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Orbifold family unification on six dimensions
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We study the possibility of family unification on the basis of SU(N) gauge theory on the six-
dimensional space-time, M* X T?/Zy. We obtain enormous numbers of models with three families of
SU(5) matter multiplets and those with three families of the standard model multiplets, from a single
massless Dirac fermion with a higher-dimensional representation of SU(N), through the orbifold breaking

mechanism.
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L. INTRODUCTION

The origin of the family replication has been a big
riddle. The family unification based on a large symmetry
group can provide a possible solution. The studies
have been carried out intensively, and they are classified
into two categories. One is the investigation based on
the four-dimensional Minkowski space-time [1-7], and
the other is that based on higher-dimensional space-
times [8-16].

In the family unification based on a gauge group on the
four dimensions, we encounter the following difficulties
relating the chiralness of fermions and its anomalies. The
one is that chiral fermions do not, in general, come from
fermions with an anomaly free representation, e.g., 2"
for SO(2n) (n # 1, 3) or a nonchiral set of representations,
e.g., N+ N for SU(N). There appear extra fermions in-
cluding mirror particles. Here, the mirror particles are
particles with opposite quantum numbers under the stan-
dard model (SM) gauge group. If we adopt the “survival
hypothesis” to get rid of the unwelcomed particles, our
family members would also disappear from the low-energy
spectrum. Here, the survival hypothesis is the assumption
that if a symmetry is broken down into a smaller symmetry
at a scale Mgg, then any fermion mass terms invariant
under the smaller group induce fermion masses of
O(Mgg) [3,17]. The other is that we need fermions with
several representations to produce only the SM family
members using the survival hypothesis. Georgi found that
three families are derived from the anomaly free chiral set
[11,4] +[11,8] +[11,9]+ [11, 10] in the SU(11) model
[3]. In any case, it is impossible to generate only the three
families up to SM singlets from a single anomaly free
representation by the help of the survival hypothesis on
the four dimensions."
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'There is a possibility that extra particles are confined at a
high-energy scale by some strong dynamics [2,6].
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The advantage of higher-dimensional theories is that
substances including mirror particles can be reduced using
the symmetry breaking mechanism concerning extra
dimensions, as originally discussed in superstring theory
[18-20]. Hence, a candidate realizing the family unifica-
tion is grand unified theories (GUTs) on a higher-
dimensional space-time including an orbifold as an extra
space.” Through several preceding studies, three replicas in
the GUT group such as SU(5) and E4 are derived from a
single multiplet of a larger gauge group, but models to
derive three families via the direct orbifold breaking down
to the SM gauge group have not yet been found. For
example, in SU(N) gauge theory on five-dimensional
space-time including S'/Z,, three replicas in SU(5) have
been derived from a single bulk field of SU(N) gauge
group (N = 9), but there are no models to derive the three
families of the SM group multiplets [14].

In this paper, we study the possibility of family unifica-
tion on the basis of SU(N) gauge theory on M* X T?/Zy
using the method in Ref. [14]. We investigate whether
or not three families are derived from a single massless
Dirac fermion of SU(N) for two patterns of symmetry
breaking.

The contents of this paper are as follows. In Sec. II,
we provide general arguments on the orbifold breaking
based on 72/Zy and formulas for numbers of species. In
Sec. III, we investigate the family unification for each
T?/Zy (N =2, 3, 4, 6), in the framework of six-
dimensional SU(N) GUTs. Section IV is devoted to con-
clusions and discussions.

II. Z 5 ORBIFOLD BREAKING AND FORMULAS
FOR NUMBERS OF SPECIES

We explain the orbifold 7?/Zy and give formulas for
numbers of species, in the case with diagonal embeddings
for representation matrices of Zy transformations.

*Five-dimensional supersymmetric GUTs on M* X §'/Z,
possess the attractive feature that the triplet-doublet splitting
of Higgs multiplets is elegantly realized [21,22].
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A. Z y orbifold breaking

Let z be the complex coordinate of 72/Z. Here, T? is
constructed from a two-dimensional lattice. On T2, the
points z + e; and z + e, are identified with the point z,
where e, and e, are basis vectors. The orbifold T?/Zy is
obtained by dividing 72 by the Z transformation Zy: z —
£7 (€N = 1) so that the point z is identified with &z, or z is
generally identified with é€¥z + ae, + be,, where k, a, and
b are integers.

Let us explain the orbifold breaking using 72/Z,.
Accompanied by the identification of points on T2/Z,,
the following boundary conditions (BCs) for a field
®(x, z) can be imposed on

D(x, —z) = Tp[Po]P(x, 2),
D(x, e) — z2) = Top[P]1P(x, 2), (1)
D(x, € — 7) = Tcr)[Pz]q)(Xy 2),

where e, = 1, e, = i, and Tg[Py)l, To[P,], and Tg[P,]
represent appropriate representation matrices. The P, P,
and P, stand for the representation matrices of the Z,
transformations z — —z, z— e; — z, and z — e, — z for
fields with the fundamental representation.

The eigenvalues of Tg[Pyl, To[P;], and Te[P,] are
interpreted as the Z, parities for the extra space. The fields
with even Z, parities have zero modes, but those including
an odd Z, parity do not have zero modes. Here, zero modes
mean four-dimensional massless fields surviving after
compactification. Kaluza-Klein modes do not appear in
our low-energy world, because they have heavy masses
of O(1/R), with the same magnitude as the unification
scale. Unless all components of nonsinglet field have a
common Z, parity, a symmetry reduction occurs upon
compactification because zero modes are absent in fields
with an odd parity. This type of symmetry breaking mecha-
nism is called the “orbifold breaking mechanism.”*

Basis vectors, representation matrices, and their trans-
formation properties of 72/Z, are summarized in Table I
[31,32].4 Note that there is a choice in representation
matrices, and P; concerning the Z, transformation
z— e, — zis also used in 7?/Z, and T?/Z.

Fields possess discrete charges relating the eigenvalues
of the representation matrices for the Z;, transformation.

3The Z, orbifolding was used in superstring theory [23] and
heterotic M theory [24,25]. In field theoretical models, it was
applied to the reduction of global supersymmetry (SUSY)
[26,27], which is an orbifold version of the Scherk-Schwarz
mechanism [28,29], and then to the reduction of gauge
symmetry [30].

“Though the number of independent representation matrices
for T?/Zg is stated to be three in Ref. [15], it should be two
because other operations are generated using so: z — ¢™/3z and
ri:z—e; —z. Forexample, t;: z—z+ejand h: z— 27+ e,
are generated as t; =r(so)® and 1, = (s0)%ri(s0)*ry,
respectively.
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TABLE 1. The characters of T2/Zy.
Basis Rep.
N vectors matrices Transformation properties
2 1,i Py, P\,P, z——2,2— € — 2, 2= e — 2
3 1, 62171'/3 ®0’ @1 Z—’€2m/3Z, 7— eZﬂi/3Z + e,
4 1, Qo P 1=z, z e — 2
6 1,(=3+iv3)/2 Eq P z—e™Pz 7> e — 2

Here, M = N for N=2,3and M =N, 2 for N = 4, 6.
The discrete charges are assigned as numbers n/M (n =
0,1,...,M — 1) and e2™"/M are the elements of the Z,,
transformation. We refer to them as Z;, elements.

A fermion with spin 1/2 in six dimensions is regarded
as a Dirac fermion or a pair of Weyl fermions with
opposite chiralities in four dimensions. There are two
choices in a six-dimensional Weyl fermion, i.e.,

1—ys 1 1
1+ 3 0 vy v,

_ Itys 0 Pl Pl
v (D))< ()
2 0 ¥s J\ ¥ V43

where W and W_ are fermions with positive and negative
chirality, respectively, and I'; and vys are the chirality
operators for six-dimensional fermions and four-
dimensional ones, respectively.5 Here and hereafter, the
subscript * stands for the chiralities on six dimensions.
From the Z,, invariance of the kinetic term and
the transformation property of the covariant derivatives
Zy: D, — pD, and D:— pD: with p = e ?>7™/M and
p = e2™/M the following relations hold between the Z,,

element of \I’E(R) and ‘I’IZQ(L):

Py, = pPy, Py = pPys, “4)

5 6

where z = x> + ix® and 7 = x° — ix®.

Chiral gauge theories including Weyl fermions on even-
dimensional space-time become, in general, anomalous in
the presence of gauge anomalies, gravitational anomalies,
mixed anomalies, and/or global anomaly [34,35]. In
SU(N) GUTs on six-dimensional space-time, the global
anomaly is absent because of I15(SU(N)) = 0 for N = 4.
Here, I15(SU(N)) is the sixth homotopy group of SU(N).
In our analysis, we consider a massless Dirac fermion
(W, ¥_) under the SU(N) gauge group (N = 8) on six-
dimensional space-time. In this case, anomalies are can-
celed out by the contributions from fermions with different
chiralities.

SFor more detailed explanations for six-dimensional fermions,
see Ref. [33].
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B. Formulas for numbers of species

With suitable diagonal representation matrices R, (a =
0, 1, 2 for T?/Z, and a =0, 1 for T%/Z,, T?/Z,, and
T?/Zg), the SU(N) gauge group is broken down into its
subgroup such that

SU(N)—’SU([)I) XSU(pz) Xooee XSU(pn) X U(l)n*mfl’

(&)

where N = 3", p;. Here and hereafter, SU(1) unconven-
tionally stands for U(1), SU(0) means nothing, and m is a
sum of the number of SU(0) and SU(1). The concrete form
of R, will be given in the next section.

After the breakdown of SU(N), the rank k totally anti-
symmetric tensor representation [N, k], whose dimension
is yCy, is decomposed into a sum of multiplets of the
subgroup SU(p;) X - -+ X SU(p,) as

k—1 k=ly— =1,

Z Z Z (PICII’PZCIZ""’IJ,IC[”):

=01, l,_1=0

[N, k] =

(6)

where [, =k — I} — — [,—; and our notation is that
C, = Ofor /> nand [/ < 0. Here and hereafter, we use ,C,
instead of [n, I] in many cases. We sometimes use the
ordinary notation for representations, too, e.g., 5 and 5in
place of ;C, and 5C,.
The [N, k] is constructed by the antisymmetrization
of the k-ple product of the fundamental representation

=[N, 1]:
[N k] = (N X -+ X N),. @)
We define the intrinsic Z), elements 7§ such that
(NX -+ XN)y—= nUR,N X -+ XR,N)p. (8
2mrin/M

By definition, n{ take a value of Z), elements, i.e., e
(n=20,1,...,M — 1). Note that n{ for W, are not neces-
sarily the same as those of ¥_, and the chiral symmetry is
still respected.

Let us investigate the family unification in two cases.
Each breaking pattern is given by

SU(N)_’SU(S) X SU(pQ) X oo X SU(pn) X U(l)n*mfl’
)

U(N)— SUQ3) X SUQ2) X SU(p3) X -+ X SU(p,)
X y(1yr—m-1, (10)

where SU(3) and SU(2) are identified with SU(3), and
SU(2); in the SM gauge group.

1. Formulas for SU(5) multiplets

We study the breaking pattern (9). After the breakdown
of SU(N), [N, k] is decomposed as

PHYSICAL REVIEW D 88, 055016 (2013)

k k=1, k=l — =1, 5
[N, k] = Z Z Z GCro pCroves p, €1 )
=01[,= l,-1=0
(1)

As mentioned before, ;C,, sC,, C2, sC3, 5Cy, and Cs
stand for representations 1, 5, 10, 10, 5, and 1. 6

Utilizing the survival hypothesis and the equivalence of
(5z)¢ and (105)¢ with 5; and 10, , respectively,” we write
the numbers of 5 and 10 representations for left-handed
Weyl fermions as

#5, — #5. + #55 — #5,, (12)

nio = #10, — $10, + #10; — #10,, (13)

where # represents the number of each multiplet.

The SU(5) singlets are regarded as the right-handed
neutrinos, which can obtain heavy Majorana masses
among themselves as well as the Dirac masses with left-
handed neutrinos. Some of them can be involved in a
seesaw mechanism [2,36,37]. The total number of SU(5)
singlets (with heavy masses) is given by

nyg = #1, + ﬁiL + ﬁiR + #1;. (14)

Formulas for ns, nyy, and n; from a Dirac fermion
(W, ¥_) whose intrinsic Z), elements are (n{,, n¢{_)
are given by

ns=2 2 (1)

* =14

X ( > - > )chlz"'ﬁn
{lzv--»:ln—l}n?lLi {lz»»--vln—l}n;llRt

nlozz Z( 1)l

+ll

X ( E —
{lzv--nln—l}ny {
(Lt

c,, (15)

—

Z )mclz---mc,, (16)
25- n 1}“

I R*

+ Z )chlz T PnCl,,’
LTI g
11 R=

ng = Z Z ( Z
* [,=05 {12:-"'1"*1}"7]1‘1
(17)

where p, =N —Y"!p;andl, =N — Y" ' [,. 3. rep-
resents the summation of contributions from W, and W_.

®We denote the SU(5) singlet relating to 5Cs as 1, for conve-
mence sake, to avoid the confusion over smglets
As usual, (55)¢ and (10g)¢ represent the charge conjugate of
5, and 10y, respectively. Note that (5;)¢ and (10z)¢ transform as
the left-handed Weyl fermions under the four-dimensional
Lorentz transformations.
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TABLE II.  The specific relations for ;.

Orbifolds prmi. Specific relations
T?/Z, (—Dfnd. = (—1)*= n=h+h+L=2-1—a.(mod?2)

(=1l = (—1)F= nlpe=hL+Is+1lg=2-1 — B (mod 2)

(=Dfni, = (=1)= njp.=hL+Ils+1l;=2-1 -y (mod2)
12/7, (e72mi3Ykn), = (2m/3)ax n . =h+L+20+15s+1)=3-1 — a. (mod 3)

(e72mBYknl, = (e2mi/3)P= nipe =lL+h+20+I1s+1)=3—1 — B (mod3)

T2/Z,4 (—i)fn), = io= n) e =bL+205+ 1) +30s + lg) =4 — I, — a. (mod 4)

(—=Dfnl, = (=1)#= njpe=hL+Ils+1l;=2-1 — . (mod?2)
T%/Z¢ (e ™BYml, = (e™)* ) . =1+ 23+ 1y) + 3(Is + Ig) + 4y + Is) + 5y + l;9) = 6 — I; — @ (mod 6)

(=Dfnmje = (=DF-

”}]L1§l3+ls+l7+lg+lll=2—l|

~ B (mod 2)

Furthermore, ¥, means that the summations

,.4.,1,,,,},,? e

over I, =0,... k—=l——1_ (G=2...n—1)
are carried out under the condition that /; should satisfy
specific relations on 72 /Z, given in Table II. The relations
will be confirmed in the next section. In the same way,

... 1. means that the summations over [; =
" R= ’

0,....k—1 — —li-y j=2,...,n—1) are carried
out under the condition that /; should satisfy specific
relations nf p,. = nj; . + 1 (mod M) for W.. In the next
section, the formulas (15)—(17) will be rewritten in more
concrete form for each 72 /Zy (N = 2, 3, 4, 6) by the use of
projection operators.

2. Formulas for the SM multiplets

We study the breaking pattern (10). After the breakdown
of SU(N), [N, k] is decomposed as

k=1, k— /,—12
wa-3's
—05=0 =0
k=l — =l
X Y GG pCreinn, G (18)

l,—1=0

The flavor numbers of downtype antiquark singlets
(dg)¢, lepton doublets /;, uptype antiquark singlets (uz)¢,
positrontype lepton singlets (ez), and quark doublets ¢;
are denoted as ng, n;, ng, ng, and n,. Using the survival
hypothesis and the equivalence on charge conjugation, we
define the flavor number of each chiral fermion as

ng = #GC5,C)r = #GC1,C)r + #GCL L Colr

- ﬂ(3C2: 2C2)Rr (19)
n; = ﬁ(3C3; 2C1)L - ﬁ(3co’2C1)L + ﬁ(3C0,2C1)R
- f"(3c3: 2C1)Rs (20)

ng = #(G;Cy, ,Co) — #GCp, ,Cy)L + #(Cy, ,Co)g

— #GCy, ,Colrs (21)
n; = ﬁ(3c(), 2C2)L - ﬁ(3C3, 2C())L + ﬁ(3C3, zco)R

- ﬁ(3c()’ 2C2)R: (22)
n, = ﬁ(3c1:2C1)L - ﬁ(3C2’2C1)L + 1¢(3C2’2C1)R

- ﬁ(3C1» 2C1)R, (23)

where # again represents the number of each multiplet.
The total number of (heavy) neutrino singlets (vg)¢ is
denoted n; and defined as

ny = #GCo ,Co)r + #(C5,Cy)1 + #(C5,Co)r
+ #(,Cp 2Co)r- (24)

Formulas for the SM species including neutrino singlets
are given by

-3 3

= (11,1)=(22),(1,0)

X( > - 2 )’”Cls"'mcz,,,
LLEY Sy sy 1}pa
115 L%

(_1)[1+lz

"Il R*
(25)
Z z (_1)1]+12
* (I,1)=G1),0,1)
( > )CC 26)
Y l}n L {Bee 1},1[ Re
ng =Z (=1)hh
* (11,1)=(2,0),(1,2)
X( Z o Z )pzclg"'p,,cln’ 27)
{13"")11171}”;’[ : {3l 1},,, ,
1hL= HR=
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g = Z Z (=Dhh

* (11,1,)=(0,2),(3,0)

X ( Z - Z )p3C13 G
{13:~~~v1n—1}n71 s {13“--)1;1—1}”71 s
(28)
g = Z Z (=Dhre
£ (hbh)=11.2.1)
X ( Z - Z >P3C13 ) .Pncln’
{13,---,1,,—1},1;' , {3 lp=1}na
1hL* I hR*
(29)
n,j =
= (11,1)=(0,0),32)
(x5 Jo
{13""!ln—l}n']ll L. {13""’ln—l}n?l e
125= 128=
(30)
where 3. 4, means that the summations over
xS
lj =0,.... k0l —---— lj_l(j=3,...,n — 1) are car-

ried out under the condition that /; should satisfy specific

relations on T2 /Zy given in Table III. The relations will be

confirmed in the next section. In the same way,

Z{]SM,H}”?I . means that the summations over [; =
1hR=

0,...k—0—-- —lj_l (j=3,...,n— 1) are carried
out under the condition that /; should satisfy specific
relations nj ;. =nj, ;. + 1 (mod M) for ... In the
next section, Egs. (25)—-(30) will be also rewritten in
more concrete forms for each T?/Zy by the use of projec-
tion operators.
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C. Generic features of flavor numbers

We list generic features of flavor numbers.

(i) Each flavor number from [N, k] with intrinsic Z,,
elements n¢. is equal to that from [N, N — k] with appro-
priate ones Ny _ ;.

Let us explain this feature using the SU(5) multiplets.
From Eq. (11) and the decomposition of [N, N — k] such
that

k k=l k=l——l,,
[N,N — k] = Z Z
1,=015,=0 Li—1 =0
X <5C5—ll’ chpzflz’ Tt Py Cp,,*ln)’ (31)
there is a one-to-one correspondence between
Cs—1 p,Cpy—tyr+» p,Cp—) 0 [N,N—k] and

(SCII, pCroees ,,”Cl") in [N, k]. The right-handed Weyl
fermion whose representation is (5C5,[1, . CPz_lz’ e
G- ln) is regarded as the left-handed one whose repre-

P
sentation is the conjugate representation
(SCl,’ 22Clrevos Cl,,)’ and hence, we  obtain

the same numbers for Eqgs. (15)-(17) with a suitable
assignment of intrinsic Z,, elements for [N, N — k].

Here, we give an example for 72/Z,. Each flavor num-
ber obtained from [N, k] with (=1)n?, = (=1)2,
(=)kni, = (=1DPF=, and (—1)*n2, = (—1)7* agrees
with that from [N,N —k] with (=1)V*n%_,, =
(=1, (=DV*qp e =(=1DF, and (=) K3,
(—1)"=, where a’., B, and 7y, satisfy the relations
a's = a. + py + p3 + py(mod?2), By =B+ +p+
ps + ps(mod2), and y. = y. + p3 + ps + p;(mod2),
respectively.

(i1) Each flavor number from [N, k] with intrinsic Z,
elements (—1)*n¢, = (—1)°* is equal to that from [N, k]
with the exchanged ones (6% « 8%), i.e., (—1)fn¢,
(=1)%%.

This feature is understood from the fact that specific
relations on /; for W, change into those of W_ and vice

TABLE III.  The specific relations for /;.

Orbifolds prmi. Specific relations
T%/Z, (—1)knl, = (—1)e= n e =L+l =2-1 —L—a.(mod?2)

(=Dfnp. = (1P npe =1Is+1lg=2—1 =, — B. (mod 2)

(=D = (=)= n%llth =hL+Ils+5=2-1 —vy: (mod2)
12/Z7, (e72mi3)knd, = (e27/3)a= n e =L+20+1s+1) =31 —l,— a. (mod 3)

(e 2mB3Ykqh, = (e2™/3)P= npe =l + 1 +20s + 1) =3 =1 =2l — B (mod 3)

T%/Z,4 (—i)fn?, = io- n e =203+ 1) +30s + 1) =4 =1, =, — a. (mod 4)

(—Dfnl, = (—1)k= nle=1Uh+Ils+1l=2-1 — B (mod2)
T%/Z¢ (e ™BYeql, = (emP)*  nd =205+ L) + 3(Is + Ig) + 4(l7 + Ig) + 5(lg + L;0) = 6 — I; =, — @ (mod 6)

(~ D = (-1

”11.121,: =L+ils+h+l+1;,=2-1 — B+ (mod2)
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versa, under the exchange of Z, parity of ¥, and that
of ¥_.
Here, we give an example for 72/Z,. Under the

0 0 ;
exchange of a, and a_, nj;  and njp,  change into

n)_ and n) . (mod 2), respectively. Each flavor number

remains the same because the summation is taken for ¥
and W_.

(iii) Each flavor number from [N, k] is invariant under
several types of exchange among p; and intrinsic Zy,
elements.

From specific relations in Table II, we find that the same
number for each SU(5) multiplet is obtained under the
exchange,

(P3, Py, @) < (ps, pe, B=+),
(P2 Pe» B+) < (p3, P7, V=) (32)
(P2 Pa» ) © (ps, p7, v+) for T?/Z,,

(P2 P3 Pe» @+) © (P4, p7, D3, B=) for T?/Z;,  (33)

where the exchange is done independently.

In the same way, from specific relations in Table III, we
find that the same number for each SM multiplet is ob-
tained under the exchange,

(P3, Pa» @) © (ps, ps, B=),  for T?/Z,.  (34)

Under the above exchanges, although the unbroken
gauge symmetry remains, the numbers of zero modes for
extradimensional components of gauge bosons are, in gen-
eral, different, and hence, a model is transformed into a
different one.

(iv) Each flavor number obtained from [N, k] is invariant
in the introduction of Wilson line phases.

Let us give some examples.

On T?/Z,, the numbers n; and n;, obtained from
the breaking pattern SU(N) — SU(5) X SU(p,) X - -+ X
SU(pg) X U(1)"~™ are the same as those from SU(N) —
SU(5) X SU(py) X -+ X SU(pg) X U1)"™™ if the fol-
lowing relations are satisfied:

Ph— P2 =ph— p7=Dp3— Ps= Ps — P

;o ;o ; (35
Py = P4 Ps = Ps» Ps = Ps»
or
! _ — ! _ — _ /] — _ !
Py = P2=P7—P7= P4 Py = P5 DPs
;o ;o ;o (36)
Pz = D3 Pe = Pe> Pg = D3,
or
Py — P3 = Ps— D6 = Pa — Py = D5 — D~
3 5 (37)

P = D2 Py = p7 Py = Ds-

The above BCs are connected by a singular gauge trans-
formation, and they are regarded as equivalent in the

PHYSICAL REVIEW D 88, 055016 (2013)

presence of Wilson line phases. This equivalence origi-
nates from the Hosotani mechanism [38—41] and is shown
by the following relations among the diagonal representa-
tives for 2 X 2 submatrices of (Py, P,, P,) [32]:

(73, 73, 7'3) ~ (73, T3, _7'3) ~ (13, =73, T3)

~ (73, =73, —73), (38)

where 75 is the third component of Pauli matrices.

In our present case, we assume that the BC is chosen as a
physical one; i.e., the system with the physical vacuum is
realized with the vanishing Wilson line phases after a
suitable gauge transformation is performed. Hence, it is
understood that each net flavor number obtained from
[N, k] does not change even though the vacuum changes
different ones in the presence of Wilson line phases.

In the same way, the numbers nj n;, n; ng
and n, obtained from the breaking pattern SU(N)—
SUB)XSU2) X SU(p3) X +++ X SU(pg) X U(1)"™™  are
the same as those from SU(N)— SUQ3) X SU(2) X
SU(py) X - -+ X SU(p§) X U(1)"~™, if the following rela-
tions are satisfied:

Py~ P3 = P6~ P6 = P4 — P4y = Ps5 ~ D5
I r_ (39)
P = P1 Pg = Ds-
On T?/Z;, the numbers ns and njy obtained from
the breaking pattern SU(N) — SU(5) X SU(p,) X « -+ X
SU(pg) X U(1)8~™ are the same as those from SU(N) —
SU(5) X SU(py) X « -+ X SU(ph) X U(1)®~™ if the fol-
lowing relations are satisfied:

Ph = P2 = Pg— D6 = Ph — P71 = P3 — D}
= ps— Py = Ps— Dy
p5s = ps Py = Do (40)

The above BCs are also connected by a singular gauge
transformation, and they are regarded as equivalent in the
presence of Wilson line phases. The equivalence is shown
using the following relations among the diagonal represen-
tatives for 3 X 3 submatrices of (0, ®,) on T?/Z; [32]:

X, X) ~ (X, @X) ~ (X, wX), 41)

where w = ¢2™/3, @ = ¢*™/3 and X = diag(l, , ).

For these cases, it is also understood that each net flavor
number does not change even though the vacuum changes
different ones in the presence of Wilson line phases.

Although this feature holds for models on 72/Z, and
T?/Zs, there are no examples in our setting because of the
absence of Wilson line phases changing BCs but keeping
SU(5) or the SM gauge group for 72/Z, and because of
the absence of equivalence relations between diagonal
representatives for 72/Zg [32].
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III. ORBIFOLD FAMILY UNIFICATION ON
M*XT?*/Zy

We investigate the family unification in SU(N) GUTs
for each T?/Zy (N =2, 3, 4, 6).

A. Total numbers of models with three families

Let us present the total numbers of models with the three
families, for reference. The total numbers of models
with the three families of SU(5) multiplets and the SM
multiplets, which originate from a Dirac fermion whose

PHYSICAL REVIEW D 88, 055016 (2013)

representation is [N, k]| (k = N/2) of SU(N), are summa-
rized up to SU(12) in Table IV and up to SU(13) in Table V,
respectively. In the tables, the three centered dots (- - -)
mean no models. We omit the total numbers of models
from [N, N — k] because they agree with those from [N, k]
reflecting the feature (i) in Sec. I1C.

B.T?/Z,

For the representation matrices given by

PU = diag([+ 1]171’ [+ I]Pz’ [+1]P3’ [+1]P4’ [_ 1]175’ [_I]Po’ [_1]177’ [_ l]PS)’
Pl = dlag([+ l]plr [+ l]pz’ [_l]py [_ 1]]74r [+ 1]]75: [+1]P6’ [_ 1]p7’ [_ l]px)) (42)
Py = diag([-i—l]pl, [_l]Pz’ [+1]p3’ [_1]174’ [+1]P5’ [_l]ps’ [+1]P7’ [_l]ps)’

the following breakdown of SU(N) gauge symmetry
occurs:

SU(N) = SU(py) X SU(py) X -+ X SU(pg) X U(1)" ™",
(43)

where [+ l]p,- represents *1 for all p; elements.
After the breakdown of SU(N), [N, k]+ is decomposed

as
k k=l k==l
[N’ k]i = Z Z Z (Plcll’chlz’""Pscls)i’
1,=01,=0 17=0
(44)

Wherelgzk_ll __l7
Using the definition of the intrinsic Z, parities n{.. (a =
0, 1, 2), such that

TABLE 1IV. Total numbers of models with the three families of
SU(5) multiplets.

T2/Z, T2/Z, T2/Z, T2/Z

[8,3]:24 (8,3]:14 [8,3]:28

SUG) [8,4]:12 [8,4]:16 [8.,4]:20
su) 1931192 [93k182 (931142 [93]:512
[9,41:348  [9,4]:32 [9,4]:800

[10,3]:852  [10,3]:160 [10,3]:2484

SU(10) [10,4]:1308  [10,4]:92  [10,4]:2654
[10,5]:48 [10,5]:1532

[11,31:768 [11,31:1608 [11,3]:456 [11,3]:6530
SU(11) [11,4]:768 [11,4]:1716 [11,4]:436 [11,4]:6768
[11,51:1794 [11,5]:186 [11,5]:5540
[12,31:1104 [12,3]:2214 [12,3]:748 [12,3]:17084
[12,41:1020 [12,4]:676 [12,4]:13692
su(12) [12,5]:534  [12,5]:10498
[12,61:632 [12,6]:13188

(NX"'XN)Ai_)nzi(PaNX...XPaN)Ai’ (45)

the Z, parities of the
(, C

2 Cro p,Cry -5 p, €)= are given by
?or = (_1)l5+16+l7+ls ngi — (_1)11+12+13+l4(_1)kn2t

— (_1)l|+12+13+l4+at’ (46)

representation

Tli — (_1)13+l4+l7+187’11ct — (_1)11+12+l5+l(,(_1)kn11(t

— (_1)l|+12+15+l(,+,8:) (47)
TZi — (—1)lz+l4+16+18n%+ — (_1)11+13+I5+l7(_1)k7]i+

= (—1)hthFisthty. (48)

TABLE V. Total numbers of models with the three families of
SM multiplets.

T%/Z, T%/Z, T%/Z, T?/Z

SU(8) ce
[9,3]:8
SU©) [9,4]:32

[10,3]:80
[10,4]:108
[11,3]:84
[11,4):144
[11,5]:156
[12,3]:392
[12,4]:120
[12,5]:72
[12,6]:552
[13,3]:712
[13,4]:88
[13,5]:140
[13,6]:200

[9,3]:32 [9.3]:8
SU(10)

[11,3]:80
[11,4]:80

[11,4]:80 [11,3]:20

SU(11) [11,4]:20

[12,3]:120  [12,3]:80 [12,4]:88

SU(12) [12,6]:240

[13,3]:144 [13,4]:40

SU(13)
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where n}. take a value +1 or —1 by definition, and we
parametrize them as (—1)n?, = (=12, (=Dfnl, =
(—1)%=, and (~1)¥nd, = (~1)7-.

1. Numbers of SU(5) multiplets on T*/Z,

After the breakdown SU(N)— SU(5) X SU(p,) X --+ X
SU(pg) X U(1)"~™ [N, k] is decomposed as

k=1, k—11—~-~—16

Z Z Z (SCII’PZClg""’Psclg)i'

[,=0l,— ;=0

[N, k] =
(49)

Using the assignment of the Z, parities (46)—(48), we
find that zero modes appear if the following relations are
satisfied:

mie=h+hL+L=2-1—a. (mod2),
npe=h+ls+lg=2-1—B. (mod2), (50)
nlzlLi =L+Ils+1,=2—-1, —vy+ (mod2).

Utilizing the survival hypothesis and the equivalence of
charge conjugation, we obtain the formulas (15)—(17) with
n = 8. Because the Z, projection operator P that picks up
P = *1is defined as P.. = (1 = P)/2, the Z, projection
operator that picks up zero modes of left-handed ones, i.e.,
massless modes in fields with (Py+, P+, Pr+) = (1, 1, 1),
is given by

POLD = (1 + Pp)(1 + Pr)(+ Po), )

and the Z, projection operator that picks up the zero modes
of right-handed ones, i.e., massless modes in fields with
(Po+, Pi«, Py+) = (—1, —1, —1), is given by

POLL = L= P = P - Po) (5D)

From Egs. (51) and (52),

P(l,l,l) _ P(—l,—l,—l)

%(?OJ, + P+ + Pys + Py P Psr),  (53)

P(l,l,l) + P(—l,—l,—l)
1

Z(l + T0+Tl+ + P()+T2+ + Tl+?2+) (54)

Using Egs. (46)—(48), (53), and (54), the formulas (15)—(17)
are rewritten as

PHYSICAL REVIEW D 88, 055016 (2013)

TABLE VI. Examples for the three families of SU(5) from

T2/Z,.

[N, k](p1, P2, 3, P> Ps» Pe» P7- Ps) (s, By yi)(a—, B, y-)

[9,3] (5,0,0,0,3,0,0,1) 0,1, (0,0,
[11,3] (5,0,1,0,4,0,1,0) (0,0,1) (1,1,0)
[11,4] (5,0,3,1,0,1,1,0) (0,0,0) 0,0,1)
[12,3] (5,2,0,0,2,0,1,2) (1,0, (0,0,0)
k=1,
=3 >
= 1,=1,45,=0
k=1~
I L) _ p(=1,—1,—
XY (DMPII - pETn) €y
;=0
T e
:Z Z Z Z (( 1)atlsthita.
= 1,=1,415,=0 ;=0

+ (_ 1)12+15+ZG+,31 + (_ 1)l3+l5+l7+‘yi

+ (_1)l4+16+l7+a:+ﬁt+yt)ﬂz Clz o 'Fscls’ (55)
k=1,
nme=3 > 3
+ [,=230=0
k*llf"'fl(,
X 3 (=Dh(PEED—pELTLED) €, C
=0
e
I IS M (CTEE
+ [, =23hL= ;=0 4
+ (_1)12+15+16+B¢ +(—1)bFisThty=
+(_1)l4+lﬁ+l7+ai+ﬁi+y:)chlz“.PxCls’ (56)
k=1,
m=y > >
+ 1,=0,51,=0
k=1, ——lg
11,1 -1,-1,—1
% Z (PLLY + p ))p2C12 s Clg
;=0
k=1, k=1 7'“7161
SE T 3 ¥ Uy
+ 1,=0,51,=0 =0

+ (_ 1)12+14+15+l7+a1 +y.

+ (= Dhththth Bty ) O (57

Ps

In Table VI, we give some examples for representations
and BCs to derive ns = njy = 3.

2. Numbers of the SM multiplets on T°/Z,

After the breakdown, SU(N)— SUQ3) X SU(2) X
SU(py) X -+ X SU(pg) X U(1)""™, [N, k]- is decom-
posed as
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k k=l k==L

[Nyk]r=z Z Z

1=0L=0 I=0

-

X > (CC
=0

o Cps. (58)

Iy p3 =1y """ pg

Using the assignment of the Z, parities (46)—(48), we
find that zero modes appear if the following relations are
satisfied:

”?llth =L+l =2-1,—5—a: (mod2),
nipe=Ils+tlg=2—1—1L—B. (mod2), (59)
nlzllzLi =L+tls+lh=2-1 -y (mod2),

for (=1fnmp. = (=1)*,
(1t = (=17,

(=Dfni. = (=1)P=, and

TABLE VIL
T%/Z,.

The three families of SM multiplets from [9,3] on

(P P2> D3> Pas D5,

[N’ k] Pe> P71 pS) (a+r B-h 7+) (a/—) B—) 7—)
(3,2,0,0,0,3,0,1) (0,1,1) (0,1,0)
(3,2,0,0,0,3,0,1) (0,1,0) 0,1,1)
(3,2,0,0,0,3,1,0) (0,1,1) (0,1,0)
(3,2,0,0,0,3,1,0) (0,1,0) (0,1,1)
(3,2,0,0,3,0,0,1) (0,1,1) (0,1,0)
(3,2,0,0,3,0,0,1) (0,1,0) 0,1,1)
(3,2,0,0,3,0,1,0) (0,1,1) (0,1,0)
(3,2,0,0,3,0,1,0) (0,1,0) (0,1,1)
(3,2,0,3,0,0,0,1) (1,0,1) (1,0,0)
(3,2,0,3,0,0,0,1) (1,0,0) (1,0,1)
(3,2,0,3,0,0,1,0) (1,0,1) (1,0,0)
(3,2,0,3,0,0,1,0) (1,0,0) (1,0,1)
(3,2,3,0,0,0,0,1) (1,0,1) (1,0,0)
(3,2,3,0,0,0,0,1) (1,0,0) (1,0,1)
(3,2,3,0,0,0,1,0) (1,0,1) (1,0,0)

(9.3] (3,2,3,0,0,0,1,0) (1,0,0) (1,0,1)
’ 3,2,0,0,1,2,0,1) (0,1,1) (0,1,0)
(3,2,0,0,1,2,0,1) (0,1,0) 0,1,1)
(3,2,0,0,1,2,1,0) (0,1,1) (0,1,0)
3,2,0,0,1,2,1,0) (0,1,0) 0,1,1)
(3,2,0,0,2,1,0,1) (0,1,1) (0,1,0)
(3,2,0,0,2,1,0,1) (0,1,0) 0,1,1)
(3,2,0,0,2,1,1,0) (0,1,1) (0,1,0)
(3,2,0,0,2,1,1,0) (0,1,0) 0,1,1)
3,2,1,2,0,0,0,1) (1,0,1) (1,0,0)
(3,2,1,2,0,0,0,1) (1,0,0) (1,0,1)
(3,2,1,2,0,0,1,0) (1,0,1) (1,0,0)
3,2,1,2,0,0,1,0) (1,0,0) (1,0,1)
(3,2,2,1,0,0,0,1) (1,0,1) (1,0,0)
(3,2,2,1,0,0,0,1) (1,0,0) (1,0,1)
(3,2,2,1,0,0,1,0) (1,0,1) (1,0,0)
3,2,2,1,0,0,1,0) (1,0,0) (1,0,1)
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Then, we obtain Egs. (25)—(30) with n = 8. Using
Egs. (46)—(48), (53), and (54), the formulas for (dg)¢ and
(vg)¢ are rewritten as

I e
ng = Z Z Z e Z Z((_l)l3+l4+at
* (14,1)=(22),(1,0) ,=0 ;=0

+ (= 1)sTletB 4 (—1)athtlsthty-

+ (_1)lz+l4+l(,+l7+a1+B1+Y1)p3C13 ce Clg’ (60)

Ps

k=1,

=¥
e

(1,1)=(0,0),3,2) L=0

k=h—=ls |

X Z “(1 4 (—1)bHlatlstletastpe
;=0

+ (_1)12+14+15+l7+a1+y1

+ (_l)lz+l3+l(,+l7+ﬁr+'Yi)p3cl3 e Cl . (61)

Ps 8

The formulas for I;, (ug), (eg)¢, and g; are obtained by
replacing the summation of (1, [,) for n; with {(3, 1), (0, 1)},
{(2,0), (1,2)}1,{(0,2),(3,0)}, and {(1, 1), (2, )}

In Table VII, we give a list of all BCs to derive three
families of SM fermions from [9,3]. We find that the
features (ii) and (iii) presented in Sec. II C hold on.

C.T*/Z,4
For the representation matrices given by
0 = diag([1],, [11,,. [1],,, [@],,, [@],, [@],,
X[&],, [&],, [&],,),
0, = diag([1],, [@],,, [#],,.[1],,. [@],,. [@],,
X [1],, [@]p, [&],,). (62)

the following breakdown of SU(N) gauge symmetry
occurs:

SU(N) = SU(py) X SU(py) X -+ X SU(pg) X U(1)" ™",
(63)

where [1],, [@], , and [@],, represent 1, w(= €>™/3), and
@(= ¢*™/3) for all p; elements.

After the breakdown of SU(N), [N, k] is decomposed
as

k k=1, k=1 ——1,

[N, k. = Z Z Z (Plcll’l’zclz’""P9Clg)i’
1,=01,=0 Is=0

(64)

where lo=k—1;—---—1Ig. The (plC]l,mClz,...,mClg)i

has the Z; elements
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Py = whiHls+ls gli+ls+lo 7721 - wll+12+l3+2(l4+15+16)d)kn2i
— wll+lz+l3+2(l4+15+l(,)+ai’ (65)
P = w12+15+l"(7)13+16+1‘)7711¢ wh +14+17+2(12+15+18)wk77

= wll+l4+l7+2(12+15+13)+/3:’ (66)

where n{. take a value 1, w, or @, and we parametrize
them as @*7n), = w* and @'y}, = whf=.

1. Numbers of SU(5) multiplets on T?/Z;

After the breakdown of SU(N)— SU(5)X
SU(py) X -+ X SU(po) X U(1)¥~™, [N, k]. is decom-
posed as

k-1, —l—mly
[N, k] = Z Z Z (sChys psCip -+ p, Cly) -
=01,= Is=0

(67)

Using the assignment of the Z; elements (65) and (66),
we find that zero modes appear if the following relations
are satisfied:

n?lLt =hL+L+2(,+t1ls+1)=3—1 —a. (mod3),
nhpe=l+L+20+1s+1)=3—1—B. (mod3).
(68)

The relation n?l Rt = n?l 1+ + 1(mod 3) holds from Eq. (4).
Then, we obtain the formulas (15)—(17) with n = 9, and
they are rewritten as

k=1, k=1, =1,
ng = Z Z e Z (_l)ll(P(_&'l) _ P(_f),w)
I, =1,4 [,=0 Ilg=0
+ P — p@@)y ¢ -, C, (69)
k—1, k=l ——1
1,1 X
1,=2,3 ,=0 lg=0
L) _ pla,a
+ pLD) _ pl@ w))pzcl2 2o Clys (70)
k=1, k=l ==l
1,1 w,w
m=> 3 3 @M+ P+ ply
1,=0,51,=0 1g=0
+ P@9), Cp e, Gy (71)

where P(i’”p ) are projection operators that pick up the part
relating (Py+, P,+) = (p, p) and are written by

1
PEP =L+ pPo + pPPo)(1 + pPrs + P PL).

(72)
In Table VIII, we give some examples for representa-
tions and BCs to derive ns = nyy = 3.
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TABLE VIII. Examples for the three families of SU(5) from

T2/Z;.

[N, k] (p1, P2 P3» Pas Ps» P> P7: P Do) (i, By) (a—, Bo)

[8,3] (5,0,0,0,3,0,0,0,0) (2,0) (2,2)
[8.4] (5,1,1,0,1,0,0,0,0) (0,0) (2,2)
[9,3] (5,0,0,2,0,1,0,0,1) (2,0) 2,1
[9.4] (5,0,2,0,0,0,0,2,0) (2,2) 0,2)
[10,3] (5,0,0,0,3,2,0,0,0) (2,0) (2,2)
[10,4] (5,0,0,1,0,1,1,1,1) (2,2) (2,2)
[10,5] (5,1,0,0,1,0,2,0,1) (0,0) (0,0)
[11,3] (5,1,0,0,1,4,0,0,0) (0,0) 2,1
[11,4] (5,2,2,0,0,1,0,1,0) (1,2) 2,1
[11,5] (5,1,1,1,1,0,0,0,2) o,1) (1,1)
[12,3] (5,0,0,3,3,0,0,0,1) (2,0) 0,2)
[12,4] (5,0,3,1,0,1,0,2,0) (1,2) 0,1)

2. Numbers of the SM multiplets on T*/Z,

After the breakdown SU(N)— SU(3) X SU(2) X
SU(py) X =+ X SU(py) X U(1)8™, [N, k] is decom-
posed as

k=1 k=1~ 1,
[N, k]. = Z > Z
=05,=0 L=
k=1 =1
X > GCaChip,Crees py,Cp)e (73)
ls=0

Using the assignment of the Z; elements (65) and (66),
we find that zero modes appear if the following relations
are satisfied:

”?112L1 =L+2(l4+1s+1g)=3—1,—1—a. (mod3),
”llller =l +1+2(s+1g)=3—1,—2l, — B+ (mod3).
(74)

The relation n;‘l LR+
Eq. (4).

Then, we obtain Egs. (25)—(30) with n = 9. Using the
projection operators (72), the formulas for (dg)¢ and (vg)¢
are rewritten as

=nj, .+ +1 (mod 3) holds from

k=l k=h——l

ng = Z (_1)11+12(P(+1,1)
(14,1,)=(2,2),(1,0) [,=0 Ig=0
(0, ) 1) _ pl@,e ce
- PP + PO — p@@) ¢ ... C,  (75)
k=1, k=l ==l ) 0.0
1,1 w,w
n; = Z Z A Z (P+ + P
(14,1,)=(0,0),(3,2) [,=0 Ig=0
+ pLD 4 pO@) C e, C (76)
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TABLE IX. Examples for the three families of SM multiplets
from T2/Z;.

[N, k] (p1, P2 P3» Pa» Ps» Pes P7- P Do) (i, By) (a—, BO)

[11,4] (3,2,0,0,1,2,3,0,0) 0,1) 0,1)
[12,3] (3,2,0,1,1,0,1,2,2) (1,0) (0,1)

The formulas for [;, (ug)¢, (eg), and g, are obtained by
replacing the summation of (/;, [,) for n; with{(3, 1), (0, 1)},
{(2,0), (1,2)}1,{(0,2), (3,0)}, and {(1, 1), (2, 1)}

In Table IX, we give some examples for representations
and BCs to derive three families of SM fermions.

D.T?/Z,
For the representation matrices given by
Qo = diag([+11,,[+1],,. [+il,,, [+il,,. [=1],, [=1],,
X [=il,, [y,
Py = diag([+1],, [—1],, [+1],, [=1],, [+1],, [=1],,
X [+1],, [=11,), (77)

the following breakdown of SU(N) gauge symmetry
occurs:

SU(N) = SU(py) X SU(py) X - -+ X SU(pg) X U(1)"7",

(78)
where [*1], and [*i], represent =1 and *i for all p;

elements.
After the breakdown of SU(N), [N, k]+ is decomposed

as
k=1, k=l ==l

[N, k]. = Z Z > (,ChpChreer 0 €2

=01,= =0

(719)
where lg=k—-1—---—=1. The (,C,,,C,
psC1,)+ has the Z, and Z, elements
?Oi — il3+l4(_1)15+16(_l-)17+18 ngi

— il'+12+2(l3+l4)+3(15+16)(—i)k gi

= hHLF2l+1)+3s+g) s (80)
P, = (—D)letlitletlinl = (—)lthtith(— kgl

— (_1)ll+l3+l5+l7+ﬁi’ (81)

where ”721 takes a value 1, —1, i, or —i, and we parame-
trize the intrinsic Z, elements (M = 4, 2) as (—i)*n?, =
i% and (—1)kni, = (=1)P=.

1. Numbers of SU(5) multiplets on T*/Z,

After the breakdown of SU(N)— SU(5)X
SU(py) X =+ X SU(pg) X U(1)"™™, [N, k] is decom-
posed as
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k=1, k===l

ZZ >

[=00— 15=0

[N, k. = (5Chyo psCivvs i i)

> Ps

(82)

Using the assignment of the Z, and Z, elements (80)
and (81), we find that zero modes appear if the following
relations are satisfied:

n) =L +2(l3+1)+3(ls+ 1) =4—1, — ax (mod4),

n111L1513+15+l7:2_ll _ﬁi (mOdZ) (83)
The relation nl“] Rt = nl”] 1+ + 1(mod4) holds from Eq. (4).

Then, we obtain the formulas (15)—(17) with n = 8, and
they are rewritten as

k—ll k—l]_"'_lﬁ
1,1 i, —1
nm B3 I e A
1,=1,4 1,=0 ;=0
+ Pg‘l) _ I;.(:i,fl))pzcl2 . PsClg’ (84)
k=1, k=l ——lg 11 -1
no = Y. > i@y - pEY
1,=2,31,=0 =0
+pUh — P(:"’fl))pzczz " p G (85)

k=l k=l =l '
m=> 3 > @MV +piY 4+ peD
1,=0,5 1,=0 1,=0
+PCID), €y, O (86)

where P(ip’” ) are projection operators that pick up the part
relating (Py+, P,+) = (p, p’) and are written by

TABLE X. Examples for the three families of SU(5) from
/7,

[N, k] (p1, P2 3, P4 Ps> Po 7. P8) (@4, By)  (a—, Bo)
(8,3] (5,0,0,0,0,0,3,0) 2,1) (0,0)
[8,4] (5,0,0,3,0,0,0,0) (0,0) (2,0)
[9,3] (5,3,0,0,0,0,0,1) (1,0 (0,1)
[9.4] (5,0,2,0,0,0,1,1) (2,0 (2,0)
[10,3] (5,0,0,0,3,0,0,2) (1,0 (2,0)
[10,4] (5,0,0,0,0,4,0,1) (0,0 2,1)
[11,3] (5,0,0,1,2,2,0,1) 3,1 2,0)
[11.4] (5,0,3,1,2,0,0,0) (2.0) (1,1)
[11,5] (5,0,0,2,0,0,1,3) (0,1) (3,0)
[12,3] (5,4,0,1,0,0,0,2) (3,1 (1,0)
[12.4] (5,0,4,0,1,2,0,0) (2,0 (3,0)
[12,5] (5,1,2,0,2,2,0,0) 3,1) (1,1)
[12,6] (5,0,3,0,1,0,3,0) (2,0 2,1)
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/ 1
PO =2 (14 pPos + PP + PP Po)(1 + p'P).
(87)

In Table X, we give some examples for representations
and BCs to derive ns = njy = 3.

2. Numbers of the SM multiplets on T?/Z,
After the breakdown of SU(N)— SU(3) X SU(2) X

SU(p3) X -+ X SU(pg) X U(1)"™™, [N, k] is decom-
posed as
k=1, k===l
[N, k], = Z Z Y GCLaCrpCrpins )
=01,= =0
(88)

Using the assignment of the Z, and Z, elements (80) and
(81), we find that zero modes appear if the following
relations are satisfied:

n) e =20s+1)+3(s+1l)=4—1, — L, — a. (mod4),
nllL+—l3+ls+l7— _ll B+ (m0d2) (89)

The relation nf, .
102/ —
Eq. (4).

=nj, .+ + 1 (mod 4) holds from

PHYSICAL REVIEW D 88, 055016 (2013)

Then, we obtain the formulas (15)—(17) with n = 8.
Using the projection operators (87), the formulas for
(dg)° and (vg)¢ are rewritten as

k=1, k=1, ——I
ng = Z Z Z (_1)11+lz
(1,,1)=(2,2),(1,0) [,=0 ;=0
1,1 [, — —i—
X (PP — pLTV 4 pb — poish) -l €
(90)
k=1, k=1 ==l
1,1 i,—1
n’_/ = Z Z oo Z (P(+ ) + P(_:_ )
(1,1,)=(0,0),(3,2) [,=0 ;=0
1,1 —i,—1 P
+ pLh 4 pC- >),,3c,3 s Cly- 91)

The formulas for [;, (ug)¢, (eg), and g; are obtained by
replacing the summation of (/;, [,) for n; with{(3, 1), (0, 1)},
{(2,0), (1,2)}1,{(0,2), (3,0)}, and {(1, 1), (2, )}

In Table XI, we give some examples of representations
and BCs to derive three families of SM fermions.

E.T2/Z,

For the representation matrices given by

Eo = diag([(+11,, [+1],,. [¢],,. [¢],, [€°]ps, [€°]pe [ 10, [= 1 [= @] [ @) [= 970, [ 071,,),

Pl = diag([+1]pl’ [_ ][72’ [+1]P3’ [_ ]P4’ [+1]I’i’ [_

the following breakdown of SU(N) gauge symmetry
occurs:

SU(N)— SU(p;) X SU(py) X =+ X SU(pyp) X U(1)1—m,

(93)

where ¢ = ¢™/3 and [c] », Tepresents the number ¢ for all

p; elements.
After the breakdown of SU(N), [N, k]+ is decomposed

as
k=1, k=l ==y
[N, k] = Z Z Z (Plcll’l’zclz’""PlzCllz)i’
=00,— 11=0
%94)
where Il =k—1 —---—=1;. The (,C;,,,Cp. ...,

plzCllz)i has the Z4 and Z, elements

11,')0 — ¢13+l4(¢2)15+l(,(_ 1)l7+lg(_ ¢)lg+llo(_ g02)1” +l; ngi
= ¢11Hz+2(13+l4)+3(15+ls)+4(17+lx)+5(19+110)(Pkn()
— ¢l]+12+2(13+l4)+3(15+lﬁ)+4(l7+18)+5(19+llo)+at, (95)

92)
1, [+11,, [—11,,, [+ 1], [— 11, [+1],,, [=1],,,).
P, = (= 1)+ttt gl
— (Db e (gl
— (_1)11+l3+l5+l7+19+l“+[$’i, (96)
where 19, takes a value ¢"™/3 (n =0, 1,...,5), and we

parametrize the intrinsic Z,, elements (M =6, 2) as
(7R, = (™) and (=g, = (~1)P=,

TABLE XI. Examples for the three families of SM multiplets
from T?%/Z,.

[N.k]  (p1. P2 P3. P4, P5. Pe: P71 Ps) (@4, By)  (a—, B-)
(9.3] (3,2,1,0,0,0,2,1) 0,1) 0,0)
[11,3] (3,2,1,1,0,4,0,0) (1,0) (1,1
[11,4] (3,2,0,0,3,1,1,1) 0.1) 0,0)
[12,4] (3,2,1,0,2,1,3,0) 0.1) (0,0)
[12,6] (3,2,1,2,0,0,0,4) 0,1 (1,1
[13,4] (3.2,1,2,2,2,0,1) O,1) (0,0)
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1. Numbers of SU(5) multiplets on T*/Z,

After the breakdown of SU(N)— SU(5)X
SU(p,y) X -+ X SU(pyp) X UM)'™ [N, k]+ is decom-
posed as

k=l k=L——ly

k
INE=D > DY (CppCriieorppyCr)e

1,=01,=0 =0
7

Using the assignment of the Zg and Z, elements (95) and
(96), we find that zero modes appear if the following
relations are satisfied:

n?lLi =L +20L+ 1) +3(0s + 1) +40; + 13)
+5(ly + 110) (mod 6),
”/],L: =L+Ils+l;+lg+t1;=2—1— B+ (mod2).
(98)

=6_ll_ai

The relation nj p. = nf . + 1(mod 6) holds from Eq. (4).
Then, we obtain the formulas (15)—(17) with n = 12,
and they are rewritten as

k=1, k=l ==l
1,1 ,— 1
nz = Z Z Z (_1)11(})(+ )—P(f )
L=1,41,=0 11, =0
1,1) _ o,—1 e
+PULY — P&y C oo, Co (99)
k=l k=l ==l
1,1 ,—1
nyy = Z z Z (_I)II(PS_ )_P(f )
L,=2,31,=0 11,=0
1,1) _ o, —1 e
+pPLY — P&y C e, Co (100)
TABLE XII. Examples for the three families of SU(5) from
T2/ Ze.
[N, k] (1 P2 P3 -5 P11 P12) (ay, By) (@, B-)
[8,3] (5,0,0,3,0,0,0,0,0,0,0,0) 0,1) (2,0)
[8.4] (5,0,0,1,0,0,0,2,0,0,0,0) 0,0 (2,0)
[9,3] (5,0,0,0,0,0,3,0,0,0,0,1) 0,1 (5,0)
[9.4] (5,2,0,1,0,0,1,0,0,0,0,0) (2,0) (2,0)
[10,3] (5,0,0,1,1,0,0,0,0,0,3,0) 0,1 4,1
[10,4] (5,0,1,0,1,1,0,0,0,1,1,0) (5,0) (2,0)
[10,5] (5,0,0,0,0,0,1,2,0,2,0,0) 4,1 (1,0)
[11,3] (5,0,0,1,0,0,0,0,0,1,4,0) 3. 4,1
[11,4] (5,0,0,0,0,2,0,0,2,1,0,1) (5,0) (2,0)
[11,5] (5,3,0,0,0,0,0,0,0,0,3,0) (L,1) (L,
[12,3] (5,3,0,1,0,0,0,0,0,0,0,3) 0,1 (3,0)
[12,4] (5,0,0,0,0,0,0,1,0,4,1,1) (5,0) (2,0)
[12,5] (5,0,0,0,0,0,2,1,2,1,1,0) (L,1) (L,1)
[12,6] (5,0,0,0,0,3,1,1,2,0,0,0) (3,0) 0,0)

PHYSICAL REVIEW D 88, 055016 (2013)

k=l k—l——ly
m=> Y- 3 (P4 PV 4 ply
1,=0,5 ,=0 Ih=0
+ P(_@,*]))pzclz . s ]7|2C112’ (101)
where P(f’) ) are projection operators that pick up the part

relating (Py+, P,+) = (p, p') and are written by
/ 1
PP = 5+ 5P + PP + PPy + PP

+ PPy + p'PL). (102)

In Table XII, we give some examples for representations
and BCs to derive ns = njy = 3.

2. Numbers of the SM multiplets on T?/Z,

After the breakdown of SU(N)— SU(3) X SU(2) X
SU(p,) X « -+ X SU(py,) X U(1)''=™ [N, k]~ is decom-
posed as

k=1,

k
[Nrk]t:z Z

1,=01,=0

k=li——lyp

X Y GCLCLpCroes p,C ). (103)
1;,=0

Using the assignment of the Zg and Z, elements (95)
and (96), we find that zero modes appear if the following
relations are satisfied:

e =23 + 1) +3(s + I) + 4(1; + Iy)
+5(g+ 1) =6—1, =, —a. (mod6),
n}llzLi =L+istl+ly+1l;=2-1— B (mod2).
(104)

The relation nf, g =nj,;+ + 1 (mod 6) holds from

Eq. (4).

Then, we obtain the formulas (15)—(17) with n = 12.
Using the projection operators (102), the formulas for
(dg)¢ and (wg)¢ are rewritten as

k=l k=l

UEIID D

(1,,1,)=(2,2),(1,0) L,=0 111=0
_ P<f’_1) + pn _ p(_gZ?,fl))p}Cl3 .. 'Plzcllz’
(105)

RIS

k=1, k=Ll

EUND D R

(11,1)=(0,0),(3,2) ,=0 [1=0

+ pLh 4 P(ﬁb’il))mcb T Flzcllz'

1,1 ,—1
(PYY + P

(106)

The formulas for [;, (uz)¢, (eg)¢, and g, are obtained
by replacing the summation of (/y,l,) for n; with
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TABLE XIII. Examples for the three families of SM multiplets
from T2/Z.

[Nkl (ppyps--pinp)  (ag, By)  (a-, B)
[9,3] (3,2,0,1,0,0,0,0,0,0,1,2) (0,0) o,1)
[9.4] (3,2,0,0,0,1,0,0,1,2,0,0) (1,1) (1,0)
[10,3] (3,2,0,0,3,0,0,0,0,0,1,1) (1,0) (1,1)
[10,4] (3,2,0,1,1,2,0,0,0,0,1,0) o,1) (0,0)
[11,3] (3,2,1,1,1,0,0,0,0,1,1,1) o,1) (0,0)
[11,4] (3,2,0,1,0,2,0,0,0,3,0,0) ,1) (1,0)
[11,5] (3,2,0,0,1,0,4,0,1,0,0,0) 0,1) (0,0)
[12,3] (3,2,0,1,3,1,0,1,0,0,0,1) (1,0) (1,1)
[12,4] (3,2,0,0,0,1,1,2,0,2,1,0) 1,1 (1,0)
[12,5] (3,2,1,1,0,3,1,1,0,0,0,0) (1,0) (1,1)
[12,6] (3,2,0,0,0,1,0,0,3,0,0,3) (1,1) (1,1)
[13,3] (3,2,1,0,0,0,0,3,2,0,0,2) (0,0) o,1)
[13,4] (3,2,2,0,1,1,1,1,0,0,1,1) (1,0) (1,1
[13,5] (3,2,1,0,0,4,0,0,0,3,0,0) (1,1) (1,0)
[13,6] (3,2,1,0,0,0,0,2,4,0,0,1) (0,0) o,1)

{3, 1), (0, )},

{(1, 1), 2, D}
In Table XIII, we give some examples for representa-

tions and BCs to derive three families of SM fermions.

{2,0,(12)} {0230} and

IV. CONCLUSIONS

We have studied the possibility of family unification on
the basis of SU(N) gauge theory on the six-dimensional
space-time, M* X T? /Zy. We have obtained enormous
numbers of models with three families of SU(5) matter
multiplets and those with three families of the SM multip-
lets, from a single massless Dirac fermion with a higher-
dimensional representation of SU(N), after the orbifold
breaking. The total numbers of models with the three
families of SU(5) multiplets and the SM multiplets are
summarized in Tables IV and V, respectively. Our results
can give a starting point for the construction toward a more
realistic model, because three families of chiral fermions in
the SM are contained in our models.

Now, the following open questions should be tackled as
a future work.

The unwanted matter degrees of freedom can be suc-
cessfully made massive thanks to the orbifolding.
However, some extra gauge fields remain massless, even
after the symmetry breaking due to the Hosotani mecha-
nism [38,39]. In most cases, this kind of non-Abelian
gauge subgroup plays the role of family symmetry. These
massless degrees of freedom must be made massive by
further breaking of the family symmetry. Extra scalar fields
can play the role of Higgs fields for the breakdown of extra
gauge symmetries including non-Abelian gauge symme-
tries. As a result, extra massless fields including the family
gauge bosons can be massive.

If fields localized around fixed points (brane fields) are
introduced, there is a potential such that three families are

PHYSICAL REVIEW D 88, 055016 (2013)

generated after the survival hypothesis works between the
bulk fields and brane fields. In such a case, models with
families greater than three derived from a single bulk
multiplet would be favorable.

In general, there appear D-term contributions to scalar
masses in supersymmetric models after the breakdown of
such extra gauge symmetries and the D-term contributions
lift the mass degeneracy [42-46]. The mass degeneracy for
each squark and slepton species in the first two families is
favorable for suppressing flavor-changing neutral current
processes. The dangerous flavor-changing neutral current
processes can be avoided if the sfermion masses in the first
two families are rather large or the fermion and its super-
partner mass matrices are aligned. The requirement of
degenerate masses would yield a constraint on the
D-term condensations and/or SUSY breaking mechanism
unless other mechanisms work. If we consider the Scherk-
Schwarz mechanism [28,29] for N = 1 SUSY breaking,
the D-term condensations can vanish for the gauge sym-
metries broken at the orbifold breaking scale because of a
universal structure of the soft SUSY breaking parameters.
The D-term contributions have been studied in the frame-
work of SU(N) orbifold GUTs [47,48].

Can the gauge coupling unification be successfully
achieved? If the particle contents in the minimal super-
symmetric standard model only remain in the low-energy
spectrum around and below the TeV scale and a big desert
exists after the breakdown of extra gauge symmetries, an
ordinary grand unification scenario can be realized up to
the threshold corrections due to the Kaluza-Klein modes
and the brane contributions from nonunified gauge kinetic
terms.

Another problem is whether or not the realistic fermion
mass spectrum and the generation mixings are successfully
achieved. Fermion mass hierarchy and generation mixings
can also occur through the Froggatt-Nielsen mechanism
[49] on the breakdown of extra gauge symmetries and the
suppression of brane-localized Yukawa coupling constants
among brane weak Higgs doublets and bulk matters with
the volume suppression factor [50].

It would be interesting to reconsider or reconstruct our
models in the framework of string theory. Various four-
dimensional string models including three families have
been constructed from several methods, see, e.g., Ref. [51]
and references therein for useful articles.®

It has been pointed out that SO(1, D — 1) space-time
symmetry can lead to family structure [53,54], and hence,
it would offer a hint to explore the family structure in our
models.

Furthermore, it would be interesting to study cosmologi-
cal implications of the class of models presented in this
paper, see, e.g., Ref. [55] and references therein for useful
articles toward this direction.

8See also Ref. [52] and references therein for recent works.
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