7.1].

Lemma 4.4. Let f : (X,S, x0) → (Y, T, y0) be a morphism in AS0, and let s1, s2 · · · , s` ∈ S.
Then f(s1s2 · · · s`) ⊆ f(s1)f(s2) · · · f(s`), where the products are complex products.

Proof. Suppose u ∈ s1s2 · · · s`. There exists x = x1, x2, · · ·x`, x`+1 = x′ such that r(x, x′) =
u and r(xi, xi+1) = si for i = 1, 2, · · · , `. So r(f(xi), f(xi+1)) = f(r(xi, xi+1)) = f(si) for
i = 1, 2, · · · , `. Now f(u) = f(r(x, x′)) = r(f(x), f(x′)) ∈ f(s1)f(s2) · · · f(s`) and the lemma
holds. �

Lemma 4.5. Let f : (X,S, x0)→ (Y, T, y0) be a morphism in AS0. Put U = 〈f(S)〉. Then the
quotient scheme π : (Y, T, y0)→ (Y/U, T//U, y0U) is a cokernel of f .

Proof. It is clear that πf = 0. Suppose that gf = 0 for a morphism g : (Y, T, y0)→ (Z, V, z0) in
AS0.

We define a map h′ : Y/U → Z by h′(yU) = g(y). We will check that h′ is well-defined.
Assume yU = y′U . Then there exists u ∈ U such that r(y, y′) = u. Since U is generated by f(S),
there exist u1, u2, · · · , u` ∈ f(S) such that u ∈ u1u2 · · ·u`. There exist y = y1, y2, · · · , y`, y`+1 =
y′ such that r(yi, yi+1) = ui for i = 1, 2, · · · , `. By gf = 0, g(ui) ∈ g(f(S)) = {1Z}. So
r(g(yi), g(yi+1)) = g(r(yi, yi+1)) = g(ui) = 1Z . This means that g(yi) = g(yi+1). So g(y) = g(y′)
holds and h′ is well-defined.

We define a map h′′ : T//U → V by h′′(tU ) = g(t). We will check that h′′ is well-defined.
Suppose tU = (t′)U . Then there exist u, u′ ∈ U such that t′ ∈ utu′. By Lemma 4.4, g(t′) ⊆
g(utu′) ⊆ g(u)g(t)g(u′) holds. Similar to the above argument, g(u) = g(u′) = 1Z holds. So
g(t) = g(t′) holds and h′′ is well-defined.

Using h′ and h′′, we define h : Y/U ∪ T//U → Z ∪ V . Then h′′(r(yU, y′U)) = g(r(y, y′)) =
r(g(y), g(y′)) = r(h′(yU), h′(y′U)) and this means that h is a morphism in AS0.

The uniqueness of such h is clear since π is an epimorphism. Now π is a cokernel of f . �

This lemma shows Theorem 4.1 (2) and a half of (4), a cokernel of a morphism in AS0 is a
quotient scheme.

The next lemma is clear by the above arguments and it shows the rests of Theorem 4.1.

Lemma 4.6. The following statements hold.
(1) For a zero morphism 0 : (X,S, x0)→ (Y, T, y0), a kernel of 0 is I(X,S,x0) and a cokernel

of 0 is I(Y,T,y0).
(2) For a morphism f , a kernel of f is a zero morphism if and only if f is a monomorphism.
(3) If ι is a subscheme and g is a cokernel of ι, then ι is a kernel of g.
(4) If π is a quotient scheme and g is a kernel of π, then π is a cokernel of g.

Remark. The category AS0 is neither a normal category nor a conormal category. Actually,
any non-isomorphic fusion scheme is neither a normal subobject nor a conormal quotient object.
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4.2. Images. In this subsection, we will prove the following theorem.

Theorem 4.7. The category AS0 has epimorphic images.

Proof. Let f : M → N be a morphism in AS0. Let g : L → M be a kernel of f , and let
f ′ : M → I be a cokernel of g. Since fg = 0, there exists a unique morphism i : I → N such
that f = if ′. We will show that i is an image of f . Then the statement holds since f ′ is an
epimorphism.

L
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f //

f ′
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0000000000000 N
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~
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���
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J
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Suppose that a monomorphism j : J → N and a morphism f ′′ : M → J in AS0 satisfy
jf ′′ = f . Since 0 = fg = jf ′′g and j is a monomorphism, f ′′g = 0 holds. There exists a unique
morphism h : I → J such that hf ′ = f ′′ since f ′ is a cokernel of g. Since if ′ = f = jf ′′ = jhf ′

and f ′ is an epimorphism, i = jh holds. The uniqueness of such h follows from that j is a
monomorphism.

To show that i is a monomorphism, we will prove that P (i) is a monomorphism. Assume
that i(x) = i(x′) for x, x′ ∈ P (I). Since f ′ is an epimorphism, there exist y, y′ ∈ P (M) such
that f ′(y) = x and f ′(y′) = x′. Then 1 = r(i(x), i(x′)) = i(r(x, x′)) = if ′(r(y, y′)) = f(r(y, y′)).
So r(y, y′) ∈ g(L) and 1 = f ′(r(y, y′)) = r(f ′(y), f ′(y′)) = r(x, x′). This means that x = x′ and
P (i) is a monomorphism. So i is a monomorphism and it is an image of f . �

We consider images of monomorphisms and epimorphisms.

Proposition 4.8. If f is a monomorphism, then f is an image of f . If f is an epimorphism,
then an image of f is a fusion scheme.

Proof. If f : M → N is a monomorphism, then a kernel of f is a zero morphism 0 : 0→M . So
IM is a cokernel of the kernel of f and f is an image of f .

If f is an epimorphism, then the image of f is a monomorphism and an epimorphism. So it
is a fusion scheme. �

This proposition says that every epimorphism is a composition of a quotient scheme and a
fusion scheme.

We shall remark that an image is obtained by taking a cokernel of a kernel. So this is closely
related to the “homomorphism theorem” [4, Theorem 1.7.5].

4.3. Exact sequences. We consider a sequence of morphisms

· · · →Mi−1
fi−1−−−→Mi

fi−→Mi+1 → · · ·
in AS0. We say that the sequence is exact at Mi if Ker(fi) = Im(fi−1) holds. We note that a
kernel or an image of a morphism is not uniquely determined. They are unique up to equivalence
of monomorphisms. We use the notation Ker(fi) = Im(fi−1) for the meaning that “an image of
fi−1 is a kernel of fi”, and we use similar notations for the cokernel Coker(f), and so on. The
sequence is said to be an exact sequence if it is exact at every object in the sequence. If the
sequence is bounded above or below, then we do not consider the exactness at the end of the
sequence.

Theorem 4.9. In AS0, the following statements hold.

(1) 0→M
f−→ N is an exact sequence if and only if f is a monomorphism.

(2) M
f−→ N → 0 is an exact sequence if and only if f is a quotient scheme.
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(3) 0→M
f−→ N → 0 is an exact sequence if and only if f is an isomorphism.

(4) 0→ L
f−→M

g−→ N → 0 is an exact sequence if and only if f = Ker(g) and g = Coker(f).

Proof. (1) By Lemma 4.6 (1), Im(0 → M) = (0 → M). So the sequence is exact if and only if
Ker(f) = (0 → M). This condition is equivalent to that f is a monomorphism by Lemma 4.6
(2).

(2) By Lemma 4.6 (1), Ker(N → 0) = IN . So the sequence is exact if and only if Im(f) = IN .
This condition is equivalent to f = Coker(Ker(f)). This means that f is a quotient scheme.

(3) By (1) and (2), f is a monomorphism and a quotient scheme if the sequence is exact.
Then f is an isomorphism. The converse is clear.

(4) Suppose that f = Ker(g) and g = Coker(f). Then Ker(g) = f = Im(f) by Lemma 4.6.
This shows that the sequence is exact.

Suppose that the sequence is exact. Then f is a monomorphism by (1) and g is a quotient
scheme by (2). By Lemma 4.6, f = Im(f) = Ker(g). In this case, g = Coker(f) since g is a
quotient scheme. �

An exact sequence in AS0 of the form

0→ L
f−→M

g−→ N → 0

is called a short exact sequence and has already been considered in [2].
A morphism f : M → N is said to be a retraction if there exists g : N → M such that

fg = IN . We show that a retraction in AS0 is a quotient scheme and so it defines a short exact
sequence.

Proposition 4.10. Let f : M → N be a retraction in AS0. Then f is a quotient scheme and

0→ L
Ker(f)−−−−→M

f−→ N → 0

is an exact sequence.

Proof. Let g : N → M be a morphism with the property fg = IN . Let Ker(f) = h : L → N ,
and let Coker(h) = ` : M → Q. Then there exists a unique morphism m : Q → N such that
f = m`. Put m′ = `g.

L
h // M

f //

`   @@@@@@@@ N
g

oo

m′��~
~

~
~

Q

m

??~
~

~
~

Then mm′ = m`g = fg = IN . So mIQ = m = INm = mm′m holds. Since m is an image of
f , m is a monomorphism. Thus IQ = m′m holds. This means that m is an isomorphism and f
is equivalent to a quotient scheme ` as an epimorphism. By Theorem 4.9 (4), we have an exact
sequence. �

A morphism f : M → N is said to be a coretraction if there exists g : N → M such that
gf = IM . The dual statement of Proposition 4.10 does not hold. In AS0, a coretraction is not
necessarily a subscheme.

Example 4.11. PutX = {x0, x1}, Y = {y0, y1, y2, y3}, t = {(y0, y1), (y1, y0), (y2, y3), (y3, y2)} ⊆
Y × Y , and t′ = Y × Y − 1Y − t. Define association schemes (X, {1X , X × X − 1X}, x0) and
(Y, {1Y , t, t

′}, y0). The maps f : X → Y and g : Y → X defined by f(x0) = y0, f(x1) = y2,
g(y0) = x0, g(y1) = x0, g(y2) = x1, and g(y3) = x1 define morphisms f̃ and g̃ in AS0. Then
g̃f̃ = I(X,{1X ,X×X−1X},x0) holds but f̃ is not a subscheme.



A CATEGORY OF ASSOCIATION SCHEMES 9

5. The category of finite groups

In this section, we will consider the full subcategory ASthin
0 of AS0 whose objects are thin

schemes. We will show that it is equivalent to the category of finite groups.
Recall the definition of thin schemes in Example 2.3. Let G be a finite group. For g ∈ G, put

[g] = {(x, y) ∈ G×G | xg = y} and [G] = {[g] | g ∈ G}. Then (G, [G]) is a thin scheme.

Proposition 5.1. Let G be a finite group. In AS0, (G, [G], α) and (G, [G], β) are isomorphic
for any α, β ∈ G.

Proof. Define f : G→ G by f(x) = βα−1x and f : [G]→ [G] by the identity. Then f : G∪[G]→
G ∪ [G] is an isomorphism from (G, [G], α) to (G, [G], β) in AS0. �

Proposition 5.2. The category ASthin
0 is equivalent to the category of finite groups.

Proof. It is enough to show that a morphism in ASthin
0 is just a group homomorphism.

Let f : G → H be a group homomorphism. By Proposition 5.1, we may choose objects
(G, [G], 1G) and (H, [H], 1H) in ASthin

0 . We define f ′ : G ∪ [G] → H ∪ [H] by f ′(g) = f(g)
and f ′([g]) = [f(g)] for g ∈ G. Then f ′(r(x, y)) = f ′([x−1y]) = [f(x−1y)] and r(f ′(x), f ′(y)) =
r(f(x), f(y)) = [f(x)−1f(y)] = [f(x−1y)]. So f ′ is a morphism in ASthin

0 .
Let f : (G, [G], α)→ (H, [H], β) be a morphism in ASthin

0 . For g, g′ ∈ G, r(g−1, 1G) = [g] and
r(1G, g

′) = [g′]. So [g][g′] = r(g−1, g′) = [gg′]. Thus f defines a group homomorphism from G
to H. �

We will define some known notions by universal properties in our categories. The definitions
are slightly different from the original ones, but they are essentially the same.

Example 5.3 (thin radicals). A morphism f : M → N in AS0 is called the thin radical of N if
the following properties hold :

(1) M is thin,
(2) f is a subscheme, and
(3) if M ′ is thin and f ′ : M ′ → N is a subscheme, then there exists a unique morphism

g : M ′ →M such that fg = f ′.

In [4, §2.3], the thin radical is defined as a closed subset. But in our definition, it is a
subscheme. In general, a subscheme determines a closed subset. So in this sense, our definition
is equivalent to that in [4, §2.3].

Example 5.4 (thin residues). A morphism f : M → N in AS0 is called the thin residue of M
if the following properties hold :

(1) N is thin,
(2) f is a quotient scheme, and
(3) if N ′ is thin and f ′ : M → N ′ is a quotient scheme, then there exists a unique morphism

g : N → N ′ such that gf = f ′.

In [4, §2.3], the thin residue is also defined as a closed subset. But in our definition, it is a
quotient scheme. In general, a closed subset determines a quotient scheme. In this sense, our
definition is equivalent to that in [4, §2.3].

Example 5.5 (schurian schemes). An association scheme (X,S, x0) is said to be schurian if it
is a quotient scheme of a thin scheme. In this case, we also say that (X,S) is schurian.

Schurian schemes are studied in [5, Chap. 6], for example.
The next theorem is a well known fact but we will give a categorical proof to it.

Theorem 5.6. Let (X,S) be a schurian scheme. Then, for any x, x′ ∈ X, (X,S, x) is isomor-
phic to (X,S, x′) in AS0.



10 AKIHIDE HANAKI

Proof. There exists a short exact sequence

0 // (Y, T, y0) h // (G, [G], 1G)
f // (X,S, x0) // 0

for some thin scheme (G, [G], 1G) and some x0 ∈ X. It is enough to show that, for any x ∈ G,
(X,S, x0) is isomorphic to (X,S, x). Since P (f) is surjective, there exists a ∈ G such that
f(a) = x. By Proposition 5.1, there exists an isomorphism g : (G, [G], 1G) → (G, [G], a) such
that R(g) : [G]→ [G] is the identity map. Define f ′ : (G, [G], a)→ (X,S, x) by f ′ = f as a map
from G ∪ [G] to G ∪ [G]. Then f ′ is a morphism in AS0.

(Y, T, y0) h // (G, [G], 1G)
f //

g

��

(X,S, x0)

k

���
�
�

(G, [G], a)
f ′
// (X,S, x)

Since f = Coker(h) and f ′gh = 0, there exists k : (X,S, x0) → (X,S, x) such that kf = f ′g.
Since f ′g is an epimorphism, so is k. Now P (k) is a surjection from a finite set X to itself. Thus
P (k) is a bijection. The morphism k is an isomorphism. �
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