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We present four kinds of sum rules for the exchange-correlation energy functional of the extended constrained-
search theory. They are applicable even to the conventional density functional theory. As an application of
these sum rules, we utilize them to check the validity of the vorticity expansion approximation (VEA) of the
current-density functional theory (CDFT). The VEA formula fulfils three of them, though the local density
approximation formula of the CDFT fulfills only one. The validity of the VEA formula is thus confirmed
successfully from the viewpoint of the sum rules.
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I. INTRODUCTION

The current-density functional theory (CDFT) [1,2] and
its relativistic version, relativistic current- and spin-density
functional theory (RCSDFT) [3,4], provide useful methods to
calculate the ground-state properties of materials where the
orbital current is induced. Actual calculations have been per-
formed so far for solids [5,6], quantum dots [7], and open-shell
atoms [8] by using the local density approximation (LDA) of
the CDFT [1,2,9] or the so-called exact exchange functional [8]
as the exchange-correlation (xc) energy functional. However,
effects of the orbital current are not always well described
by means of such approximate forms [5–8]. Thus, a more
adequate approximate form of the xc energy functional is
needed in the field of the CDFT or RCSDFT.

The approximate form of the xc energy functional has
been devised mainly with two strategies. One is based on
the coupling-constant expression for the xc energy functional
[9,10]. The key of this strategy is to approximate the coupling-
constant-averaged pair correlation function by some known
one, for example, the pair correlation function of the homoge-
neous electron liquid applied by a uniform magnetic field. In
accordance with this strategy, the CDFT version of the LDA,
the average-density approximation (ADA), and the weighted-
density approximation (WDA) have been proposed so far [9].

Another strategy is to develop the approximate form by
requiring it to satisfy exact relations (sum rules) that should be
fulfilled by the xc energy functional.1 This strategy has been
used in developing the generalized gradient approximation
(GGA) [11–15] and the density-moment expansion method
[16–21] of the conventional density functional theory (DFT)
[22,23]. To be more specific, Levy’s asymptotic bound [24],
which is one of sum rules for the xc energy functional of

1These exact relations are regarded as sum rules for the xc energy
functional and often called so, because the xc energy functional can be
written in a form of the coupling-constant integration. In this article,
we call these relations sum rules

the DFT, has played an important role in the development of
the Perdew-Burke-Ernzerhof (PBE) functional [13–15]. This
bound is not satisfied with the LDA of the conventional DFT
because the short-range correlation term causes the logarithmic
divergence in the high density limit. In order to let the
PBE functional fulfill this bound, the additional term that
expresses the effect of the density gradient was devised. In
the density-moment expansion method, the sum rules that are
derived by using the virial theorem and the coordinate scaling
technique [16,25–28] are effectively employed to determine
its approximation form.

Also in the CDFT, many kinds of sum rules have been
derived so far along with the later strategy [1,2,9,10,29,30].
These include the set of sum rules that are derived by using the
gauge invariance, the virial theorem, the coordinate scaling of
electrons, the adiabatic connection, and so on [1,2,9,10,29,30].
Using such sum rules as constraints, we have recently proposed
the vorticity expansion approximation (VEA) for the xc energy
functional of the CDFT [31–33]. This approximate form is
developed to fulfill the gauge invariance and nineteen sum
rules. The VEA formula for a homogeneous system is in quite
good agreement with the exchange and correlation energies
[34] of the homogeneous electron liquid applied by a uniform
magnetic field [31–33].

Sum rules are useful not only for developing the approxi-
mate form of the xc energy functional but also for evaluating it.
For the purpose of checking the validity of the VEA formula,
the CDFT version of Levy’s asymptotic bounds has been
derived [32]. It is confirmed that the VEA formula fulfils the
bounds, whereas the LDA of the CDFT does not. We also
showed that the VEA formula satisfies other sum rules that are
not directly used in constructing the VEA formula [33].

As mentioned, sum rules for the xc energy functional are
indispensable in developing and/or evaluating the approximate
form, and therefore it is essential to come up with new
kinds of sum rules. In this article, we present four kinds
of sum rules for the xc energy functional of the extended
constrained-search (ECS) theory [10,35–39]. We apply these
sum rules to checking the validity of the VEA formula of the
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CDFT. Three of them are satisfied with the VEA formula,
though only one is satisfied with the CDFT-LDA formula.
This shows that the VEA formula would work better than
the CDFT-LDA in actual calculations. Thus, the sum rules
derived here are expected to be quite useful in evaluating and/or
developing the approximate form of the xc energy functional.
Furthermore, in this article, we check the validity of the VEA
formula systematically by using a total of fifty-six sum rules
that correspond to the modified or generalized version of
original sum rules of the DFT. It is found that the VEA formula
satisfies many more sum rules than the CDFT-LDA.

Organization of this article is as follows. Detailed derivation
of four kinds of sum rules is shown in Sec. II. Application of
these sum rules to checking the validity of the VEA formula is
shown in Sec. III A. Systematic checks via a total of sixty sum
rules are performed in Sec. III B. Some concluding remarks
are given in Sec. IV.

II. SUM RULES FOR THE EXCHANGE-CORRELATION
ENERGY FUNCTIONAL

In this section, we derive sum rules for the xc energy
functional of the ECS theory. The exchange and correlation
energy functionals of the ECS theory are defined by

Ex[ρ, X] = 〈�[ρ, X]|Ŵ |�[ρ, X]〉 − U [ρ] (1)

and

Ec[ρ, X] = 〈�[ρ, X]|T̂ + Ŵ |�[ρ, X]〉
− 〈�[ρ, X]|T̂ + Ŵ |�[ρ, X]〉, (2)

respectively [37], where ρ(r) is the electron density and
X(r) is the arbitrary physical quantity that is chosen as a
basic variable. T̂ and Ŵ denote the kinetic energy and the
electron-electron interaction energy operators, respectively.
�[ρ, X] is the minimizing wave function in the definition of
the universal functional of the ECS theory, and �[ρ, X] is the
minimizing Slater determinant in the definition of the kinetic
energy functional of the reference system [10,35–37]. U [ρ]
stands for the Hartree energy term. For the purpose of deriving
a set of sum rules for Ex[ρ, X] and Ec[ρ, X], we consider the
system where the electron-electron interaction is multiplied by
α. By using the ECS [10,35–37], the universal functional of
this system is defined by

Fα[ρ, X] = Min
�→(ρ,X)

〈�|T̂ + αŴ |�〉

= 〈�α[ρ, X]|T̂ + αŴ |�α[ρ, X]〉, (3)

where �α[ρ, X] denotes the minimizing wave func-
tion. Transforming �α[ρ, X] by the coordinate scaling
of electrons such that ri → λ−1ri (λ > 0), we get
λ3N/2�α[ρ, X](λr1, . . . , λrN ), where λ3N/2 is a normalizing
constant. This wave function is referred to as the scaled wave
function and is denoted by �λ

α [ρ, X], that is,

�λ
α [ρ, X](r1, . . . , rN ) = λ3N/2�α[ρ, X](λr1, . . . , λrN ).

(4)

Using this wave function, we define the scaled basic variables
ρλ(r) and Xλ(r) by

ρλ(r) = 〈�λ
α [ρ, X]|ρ̂(r)|�λ

α [ρ, X]〉 (5)

and

Xλ(r) = 〈�λ
α [ρ, X]|X̂(r)|�λ

α [ρ, X]〉, (6)

respectively, where ρ̂(r) and X̂(r) denote the operators of basic
variables. Similarly to Eq. (3), the universal functional for the
system where the electron-electron interaction is multiplied by
αλ is defined by

Fαλ[ρ, X] = Min
�→(ρ,X)

〈�|T̂ + αλŴ |�〉

= 〈�αλ[ρ, X]|T̂ + αλŴ |�αλ[ρ, X]〉, (7)

where �αλ[ρ, X] is the minimizing wave function. As shown
in Appendix A, the following relation holds:

�αλ[ρλ, Xλ](r1, . . . , rN ) = �λ
α [ρ, X](r1, . . . , rN ). (8)

By substituting α = λ−1 into Eq. (8) and using Eq. (4), we get

�[ρλ, Xλ](r1, . . . , rN ) = �λ
λ−1 [ρ, X](r1, . . . , rN )

= λ3N/2�λ−1 [ρ, X](λr1, . . . , λrN ).

(9)

On the other hand, �[ρλ, Xλ] can be written by

�[ρλ, Xλ](r1, . . . , rN ) = λ3N/2�[ρ, X](λr1, . . . , λrN ).

(10)

The proof of Eq. (10) is given in Ref. [10]. Substitution of
Eqs. (9) and (10) into Eq. (2) leads to the correlation energy
functional for ρλ(r) and Xλ(r),

Ec[ρλ, Xλ] = λ2{〈�λ−1 [ρ, X]|T̂ |�λ−1 [ρ, X]〉
− 〈�[ρ, X]|T̂ |�[ρ, X]〉}
+ λ{〈�λ−1 [ρ, X]|Ŵ |�λ−1 [ρ, X]〉
− 〈�[ρ, X]|Ŵ |�[ρ, X]〉}. (11)

Since the DFT version of Eq. (11) has been derived in
Ref. [40], Eq. (11) corresponds to the generalization of the
original expression of the DFT to the ECS one. The upper and
lower bounds of Ec[ρλ, Xλ] can be obtained from Eq. (11) in
a way similar to that in Ref. [40], which is listed in Table I
(entries 59 and 60).

In what follows, we derive the set of sum rules that are
related to the differential of Ec[ρλ, Xλ] with respect to the
scaling parameter. By differentiating Eq. (11) with respect to
λ, we get

dEc[ρλ, Xλ]

dλ

= 2λ{〈�λ−1 [ρ, X]|T̂ |�λ−1 [ρ, X]〉 − 〈�[ρ, X]|T̂ |�[ρ, X]〉}
+ 〈�λ−1 [ρ, X]|Ŵ |�λ−1 [ρ, X]〉 − 〈�[ρ, X]|Ŵ |�[ρ, X]〉
−

{〈
d

dα
�α[ρ, X]

∣∣∣∣ T̂ + αŴ

∣∣∣∣�α[ρ, X]

〉

+
〈
�α[ρ, X]

∣∣∣∣ T̂ + αŴ

∣∣∣∣ d

dα
�α[ρ, X]

〉}
α=λ−1

.

(12)

Let us show that the third term of Eq. (12) vanishes. Since
�α[ρ, X] is the minimizing wave function of Eq. (3), �α[ρ, X]
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obeys the following equation:{
T̂ + αŴ +

∫
vα[ρ, X](r)ρ̂(r)dr

+
∫

aα[ρ, X](r) · X̂(r)dr
}

|�α[ρ, X]〉 = Eα|�α[ρ, X]〉,
(13)

where Eα , vα[ρ, X](r) and aα[ρ, X](r) are the real Lagrange
multipliers that correspond to constraints on �α[ρ, X], that is,
�α[ρ, X] is normalized to unity and yields both ρ(r) and X(r).
By using Eq. (13) and the fact that �α[ρ, X] is normalized to
unity, we get〈

d

dα
�α[ρ, X]

∣∣∣∣ T̂ + αŴ +
∫

vα(r)ρ̂(r)dr

+
∫

aα(r) · X̂(r)dr

∣∣∣∣�α[ρ, X]

〉
+

〈
�α[ρ, X]

∣∣∣∣T̂ + αŴ

+
∫

vα(r)ρ̂(r)dr+
∫

aα(r) · X̂(r)dr

∣∣∣∣ d

dα
�α[ρ, X]

〉
=0.

(14)

It should be noted that Eq. (14) implies the Hellmann-Feynman
theorem. For convenience, we rewrite Eq. (14) as follows:〈
d

dα
�α[ρ, X]

∣∣∣∣ T̂ + αŴ

∣∣∣∣�α[ρ, X]

〉

+
〈
�α[ρ, X]

∣∣∣∣T̂ + αŴ

∣∣∣∣ d

dα
�α[ρ, X]

〉

+
∫

vα[ρ, X](r)
d

dα
{〈�α[ρ, X]|ρ̂(r)|�α[ρ, X]〉}dr

+
∫

aα[ρ, X](r) · d

dα
{〈�α[ρ, X]|X̂(r)|�α[ρ, X]〉}dr = 0.

(15)

Since �α[ρ, X] yields both ρ(r) and X(r) that are independent
of α, we have〈

d

dα
�α[ρ, X]

∣∣∣∣ T̂ + αŴ

∣∣∣∣�α[ρ, X]

〉

+
〈
�α[ρ, X]

∣∣∣∣ T̂ + αŴ

∣∣∣∣ d

dα
�α[ρ, X]

〉
= 0. (16)

Equation (16) means that the third term of Eq. (12) vanishes.
Therefore, Eq. (12) becomes

dEc[ρλ, Xλ]

dλ

= 2λ{〈�λ−1 [ρ, X]|T̂ |�λ−1 [ρ, X]〉 − 〈�[ρ, X]|T̂ |�[ρ, X]〉}
+ 〈�λ−1 [ρ, X]|Ŵ |�λ−1 [ρ, X]〉 − 〈�[ρ, X]|Ŵ |�[ρ, X]〉.

(17)

This expression for the differential of Ec[ρλ, Xλ] with respect
to the scaling parameter has not yet been derived even in the
DFT. Equation (17) seems to be useful because this equation
is reduced to the virial theorem [10] by taking the limit λ → 1.
The proof is given in Appendix B.

By using Eqs. (11) and (17), the following two equations
are obtained;

dEc[ρλ, Xλ]

dλ
= 2

Ec[ρλ, Xλ]

λ
− 〈�λ−1 [ρ, X]|Ŵ |�λ−1 [ρ, X]〉

+ 〈�[ρ, X]|Ŵ |�[ρ, X]〉, (18)
1

λ

dEc[ρλ, Xλ]

dλ
= Ec[ρλ, Xλ]

λ2
+ 〈�λ−1 [ρ, X]|T̂ |�λ−1 [ρ, X]〉

− 〈�[ρ, X]|T̂ |�[ρ, X]〉. (19)

Here, let us introduce the assumption that ρ(r) and X(r)
are noninteracting v-representable. Under this assumption,
it can be shown that Min�→(ρ, X)〈�|T̂ |�〉 is equal to
〈�[ρ, X]|T̂ |�[ρ, X]〉 [10]. Namely, we have

�0[ρ, X] = �[ρ, X]. (20)

By taking the limit λ → ∞ in Eqs. (18) and (19) and using
Eq. (20), we obtain two kinds of sum rules:

lim
λ→∞

dEc[ρλ, Xλ]

dλ
= 2 lim

λ→∞
Ec[ρλ, Xλ]

λ
, (21)

lim
λ→∞

1

λ

dEc[ρλ, Xλ]

dλ
= lim

λ→∞
Ec[ρλ, Xλ]

λ2
. (22)

It should be noted that Eq. (18) [or Eq. (19)] combined with
Eq. (11) is of course reduced to the virial theorem when taking
the limit λ → 1. As mentioned, by taking the other limit (λ →
∞) in Eqs. (18) and (19), we obtain Eqs. (21) and (22) that are
different from the virial theorem. Therefore, Eqs. (18), (19),
and the virial theorem are related to each other in the sense
that these three can be derived from the same set of equations.

Also, other kinds of sum rules can be obtained from
Eqs. (18) and (19). Since the expectation value of Ŵ with
respect to �λ−1 [ρ, X] is necessarily positive in Eq. (18), we
get

dEc[ρλ, Xλ]

dλ
� 2

Ec[ρλ, Xλ]

λ
+ U [ρ] + EX[ρ, X], (23)

where Eq. (1) is used. Furthermore, under the as-
sumption that ρ(r) and X(r) are noninteracting v-
representable, 〈�[ρ, X]|T̂ |�[ρ, X]〉 in Eq. (19) is equal to
Min�→(ρ,X)〈�|T̂ |�〉 [10]. Since �λ−1 [ρ, X] is one of wave
functions that yield ρ(r) and X(r), the following inequality
holds:

〈�λ−1 [ρ, X]|T̂ |�λ−1 [ρ, X]〉 � 〈�[ρ, X]|T̂ |�[ρ, X]〉. (24)

By using Eqs. (19) and (24), we obtain

Ec[ρλ, Xλ]

λ
� dEc[ρλ, Xλ]

dλ
. (25)

Equations (23) and (25) are regarded as sum rules that give the
upper and lower bounds of dEc[ρλ, Xλ]/dλ, respectively.

Equations (21), (22), (23), and (25) can be utilized
in evaluating and/or developing the approximate forms of
Ex[ρ, X] and Ec[ρ, X]. It should be noted that these equations
are reduced to sum rules for the xc energy functional of the
conventional DFT by replacing Ex[ρ, X] and Ec[ρλ, Xλ] with
Ex[ρ] and Ec[ρλ], respectively.

042505-3



M. HIGUCHI AND K. HIGUCHI PHYSICAL REVIEW A 81, 042505 (2010)

III. APPLICATION OF SUM RULES TO THE
VEA FORMULA

One of methods for utilizing sum rules is to evaluate the
approximate form of the xc energy functional via them. In this
section, we evaluate the VEA formula of the CDFT [31–33]
by using various kinds of sum rules including the four kinds
of sum rules derived in the previous section. In Sec. III A, we
check whether the present four sum rules are satisfied with the
VEA formula. Furthermore, in Sec. III A, four kinds of sum
rules are utilized in evaluating the commonly used xc energy
functional of the conventional DFT, such as the LDA [41],
the PBE-GGA [13], and Lee-Yang-Parr (LYP)–GGA formula
[42]. In Sec. III B, we perform exhaustive checking of the
VEA and CDFT-LDA formulas by using all known sum rules
so as to stress the validity of the VEA formula. We confirm
that the VEA formula fulfils many more sum rules than the
CDFT-LDA formula.

A. Checking the validity of the VEA formula by using
four kinds of sum rules

We apply Eqs. (21), (22), (23), and (25) to checking the
validity of the VEA formula [31–33] of the CDFT. Since the
CDFT corresponds to the case where the paramagnetic current
density jp(r) is chosen as X(r) in the ECS theory [35], sum
rules for exchange and correlation energy functionals of the
CDFT can be obtained by replacing X(r) with jp(r).

The VEA formulas are given as the functional of ρ(r) and
the vorticity ν(r) that is defined by

ν(r) = ∇ ×
{

jp(r)

ρ(r)

}
. (26)

The resultant VEA formulas for the exchange and correlation
energy functionals are given by

Ēx[ρ, ν] = Ex[ρ] + D̄x

h̄2

a3
H εH

∫
|ν(r)|2dr (27)

and

Ēc[ρ, ν] = Ec[ρ] + C̄0h̄
2

a3
H εH

∫
e−ᾱa3

H ρ(r)ρ(r)3

[
ρ(r) − δ̄/a3

H

]3 | ν(r) |2dr ,

(28)

respectively [31–33]. Here, aH is the Bohr radius, and εH is
the Rydberg constant. Ex[ρ] and Ec[ρ] denote the exchange
and correlation energy functionals of the conventional DFT,
respectively. The dimensionless parameters D̄x , C̄0, ᾱ, and
δ̄ are 3.76 × 10−4, −4.669 × 10−4, 0.653, and 1.0 × 10−30,
respectively [31–33], which have been determined by utilizing
the exchange and correlation energies of the homogeneous
electron liquid applied by a uniform magnetic field [34].
These formulas are constructed so as to comply with the
gauge invariance and nineteen sum rules that are derived
from coordinate scaling of electrons [31–33]. Note that since
Eqs. (27) and (28) depend on jp(r) through ν(r), they are also
recognized as the functionals of ρ(r) and jp(r).

From Eqs. (5), (6), and (26), the scaled basic variables and
vorticity are calculated as

ρλ(r) = λ3ρ(λr), (29)

jpλ(r) = λ4jp(λr), (30)

νλ(r) = λ2ν(λr). (31)

By using Eqs. (28)–(31), Ēc[ρλ, νλ] is written as

Ēc[ρλ, νλ]

= Ec[ρλ] + λ10C̄0h̄
2

a3
H εH

∫
e−ᾱa3

H λ3ρ(r)ρ(r)3

[
λ3ρ(r) − δ̄/a3

H

]3 | ν(r) |2dr,

(32)

where we used the transformation of the integration variables.
By substituting Eq. (32) into Eqs. (21), (22), and (25), we
can easily confirm in a similar way to that of Ref. [32] that
the VEA formula is exactly satisfied with these sum rules.
Concerning Eq. (23), we need numerical calculations in order
to check whether it is satisfied with the VEA. The results are
summarized in Table I (entries 55–58).

For comparison, we also check the validity of the
LDA formula of the CDFT [1,2,9]. The LDA formulas
for the exchange and correlation energy functionals are
given by

ĒLDA
x [ρ, ν] =

∫
ρ(r)εhomo

x (rs(r), η(r))dr, (33)

ĒLDA
c [ρ, ν] =

∫
ρ(r)εhomo

c (rs(r), η(r))dr, (34)

where εhomo
x (rs, η) and εhomo

c (rs, η) denote the exchange and
correlation energies of a homogeneous electron liquid applied
by a uniform magnetic field, respectively; rs and η are the
density parameter and the occupation factor of the lowest
Landau subband, respectively. εhomo

x (rs, η) and εhomo
c (rs, η)

have been calculated by Skudlarski and Vignale within the
random phase approximation (RPA) [43]. We used their results
in checking whether the LDA formulas satisfy Eqs. (21), (22),
(23), and (25).2

It is confirmed that the LDA formula of the CDFT fulfils
only Eq. (22) but not Eqs. (23) or (25). Meanwhile, the VEA
formula fulfils these three sum rules, as mentioned previ-
ously. This means that the VEA formula is more reasonable
than the LDA formula from the view point of sum rules
satisfied.

We also check whether the LDA, PBE-GGA, and LYP-
GGA formula of the conventional DFT satisfy four kinds of
sum rules. The results are summarized in Table II. Although the
LDA formula of the DFT satisfies Eqs. (21) and (22), it is not
straightforward to judge whether the formula satisfies Eqs. (23)
and (25). Actual densities are needed for these judgments. The
same is equally true for the PBE-GGA and LYP-GGA formula

2There are other LDA formulas that have been developed by
interpolating between the xc energy of a homogeneous electron gas
applied by the strong magnetic field and that in the zero-magnetic-
field limit [7,44–48]. In this article, we use the LDA formula proposed
by Skudlarski and Vignale [43].
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TABLE I. Sum rules that the VEA and the CDFT-LDA satisfy. Several sum rules cannot be judged to
determine whether they are fulfilled by the VEA and LDA formulas and are marked by a dash.

No. Sum rules CDFT-LDA VEA

1 Ex[ρλ, jpλ] = λEx[ρ, jp] Yes Yes
2 Ec[ρλ, jpλ] � λEc[ρ, jp], λ � 1 Yes Yes
3 Ec[ρλ, jpλ] � λEc[ρ, jp], λ � 1 Yes Yes
4 lim

λ→∞
Ec[ρx

λ , j x
pλ] = 0 – Yes

5 lim
λ→∞

λ Ec[ρx
λ , j x

pλ] = const – Yes

6 lim
λ→0

Ec[ρx
λ , j x

pλ] = 0 Yes Yes

7 lim
λ→0

λ−1Ec[ρx
λ , j x

pλ] = 0 No Yes

8 lim
λ→0

λ−2Ec[ρx
λ , j x

pλ] = const No Yes

9 lim
λ→∞

Ec[ρ
xy

λ λ, jxy

pλ λ] = 0 – Yes

10 lim
λ→∞

λ Ec[ρ
xy

λ λ, jxy

pλ λ] = const – Yes

11 lim
λ→0

Ec[ρ
xy

λ λ, jxy

pλ λ] = 0 Yes Yes

12 lim
λ→0

λ−1Ec[ρ
xy

λ λ, jxy

pλ λ] = 0 No Yes

13 lim
λ→0

λ−2Ec[ρ
xy

λ λ, jxy

pλ λ] = const No Yes

14 lim
λ→∞

Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = 0 – Yes

15 lim
λ→∞

λ Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = 0 – Yes

16 lim
λ→∞

λ 2Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = const – Yes

17 lim
λ→0

Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = 0 Yes Yes

18 lim
λ→0

λ−1Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = 0 No Yes

19 lim
λ→0

λ−2Ec[ρ
xyz

λ λ λ−1 , jxyz

pλ λ λ−1 ] = const No Yes

20 lim
λ→∞

Ec[ρ
z
λ, j z

pλ] = 0 No Yes

21 lim
λ→∞

λEc[ρ
z
λ, j z

pλ] = const No Yes

22 lim
λ→0

Ec[ρ
z
λ, j z

pλ] = 0 – Yes

23 lim
λ→0

λ−1Ec[ρ
z
λ, j z

pλ] = 0 – Yes

24 lim
λ→0

λ−2Ec[ρ
z
λ, j z

pλ] = const – Yes

25 lim
λ→∞

Ec[ρ
yz

λλ, jyz

pλλ] = 0 No Yes

26 lim
λ→∞

λEc[ρ
yz

λλ, jyz

pλλ] = const No Yes

27 lim
λ→0

Ec[ρ
yz

λλ, jyz

pλλ] = 0 – Yes

28 lim
λ→0

λ−1Ec[ρ
yz

λλ, jyz

pλλ] = 0 – Yes

29 lim
λ→0

λ−2Ec[ρ
yz

λλ, jyz

pλλ] = const – Yes

30 lim
λ→∞

Ec[ρ
xy

λλ−1 , j xy

pλλ−1 ] = 0 No Yes

31 lim
λ→∞

λEc[ρ
xy

λλ−1 , j xy

pλλ−1 ] = 0 No Yes

32 lim
λ→∞

λ2Ec[ρ
xy

λλ−1 , j xy

pλλ−1 ] = const No Yes

33 lim
λ→0

Ec[ρ
xy

λλ−1 , j xy

pλλ−1 ] = 0 No No

34 lim
λ→0

λ−1Ec[ρ
xy

λλ−1 , j xy

pλλ−1 ] = 0 No No

35 lim
λ→0

λ−2Ec[ρ
xy

λλ−1 , j xy

pλλ−1 ] = const No No

36 lim
λ→∞

Ec[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = 0 No No

37 lim
λ→∞

λEc[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = 0 No No

38 lim
λ→∞

λ2Ec[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = const No No

39 lim
λ→0

Ec[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = 0 No Yes

40 lim
λ→0

λ−1Ec[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = 0 No Yes

41 lim
λ→0

λ−2Ec[ρ
xy

λ−1λ
, jxy

pλ−1λ
] = const No Yes

42 lim
λ→∞

Ec[ρ
yz

λλ−1 , jyz

pλλ−1 ] = 0 No No

43 lim
λ→∞

λEc[ρ
yz

λλ−1 , jyz

pλλ−1 ] = 0 No No
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TABLE I. (Continued.)

No. Sum rules CDFT-LDA VEA

44 lim
λ→∞

λ2Ec[ρ
yz

λλ−1 , jyz

pλλ−1 ] = const No No

45 lim
λ→0

Ec[ρ
yz

λλ−1 , jyz

pλλ−1 ] = 0 No No

46 lim
λ→0

λ−1Ec[ρ
yz

λλ−1 , jyz

pλλ−1 ] = 0 No No

47 lim
λ→0

λ−2Ec[ρ
yz

λλ−1 , jyz

pλλ−1 ] = const No No

48 lim
λ→∞

Ec[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = 0 No Yes

49 lim
λ→∞

λEc[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = 0 No Yes

50 lim
λ→∞

λ2Ec[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = const No Yes

51 lim
λ→0

Ec[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = 0 – Yes

52 lim
λ→0

λ−1Ec[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = 0 – Yes

53 lim
λ→0

λ−2Ec[ρ
x yz

λ−1λλ
, j x yz

pλ−1λλ
] = const – Yes

54 lim
λ→∞

Ec[ρλ, jpλ] = const No Yes

55 lim
λ→∞

dEc[ρλ, jpλ]

dλ
= 2 lim

λ→∞
Ec[ρλ, jpλ]

λ
No Yes

56 lim
λ→∞

1

λ

dEc[ρλ, jpλ]

dλ
= lim

λ→∞
Ec[ρλ, jpλ]

λ2
Yes Yes

57
dEc[ρλ, jpλ]

dλ
� 2

Ec[ρλ, jpλ]

λ
+ U [ρ] + Ex[ρ, jp] – –

58
Ec[ρλ, jpλ]

λ
� dEc[ρλ, jpλ]

dλ
No Yes

59 −Ex[ρ, jp] − U [ρ] � Ec[ρλ, jpλ]

λ
– Yes

60
Ec[ρλ, jpλ]

λ
� (2 − λ)Ec[ρ, jp] + (1 − λ)

[
dEc[ρζ , jpζ ]

dζ

]
ζ=1

– –

of the DFT. It would be meaningful to develop the xc energy
functional that clearly satisfy not only Eqs. (21) and (22) but
also Eqs. (23) and (25).

B. Exhaustive checks of the VEA formula via a total
of sixty sum rules

In this section, we check the VEA and LDA formulas sys-
tematically by using a total of sixty sum rules. These sum rules
have been derived so far by several authors [1,2,9,10,29,30].
The results are summarized in Table I. In checking the
CDFT-LDA formula via sum rules 4 to 53, we assume that
the magnetic field is parallel to the x axis [9]. This assumption

TABLE II. Evaluation of the LDA, PBE, and LYP formulas of the
conventional DFT by means of four kinds of sum rules. Concerning
the latter two sum rules, we need actual densities to judge whether
they satisfy the sum rules, and these are marked by a dash.

LDA PBE LYP
Sum rules [41] [13] [42]

lim
λ→∞

dEc[ρλ]

dλ
= 2 lim

λ→∞
Ec[ρλ]

λ
Yes Yes Yes

lim
λ→∞

1

λ

dEc[ρλ]

dλ
= lim

λ→∞
Ec[ρλ]

λ2
Yes Yes Yes

dEc[ρλ]

dλ
� 2

Ec[ρλ]

λ
+ U [ρ] + Ex[ρ] – – –

Ec[ρλ]

λ
� dEc[ρλ]

dλ
– – –

is also utilized in checking the VEA formula via sum rules 30
to 47. It should be noted that sum rules 59 and 60, which were
originally derived in the conventional DFT by Levy [40], are
generalized to suitable ones for the VEA and LDA formulas of
the CDFT. It is confirmed that 77% of sum rules are fulfilled by
the VEA formula whereas only 12% of sum rules are fulfilled
by the LDA formula. The VEA formula satisfies many more
sum rules than the CDFT-LDA one. This trend is similar to
that of the previous section. Thus, the VEA formula has well-
behaved form in comparison with the CDFT-LDA formula.

At the end of this section, we give a brief comment on
twelve sum rules that are not satisfied by the VEA formula
(33–38, 42–47). Since the sum rule generally gets rid of the
difficulties that lead to unphysical results, we may expect that
the more sum rules the VEA formula fulfils, the better it works
for describing the ground-state properties of solids where the
orbital current is induced. It seems that these sum rules provide
a useful guideline for modifying the present VEA formula to
more sophisticated one.

IV. CONCLUDING REMARKS

We have derived four kinds of sum rules for the xc energy
functional of the ECS theory by means of the coordinate
scaling technique and the Hellmann-Feynman theorem. These
sum rules can be utilized in developing, modifying, and
evaluating the approximate form of the xc energy functional
of the ECS theory. As shown in Sec. II, two of them [Eqs. (21)
and (22)] can be related to the well-known virial theorem by
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taking a different limit of the scaling parameter.3 From this
point, these sum rules especially seem to be useful for the
above-mentioned aim.

As an application of these four sum rules, we have
evaluated the VEA and LDA formulas of the CDFT by using
them. The VEA formula is exactly satisfied by three of them.
We cannot judge at the present stage whether the remaining
one [Eq. (23)] is fulfilled by the VEA formula. This is because
the actual profiles of the electron density and vorticity are
indispensable for the check. On the other hand, the LDA
formula of the CDFT is satisfied with only one of four sum
rules. This tendency such that the VEA formula fulfils many
more sum rules than the CDFT-LDA formula can also be seen
for other checks using a total of sixty sum rules, which are
shown in Table I. Thus, we can say that the VEA formula
would be better behaved than the CDFT-LDA formula.

Finally, we would like to emphasize that the kinds of sum
rules derived here might be useful also in the field of the
conventional DFT, as mentioned in Sec. III A.
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APPENDIX A: PROOF OF EQ. (8)

In this appendix, we give the proof of Eq. (8). Since
�α[ρ, X] is defined as the minimizing wave function in Eq. (3),
�α[ρ, X] obeys the following equation:{

T̂ +αŴ +
∫

vα[ρ, X](r)ρ̂(r)dr+
∫

aα[ρ, X](r) · X̂(r)dr
}

×�α[ρ, X](r1, . . . , rN ) = Eα�α[ρ, X](r1, . . . , rN ),

(A1)

where Eα , vα[ρ, X](r) and aα[ρ, X](r) denote the Lagrange
multipliers that correspond to constraints on �α[ρ, X], that
is, �α[ρ, X] is normalized to unity and yields ρ(r) and X(r).
We transform Eq. (A1) by the coordinate scaling of electrons
such that ri → λ−1ri . By the transformation, T̂ , Ŵ , and ρ̂(r)
are changed into T̂ /λ2, Ŵ/λ, and ρ̂(r/λ)/λ3, respectively.
Concerning X̂(r), we assume that X̂(r) is transformed into
X̂(r/λ)/λd , where d is a real number. For the illustrative case
where X̂(r) corresponds to the paramagnetic current density,
d is shown to be 4. By the coordinate scaling, Eq. (A1) is
transformed into{
T̂ +αλŴ +

∫
λ2vα[ρ, X](λr)ρ̂(r)dr

+
∫

λ5−daα[ρ, X](λr) · X̂(r)dr
}

×�α[ρ, X](λr1, . . . , λrN ) = λ2Eα�α[ρ, X](λr1, . . . , λrN ).

(A2)

3Of course, the derivation of the virial theorem via Eqs. (11) and
(18) is not obvious and is different from the previous derivation [10].
Equation (18) itself is derived in this article.

With use of Eq. (4), Eq. (A2) becomes
{
T̂ +αλŴ +

∫
λ2vα[ρ, X](λr)ρ̂(r)dr

+
∫

λ5−daα[ρ, X](λr) · X̂(r)dr
}

×�λ
α [ρ, X](r1, . . . , rN ) = λ2Eα�λ

α [ρ, X](r1, . . . , rN ).

(A3)

On the other hand, since �αλ[ρλ, Xλ] is defined as the
minimizing wave function in Eq. (7), �αλ[ρλ, Xλ] obeys the
following equation:

{
T̂ +αλŴ +

∫
vαλ(ρλ, Xλ)(r)ρ̂(r)dr

+
∫

aαλ(ρλ, Xλ)(r) · X̂(r)dr
}

×�αλ[ρλ, Xλ](r1, . . . , rN ) = Eαλ�αλ[ρλ, Xλ](r1, . . . , rN ),

(A4)

where Eαλ, vαλ[ρλ, Xλ](r) and aαλ[ρλ, Xλ](r) are the Lagrange
multipliers that correspond to constraints on �αλ[ρλ, Xλ],
that is, �αλ[ρλ, Xλ] is normalized to unity and yields ρλ(r)
and Xλ(r). Here we consider the solution of Eq. (A4). The
solution and potentials of Eq. (A4) should be determined in
a self-consistent way. Namely, the potentials vαλ[ρλ, Xλ](r)
and aαλ[ρλ, Xλ](r) are determined by requiring that the
solution �αλ[ρλ, Xλ] is normalized and yields both ρλ(r)
and Xλ(r). If we choose the potentials as λ2vα[ρ, X](λr)
and λ5−daα[ρ, X](λr), then the corresponding solution is
immediately given by �λ

α [ρ, X] from Eq. (A3). As shown
in Eqs. (5) and (6), �λ

α [ρ, X] is normalized and yields both
ρλ(r) and Xλ(r). Therefore, the solution of Eq. (A4), that is,
�αλ[ρλ, Xλ], can be equal to �λ

α [ρ, X].

APPENDIX B: PROOF THAT EQ. (17) IS REDUCED TO THE
VIRIAL THEORUM IN THE LIMIT OF λ = 1

In this appendix, we show that Eq. (17) is reduced to the
virial theorem in the limit of λ = 1. By substituting λ = 1 into
Eq. (17) and using Eq. (2), we have

dEc[ρλ, Xλ]

dλ

∣∣∣∣
λ=1

= T [ρ, X] − Ts[ρ, X] + Ec[ρ, X], (B1)

where T [ρ, X] is defined as 〈�[ρ, X]|T̂ |�[ρ, X]〉. On the
other hand, the left-hand side of Eq. (B1) can be rewritten by

dEc[ρλ, Xλ]

dλ

∣∣∣∣
λ=1

=
[∫

∂ρλ(r)

∂λ

δEc[ρλ, Xλ]

δρλ(r)
dr

+
∫

∂Xλ(r)

∂λ
· δEc[ρλ, Xλ]

δXλ(r)
dr

]
λ=1

(B2)

042505-7



M. HIGUCHI AND K. HIGUCHI PHYSICAL REVIEW A 81, 042505 (2010)

If we assume that Xλ(r) = λdX(λr) and neglect integrals over
an infinitely distant surface, then we get the following relation:

dEc[ρλ, Xλ]

dλ

∣∣∣∣
λ=1

= −
∫

ρ(r)r · ∇
[
δEc[ρ, X]

δρ(r)

]
dr

−
∫

X(r) ·
[
(r · ∇−d + 3)

δEc[ρ, X]

δX(r)

]
dr.

(B3)

Substituting Eq. (B3) into Eq. (B1), we obtain the virial
theorem [10]:

T [ρ, X] − Ts[ρ, X] + Ec[ρ, X]

= −
∫

ρ(r)r · ∇
[
δEc[ρ, X]

δρ(r)

]
dr

−
∫

X(r) ·
[

(r · ∇ − d + 3)
δEc[ρ, X]

δX(r)

]
dr.
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