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Abstract. We investigate the relationship between complex char-
acters of association schemes and their fusion schemes. We first
prove Frobenius reciprocity between the irreducible representations
of finite schemes and their fusion schemes, and add a formula on
multiplicities. After that, we provide Clifford type theorems for
association schemes and their algebraic fusions.

1. Introduction

Induction and restriction of representations of association schemes
have been generalized from finite group theory in [2] and have been in-
vestigated repeatedly with respect to their closed subsets. The present
paper deals with the question if induction and restriction of repre-
sentations of association schemes are related similarly if one considers
them with respect to fusion schemes instead of closed subsets. We first
suggest definitions of induction and restriction of representations of as-
sociation schemes with respect to their fusion schemes. We then prove
Frobenius reciprocity (Theorem 2.4) and give a formula on multiplic-
ities (Theorem 3.3). Finally, we consider Clifford type theorems for
algebraic fusions (Theorem 4.3 and Theorem 4.5).

Let (X,S) be an association scheme in the sense of [8] (see also [4]).
For s, t, u ∈ S, we denote the intersection number (or the structure
constant) by pust. For s ∈ S, we denote the valency of s by ns. The ad-
jacency matrix of s ∈ S will be denoted by σs. The complex adjacency
algebra CS is known to be semisimple [8, Theorem 4.1.3]. We denote
by Irr(S) the set of all irreducible complex characters of S.

For a character χ of S, let Vχ be a right CS-module affording χ. Put

(χ, χ′)S = dimC HomCS(Vχ, Vχ′).

Since CS is semisimple, if χ, χ′ ∈ Irr(S), then (χ, χ′)S = δχχ′ .
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Let (X,S) and (X,U) be association schemes. If, for every s ∈ S,
there exists u ∈ U such that s ⊆ u, then we say that (X,U) is a fusion
scheme of (X,S), or (X,S) is a fission scheme of (X,U). In this case,
the adjacency algebra CU is naturally a subalgebra of CS.

A map g : S → S is said to be an algebraic automorphism of (X,S)
if pu

g

sgtg = pust for all s, t, u ∈ S. We denote the set of all algebraic
automorphisms of (X,S) by AAut(S). Then AAut(S) becomes a group
and we call it the algebraic automorphism group of (X,S). Let G
be a subgroup of AAut(S). For s ∈ S, put sG =

⋃
g∈G s

g and put

SG = {sG | s ∈ S}. Then (X,SG) becomes a fusion scheme of (X,S).
The scheme (X,SG) is called an algebraic fusion of (X,S) by the action
of G. For algebraic fusions, see [6].

Example 1.1. Let (X,S) be a thin scheme (see [8, Introduction]). We
can regard S as a finite group. Then the inner automorphism group
Inn(S) is a subgroup of AAut(S). The algebraic fusion (X,SInn(S)) is
the group association scheme of S (see [1, Chapter I, Example 2.1 (2)]).
The adjacency algebra of (X,SInn(S)) coincides with the center of the
group algebra CS.

2. Frobenius reciprocity

Let A be a ring and B be a subring of A.
For a right A-module V , we can define a right B-module V ↓B by

restricting the action of A on V to B. The module V ↓B is called the
restriction of V to B.

For a right B-module W , we can define a right A-module W ↑A=
W ⊗B A. The module W ↑A is called the induction of W to A.

Proposition 2.1 ([7, Chapter 1, Theorem 11.3 (i)]). Let A be a ring
and B be a subring of A. For a right A-module V and a right B-module
W , we have

HomB(W,V ↓B) ∼= HomA(W ↑A, V ).

Remark 2.2. In the definition of the induction W ↑A= W ⊗B A, A is
considered as a (B,A)-bimodule. The restriction V ↓B is V ⊗AA, where
A is considered as an (A,B)-bimodule. So they are similar operations.

Let (X,S) be an association scheme, and let T be a closed subset.
For x ∈ X, we can define a subscheme (xT, TxT ) (see [8, Section 1.5]).
The adjacency algebra C(TxT ) is isomorphic to the subalgebra CT =⊕

t∈T Cσt of CS. So we often identify them. We will write Irr(T )
for Irr(TxT ). We will use notations ϕ ↑S and χ ↓T for the characters
of the induction and the restriction of modules. The next theorem is
well-known and an immediate consequence from Proposition 2.1.
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Theorem 2.3 (Frobenius reciprocity [2, Theorem 5.2]). Let (X,S) be
an association scheme, and let T be a closed subset of S. Let ϕ ∈ Irr(T )
and let χ ∈ Irr(S). Then (ϕ, χ↓T )T = (ϕ↑S, χ)S.

Now, let (X,S) be an association scheme, and let (X,U) be a fu-
sion scheme of (X,S). Then the adjacency algebra CU is a subalge-
bra of CS. So we can define inductions and restrictions for this case.
Again, by Proposition 2.1, we have Frobenius reciprocity also for fusion
schemes.

Theorem 2.4 (Frobenius reciprocity for fusion schemes). Let (X,S)
be an association scheme, and let (X,U) be a fusion scheme of (X,S).
Let ϕ ∈ Irr(U) and let χ ∈ Irr(S). Then (ϕ, χ↓U)U = (ϕ↑S, χ)S.

For χ ∈ Irr(S), we denote by eχ the central primitive idempotent of
CS corresponding to χ. The next lemma will be used in Section 4.

Lemma 2.5. Let (X,S) be an association scheme, and let (X,U) be
a fusion scheme of (X,S). Let χ ∈ Irr(S), and let ϕ ∈ Irr(U). Then
(ϕ↑S, χ)S 6= 0 if and only if eϕeχ 6= 0.

Proof. Let V be a simple right CS module affording χ, and let W be a
simple right CU module affording ϕ. First we note that eϕCU ∼= mW
and eχCS ∼= nV where m = dimCW and n = dimC V . By [7, Chapter
1, Theorem 4.3 (i)], we have

(ϕ↑S, χ)S = dimC HomCS(W ↑S, V )

=
1

mn
dimC HomCS(eϕCU ⊗CU CS, eχCS)

=
1

mn
dimC HomCS(eϕCS, eχCS)

=
1

mn
dimC eχCSeϕ =

1

mn
dimCCSeχeϕ.

So the statement holds. �

3. Standard modules and multiplicities

In [3, Theorem 5.1], a formula on inductions and multiplicities was
given. In this section, we will give an alternative proof of [3, Theorem
5.1] and give a similar formula on inductions from fusion schemes.

Usually, multiplicities of characters are defined only for irreducible
characters (see [8, Section 4.1]). In [3], the definition was extended to
arbitrary characters.

Let (X,S) be an association scheme. Let η be a character of S
afforded by a right CS-module V . Put

mη = dimC HomCS(V,CX),
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where CX is the standard CS-module (see [8, Section 4.1]). We call mη

the multiplicity of η. If η is irreducible, then mη is just the multiplicity
defined in [8, Section 4.1]. Also, if η =

∑
χ∈Irr(S) aχχ is an irreducible

decomposition of η, then mη =
∑

χ∈Irr(S) aχmχ. So the definition is

equivalent to that in [3].
Now, we consider the restriction of the standard module to a sub-

scheme or a fusion scheme. Let (X,S) be an association scheme and
let T be a closed subset of S. Put

X = x1T ∪ · · · ∪ xrT
a coset decomposition (see [8, Section 1.3]), where r = nS/nT . Then

CX ↓T= C(x1T )⊕ · · · ⊕ C(xrT ).

Now C(xiT ) is the standard C(TxiT )-module by CT ∼= C(TxiT ). The
multiplicities of irreducible characters are determined only by structure
constants. So we have C(xiT ) ∼= C(x1T ) for every i. Now we have

CX ↓T∼=
nS
nT

C(x1T )

as a right CT -module.

Theorem 3.1 ([3, Theorem 5.1]). Let (X,S) be an association scheme
and let T be a closed subset of S. Let ϕ be a character of T . Then

mϕ↑S =
nS
nT
mϕ.

Proof. Let W be a right CT -module affording ϕ. Choose x ∈ X arbi-
trarily. Then

mϕ↑S = dimC HomCS(W ↑S, CX) = dimC HomCT (W, CX ↓T )

=
nS
nT

dimC HomCT (W, C(xT )) =
nS
nT
mϕ.

Now the theorem is proved. �

Remark 3.2. Let K be an algebraically closed field of positive charac-
teristic. In this case, K(xiT ) is not necessarily isomorphic to K(x1T )
as a right KT -module.

We will give an example. Let us consider two non-isomorphic schemes
(X1, T1) and (X2, T2) such that they are algebraically isomorphic but
their modular standard modules are non-isomorphic. For example, such
examples were considered in [5]. Define a scheme similar to the wreath
product of them by the scheme of order 2. Namely, put T1 and T2 in
diagonal parts and fill the remaining parts by a single relation. Then
this scheme satisfies the above condition, because standard modules
are non-isomorphic.
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Let (X,S) be an association scheme and let (X,U) be a fusion scheme
of (X,S). Then clearly CX ↓U is the standard CU -module. So we have
the next theorem.

Theorem 3.3. Let (X,S) be an association scheme and let (X,U) be
a fusion scheme of (X,U). Let ϕ be a character of U . Then

mϕ↑S = mϕ.

Proof. The proof of Theorem 3.3 is similar to the proof of Theorem
3.1. �

Corollary 3.4. Let (X,S) be an association scheme and let (X,U) be
a fusion scheme of (X,U). Suppose that (χ, ϕ↑S)S 6= 0 for χ ∈ Irr(S)
and ϕ ∈ Irr(U). Then mϕ ≥ mχ.

Proof. By Theorem 3.3 and that χ appears in ϕ ↑S, we have mϕ =
mϕ↑S ≥ mχ. �

4. Algebraic fusions

Let (X,S) be an association scheme, and let G be a subgroup of
the algebraic automorphism group AAut(S). Then G also acts on the
adjacency algebra CS as algebra automorphisms by (

∑
s∈S asσs)

g =∑
s∈S asσsg for g ∈ G and

∑
s∈S asσs ∈ CS. By definition, we have the

following lemma.

Lemma 4.1. The adjacency algebra CSG of the algebraic fusion scheme
(X,SG) coincides with the algebra of fixed points (CS)G = {α ∈ CS |
αg = α}.

Let χ ∈ Irr(S) and let g ∈ G. Define χg by

χg(σs) = χ((σs)
g−1

) = χ(σsg−1 ).

Since g acts on CS as an algebra automorphism, χg is also an irreducible
character of S. So G also acts on Irr(S).

Lemma 4.2. Let χ ∈ Irr(S) and let g ∈ G. Then the following state-
ments hold.

(1) χg(1) = χ(1).
(2) mχg = mχ.
(3) (eχ)g = eχg .

Proof. (1) is by definition, (2) is by [8, Theorem 4.1.5 (ii)], and (3) is
by [8, Lemma 4.1.4 (ii)]. �

The next theorem is one of the main results in this article.
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Theorem 4.3. Let G be a subgroup of the algebraic automorphism
group AAut(S) of an association scheme (X,S). Let ϕ ∈ Irr(SG) and
let χ ∈ Irr(S). Put T = {g ∈ G | χg = χ}, the stabilizer of χ in G.
Suppose that (ϕ↑S, χ)S 6= 0. Then

ϕ↑S= (ϕ↑S, χ)S
∑
g∈T\G

χg.

Proof. By definition, we have ϕ↑S=
∑

ξ∈Irr(S)(ϕ↑S, ξ)Sξ. It is enough

to show that (ϕ↑S, χ)S = (ϕ↑S, χg)S for every g ∈ G and (ϕ↑S, ξ)S =
0 for ξ 6∈ {χg | g ∈ G}.

Since ϕ is irreducible, by Theorem 2.4 and [8, Theorem 4.1.5 (ii)],
we have

(ϕ↑S, χ)S = (ϕ, χ↓SG)SG =
mϕ

nSϕ(1)

∑
u∈SG

χ(σu)ϕ(σu∗).

For u ∈ SG, σu ∈ CSG = (CS)G by Lemma 4.1. So we have χg(σu) =
χ(σu) for every g ∈ G. Now we can say that (ϕ↑S, χ)S = (ϕ↑S, χg)S
for every g ∈ G.

Put e =
∑

g∈T\G eχg . Then e is a central idempotent of CS and

in (CS)G = CSG. So e is a central idempotent of CSG. By Lemma
2.5, eeϕ 6= 0. Since a central idempotent of CSG can be uniquely
decomposed into a sum of central primitive idempotents of CSG (see
[7, Chapter 1, Theorem 4.6]), eeϕ = eϕ. Suppose that ξ ∈ Irr(S) and
ξ 6∈ {χg | g ∈ G}. Then eeξ = 0. So eξeϕ = eξeeϕ = 0. This means
that (ϕ↑S, ξ)S = 0. The proof is completed. �

Corollary 4.4. Under the same assumption in Theorem 4.3, we have

mϕ = |G : T |(ϕ↑S, χ)S mχ.

Proof. This is clear by Theorem 4.3, Lemma 4.2 (2), and Theorem
3.3. �

The equation in Theorem 4.3 seems to be a dual of a well-known
formula in Clifford theory for group characters [7, Chapter 3, Theorem
3.8 (i)]. In Clifford theory, the restriction of an irreducible character
to a normal subgroup is a sum of conjugate characters with the same
multiplicities. The next theorem is also a dual of some parts of [7,
Chapter 3, Theorem 3.8].

Theorem 4.5. Let G be a subgroup of the algebraic automorphism
group AAut(S) of an association scheme (X,S). Fix χ ∈ Irr(S) and
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put T = {g ∈ G | χg = χ}, the stabilizer of χ in G. Put

A = {η ∈ Irr(ST ) | (χ↓ST , η)ST 6= 0},
B = {ϕ ∈ Irr(SG) | (χ↓SG , ϕ)SG 6= 0}.

Then the following statements hold.

(1) We can define a bijection κ : A → B by κ(η) = η ↓SG for η ∈ A.
Especially, |A| = |B|.

(2) For η ∈ A, we have (χ↓ST , η)ST = (χ↓SG , κ(η))SG.

Proof. Put t = |G : T |.
Let η ∈ A. Fix an irreducible constituent ϕ of η ↓SG . Then ϕ ∈ B.

By Theorem 4.3,

(4.1) ϕ↑S= a
∑
g∈T\G

χg,

where a = (χ↓SG , ϕ)SG and

(4.2) η↑S= bχ

where b = (χ ↓ST , η)ST . Since η is an irreducible constituent of ϕ ↑ST
,

we have

(4.3) b = (η↑S, χ)S ≤ ((ϕ↑ST

)↑S, χ)S = (ϕ↑S, χ)S = a.

By Lemma 2.5, eηeϕ 6= 0. So there exists a primitive idempotent
fη of CST such that fηeη = fη and fηeϕ 6= 0. Then, for any g ∈ G,
(fη)

geϕ = (fηeϕ)g 6= 0. Note that χ is the only irreducible character
of S which appears in η ↑S. So we have eηeχ = eη. Since (fη)

g ∈
(eχCS)g = eχgCS, (fη)

g(fη)
h = 0 if Tg 6= Th. Similarly (eη)

g(eη)
h = 0

if Tg 6= Th.
We claim that η↓SG= ϕ. Since fη is a primitive idempotent in CST ,

fηCST is a simple CST -module affording η. So fηCST contains a CSG-
submodule V which affords ϕ. Fix a non-zero element v ∈ V . Since
V is simple, V = vCSG. To prove η ↓SG= ϕ, it is enough to show
that fηCST = vCSG. It is clear that fηCST ⊇ vCSG. Since fηCST
is a simple CST -module, we have fηCST = vCST . So we will show
vCSG ⊇ vCST . Since v ∈ fηCST , we have v = fηv = fηeηv = fηveη =
veη. Also v(eη)

g = veη(eη)
g = 0 if g ∈ G − T . Suppose x ∈ CST . By

the above arguments, we have

vx = veηx =
∑
g∈T\G

v(eη)
gxg = v

∑
g∈T\G

(eηx)g ∈ vCSG.

Now we have shown that vCSG ⊇ vCST and η ↓SG= ϕ. So the map
κ : A → B is defined.
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Since (fη)
g(fη)

h = 0 if Tg 6= Th,
∑

g∈T\G(fη)
g is an idempotent

and contained in CSG. Now, since (
∑

g∈T\G(fη)
g)eϕ 6= 0, a primitive

idempotent decomposition of
∑

g∈T\G(fη)
g (see [7, Chapter 1, Section

4]) in CSG contains a primitive idempotent fϕ such that fϕeϕ 6= 0. We
can see that

(4.4) CX(
∑
g∈T\G

(fη)
g) =

⊕
g∈T\G

CX(fη)
g ⊇ CXfϕ.

Note that

dimC CX(fη)
g = dimC HomCSg−1Tg((fη)

gCSg−1Tg,CX) = mηg ,

where ηg ∈ Irr(Sg
−1Tg). Similar to the proof of Lemma 4.2, we can

show that mηg = mη. Comparing the dimensions of both sides of (4.4),
we have

(4.5) tmη ≥ mϕ.

Combining (4.1), (4.2), (4.3), (4.5), and by Theorem 3.3, we have

(4.6) atmχ = mϕ↑S = mϕ ≤ tmη = btmχ ≤ atmχ.

We can conclude that a = b, namely (χ↓ST , η)ST = (χ↓SG , ϕ)SG . The
statement (2) holds.

If η′ ∈ A is an irreducible constituent of ϕ↑ST
and η 6= η′, then

a = (χ, ϕ↑S)S = (χ, (ϕ↑ST

)↑S)S

≥ (χ, η↑S)S + (χ, η′ ↑S)S > a

and this is a contradiction. Now κ is injective.
Let ϕ ∈ B. Since (χ ↓SG , ϕ)SG 6= 0, there is η ∈ A such that

(η ↓SG , ϕ)SG 6= 0. This means κ is surjective. Now the statement (1)
holds. �
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