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Abstract 

Landslide susceptibility maps are vital for disaster management and for plan- ning development 
activities in the mountainous country like Nepal. In the present study, landslide susceptibility 
assessment of Mugling–Narayanghat road and its surrounding area is made using bivariate 
(certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a 
landslide inventory map was prepared using earlier reports and aerial photographs as well as by 
carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75 %) 
were randomly selected for building landslide susceptibility models, while the remaining 80 
(25 %) were used for validating the models. The effectiveness of landslide susceptibility 
assessment using GIS and statistics is based on appropriate selection of the factors which play a 
dominant role in slope stability. In this case study, the following landslide conditioning factors 
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were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; 
distance from faults, rivers and roads; topographic wetness index; stream power index; and 
sediment transport index. These factors were prepared from topographic map, drainage map, 
road map, and the geological map. Finally, the validation of landslide susceptibility map was 
carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation 
results showed that the susceptibility map using index of entropy model with AUC value of 
0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps produced 
using logistic regression model and certainty factor model showed 86.29 and 83.57 % of 
prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all 
the three models performed more than 80 % accuracy (i.e. 89.15 % for IOE model, 89.10 % for 
LR model and 87.21 % for CF model). Hence, it is concluded that all the models employed in 
this study showed reasonably good accuracy in predicting the landslide susceptibility of 
Mugling–Narayanghat road section. These landslide suscepti- bility maps can be used for 
preliminary land use planning and hazard mitigation purpose. 
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1 Introduction 

Nepal lies at the center of 2,400-km-long Himalayan mountain range, which is one of the 

tectonically most active zones on earth. Among the various land degradation process prevalent in 

the Himalaya, landslides are one of the most significant phenomena (Ahmad and Joshi 2010) as 

this region is tectonically very unstable with rugged topography, unstable geological structures, 

soft and fragile rocks, common earthquakes, along with heavy and prolonged rainfalls during 

monsoon periods (Deoja et al. 1991; Dhital 2000; DPTC 1996). The study of landslides has 

drawn worldwide attention mainly due to increasing awareness of its socio-economic impact as 

well as the increasing pressure of urbanization on the mountain environment (Aleotti and 

Chowdhury 1999). In Nepal, a significant number of landslides occur each year (as many as 

12,000). The impact of artificial structures and human interventions on mountain slopes followed 

by expansion of agricultural land and watershed management and overgrazing has compounded 

the land- slide disaster problem in the country (Rajbhandari et al. 2002).  
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The Mugling–Narayanghat road is one of the vital links of the strategic road network in Nepal. 

About two-thirds of the highway runs through the right bank of the Trishuli River, and hence, it 

is vulnerable both to toe cutting by the river and debris deposition by cross drains (Adhikari 

2009). This road corridor was severely affected by an extreme rainfall of July 29–30, 2003. The 

24-h accumulated rainfall recorded at Bharatpur and Devghat stations was 364 mm and 446 mm, 

respectively (Adhikari 2009). The incessant and intense rainfall was the causative factor to 

trigger numerous slides and slope failures along the road section and its surrounding areas. This 

situation was further worsened during the monsoon of 2006, blocking the traffic for several 

weeks (DWIDP 2009). To minimize the losses of human life and economic value, potential 

landslide-prone areas should, therefore, be identified. In this respect, landslide susceptibility 

assessment can provide valuable information essential for hazard mitigation through proper 

project planning and implementation.  

Landslide susceptibility is the likelihood of a landslide occurrence in an area on the basis of local 

terrain conditions (Brabb 1984). It is the degree to which a terrain can be affected by slope 

movements, that is, an estimate of ‘‘where’’ landslides are likely to occur. The advent of remote 

sensing and GIS has made the landslide susceptibility mapping easier these days (Jia et al. 2010; 

Karimi Nasab et al. 2010; Bednarik et al. 2012; Wang et al. 2011; Pradhan et al. 2011). Different 

methods to prepare landslide susceptibility and hazard maps using statistical methods and GIS 

tools were developed in the last decade (Van Westen et al. 2003; Guzzetti et al. 2005). The most 

common approaches proposed in the literature are bivariate (Chung and Fabbri 1999; Saha et al. 

2005; Pradhan et al. 2006; Magliulo et al. 2008; Pareek et al. 2010; Pradhan and Youssef 2010; 

Bednarik et al. 2010) and multivariate (Akgűn et al. 2011; Ayalew and Yamagishi 2005; Can et 

al. 2005; Lee et al. 2007; Gorum et al. 2008; Nefeslioglu et al. 2008; Pradhan 2010a; Pradhan et 
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al. 2008; Tunusluoglu et al. 2008; Pradhan and Lee 2010c; Oh et al. 2011; Choi et al. 2012), 

statistical techniques such as the logistic regression (LR). Other different methods have been 

proposed by several investigators, including weights-of-evidence methods (Bonham-Carter1991; 

Neuhäuser and Terhorst 2007; Pradhan et al. 2010d; Regmi et al. 2010a; Pourghasemi et al. 

2012a, b), modified Bayesian estimation (Chung and Fabbri 1999), weighting factors, weighted 

linear combinations of instability factors (Ayalew et al. 2004), landside nominal risk factors 

(Saha et al. 2005), probabilistic-based frequency ratio model (Chung and Fabbri 2003, 2005; Lee 

and Pradhan 2006, 2007; Akgűn et al. 2008; Pradhan et al. 2010c 2011, 2012), certainty factors 

(Pourghasemi et al. 2012a), information values (Saha et al. 2005), modified Bayesian estimation 

(Chung and Fabbri 1999). Among recent models for landslide susceptibility mapping, soft 

computing techniques such as neuro-fuzzy (Sezer et al. 2011; Vahidnia et al. 2010; Oh and 

Pradhan 2011), artificial neural networks (Bui et al. 2012a; Lee et al. 2007; Pradhan and Lee 

2009, 2010a, b; Pradhan et al. 2010a, b, d; Pradhan and Buchroithner 2010; Pradhan and Pirasteh 

2010; Pradhan2011a; Poudyalet al.2010; Yilmaz 2009a, b, 2010a,b; Choiet al.2012; Zarea et al. 

2012), fuzzy-logic (Akgu ¨n et al. 2012; Bui et al. 2012b; Ercanoglu and Gokceoglu 2002; 

Kanungo et al. 2008; Pradhan 2010b, 2010c, 2011b; Pradhan et al. 2009; Pourghasemi et al. 

2012c) can be seen in the literature. Additionally, there exists some other data mining techniques 

such as support vector machine (SVM) (Bui et al. 2012c; Brenning 2005; Yilmaz 2010a), 

decision tree methods (Saito et al. 2009; Nefeslioglu et al. 2010), spatial decision support system 

(SDSS) (Wan 2009), spatial multi-criteria evaluation (SMCE) (Pourghasemi et al. 2012d), index 

of entropy (Bednarik et al. 2010; Constantin et al. 2011; Pourghasemi et al. 2012e), evidential 

belief function (EBF) (Althuwaynee et al. 2012), etc. to evaluate the landslide susceptibility, to 

overcome shortcomings in the above-mentioned methods. 
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The aim of this paper is to produce landslide susceptibility map of Mugling–Narayanghat road 

corridor using two bivariate statistical models [certainty factor (CF), index of entropy (IOE)] and 

one multivariate statistical model [logistic regression (LR)]. These models exploit information 

obtained from the inventory map to predict where landslides may occur in future. These models 

are tested, and the results are discussed. In literature, various bivariate and multivariate 

approaches for landslide susceptibility exist. However, a comparison of these approaches is not 

commonly encountered. This contribution provides originality to this study. 

2 The study area 

The 36-km-long Mugling–Narayanghat road is located in a mountainous terrain of Central Nepal, 

in the Chitwan District of the Narayani Zone. The study area (longitude 84°26′00″ E to 

84°34′30″ E and latitude 27°51′30″ N to 27°45′30″ N) falls within the topographical map 2784-

03C (Mugling) and 2784-02D (Jugedi Bajar) and covers an area of about 65 km2 (Fig. 1). The 

minimum and maximum altitudes of the area vary from 200 m at Jugedi Bajar and 1,380 m in the 

vicinity of Mulethumki and Chaur.  

Brunsden et al. (1975) were one of the first to develop a geomorphological map of a road 

corridor in Nepal. Kojan (1978) studied the landslide problems along the Godavari–Dandeldhura 

road. He identified the main hazardous areas along the road section and recommended various 

methods of slope stabilization. Wagner (1981) was the first to prepare a landslide and gully 

erosion hazard map based on field observation in Nepal. Many researchers tried to establish 

linkage between landslides and human activities (Gerrard 1994). In Himalayas, this link forms a 

major component of what is known as Himalayan Environmental Degradation Theory (Ives and 

Messerli 1981). From the airborne survey of Nepal, Laban (1979) concluded that geological 

structure and lithology accounted for more than 70 % of landslides occurrences in this region. 
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Deoja et al. (1991) further developed this method and proposed various ratings for attributes 

such as rock type, soil type, slope angle, relative relief, groundwater, surface hydrology, folds, 

and faults. The first detailed landslide hazard mapping was carried out along the Tulsipur–

Sallyan, Ghorahi–Piuthan, and Piuthan– Libang roads of mid-west Nepal (DoR/USAID 1986). 

These maps were derived from engineering geological maps of the road alignment on a scale of 

1:5,000, aerial photo interpretation, and kinematic analysis of joints. Feasibility- and detailed-

stage landslide hazard mappings were carried out along the Baitadi–Darchula road alignment in 

far west Nepal (Dhital et al. 1991). According to Shroder and Bishop (1998), landslides in the 

Himalaya are scale-dependent and range from massive extent of a whole mountain range (gravity 

tectonics) through the failure of single peaks to very minor slope failures. Gerrard and Gardner 

(2000a, b) suggested that there is a clear anthropogenic influence in the occurrence of landslides 

in the mountainous areas of Nepal. Recently, many researchers have applied various GIS-based 

statistical techniques in the landslide susceptibility mapping in various parts of Nepal Himalaya 

(Dhital et al. 2006; Dahal et al. 2008, 2012; Poudyal et al. 2010; Regmi et al. 2010b; Dhakal et al. 

2000). Some work has been done on the role of rock weathering and clay minerals in landslide 

formation in Nepal Himalaya (Regmi et al. 2012 and Hasegawa et al. 2009). Rainfall threshold 

for landslides in certain part of Nepal was calculated by Dahal and Hasegawa (2008). Petley et al. 

(2006) analyzed a database of landslide fatalities in Nepal from 1978 to 2005 and found that 

there is a high level of variability in the occurrence of landslides from year to year, but its overall 

trend is increasing. 

3 Geological and Morphological Setting 

The Mugling–Narayanghat road passes through the Precambrian Lesser Himalayan rocks of the 

Nawakot Complex (Stőcklin and Bhattarai 1978; Stőcklin 1980), the Miocene Siwaliks and 
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Holocene alluvial deposits (Fig. 2). The Nawakot Complex is divided into the Lower Nawakot 

Group and Upper Nawakot Group, and along this road section, the rocks from both the groups 

are observed. The main rock types are mudstones, sandstones, limestones, dolomites, slates, 

phyllites, quartzites, and amphibolites. A majority of instabilities were observed within the 

Nourpul Formation. The Kuncha Formation, Fagfog Quartzite, Dandagaun Phyllite, Nourpul 

Formation, and Dhading Dolomite are from the Lower Nawakot Group, while Benighat Slates 

represents the Upper Nawakot Group. The Purebesi Quartzite Member is a distinct quartzite zone, 

overlying the phyllites of the Dandagaun Formation, and forms the basal part of the Nourpul 

Formation. Apart from this, some amphibolite bands are also observed within the Nourpul 

Formation. The Siwalik Group in the study area consists of the Lower Siwaliks and Middle 

Siwaliks (Ganser 1964). The Holocene deposits consist of river terraces of different ages. The 

main rock types are mudstones, sandstones, limestones, dolomites, slates, phyllites, quartzites, 

and amphibolites. Majority of instabilities were observed within Nourpul Formation rocks. The 

main geological structures that demarcate the study area are the Main Boundary Thrust (MBT), 

Jugadi Thrust (JT), Kamalpur Thrust (KT), Simaltal Thrust (ST), and Virkuna Thrust (VT). All 

the thrusts are trending in east–west direction. The MBT is a major fault separating the Lesser 

Himalaya to the north from the Siwaliks to the South (Fig. 2).   

The highway between km 23 and km 28 lies within this thrust zone, where thick colluviums and 

plenty of seepage are observed. Geomorphologically, Nepal is divided into the following eight 

units running east–west: the Terai, Churia Range, Dun Valley, Mahabharat Range, Midland, 

Fore Himalaya, Higher Himalaya, Inner and Trans Himalaya (Hagen 1969) and the Mugling–

Narayanghat road lies within the Mahabharat Range, Churia Range, and Dun Valley. The 

southernmost tableland belongs to the Dun Valley and is covered by various alluvial deposits. 
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Here, the slope is gentle and the elevation is subdued. As the alluvium covers most of the 

Siwaliks composing the Churia Range, they are exposed only on the riverbanks, where the 

stream erosion is intense. Most of the study area belongs to the Mahabharat Range, which lies to 

the north of the Churia Range and consists of higher mountains with steeper slopes. 

4 Landslide inventory map 

Understanding the role of individual factors controlling landslide location, geographical pattern, 

and spatial density is important to predict where landslides can occur in the future, that is, to 

ascertain landslide susceptibility (Varnes 1984; Soeters and Van Westen 1996; Guzzetti et al. 

1999, 2005). A landslide inventory map is one that identifies the definite location of the existing 

landslides along with its type and the time of occurrence (Wieczorek 1984; Einstein 1988; 

Soeters and van Westen 1996). The first step in landslide susceptibility assessments is to acquire 

information about the landslides that have occurred in the past. This stage is considered as the 

fundamental part of the landslide hazard studies (Guzzetti et al. 1999; Ercanoglu and Gokceoglu 

2004). Since landslide occurrences in the past and present are keys to spatial prediction in future 

(Guzzetti et al. 1999), a landslide inventory map is a prerequisite for such a study. A landslide 

inventory map provides the basic information for evaluating landslide hazards or risk. Accurate 

detection of the location of landslides is very important for probabilistic landslide susceptibility 

analysis. The landslides on the Mugling–Narayanghat road were identified from the 

interpretation of aerial photographs (taken after the monsoon of 2003), satellite images and were 

verified in the field. In total, 321 landslides were mapped (Fig. 1) and subsequently digitized for 

further analysis. The mapped landslides cover an area of 2.05 km2, which constitutes 3.15 % of 

the entire study area, where the dominant failure is of rotational type (Fig. 3). Rock falls, debris 

flow, and topples are also observed along the highway (Fig. 3). From these landslides, 241 
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(75 %) randomly selected instabilities were taken for making land- slide susceptibility models 

and 80 (25 %) were used for validating the models. 

5 Landslide conditioning factors 

The factors controlling instabilities considered in the present study are slope gradient, slope 

aspect, plan curvature, altitude, stream power index (SPI), topographic wetness index (TWI), 

stream sediment transport index (STI), geology, land use, distance from faults, distance from 

rivers, and distance from roads. A short description of each thematic map is given below. The 

geomorphic factors like slope gradient, slope aspect, plan curvature, altitude, SPI, TWI, and SPI 

were obtained from the DEM produced by the topographic map of 1:25,000 scale provided by 

the Department of Survey, Nepal. The land use map was also provided by the Department of 

Survey, Nepal. Geological map was prepared in the field based on the geological map of Central 

Nepal (Stőcklin and Bhattarai 1978; Stőcklin 1980). The geological maps were also useful for 

the delineation of major faults in the study area. The distance from rivers and the distance from 

roads maps were produced, respectively, from the drainage map and the topographic map using 

ArcGIS 9.3. Brief description of each thematic map used in the present study is given below. 

5.1. Slope gradient 

The slope gradient is one of the most important factors that influence slope stability (Bednarik et 

al. 2009). In general, stability of slope is the interplay of slope angle with material properties 

such as friction angle, permeability, and cohesion. Slope gradient map was derived from DEM of 

20 9 20 (m) grid size. The original slope angle values vary between 0° and 79.54°, and the values 

were reclassified into 5 categories (Fig. 4a) which are most widely used subdivisions in Nepal 

and other southeast Asian countries (Pradhan and Lee 2010a; Dhital et al. 2006; Saha et al. 2005).  

5.2 Slope aspect 
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The slope aspect or the direction of maximum slope of the terrain surface is divided into nine 

classes (Fig. 4b). Although the relation between the aspect and the mass movement has been 

investigated for a long time, no general decision could have been given regarding the aspect–

landslide relationship (Ercanoglu et al. 2004). However, it is emphasized that the aspect is one of 

the significant factors producing the landslide susceptibility maps (Lee et al. 2004. Physically, 

the aspect is related to the parameters such as the orientation of discontinuities controlling 

landslides, precipitation, wind impact, and exposition to sun- light (Ercanoglu et al. 2004). 

5.3 Plan curvature 

The curvature values represent the morphology of the topography (Lee and Min 2001; Lee et al. 

2004; Erener and Dűzgűn 2010). The curvature maps (Fig. 4c) were obtained from the second 

derivative of the surface. 

5.4 Altitude 

Altitude is another frequently used parameter for landslide susceptibility studies. It is stated that 

the landslides have more tendency to occur at higher elevations (Ercanoglu et al. 2004). In the 

study area, the elevation ranges between 200 and 1,380 m. The elevation values were divided 

into eight categories with an interval of 150 m. (Fig. 4d). 

5.5 Stream power index (SPI) 

SPI measures the erosion power of the stream and is also considered as a factor contributing 

toward stability within the study area. The SPI can be defined as (Moore and Grayson 1991): 

ܫܲܵ ൌ ௦ܣ tanߚ              ሺ1ሻ 

where As is the specific catchment area and β is the local slope gradient measured in degrees. In 

the present study, SPI is divided into 4 classes (Fig. 4e). 
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5.6 Topographic wetness index (TWI) 

The topographic wetness index (TWI), which combines local upslope contributing area and the 

entire slope, is commonly used to quantify topographic control on hydrological processes. It is 

expressed as: 

ܫܹܶ ൌ ln ൬
ܽ

tanߚ൰            ሺ2ሻ 

where a is the cumulative upslope area draining through a point (per unit contour length) and 

tanβ is the slope angle at the point. It affects the spatial distribution of soil moisture, and the 

groundwater flow often follows surface topography. In this study, TWI was considered as 

another contributing factor (Fig. 4f). 

5.7 Sediment transport index (STI) 

The sediment transport index (STI) characterizes the process of erosion and deposition. In the 

present study, STI is divided into 4 classes (Fig. 4g). 

5.8 Land use map 

Land use also plays a significant role in the stability of slope. The land covered by forest 

regulates continuous water flow and water infiltrates regularly, whereas the cultivated land 

affects the slope stability due to saturation of covered soil. Based on field observations and 

mapping, the following nine classes are considered: cutting, cultivation, forest, orchard, grass, 

bush, sand barren, and river (Fig. 4k). Bush (37 %) covers the highest amount of area followed 

by cutting (31 %) and cultivation lands (29 %). 

5.9 Lithology 
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Lithology plays an important role in landslide susceptibility studies because different geological 

units have different susceptibilities to active geomorphic processes of the Himalaya (Pradhan et 

al. 2006). The sediments and rocks in this watershed belong to Holocence alluvial deposits, 

Miocene Siwaliks, and Precambrian Lesser Himalaya and consist of sandstone, siltstone, 

mudstone, conglomerate, limestone, dolomite, slate, phyllite, quartzite, and amphibolites (Fig. 2). 

5.10 Distance from faults 

Faults are the tectonic breaks that usually decrease the rock strength. These dislocations are 

responsible for triggering a large number of landslides on the Mugling–Narayanghat road. Fault 

lines were derived from the geological map of the region. In the present study, the distance from 

fault map was reclassified into 6 divisions (Fig. 4j). 

5.11 Distance from rivers 

Runoff plays an important role as a triggering factor for landslides. On the basis of rivers and 

streams, a map of proximity to drainage was generated using Arc GIS 9.3. In the present study, 

the distance from river map is divided into 5 categories (4 h). 

5.12 Distance from roads 

The roads built on the slopes cause the loss of toe support. The change of the topography and the 

loss of support lead to the increase of strain behind the slope and the development of cracks. 

Instabilities occur in the slope because of the negative effects such as water infiltration afterward. 

Also, a given road segment may act as a barrier, a net source, a net sink or a corridor for water 

flow, and depending on its location in the area, it usually serves as a source of landslides 

(Pradhan et al. 2010a). The detail road network map provided by the Department of Survey, 

Nepal, was used to generate the distance from roads map (Fig. 4i). 
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6 Modeling approach 

6.1 Certainty factor model 

Certainty Factor (CF) is a model that has been applied by different researchers in landslide 

susceptibility mapping (Kanungo et al. 2011; Go ¨kc¸eoluetal. 2005). The CF approach is one of 

the possible proposed favorability functions to handle the problem of combining different data 

layers and the heterogeneity and uncertainty of the input data. The certainty factors (CF) are 

given by the following equation: 

௜௝ܨܥ ൌ

ە
ۖ
۔

ۖ
ۓ ௜݂௝ െ ݂

௜݂௝ ሺ1 െ ݂ሻ    ݂݅  ௜݂௝ ൒ ݂

௜݂௝ െ ݂
݂ሺ1 െ ௜݂௝ሻ

   ݂݅  ௜݂௝ ൑ ݂
                ሺ3ሻ 

where CFij is the certainty factor given to a certain class i of parameter j. fij is the conditional 

probability having a number of landslide event occurring in class i of parameter j and f is the 

prior probability having total number of landslide event occurring in the study area. 

The value of the certainty factor ranges between -1 and +1. The minimum -1 means definitely 

false and +1 means definitely true. A positive value means an increasing certainty in landslide 

occurrence, while a negative value corresponds to a decreasing certainty in landslide occurrence. 

A value close to 0 means that the prior probability is very similar to the conditional one; hence, it 

is difficult to give any indication about the certainty of the landslide occurrence (Pourghasemi et 

al. 2012e). 

The CF values for all the condition factors were calculated by overlying landslides with the 

parameter class, that is, by calculating the landslide density and the CF values of all the layers 

using Eq. 3. Next, the CF values of the landslide conditioning factors were used for creating 

various CF layers (Table 1). Then, the calculated CF layers were combined pairwise. The 
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combination of two CF values, X and Y, due to two different layers of information, is expressed 

as Z in Eq. 4, given below: 

ܼ ൌ ቐ
ܺ ൅ ܻ െ ܻܺ                          ܺ, ܻ ൒ 0                      

௑ା௒
ଵି୫୧୬ሺ|௑|,|௒|ሻ

                        ܺ, ݊݃݅ݏ ݁ݐ݅ݏ݋݌݌ ܱ ܻ
ܺ ൅ ܻ ൅ ܻܺ                         ܺ, ܻ ൏ 0                   

  (4) 

The pairwise combination is performed repeatedly until all the CF layers are added to obtain the 

landslide susceptibility index (LSI). To make the results easier to interpret, the LSI values are 

grouped into susceptibility classes to create landslide susceptibility zonation map for the study 

area. Several authors have applied various methods for dividing the LSI map. In this study, 

natural break classification method (Constantin et al. 2011; Xu et al. 2012) was used to divide the 

interval into four classes and a susceptibility map was prepared. Subsequently, the same 

classification approach was used for index of entropy and logistic regression models. 

6.2 Index of entropy model 

The second model used for evaluating the landslide susceptibility in the present study is the 

bivariate index of entropy model (Van Westen 2004). The method is based on the principle of 

bivariate analysis, where the density of landslides within a certain parameter is deter- mined. 

This approach allows calculation of the weight for each input variable. In the present model, the 

weighting process is based on the methodology proposed by Vlcko et al. (1980). The weight 

value for each parameter taken separately is expressed as an entropy index.  

The weight parameter was obtained from the defined level of entropy representing the 

approximation to normal distribution of the probability. The entropy index indicates the extent of 

disorder in the environment. It also expresses which parameters in a natural environment are 

most relevant for the development of mass movements (Bednarik et al. 2010). The equations 
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used to calculate the information coefficient Wj representing the weight value for the parameter 

as a whole are: 

௜ܲ௝ ൌ
௦ௗܣ
௧ܣ

          ሺ5ሻ 

൫ ௜ܲ௝൯ ൌ
௜ܲ௝

∑ ௜ܲ௝
ௌೕ
௝ୀଵ

      ሺ6ሻ 

Here, ܪ௝ ܽ݊݀ ܪ௝ ௠௔௫ are the entropy values (Eqs. 7 and 8) and they are written as; 

௝ܪ ൌ–෍ሺ ௜ܲ௝ሻ logଶ൫ ௜ܲ௝൯,       ݆ ൌ 1,…… . . , ݊             ሺ7ሻ

ௌೕ

௜ୀଵ

 

௝ ௠௔௫ܪ ൌ logଶ  ሺ8ሻ                ݏ݁ݏݏ݈ܽܿ ݂݋ ݎܾ݁݊ݑ݉ ݄݁ݐ ݏ݅ ௝ݏ           ,௝ݏ

௝ܫ is the information coefficient (Eq. 9) and ௝ܹ  represents the resultant weight value for the 

parameter as a whole (Eq. 10).  

௝ܫ ൌ
௝௠௔௫ܪ െ ௝ܪ
௝௠௔௫ܪ

                       ሺ9ሻ 

௝ܹ ൌ ௝ܫ ൈ ௝ܲ                  ሺ10ሻ 

The result varies from 0 – 1. The closer the value is to the number 1, the greater the instability is.  

Here, ௝ܲ  is the slope failure probability for (j=1... n). The complete calculation of weight 

determination for individual parameters is presented in Table 2. The final susceptibility value is 

expressed by the sum of all parameter classes, ranked according to the calculated landslide 

density for each class. It is expressed as; 

ݕ ൌ෍
ݖ
݉௜

ൈ ܥ ൈ ௝ܹ          ሺ11ሻ
௡

௜ୀଵ
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where y is the sum of all the classes; i is the number of particular parametric map (1,2, ...n); z is 

the number of classes within parametric map with the greatest number of classes;  ݉௜  is the 

number of classes within particular parametric map; C is the value of the class after secondary 

classification and ௝ܹ is the weight of a parameter. 

6.3 Logistic regression model 

Logistic regression allows forming a multivariate regression relation between a dependent 

variable and several independent variables. The dependent variable is dichotomous, while the 

independent variable can be interval, dichotomous, or categorical (Atkinson and Massari 1998). 

In the present situation, the dependent variable is a binary variable representing the presence or 

absence of landslides. The logistic model can be expressed in its simplest form as: 

p ൌ
exp ሺzሻ

ሺ1 ൅ exp ሺzሻ
               ሺ12ሻ 

where p is the probability of an event (landslide) occurrence, which varies from 0 to 1 on an s-

shaped curve; z is defined as the following equation (linear logistic model), and its value varies 

from − ∞ to +∞: 

Z ൌ β଴ ൅ βଵXଵ ൅ βଶXଶ൅. . . ൅β୬X୬                               ሺ13ሻ 

where 0 represents the intercept of model, 1;2;... ;n the partial regression coefficients, X1; X2; ...; 

Xn represent the independent variables. The logistic regression model involves fitting of Eq. 13 

to the data and then expressing the probability of the presence/absence of landslides in each 

mapping unit. The relative contribution of each mapping unit to the logistic function can be 

obtained by looking at the significance of each regression parameter. The logistic regression 

analysis was performed using the SPSS statistical software. Firstly, all the conditioning factors 
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and landslides were converted into grid format, and then, these grid maps are converted into 

ACSII data format (Acronym for the American Standard Code for Information Interchange). The 

ASCII data of each map was exported to SPSS, and then the logistic regression model was run to 

obtain the coefficients of the landslide conditioning factors. 

7 Results and discussion 

7.1 Certainty factor (CF) model 

The correlation between the location of landslides and the landslide conditioning factors was 

performed. The final landslide susceptibility map obtained by CF model is shown in Fig. 5. The 

CF values were reckoned for all conditioning factors by overlaying and calculating the landslide 

frequency (Table 1). Then, the CF values of twelve landslide conditioning factors were 

determined using Eq. 3. The results of spatial relationship between landslide and conditioning 

factors using CF model are given in Table 1.  

The slope class 35°–45° has the highest value of CF (0.31) followed by 25°–35° class (0.26). 

The lowest value of CF (-0.82) is for slope class 0°–15°. From this, it is clear that the landslide 

occurrence increases by the increase in slope gradient up to a certain extent, and then, it 

decreases. Few landslides occur on a very gentle slope and the landslide occurrence decreases as 

the slope becomes higher than 45                                                . In the case of slope aspect, the 

CF value is positive for east to southwest-facing slope facing, with the maximum value (0.42) at 

southeast-facing slope followed by south-facing (0.37) slope. The north-facing slopes are less 

prone to landslides as they have negative CF value. The CF values of altitude show that they are 

positive for the ranges of <350, 350–500, 500–650, 650–800, with the highest value (0.29) for 

the altitude ranging between 350 and 500 m. The CF value decreases with both the increase and 

decrease in altitude. It becomes negative after 800 m. This shows that the probability of landslide 
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occurrence decreases as the altitude becomes higher than 800 m. In the case of curvature, the CF 

value is positive (0.03) only on concave slopes. The convex and flat slopes are not responsible 

for landslide hazard in this area. For the geology, it can be seen that the Middle Siwaliks (CF = 

0.9), Lower Siwaliks (CF = 0.63), Purebesi Quartzite (CF = 0.28), alluvial deposits (CF = 0.26), 

and amphibolites (CF = 0.07) are found to be more susceptible to sliding (Table 1). In the case of 

land use, positive value of CF is seen only on cultivation land. This may be due to the unplanned 

excavation of slope during agricultural activities, as well as due to the increase in moisture 

content during the irrigation process. In the case of distance from faults, the intervals 100–200, 

200–300, 300–400, and 400–500 m have weights (CF) of 0.2, 0.08, 0.11 and 0.654, respectively. 

The influence of drainage system upon the landslide susceptibility was also analyzed by 

identifying the drainage river line by buffering. The distance range of 0–50 m (0.17) has the 

highest CF value, followed by 0–100 m (0.002). This indicates that the landslide occurrence 

decreases with the increase in distance from the river. In the case of distance form roads, the 

intervals 150–200 (0.23) and 200–250 (0.33) have higher CF values, that is, the landslide 

susceptibility is higher in these ranges. The relation between TWI landslide probabilities showed 

that 0–8 class has the highest value of CF (0.12), and for SPI, the class of 150–300 shows a high 

CF value (0.24). Similarly, for sediment transport index, the highest CF value was obtained for 

the interval of 40–120 m. 

7.2 Index of Entropy (IOE) Model 

The procedure for calculating the final weight Wj of the conditioning factors is explained in the 

earlier section, and the result is presented in Table 2. The final landslide susceptibility map was 

prepared by summing of weighted multiplications of the secondarily reclassified conditioning 

factors maps as given by Eq. 14 (Fig. 6) 
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ݕ ൌ ௥௘௖௟௔௦௦݁݌݋݈ݏ כ 0.101 ൅ ௥௘௖௟௔௦௦ݐܿ݁݌ݏܽ כ 0.287 ൅ ௥௘௖௟௔௦௦݁݀ݑݐ݅ݐ݈ܽ כ 0.344 ൅ ௥௘௖௟௔௦௦݃݋݈݋݁݃

כ 0.536 ൅ ௥௘௖௟௔௦௦ݐ݈ݑ݂ܽ כ 0.008 ൅ ௥௘௖௟௔௦௦ݎ݁ݒ݅ݎ כ 0.014 ൅ ௥௘௖௟௔௦௦݀ܽ݋ݎ כ 0.021

൅ ௥௘௖௟௔௦௦ܫܹܶ כ 0.025 ൅ ௥௘௖௟௔௦௦ܫܲܵ כ 0.052 ൅ ௥௘௖௟௔௦௦ܫܶܵ כ 0.039

൅ ௥௘௖௟௔௦௦݁ݏݑ ݈݀݊ܽ כ 0.174              ሺ14ሻ 

From the result (Pij), it is seen that slope interval of 35°–45° is highly prone to landslide 

followed by the slope class 25°–35°. In the case of aspect, southeast-facing slopes followed by 

south-facing, east-facing, and southwest-facing slopes are susceptible to landsliding. From the 

Wj value, it is seen that the lithology has the highest impact in the landslide susceptibility, 

followed by altitude, aspect, slope, and land use, while others are less significant in the landslide 

susceptibility of the region. It is seen that slope in the case of curvature, the concave slope is 

most susceptible to landslides, followed by convex slope. The slopes ranging in altitude between 

350 and 500 m have the highest (Pij) value of 1.4, followed by 500–650 m (1.15), 200–350 m 

(1.13), and 650–800 m (1.02) intervals. It is seen that the landslide density increases from 200 to 

500 m, and it gradually decreases from 500 m upward. From the analysis of (Pij) value of 

geology, it is seen that the Middle Siwaliks, Lower Siwaliks, alluvial deposits, Purebesi 

Quartzite followed by amphibolites are more susceptible to landslides. In the case of distance 

from faults, 400–500 m range has the highest Pij value (1.28) followed by 100–200 m (1.26), 

300–400 m (1.13), and 200–300 m (1.09). The distance from rivers shows that the Pij value 

decreases as the distance from river increases. From this, it is clear that the bank erosion is one of 

the main triggering factors. Most of the landslides are located at a distance of 200–250 m from 

the road section as the values of (Pij) is highest (0.2) here. It decreases with both the increase and 

decrease of distance from the road. In the case of TWI (Pij), the value decreases with increasing 

TWI, it is highest (0.42) for class 0–8. This shows that TWI strongly affects the landslide 
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occurrence. In the case of SPI, class 150–300 has the highest (Pij) value, while for STI, the range 

between 80 and120 has the highest (Pij) value, indicating that this range is most susceptible to 

landsliding. The cultivation land has the highest (Pij) value of 1.57 and is the main land use type 

that is most susceptible for landsliding. 

From the ௝ܹ value, it is seen that geology has the highest impact in the landslide susceptibility, 

followed by altitude, aspect, slope and land use, while the other have very minor role. From the 

calculated ሺ ௜ܲ௝ሻ it is seen that slope ranging in between 35–45 are highly prone to landslide 

followed by slope class 25–35. In the case of aspect SE facing slope followed by S facing, E 

facing and SW facing slope are susceptible landslide. The slopes ranging in altitude 350–500 m 

have the highest ሺ ௜ܲ௝ሻ value, followed by 500–650 m, 200–350 m and 650 m–800 m. From this it 

is seen that the landslide density increases form 200 m to 500 m and it gradually decreases form 

500 m upward. By the analysis of ൫ ௜ܲ௝൯ value of geology, it is seen that Middle Siwaliks, Lower 

Siwaliks, Terrace deposits, Purebesi Quartzite, Amphibolite followed by Dhading Dolomite  

more susceptible to landslide. In the case of distance from fault, 100–200 m range has the highest 

௜ܲ௝ value (0.2) followed by 400–500 m and 200–300 m. This shows that the faults have little 

impact in landslide generation in this study area. The distance form river show that the ௜ܲ௝ value 

decreases as the distance from river increases. From this it becomes clear that the bank erosion is 

the main reason for the landslides. Most of the landslides are located at a distance of 200–250 m 

form the road section as the values of ( ௜ܲ௝ሻ is highest (0.2) here. It decreases with both the 

increase and decrease of distance from the road. In the case of TWI ( ௜ܲ௝ሻ value decreases with 

increase in TWI value, it is highest (0.42) for class 0–8. This shows that TWI strongly affects the 

landslide occurrence. In the case of SPI class 150–300 has the highest ൫ ௜ܲ௝൯ value, while in the 
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case of STI, the range in between 80–120 has the highest ൫ ௜ܲ௝൯ value, indicating that this range is 

most susceptible to landslides. The cultivation land followed by grass land and orchard show 

high susceptible to landslides as they have higher ൫ ௜ܲ௝൯ value. In the case of curvature, the 

concave slope is most susceptible to landslides, followed by convex slope. 

7.3 Logistic regression Model 

The resulting beta (β) coefficients of each independent variable in the logistic regression 

equation are given in Table 3. Based on the obtained result, Eq. 15 can be rewritten as 

ݖ ൌ ሺ0.0214 ൈ ሻܧܱܲܮܵ ൅ ܶܥܧܲܵܣ ൅ ሺ0.0221 ൈ ሻܧܴܷܶܣܸܴܷܥ ൅ ሺ0.038 ൈ ሻ              ሺ15ሻܫܲܵ

൅ ሺെ0.2831 ൈ ሻܫܹܶ ൅ ܻܩܱܮܱܪܶܫܮ ൅ ܧܷܵ ܦܰܣܮ

൅ ሺെ0.000041 ൈ ሻܶܮܷܣܨ ܯܱܴܨ ܧܥܰܣܶܵܫܦ

൅ ሺെ0.00038 ൈ ሻܦܣܱܴ ܯܴܱܨ ܧܥܰܣܶܵܫܦ

൅ ሺെ0.0004 ൈ ሻܴܧܸܫܴ ܯܴܱܨ ܧܥܰܣܶܵܫܦ െ 18.991 

Finally, landslide susceptibility index (LSI) map is obtained by using the raster calculator in 

ArcGIS 9.3 (Fig. 7).  

From the analysis of logistic regression coefficients, it is seen that slope angle, curvature, and 

SPI have prominent role in the landslide susceptibility of the area, as they all have positive β 

value. Also, it is seen that SPI has highest β coefficient (0.038), followed by curvature (0.0221) 

and slope (0.0214). Distance from fault, road, river, and TWI has negative effect in landslide 

formation as they all have negative β coefficient and hence are considered to be less significant in 

landslide formation on the road section. In the case of aspect, the slope trending toward east (β = 

0.8658), south (β = 0.5532), southeast (β = 0.3029), and west (β = 0.1169) has high probability 

of landslide susceptibility as they have positive b coefficient. As far as the geology is concerned, 
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the Middle Siwaliks (β = 2.369) are most susceptible to sliding. Alluvial deposits (β = 0.606), 

consisting of loose sediments, also show a higher susceptibility. The Lower Siwaliks (β = 0.591) 

are also highly prone to landsliding; the Benighat Slates (β = 0.369), Nourpul Formation (β = 

0.294), and Amphibolites (β = 0.127) all have positive b coefficient and hence are more 

susceptible to landsliding than the rest. In the case of land use, barren land (β = 14.447), 

cultivated land (β = 13.445), orchard (β = 13.108), followed by bush (β = 12.814), and grassland 

(β = 12.954) have the susceptibility levels in decreasing order, while the remaining land use 

types does not have any role in landslide susceptibility of the region. 

7.4 Validation of the landslide susceptibility maps 

The landslide susceptibility maps derived by three models were tested using the landslide data 

sets that were used for model building process as well as from those that were not used in model 

building process. For this, the total landslides observed in the study area were split into 2 parts, 

241 (75 %) was randomly selected from the total 321 landslides as the training data and the 

remaining 80 (25 %) landslides are kept for validation propose. Spatial effectiveness of these 

susceptibility maps was checked by receiver operating characteristics (ROC).  

The ROC curve is a useful method for representing the quality of deterministic and probabilistic 

detection and forecast systems (Swets 1988). The ROC can be represented equivalently by 

plotting the fraction of true positives out of the positives versus the fraction of false positives out 

of the negatives, for a binary classifier system as its discrimination threshold is varied (Table 4). 

By tradition, the plot shows the false-positive rate (1 spec- ificity) on the x-axis (Eq. 16) and the 

true-positive rate (the sensitivity or 1—the false- negative rate) on the y-axis (Eq. 17). 

ܺ ൌ 1 െ ݕݐ݂݅݅ܿ݁݌ݏ ൌ 1 െ ሾ
ܶܰ

ሺܶܰ ൅  ሻሿ                ሺ16ሻܲܨ



23 
 

ܻ ൌ ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൌ ሾ
ܶܰ

ሺܶ݌ ൅ ሻܰܨ
ሿ                     ሺ17ሻ 

The area under the ROC curve (AUC) characterizes the quality of a forecast system by 

describing the system’s ability to predict correctly the occurrence or non-occurrence of 

predefined ‘events’. The model with higher AUC is considered to be the best. If the area under 

the ROC curve (AUC) is close to 1, the result of the test is excellent. On the other hand, if the 

model does not predict well, then this value will be close to 0.5. Both the success rate and 

prediction rate of the models were used for assessing the prediction capability of the models.  

The success rate results were obtained by comparing the landslide training data with the 

susceptibility maps (Fig. 8a). From the figure, it is seen that the index of entropy model (IOE) 

has the highest area under the curve (AUC) value (0.8915), followed by logistic regression 

model (0.8910) and certainty factor model (0.8721). Since the success rate method used the 

training landslide data that have already been used for building the landslide models, the success 

rate is not a suitable method for assessing the prediction capability of the models (Bui et al. 

2011). However, this method is useful to know the performance of the models. Thus, the 

validations of the models were done by using the prediction rate curve. The prediction rate 

explains how well the model and predictor  

8 Conclusions 

Since landslides pose a serious threat to the life and property, their susceptibility mapping can be 

one of the preliminary steps toward minimizing the damages incurred by them. A landslide 

susceptibility map divides an area into various categories that range from stable to unstable ones. 

In this research, two bivariate models (i.e., certainty factor and index of entropy models) and one 
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multivariate model (i.e., logistic regression) were used for identifying the areas susceptible to 

landsliding at Mugling–Narayanghat road and its surrounding areas.  

For this purpose, twelve landslide conditioning factors (i.e., slope gradient; slope aspect; altitude; 

plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness 

index(TWI); stream power index(SPI);and sediment transport index (STI)) were used. A 

landslide inventory map was prepared using aerial photographs, satellite images, and extensive 

field survey. In this process, a total of 321 landslides were identified and mapped. Out of which, 

241 (75 %) were randomly selected for generating a model and the remaining 80 (25 %) were 

used for validation proposes. The ROC plots showed that the susceptibility map produced using 

the index of entropy model has the highest perdition accuracy (90.16 %), followed by the logistic 

regression model (86.29 %) and the certainty factor model (83.57 %). Success rate curve also 

gives similar result, with index of entropy model (IOE) the highest (AUC) value (0.8915), 

followed by logistic regression model (0.8910)and certainty factor model (0.8721).This shows 

that all the models employed in this study showed reasonably good accuracy in predicting the 

landslide susceptibility of Mugling–Narayanghat road section. The increasing population 

pressure has forced people to concentrate their activities on steep mountain slopes. Thus, to 

safeguard the life and property from landslides, the susceptibility maps can be used as basic tools 

in land management and planning future construction projects in this area. While the low 

susceptibility zones are relatively safe for the development of infrastructures, the high and very 

high susceptibility zones require further engineering geological and geotechnical considerations.  
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Factor Class No. of pixels in 
domine

Percentage of domine 
(a) No. of landslide Percentage of 

landslides (b)
Certainty  

Factor
0-15° 22111 13.76 6 2.49 -0.82
15-25° 30542 19.01 45 18.67 -0.02
25-35° 42515 26.47 86 35.68 0.26
35-45° 40693 25.33 88 36.51 0.31
>45° 24776 15.42 16 6.64 -0.57
Flat 1201 0.75 0 0 -1

North 29104 18.12 31 12.86 -0.29
Northeast 18906 11.77 20 8.3 -0.3

East 12363 7.7 25 10.37 0.26
Southeast 11936 7.43 31 12.86 0.42

South 18154 11.3 43 17.84 0.37
Southwest 21037 13.1 36 14.94 0.12

West 23680 14.74 29 12.03 -0.18
Northwest 24125 15.02 26 10.79 -0.28
Concave 73478 45.74 114 47.3 0.03

Flat 2127 1.32 0 0 -1
Convex 84894 52.85 127 52.7 -0.003
<350 25421 15.83 43 17.84 0.11

350-501 34691 21.6 73 30.29 0.29
501-650 27266 16.97 47 19.5 0.13
651-800 25533 15.89 39 16.18 0.02
800-950 24907 15.51 19 7.88 -0.49
951-1100 19790 12.32 20 8.3 -0.33
1101-1250 2357 1.47 0 0 -1

>1250 672 0.42 0 0 -1
0-150 14196 8.84 8 3.32 -0.62

150-300 19750 12.29 39 16.18 0.24
300-450 14807 9.22 21 8.72 -0.06

>450 111884 69.65 173 71.78 0.03
<8 86989 54.15 148 61.41 0.12
10 51763 32.22 73 30.29 -0.06

>10 21885 13.62 20 8.3 -0.39
0-40 22258 13.86 17 7.05 -0.49
40-80 30532 19.01 55 22.82 0.17
80-120 25488 15.87 51 21.16 0.25
>120 82359 51.27 118 48.96 -0.05

Barren 220 0.14 0 0 -1
Bush 38983 24.27 40 16.6 -0.32

Cultivation 49758 30.98 117 48.55 0.36
Cutting 128 0.08 0 0 -1
Forest 994 0.62 0 0 -1
Grass 68712 42.77 82 34.02 -0.2

Orchard 1451 0.9 2 0.83 -0.08
River 255 0.16 0 0 -1
Sand 5 0.003 0 0 -1

Amphibolite 617 0.38 1 0.415 0.07
Benighat Slate 16221 10.1 24 9.96 -0.01

Dandagaun Formation 849 0.53 0 0 -1
Dhading Dolomite 26709 16.63 26 10.79 -0.35
Fagfog Quartzite 961 0.6 2 0.83 0.28

Kuncha Formation 1988 1.24 1 0.41 -0.66
Lower Siwaliks 2488 1.55 10 4.15 0.63
Middle Siwaliks 65 0.04 1 0.41 0.9

Nourpul Formation 82099 51.11 122 50.62 -0.01
Purebesi Quartzite 1303 0.81 1 0.41 -0.49
Terrace Deposits 27206 16.94 55 22.82 0.26

Distance from 0-100 25436 15.83 33 13.69 -0.14
Faults (m) 100-200 22302 13.88 42 17.43 0.2

200-300 20801 12.95 34 14.11 0.08
300-400 17733 11.04 30 12.45 0.11
400-500 15127 9.42 29 12.03 0.22

>500 59107 36.8 73 30.29 -0.18
Distance 0-50 54983 34.23 100 41.49 0.17

from 50-100 38565 24.01 58 24.07 0.002
rivers (m) 100-150 26264 16.35 39 16.18 -0.01

150-200 17252 10.74 23 9.54 -0.11
>200 23442 14.59 21 8.71 -0.4
0-50 45379 28.25 56 23.24 -0.18

50-100 30591 19.04 50 20.75 0.08
100-150 22536 14.03 33 13.69 -0.02

Distance from 150-200 17410 10.84 34 14.11 0.23
Roads (m) 200-250 12412 7.73 28 11.62 0.33

250-300 9539 5.94 8 3.32 -0.44
>300 22639 14.09 32 13.28 -0.06

SPI

Table 1 Spatial relationship between each landslide conditioning factor and landslide by frequency ratio and certainty factor

TWI

STI

Land Use

Lithology

Slope degree

Slope aspect

Plan Curvature (100/m)

Elevation(m)



Factor Class Percentage of 
domain

Percentage 
of landslide

0-15° 13.76 2.49 0.18 0.04
15-25° 19.01 18.67 0.98 0.22
25-35° 26.47 35.68 1.35 0.31
35-45° 25.33 36.51 1.44 0.33
>45° 15.42 6.64 0.43 0.1
Flat 0.75 0 0 0

North 18.12 12.86 0.71 0.08
North East 11.77 8.3 0.71 0.08

East 7.7 10.37 1.35 0.15
South East 7.43 12.86 1.73 0.2

South 11.3 17.84 1.58 0.18
South West 13.1 14.94 1.14 0.13

West 14.74 12.03 0.82 0.09
North West 15.02 10.79 0.72 0.08

Plan Curvature Concave 45.74 47.3 1.03 0.51
Flat 1.32 0 0 0

Convex 52.85 52.7 1 0.49
<300 15.83 17.84 1.13 0.19

300-500 21.6 30.29 1.4 0.24
500-650 16.97 19.5 1.15 0.2
650-800 15.89 16.18 1.02 0.17
800-950 15.51 7.88 0.51 0.09

950-1100 12.32 8.3 0.67 0.11
1100-1250 1.47 0 0 0

>1250 0.42 0 0 0
0-150 8.84 3.32 0.38 0.1

150-300 12.29 16.18 1.32 0.36
300-450 9.22 8.72 0.95 0.26

>450 69.65 71.78 1.03 0.28
<8 54.15 61.41 1.13 0.42
10 32.22 30.29 0.94 0.35

>10 13.62 8.3 0.61 0.23
0-40 13.86 7.05 0.51 0.13

40-80 19.01 22.82 1.2 0.3
80-120 15.87 21.16 1.33 0.33
>120 51.27 48.96 0.95 0.24

Barren 0.14 0 0 0
Bush 24.27 16.6 0.68 0.17

Cultivation 30.98 48.55 1.57 0.39
Cutting 0.08 0 0 0
Forest 0.62 0 0 0
Grass 42.77 34.02 0.8 0.2

Orchard 0.9 0.83 0.92 0.23
River 0.16 0 0 0
Sand 0.003 0 0 0

Amphibolite 0.38 0.415 1.09 0.05
Benighat Slate 10.1 9.96 0.99 0.05

Dandagaun Formation 0.53 0 0 0
Dhading Dolomite 16.63 10.79 0.65 0.03
Fagfog Quartzite 0.6 0.83 1.38 0.07

Kuncha Formation 1.24 0.41 0.33 0.02
Lower Siwaliks 1.55 4.15 2.68 0.13
Middle Siwaliks 0.04 0.41 10.3 0.51

Nourpul Formation 51.11 50.62 0.99 0.05
Purebesi Quartzite 0.81 0.41 0.51 0.03
Terrace Deposits 16.94 22.82 1.35 0.07

0-100 15.83 13.69 0.86 0.13
100-200 13.88 17.43 1.26 0.2
200-300 12.95 14.11 1.09 0.17
300-400 11.04 12.45 1.13 0.18

(m) 400-500 9.42 12.03 1.28 0.2
>500 36.8 30.29 0.82 0.13
0-50 34.23 41.49 1.21 0.26

50-100 24.01 24.07 1 0.21
100-150 16.35 16.18 0.99 0.21

(m) 150-200 10.74 9.54 0.89 0.19
>200 14.59 8.71 0.6 0.13
0-50 28.25 23.24 0.82 0.11

50-100 19.04 20.75 1.09 0.15
100-150 14.03 13.69 0.98 0.14
150-200 10.84 14.11 1.3 0.18

(m) 200-250 7.73 11.62 1.5 0.21
250-300 5.94 3.32 0.56 0.08

>300 14.09 13.28 0.94 0.13

Distance to Roads

2.75 2.81 0.02 0.021

Distance to Faults
2.57 2.58 0.01 0.008

2.29 2.32 0.01 0.014Distance to Rivers

Land Use 1.92 3.17 0.39 0.174

Lithology 2.45 3.46 0.29 0.536

TWI 1.54 1.58 0.03 0.025

STI 1.92 2 0.04 0.039

Elevation 1.59 3 0.47 0.344

SPI 1.89 2 0.06 0.052

Slope aspect 2.23 3.17 0.3 0.287

1 1.58 0.37 0.249(100/m)

Table 2 Spatial relationship between each landslide conditioning factor and landslide by index of entropy Model

Slope gradient 2.05 2.32 0.12 0.101



Factor Class β
Slope 0.0214

Flat -13.2269
North -0.106
Northeast 0.1073

Aspect East 0.8568
Southeast 0.3029
South 0.5532
Southwest 0.1169
West -0.1373
Northwest 0

Curvature 0.0221
SPI 0.038
TWI -0.2813

Terrace Deposits 0.606
Middle Siwaliks 2.369
Lower Siwaliks 591
Benighat Slate 0.369
Dhading Dolomite -0.598

Lithology Nourpul Formation 0.294
Purebesi Quartzite -0.341
Amphibolites 0.127
Dandagaun Formation -14.34
Fagfog Quartzite -14.511
Kuncha Formation 0
Barren 14.447
Bush 12.814
Cultivation 13.445

Land use Cutting -1.555
Forest -1.508
Grass 12.954
Orchard 13.108
River -1.264
Sand 0

Distance form fault -0.000041
Distance form road -0.00038
Distance form river -0.0004

Table 3 Coefficients of each thematic map used in logistic regression modelin



Landslide bodies Landslide free areas

Safe areas based on calculated 
function

False negative 
(FN) True negative (TN)

False positive (FP)True positive 
(TP)

Landslide occurrence based on 
calculated function

Table 4 Parameters for the calculation of ROC curve (modified from Swets 1988)



 

Fig.1: Study area with the distribution of landslides 

 



 

 

Fig.2: Geological map of the study area  



 

 

 



 

 

 



 

 



 

 

Fig.3: Figure showing different types of landslides observed in the study area (a) Thick debris 
deposit which buried the bridge over the road section, at 21+500 km;  (b), Landslide at 23+760 
km of the road section (c) Debris slide observed at 20+800 km of the road section (L2) (d)  Rock 
topple observed at the upstream of Keraghari Khola, at 21+560 km; (e)Slope failure observed at 
30+500 km. 

 

 



 

 

 



 

 



 

 

 



 

 



 

 



 

 

Fig.4: Various thematic maps used for the present study (a) Slope map (in degree), (b) Aspect 
map, (c) Curvature map, (d) Elevation map (in meter), (e) Stream power Index map, (f) 
Topographic Witness Index map (g) Sediment Transport Index map  (h) Drainage map (distance 
in meter), (i) Road map (distance in meter), (j) Fault distance map (distance in meter) (k) Land 
use map 

 

 

 

 

 

 

 

 

 



 

 

Fig. 5: Landslide susceptibility map based on certainty factor (CF) model 

 



 

Fig.6. Landslide susceptibility map derived from the index of entropy (IOE) model. 



 

Fig. 7: Landslide susceptibility map derived from the logistic regression (LR) model. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 8 ROC curve and area under the curve (a) Prediction rate models (b) Success rate models for 

certainty factor  (CF) model, index of entropy (IOE) model and logistic regression (LR) model 


