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Abstract

Abraham-Moses transformations, besides Darboux transformations, are well-known

procedures to generate extensions of solvable potentials in one-dimensional quantum

mechanics. Here we present the explicit forms of infinitely many seed solutions for

adding eigenstates at arbitrary real energy through the Abraham-Moses transforma-

tions for typical solvable potentials, e.g. the radial oscillator, the Darboux-Pöschl-

Teller and some others. These seed solutions are simple generalisations of the virtual

state wavefunctions, which are obtained from the eigenfunctions by discrete symme-

tries of the potentials. The virtual state wavefunctions have been an essential ingre-

dient for constructing multi-indexed Laguerre and Jacobi polynomials through multi-

ple Darboux-Crum transformations. In contrast to the Darboux transformations, the

virtual state wavefunctions generate non-polynomial extensions of solvable potentials

through the Abraham-Moses transformations.

1 Introduction

In order to extend solvable potentials in one-dimensional quantum mechanics [1, 2, 3], two

methods are well-known; the Darboux transformation [4, 5] and the Abraham-Moses trans-

formation [6]. The latter, about 30 years old, does not seem to have been well exploited

compared with the former, which is known for about 120 years and has seen remarkable

developments brought about by the multi-indexed orthogonal polynomials [7, 8] and the ex-

ceptional orthogonal polynomials [9]–[15] generated in terms of seed solutions called virtual
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state wavefunctions . They are obtained from the eigenfunctions by the discrete symmetries

of the Hamiltonian [7].

In this paper, we assert that these virtual state wavefunctions and their generalisations

can also be used for the Abraham-Moses transformations for adding finitely many eigenstates

at arbitrary real energy . We present the explicit forms of various seed solutions for typical

solvable potentials; the radial oscillator, the Darboux-Pöschl-Teller potential and some oth-

ers. These will bring immensely rich applications of the Abraham-Moses transformations.

The harmonic oscillator potential has been discussed in the original paper [6] and in many

others [16]–[20].

Historically, the Abraham-Moses transformations have been introduced and discussed

in connection with the formulation of the inverse scattering theory [21]. However, like the

Darboux transformations, as a map relating one Hamiltonian system to another including

the proper solutions, the Abraham-Moses transformations can be formulated totally alge-

braically, without recourse to the inverse scattering theory, so long as the boundary con-

ditions of various solutions are well specified. The key idea, as stressed by many authors,

is that the Wronskian of two solutions W[ϕ, ψ] can be expressed as an integral from one

boundary (2.24); an essential ingredient of the Abraham-Moses transformations.

The present paper is organised as follows. In section two, the basic formulas of the

Abraham-Moses transformations are recapitulated for introducing necessary notation and

for self-containedness. They are presented algebraically, without making use of the inverse

scattering theory formulation. Starting from one state adding transformation in § 2.1, the
multiple sates addition formulas are given in § 2.2. The multiple states adding process, start-

ing from a set ofM non-normalisable seed solutions {ϕj} and ending up as many orthonormal

vectors (ϕ
(M)
j , ϕ

(M)
k ) = δj k (j, k = 1, . . . ,M), (2.35), can be considered as a good example

of an orthonormalisation procedure of non-normalisable vectors . The one state deletion is

presented in § 2.3 as an inverse process of one state addition. The multi-states deletion is

commented on briefly. Various remarks and comments on Abraham-Moses transformations

are listed in § 2.4 including a note on the relation between Darboux transformations and

Abraham-Moses transformations. Section three is the main body of the paper. Starting

from the two well-known solvable potentials, the radial oscillator and the Darboux-Pöschl-

Teller potential, the familiar virtual state wavefunctions are introduced in § 3.1. They are

polynomial type wavefunctions. For the Darboux-Pöschl-Teller potential, the total number
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of addable eigenstates is limited by the parameters of the starting Hamiltonian. In § 3.1.1
their “degrees” are changed to real numbers by rewriting the Laguerre and Jacobi polyno-

mials as (confluent) hypergeometric functions. The other genres of seed solutions are also

given there. The seed solutions for other solvable potentials, the Morse potential, etc, are

given in § 3.2. The final section is for a summary and discussions.

2 Multiple Abraham-Moses Transformations

Here we first recapitulate the essence of the Abraham-Moses transformations [6] for adding

one bound state with an arbitrary real energy in § 2.1. By repeating the one state additions,

the multiple Abraham-Moses transformations are realised in § 2.2. We briefly discuss one

and multiple state deletions in § 2.3. The addition and deletion are shown to be the inverse

processes of each other. The other properties are discussed in § 2.4.
In contrast to the original and most of the subsequent publications on the Abraham-

Moses transformations [6, 18, 16], our derivations are purely algebraic without recourse

to the inverse scattering method [21]. This is partly because some important quantum

mechanical systems are defined in finite intervals, for which the inverse scattering method

is inadequate. The main reason is the clarity of the presentation. Like the Darboux-Crum

transformations [4, 5, 22], most salient features of the Abraham-Moses transformations can

be better understood algebraically.

The starting point is the general quantum mechanics in one dimension defined in an

interval x1 < x < x2 with a smooth potential U(x) ∈ R. The system has an infinite (or

a finite) number of discrete eigenstates. For simplicity we assume vanishing groundstate

energy:

H = − d2

dx2
+ U(x), (2.1)

Hφn(x) = Enφn(x) (n ∈ Z≥0 or 0 ≤ n ≤ nmax), 0 = E0 < E1 < E2 < · · · , (2.2)

(φm, φn)
def
=

∫ x2

x1

dx φm(x)φn(x) = hnδmn, 0 < hn <∞. (2.3)

In quantum mechanics, another requirement is built in. That is, the momentum operator

p = −i~∂x (i ≡
√
−1) must be hermitian. This simply means that the boundary terms

in partial integration should vanish. We require the following boundary conditions on the
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eigenfunctions:

lim
x→x1

φn(x)
2

x− x1
= 0, lim

x→x2

φn(x)
2

x2 − x
= 0 (n = 0, 1, . . .). (2.4)

An appropriate modification is needed when x2 = +∞ and/or x1 = −∞. Throughout this

paper we adopt the convention that all the wavefunctions are real. We will not discuss the

scattering state wavefunctions.

Let {ϕj(x), Ẽj} (j = 1, 2, . . . ,M) be distinct solutions of the original Schrödinger equation

(2.1):

Hϕj(x) = Ẽjϕj(x) (Ẽj ∈ R ; j = 1, 2, . . . ,M), (2.5)

to be called seed solutions. In this paper we consider such seed solutions that are square

non-integrable at one boundary:

Type I : lim
x→x1

ϕj(x)
2

x− x1
= 0,

∫ x2

x2−ǫ

dxϕj(x)
2 = ∞, (2.6)

Type II :

∫ x1+ǫ

x1

dxϕj(x)
2 = ∞, lim

x→x2

ϕj(x)
2

x2 − x
= 0. (2.7)

Of course this means that ϕj(x) is square integrable at x1 for type I and at x2 for type II

[17]. It should be stressed that there is no type I or type II seed solution belonging to the

spectrum of the Hamiltonian {En} (n = 0, 1, . . .), because of the uniqueness of the solutions

of the Schrödinger equation.

2.1 One state addition

Let us introduce the Abraham-Moses transformations for adding one bound state by using a

seed solution with an arbitrary real energy . For simplicity of the presentation, we will restrict

ourselves to utilise the type I seed solutions only. We will comment on the use of the type II

and both I and II in § 2.4. For a pair of real functions f and g, which are square integrable

at the lower boundary, let us introduce a new function 〈f, g〉 by integration:

〈f, g〉(x) def
=

∫ x

x1

dyf(y)g(y) = 〈g, f〉(x), x1 < x < x2, (2.8)

〈f, g〉(x1) = 0, 〈f, g〉(x2) = (f, g). (2.9)

Note that d
dx
〈f, g〉(x) = f(x)g(x).

For a seed solution, say ϕ1, with the energy Ẽ1, an Abraham-Moses transformation for

adding one bound state with the energy Ẽ1, is defined as follows:

ψ(x) → ψ(1)(x)
def
= ψ(x)− ϕ1(x)

1 + 〈ϕ1, ϕ1〉(x)
× 〈ϕ1, ψ〉(x), (2.10)
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or simply ψ → ψ(1) def
= ψ − ϕ1

1 + 〈ϕ1, ϕ1〉
〈ϕ1, ψ〉. (2.11)

Here ψ is an arbitrary smooth function of x ∈ (x1, x2) and 〈ϕ1, ψ〉 must be well defined at

the lower boundary x1. We have the following:

Proposition 2.1 [6] Let ψ be a solution of the original Schrödinger equation satisfying the

boundary condition

Hψ = Eψ, E ∈ R, lim
x→x1

ψ(x)2

x− x1
= 0. (2.12)

Then the function ψ(1) (2.11) satisfies the deformed Schrödinger equation with the same

energy:

H(1)ψ(1) = Eψ(1), (2.13)

H(1) def
= − d2

dx2
+ U (1)(x), U (1)(x)

def
= U(x)− 2

d2

dx2
log

(

1 + 〈ϕ1, ϕ1〉
)

. (2.14)

The eigenfunctions are mapped to eigenfunctions with the same norm

φn → φ(1)
n , (φ(1)

n , φ(1)
m ) = (φn, φm) = hnδnm, (2.15)

together with the newly created eigenfunction ϕ
(1)
1 , which has a unit norm:

ϕ1 → ϕ
(1)
1 =

ϕ1

1 + 〈ϕ1, ϕ1〉
, (ϕ

(1)
1 , ϕ

(1)
1 ) = 1, (ϕ

(1)
1 , φ(1)

n ) = 0. (2.16)

It should be stressed that the seed solution ϕ1 is not square integrable (ϕ1, ϕ1) = ∞
and its overall scale is immaterial. The normalisation part of the Proposition is a simple

consequence of the transformation form (2.11). The transformed seed solution has the form:

(

ϕ
(1)
1

)2
=

ϕ2
1

(1 + 〈ϕ1, ϕ1〉)2
= − d

dx

(

1

1 + 〈ϕ1, ϕ1〉

)

.

By integrating the above expression from x1 to x2, we obtain

(ϕ
(1)
1 , ϕ

(1)
1 ) = −

[

1

1 + 〈ϕ1, ϕ1〉

]x2

x1

= 1− 1

1 + (ϕ1, ϕ1)
= 1. (2.17)

Likewise we have

f (1)g(1) = fg − d

dx

(〈ϕ1, f〉〈ϕ1, g〉
1 + 〈ϕ1, ϕ1〉

)

, (2.18)

for arbitrary smooth functions f and g with well-defined 〈ϕ1, f〉 and 〈ϕ1, g〉. Taking f = φn,

g = φm and integrating from x1 to x, we obtain

〈φ(1)
n , φ(1)

m 〉 = 〈φn, φm〉 −
〈ϕ1, φn〉〈ϕ1, φm〉
1 + 〈ϕ1, ϕ1〉

. (2.19)
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At the upper boundary x = x2, we obtain (2.15). The other orthogonality relation (φ
(1)
n , ϕ

(1)
1 )

= 0 (2.16) can be shown in a similar way.

Next we note (f ′ = df

dx
)

(

ϕ
(1)
1

)′
=

ϕ′
1

1 + 〈ϕ1, ϕ1〉
− ϕ3

1

(1 + 〈ϕ1, ϕ1〉)2
⇒ ϕ1

(

ϕ
(1)
1

)′
= ϕ′

1ϕ
(1)
1 − ϕ2

1

(

ϕ
(1)
1

)2
, (2.20)

which simplifies the expression of the deformed potential

U (1) = U − 2

(

ϕ2
1

1 + 〈ϕ1, ϕ1〉

)′

= U − 2
(

ϕ1ϕ
(1)
1

)′
= U − 2

(

2ϕ′
1ϕ

(1)
1 − ϕ2

1

(

ϕ
(1)
1

)2
)

. (2.21)

Then it is straightforward to show the deformed Schrödinger equation for ϕ
(1)
1 :

(

ϕ
(1)
1

)′′
=

ϕ′′
1

1 + 〈ϕ1, ϕ1〉
− 4ϕ′

1ϕ
2
1

(1 + 〈ϕ1, ϕ1〉)2
+

2ϕ5
1

(1 + 〈ϕ1, ϕ1〉)3

= (U − Ẽ1)ϕ(1)
1 − 4ϕ′

1

(

ϕ
(1)
1

)2
+ 2ϕ2

1

(

ϕ
(1)
1

)3
= (U (1) − Ẽ1)ϕ(1)

1 . (2.22)

The deformed Schrödinger equation for ψ(1) can be shown as follows:

ψ(1) = ψ − ϕ
(1)
1 〈ϕ1, ψ〉 ⇒

(

ψ(1)
)′
= ψ′ −

(

ϕ
(1)
1

)′〈ϕ1, ψ〉 − ϕ
(1)
1 ϕ1ψ,

(

ψ(1)
)′′

= ψ′′ −
(

ϕ
(1)
1

)′′〈ϕ1, ψ〉 − 2
(

ϕ
(1)
1

)′
ϕ1ψ − ϕ

(1)
1 (ϕ′

1ψ + ϕ1ψ
′)

= (U − E)ψ − (U (1) − Ẽ1)ϕ(1)
1 〈ϕ1, ψ〉 − 4ϕ′

1ϕ
(1)
1 ψ + 2ϕ2

1

(

ϕ
(1)
1

)2
ψ

− ϕ
(1)
1 (ϕ1ψ

′ − ϕ′
1ψ)

= (U (1) − E)ψ(1) − ϕ
(1)
1

(

W[ϕ1, ψ]− (Ẽ1 − E)〈ϕ1, ψ〉
)

. (2.23)

Here W[ϕ1, ψ] is the Wronskian, W[ϕ1, ψ]
def
= ϕ1ψ

′ − ϕ′
1ψ, satisfying

(

W[ϕ1, ψ]
)′
= (Ẽ1−E)ϕ1ψ ⇒ W[ϕ1, ψ] = (Ẽ1−E)

∫ x

x1

dyϕ(y)ψ(y) = (Ẽ1−E)〈ϕ1, ψ〉, (2.24)

because of the boundary conditions (2.4), (2.6) and (2.12). This proves the deformed

Schrödinger equation for ψ(1).

There is one important exceptional situation when E = Ẽ1, i.e. at the newly added

eigenenergy level. In this case, W[ϕ1, ψ] = constant 6= 0 (otherwise ψ(1) ∝ ϕ
(1)
1 ) and ψ(1) is

no longer a solution of the deformed Schrödinger equation.

2.2 Multiple states addition

It is now obvious that the new HamiltonianH(1) has the eigenspectrum {Ẽ1, En}, and the cor-

responding eigenfunctions {ϕ(1)
1 , φ

(1)
n } (n = 0, 1, . . .), together with the seed solution {ϕ(1)

j }
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with energy {Ẽj} (j = 2, 3, . . . ,M), assuming that they also satisfy the boundary condi-

tions. By picking up another seed solution, say ϕ
(1)
2 , one can define another Abraham-Moses

transformation:

ϕ
(1)
2 → ϕ

(2)
2

def
=

ϕ
(1)
2

1 + 〈ϕ(1)
2 , ϕ

(1)
2 〉

,

ψ(1) → ψ(2) def
= ψ(1) − ϕ

(2)
2 〈ϕ(1)

2 , ψ(1)〉,

H(1) → H(2) def
= H(1) − 2

d2

dx2
log

(

1 + 〈ϕ(1)
2 , ϕ

(1)
2 〉

)

,

H(1)ψ(1) = Eψ(1) → H(2)ψ(2) = Eψ(2).

This step can go on as many as the number of the prepared seed solutions, so long as the

seed functions satisfy the boundary conditions. Let us use the M seed solutions {ϕj} (2.5)

in the order j = 1, 2, . . . ,M . At the K-th step, the transformation reads:

ϕ
(K−1)
K → ϕ

(K)
K

def
=

ϕ
(K−1)
K

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

, (2.25)

ψ(K−1) → ψ(K) def
= ψ(K−1) − ϕ

(K)
K 〈ϕ(K−1)

K , ψ(K−1)〉, (2.26)

H(K−1) → H(K) def
= H(K−1) − 2

d2

dx2
log

(

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

)

, (2.27)

H(K−1)ψ(K−1) = Eψ(K−1) → H(K)ψ(K) = Eψ(K), (2.28)

together with the orthogonality conditions of the eigenfunctions

(φ(K)
n , φ(K)

m ) = (φn, φm) = hnδnm (n,m = 0, 1, . . .), (2.29)

(φ(K)
n , ϕ

(K)
j ) = 0 (n = 0, 1, . . . , ; j = 1, . . . , K), (2.30)

(ϕ
(K)
j , ϕ

(K)
k ) = δj k (j, k = 1, . . . , K). (2.31)

The last formula (2.31) means that the multiple Abraham-Moses transformations could be

interpreted as orthonormalisation of non-normalisable vectors {ϕj}. Indeed the formula

(2.31) is independent of the fact that the functions {ϕj} are the solutions of the Schrödinger

equation (cf. (2.18), (2.42)).

The Abraham-Moses transformation for adding one eigenstate (2.11)–(2.14) involves one

integration. It is naturally expected that the K-fold Abraham-Moses transformation would

require K-fold integrals. It turns out that all the higher integrals can be partially integrated

and only simple integrals remain. Let us define an M ×M symmetric and positive definite
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matrix F depending on the seed solutions {ϕj} (j = 1, . . . ,M) as follows:

F(x) ≡ F [ϕ1, . . . , ϕM ](x), (F)j k
def
= δj k + 〈ϕj , ϕk〉 (j, k = 1, . . . ,M). (2.32)

For any M ×M matrix G, let us denote by GK its K × K submatrix consisting of (G)j k
(j, k = 1, . . . , K). Because of the positive definiteness of FK , the inverse F−1

K is always

well-defined. In terms of FK (K = 1, . . . ,M), we have the following:

Proposition 2.2 [18] Repeating the one eigenstate adding Abraham-Moses transformations

(2.11)–(2.14) M-times based on the seed solutions {ϕj}, j = 1, . . . ,M in this order, the

Hamiltonian H(M) and the corresponding eigenfunctions {φ(M)
n }, {ϕ(M)

j } can be expressed in

the following simple form:

H(M) = H− 2
d2

dx2
log det

(

FM(x)
)

, (2.33)

φ(M)
n (x) = φn(x)−

M
∑

j,k=1

ϕj(x)
(

F−1
M (x)

)

j k
〈ϕk, φn〉(x) (n = 0, 1, . . .), (2.34)

ϕ
(M)
j (x) =

M
∑

k=1

(

F−1
M (x)

)

j k
ϕk(x), (ϕ

(M)
j , ϕ

(M)
k ) = δj k (j, k = 1, . . . ,M), (2.35)

provided that all the intermediate seed solutions satisfy the boundary conditions.

Obviously M = 1 quantities, H(1) (2.14), {φ(1)
n } (2.11) and {ϕ(1)

1 } (2.16) have these forms.

It is rather amusing to verify M = 2 formulas. From (2.19), we obtain

〈ϕ(1)
2 , ϕ

(1)
2 〉 = 〈ϕ2, ϕ2〉 −

〈ϕ1, ϕ2〉〈ϕ1, ϕ2〉
1 + 〈ϕ1, ϕ1〉

,

which means that

(

1 + 〈ϕ1, ϕ1〉
)(

1 + 〈ϕ(1)
2 , ϕ

(1)
2 〉

)

=
(

1 + 〈ϕ1, ϕ1〉
)(

1 + 〈ϕ2, ϕ2〉
)

− 〈ϕ1, ϕ2〉〈ϕ1, ϕ2〉

= (F2)1 1 × (F2)2 2 − (F2)1 2 × (F2)2 1 = det(F2).

This proves the potential formula for U (2). Likewise (2.19) gives

〈ϕ(1)
2 , φ(1)

n 〉 = 〈ϕ2, φn〉 −
〈ϕ1, ϕ2〉〈ϕ1, φn〉
1 + 〈ϕ1, ϕ1〉

.

This gives an explicit expression of the eigenfunction φ
(2)
n as a linear combination of terms

ϕj〈ϕk, φn〉 (j, k = 1, 2) :

φ(2)
n = φ(1)

n − ϕ
(1)
2 〈ϕ(1)

2 , φ
(1)
n 〉

1 + 〈ϕ(1)
2 , ϕ

(1)
2 〉

8



= φn −
ϕ1〈ϕ1, φn〉
1 + 〈ϕ1, ϕ1〉

−
(

ϕ2 −
ϕ1〈ϕ1, ϕ2〉
1 + 〈ϕ1, ϕ1〉

)

×
(

〈ϕ2, φn〉 −
〈ϕ1, ϕ2〉〈ϕ1, φn〉
1 + 〈ϕ1, ϕ1〉

)

× 1

1 + 〈ϕ(1)
2 , ϕ

(1)
2 〉

.

It is indeed trivial to verify that the coefficient of the term −ϕj〈ϕk, φn〉 det(F2)
−1 is the

co-factor of the matrix element (F2)j k (j, k = 1, 2). This proves the eigenfunction formula

(2.34) for M = 2. The added eigenfunction formula (2.35) for M = 2 can be verified in a

similar manner.

In order to prove Proposition 2.2 inductively, we need the following Lemma, with the

correspondence An ↔ FK , An−1 ↔ FK−1, aj k ↔ Fj k = δj k + 〈ϕj, ϕk〉. The Lemma can be

proven elementarily by using the cofactor expansion theorem once or twice.

Lemma 2.3 For an arbitrary regular matrix An = (aj k)1≤j,k≤n and its regular submatrix

An−1 = (aj k)1≤j,k≤n−1, the following relations hold

(i)
(

A−1
n

)

nn
=

det(An−1)

det(An)
, (2.36)

(i′)
det(An)

det(An−1)
= ann −

n−1
∑

j,k=1

an j

(

A−1
n−1

)

j k
ak n, (2.37)

(ii) 1 ≤ j ≤ n− 1,
(

A−1
n−1

)

j n
= −det(An−1)

det(An)

n−1
∑

k=1

(

A−1
n−1

)

j k
ak n, (2.38)

(ii′) 1 ≤ k ≤ n− 1,
(

A−1
n−1

)

n k
= −det(An−1)

det(An)

n−1
∑

j=1

an j

(

A−1
n−1

)

j k
, (2.39)

(iii) 1 ≤ j, k ≤ n− 1,
(

A−1
n

)

j k
=

(

A−1
n−1

)

j k
+

det(An−1)

det(An)

n−1
∑

l,m=1

(

A−1
n−1

)

j l
al nanm

(

A−1
n−1

)

mk
.

(2.40)

Supposing Proposition 2.2 is true up to K − 1, we will show that it is true for K. For an

arbitrary smooth function f with well-defined 〈ϕj, f〉, the (K − 1)-th transformed function

f (K−1) has the form

f (K−1) = f −
K−1
∑

j,k=1

ϕj

(

F−1
K−1

)

j k
〈ϕk, f〉. (2.41)

For such f and g, we have

f (K−1)g(K−1) = fg −
K−1
∑

j,k=1

ϕjf
(

F−1
K−1

)

j k
〈ϕk, g〉 −

K−1
∑

j,k=1

ϕjg
(

F−1
K−1

)

j k
〈ϕk, f〉

9



+
K−1
∑

j,k,l,m=1

ϕjϕl

(

F−1
K−1

)

j k

(

F−1
K−1

)

lm
〈ϕk, f〉〈ϕm, g〉

= fg − d

dx

( K−1
∑

k,m=1

〈ϕk, f〉
(

F−1
K−1

)

km
〈ϕm, g〉

)

, (2.42)

where we have used

K−1
∑

j,l=1

ϕjϕl

(

F−1
K−1

)

j k

(

F−1
K−1

)

lm
=

K−1
∑

j,l=1

d

dx

(

(FK−1)j l

)

·
(

F−1
K−1

)

j k

(

F−1
K−1

)

lm
= − d

dx

(

F−1
K−1

)

km
.

Thus we obtain

〈f (K−1), g(K−1)〉 = 〈f, g〉 −
K−1
∑

j,k=1

〈ϕj, f〉
(

F−1
K−1

)

j k
〈ϕk, g〉. (2.43)

The transformation is generated by ϕ
(K−1)
K ,

ϕ
(K−1)
K = ϕK −

K−1
∑

j,k=1

ϕj

(

F−1
K−1

)

j k
〈ϕk, ϕK〉, (2.44)

and (2.43) leads to

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉 = 1 + 〈ϕK , ϕK〉 −

K−1
∑

j,k=1

〈ϕj , ϕK〉
(

F−1
K−1

)

j k
〈ϕk, ϕK〉

=
det(FK)

det(FK−1)
=

1
(

F−1
K

)

KK

. (2.45)

In the second equality, Lemma (i) and (i′) are used. This proves the change of the potentials

(2.33) of Proposition 2.2.

Here we introduce a simplifying notation

α
def
=

(

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

)−1
=

(

F−1
K

)

KK
=

det(FK−1)

det(FK)
. (2.46)

The Abraham-Moses transformation on ϕ
(K−1)
j gives for 1 ≤ j ≤ K − 1

ϕ
(K)
j = ϕ

(K−1)
j −

ϕ
(K−1)
K 〈ϕ(K−1)

K , ϕ
(K−1)
j 〉

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

. (2.47)

By (2.43), the numerator on the right hand side can be evaluated:

〈ϕ(K−1)
K , ϕ

(K−1)
j 〉 = 〈ϕK , ϕj〉 −

K−1
∑

l,m=1

〈ϕl, ϕK〉
(

F−1
K−1

)

lm
〈ϕm, ϕj〉
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=
K−1
∑

l=1

〈ϕl, ϕK〉
(

F−1
K−1

)

l j
, (2.48)

since 〈ϕm, ϕj〉 = (FK−1)mj − δmj . We obtain

ϕ
(K)
j =

K−1
∑

k=1

(

F−1
K−1

)

j k
ϕk − α

(

ϕK −
K−1
∑

k,m=1

ϕk

(

F−1
K−1

)

km
〈ϕm, ϕK〉

)

×
(

K−1
∑

l=1

〈ϕl, ϕK〉
(

F−1
K−1

)

l j

)

=
K−1
∑

k=1

ϕk

(

(

F−1
K−1

)

j k
+ α

K−1
∑

l,m=1

(

F−1
K−1

)

l j

(

F−1
K−1

)

km
〈ϕl, ϕK〉〈ϕm, ϕK〉

)

− αϕK

(

K−1
∑

k=1

〈ϕk, ϕK〉
(

F−1
K−1

)

k j

)

. (2.49)

By Lemma (ii) and (iii) we arrive at

ϕ
(K)
j =

K
∑

k=1

(

F−1
K

)

j k
ϕk (j = 1, . . . , K − 1).

For j = K, we obtain directly from (2.47),

ϕ
(K)
K =

ϕ
(K−1)
K

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

= α
(

ϕK −
K−1
∑

j,k=1

ϕj

(

F−1
K−1

)

j k
〈ϕk, ϕK〉

)

,

which gives the desired result through Lemma (i) and (ii′),

ϕ
(K)
K =

K
∑

k=1

(

F−1
K

)

K k
ϕk.

We apply the Abraham-Moses transformation to φ
(K−1)
n by using the above seed solution:

φ(K)
n = φ(K−1)

n − ϕ
(K−1)
K 〈ϕ(K−1)

K , φ
(K−1)
n 〉

1 + 〈ϕ(K−1)
K , ϕ

(K−1)
K 〉

. (2.50)

From (2.43), we have

〈ϕ(K−1)
K , φ(K−1)

n 〉 = 〈ϕK , φn〉 −
K−1
∑

m,k=1

〈ϕm, ϕK〉
(

F−1
K−1

)

mk
〈ϕk, φn〉. (2.51)

We obtain, by using Lemma,

φ(K)
n = φn −

K−1
∑

j,k=1

ϕj

(

F−1
K−1

)

j k
〈ϕk, φn〉
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− α
(

ϕK −
K−1
∑

j,l=1

ϕj

(

F−1
K−1

)

j l
〈ϕl, ϕK〉

)

×
(

〈ϕK , φn〉 −
K−1
∑

m,k=1

〈ϕm, ϕK〉
(

F−1
K−1

)

mk
〈ϕk, φn〉

)

= φn −
( K−1

∑

j,k=1

ϕj〈ϕk, φn〉
(

(

F−1
K−1

)

j k
+ α

K−1
∑

l,m=1

(

F−1
K−1

)

j l

(

F−1
K−1

)

mk
〈ϕl, ϕK〉〈ϕm, ϕK〉

)

− α
K−1
∑

j=1

ϕj〈ϕK , φn〉
(

K−1
∑

k=1

(

F−1
K−1

)

j k
〈ϕk, ϕK〉

)

− α
K−1
∑

j=1

ϕK〈ϕj, φn〉
(

K−1
∑

k=1

(

F−1
K−1

)

k j
〈ϕk, ϕK〉

)

+ αϕK〈ϕK , φn〉
)

= φn −
K
∑

j,k=1

ϕj

(

F−1
K

)

j k
〈ϕk, φn〉.

This concludes the proof of Proposition 2.2.

It is rather easy to show the orthonormality (2.29)–(2.31) based on (2.34)–(2.35) of

Proposition 2.2.

2.3 One state deletion

Deleting multiple eigenstates by Darboux transformation is well established by Krein-Adler

[22]. By choosing a subset of the original eigenfunctions (2.1)–(2.4) specified by D =

{d1, . . . , dM} (dj ≥ 0), the deleted system is given by the ratio of Wronskians:

W[f1, f2, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
,

ψ → ψ[M ] def
=

W[φd1 , φd2, . . . , φdM , ψ]

W[φd1 , φd2 , . . . , φdM ]
,

φn → φ[M ]
n

def
=

W[φd1, φd2 , . . . , φdM , φn]

W[φd1 , φd2, . . . , φdM ]
(n = 0, 1, . . . , ; n /∈ D),

H[M ]ψ[M ] = Eψ[M ], H[M ]φ[M ]
n = Enφ[M ]

n ,

H[M ] def
= H− 2

d2

dx2
log

∣

∣

∣
W[φd1 , φd2 , . . . , φdM ]

∣

∣

∣
,

(φ[M ]
m , φ[M ]

n ) =
M
∏

j=1

(En − Edj ) · hnδmn.

In order to guarantee the non-singularity of the potential and the positive definiteness of the

norm, the deleted levels must satisfy the conditions [22]:

M
∏

j=1

(n− dj) ≥ 0 (∀n ∈ Z≥0). (2.52)
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The conditions mean, in particular, a single state (M = 1) cannot be deleted except for the

groundstate φ0. By the Abraham-Moses transformations, in contrast, one can delete one

and many eigenstates.

Here we consider the process of deleting one discrete eigenlevel from the original Hamil-

tonian system (2.1)–(2.4). Let us denote the eigenfunction to be deleted by φd. By almost

the same calculation as in the case of one state addition, we obtain the following:

Proposition 2.4 [6] When the eigenfunction φd has unit norm (φd, φd) = 1, the following

transformation maps the solution ψ of the original Hamiltonian system to a solution ψ(1) of

the deformed Hamiltonian system H(1) (2.56) with the same energy:

φd → φ
(1)
d

def
=

φd

1− 〈φd, φd〉
, ψ → ψ(1) def

= ψ + φ
(1)
d 〈φd, ψ〉, (2.53)

φn → φ(1)
n

def
= φn + φ

(1)
d 〈φd, φn〉 (n = 0, 1, . . . , ; n 6= d), (2.54)

H(1)ψ(1) = Eψ(1), H(1)φ(1)
n = Enφ(1)

n , (2.55)

H(1) def
= − d2

dx2
+ U (1)(x), U (1)(x)

def
= U(x)− 2

d2

dx2
log

(

1− 〈ϕ1, ϕ1〉
)

. (2.56)

The norms of the eigenfunctions are preserved except for φ
(1)
d , which becomes non-square

integrable. Thus the eigenstate φd is deleted:

(φ(1)
n , φ(1)

m ) = (φn, φm) = hnδnm (n,m 6= d), (φ
(1)
d , φ

(1)
d ) = ∞. (2.57)

The transformation φd → φ
(1)
d (2.53)–(2.56) defines a singular Hamiltonian H(1), when

φd has norm greater than unity (φd, φd) > 1. When φd’s norm is less than unity (φd, φd) < 1,

the new wavefunction φ
(1)
d has a finite norm and the deletion of the state is not achieved .

If a seed solution ϕd is used in the state deleting transformation (2.54), at a certain point

x ∈ (x1, x2), 1− 〈ϕd, ϕd〉 vanishes and it leads to a singular Hamiltonian.

The fact that the norm of the eigenfunction to be deleted, φd, is strictly restricted to

unity can be understood easily when we consider that the deletion is indeed the inverse

process of the addition, in which all the newly added eigenstates have unit norm, and vice

versa.

Let us first add an eigenfunction ϕ
(1)
d by using a seed solution ϕd, then delete the created

eigenfunction ϕ
(1)
d :

ϕ
(1)
d =

ϕd

1 + 〈ϕd, ϕd〉
, ϕ

(2)
d =

ϕ
(1)
d

1− 〈ϕ(1)
d , ϕ

(1)
d 〉

,
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φ(1)
n = φn − ϕ

(1)
d 〈ϕd, φn〉, φ(2)

n = φ(1)
n + ϕ

(2)
d 〈ϕ(1)

d , φ(1)
n 〉,

H(1) = H− 2
d2

dx2
log

(

1 + 〈ϕd, ϕd〉
)

, H(2) = H(1) − 2
d2

dx2
log

(

1− 〈ϕ(1)
d , ϕ

(1)
d 〉

)

.

It is elementary to show (cf. (2.17), (2.19))

〈ϕ(1)
d , ϕ

(1)
d 〉 = 1− 1

1 + 〈ϕd, ϕd〉
⇒

(

1 + 〈ϕd, ϕd〉
)(

1− 〈ϕ(1)
d , ϕ

(1)
d 〉

)

= 1,

〈ϕ(1)
d , φ(1)

n 〉 = 〈ϕd, φn〉
1 + 〈ϕd, ϕd〉

.

These lead, as expected, to:

ϕ
(2)
d = ϕd, H(2) = H,

φ(2)
n = φn − ϕ

(1)
d 〈ϕd, φn〉+ ϕd

〈ϕd, φn〉
1 + 〈ϕd, ϕd〉

= φn.

Next we work in the opposite direction. We first delete a unit norm eigenstate φd,

(φd, φd) = 1, by mapping it to φ
(1)
d , which is not square integrable, (φ

(1)
d , φ

(1)
d ) = ∞. Then

we add an eigenstate by using the seed solution φ
(1)
d :

φ
(1)
d =

φd

1− 〈φd, φd〉
, φ

(2)
d =

φ
(1)
d

1 + 〈φ(1)
d , φ

(1)
d 〉

,

φ(1)
n = φn + φ

(1)
d 〈φd, φn〉, φ(2)

n = φ(1)
n − φ

(2)
d 〈φ(1)

d , φ(1)
n 〉,

H(1) = H− 2
d2

dx2
log

(

1− 〈φd, φd〉
)

, H(2) = H(1) − 2
d2

dx2
log

(

1 + 〈φ(1)
d , φ

(1)
d 〉

)

.

It is again elementary to show

〈φ(1)
d , φ

(1)
d 〉 = 1

1− 〈φd, φd〉
− 1 ⇒

(

1− 〈φd, φd〉
)(

1 + 〈φ(1)
d , φ

(1)
d 〉

)

= 1,

〈φ(1)
d , φ(1)

n 〉 = 〈φd, φn〉
1− 〈φd, φd〉

.

These lead, as expected, to:

φ
(2)
d = φd, H(2) = H,

φ(2)
n = φn + φ

(1)
d 〈φd, φn〉 − φd

〈φd, φn〉
1− 〈φd, φd〉

= φn.

At the end of this subsection let us present the formulas of multiple eigenstates deletion

by using M eigenfunctions {φdj}, (φdj , φdk) = δj k, j = 1, . . . ,M , in this order:

H(M) = H− 2
d2

dx2
log det

(

F̄M(x)
)

, D def
= {d1, . . . , dM}, (2.58)
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φ(M)
n (x) = φn(x) +

M
∑

j,k=1

φdj(x)
(

F̄−1
M (x)

)

j k
〈φdk , φn〉(x) (n = 0, 1, . . . , ; n /∈ D), (2.59)

φ
(M)
dj

(x) =

M
∑

k=1

(

F̄−1
M (x)

)

j k
φdk(x) (j = 1, . . . ,M), (2.60)

F̄(x) ≡ F̄ [φd1 , . . . , φdM ](x) = (F̄j,k)1≤j,k≤M , (F̄)j k
def
= δj k − 〈φdj , φdk〉. (2.61)

These formulas are almost the same as those for the multiple eigenstate addition (2.33)–

(2.35) in Proposition 2.2, with F replaced by F̄ and a plus sign in (2.59) instead of a minus

sign in (2.34). The proof goes parallel with the multiple eigenstate addition case. Indeed

these formulas are obtained from those for the multiple eigenstate addition (2.33)–(2.35) by

changing ϕj → iφdj , ψ → iψ and φn → iφn (n /∈ D), i ≡
√
−1.

2.4 Comments on Abraham-Moses transformations

Here are some comments on various aspects of the Abraham-Moses transformations. As

for the seed solutions for adding eigenstates (2.5), we have not specified the overall scale

of these functions, since there is no standard way of fixing the scale of such non square

integrable functions. The very fact that the obtained eigenfunctions have unit norms is

independent of such overall scales. As stressed in Abraham-Moses paper [6], one could

use one of the original eigenfunctions, φa with energy Ea, as a seed solution. In this case,

φ
(1)
a = φa/(1 + 〈φa, φa〉) is still an eigenfunction with energy Ea. Its norm is changed to

(φ
(1)
a , φ

(1)
a ) = (φa, φa)/(1 + (φa, φa)).

As for the type II seed solutions (2.7) [17], we have to change the definition of the function

〈f, g〉(x) as follows:

〈f, g〉(x) def
= −

∫ x

x2

dyf(y)g(y) = 〈g, f〉(x), x1 < x < x2, (2.62)

〈f, g〉(x1) = (f, g), 〈f, g〉(x2) = 0. (2.63)

Then all the formulas in this section are also true when the type II seed solutions only are

used.

It is definitely true that one can apply the state adding Abraham-Moses transformations

in terms of both type I and II seed solutions in any order, if seed solutions of one type remain

seed solutions after transformations by the other type. This depends on the explicit forms

of the seed solutions. Let us consider a seed solution ϕ2 of type II after the transformation
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by a seed solution ϕ1 of type I:

ϕ
(1)
2 = ϕ2 − ϕ

(1)
1 〈ϕ1, ϕ2〉.

By construction ϕ
(1)
1 = ϕ1/(1 + 〈ϕ1, ϕ1〉) is well behaved on both boundaries. If the integral

〈ϕ1, ϕ2〉(x) =
∫ x

x1
dyϕ1(y)ϕ2(y) exists on both boundaries or its certain regularisation exists,

it is highly likely that ϕ
(1)
2 can qualify as a type II seed solution. The situation is about the

same for a seed solution of type I after the transformation by a type II seed solution.

Even when these mixed multiple transformations are possible, to write down the generic

formulas like Proposition 2.2 for such Abraham-Moses transformations is a different matter.

In contrast to the multiple Darboux transformations in terms of type I and II virtual state

wavefunctions worked out for the radial oscillator, Darboux-Pöschl-Teller and other solvable

potentials [7, 23, 24], we are not quite sure if generic formulas exist for the multiple state

adding Abraham-Moses transformations in terms of both type I and II seed solutions.

Let us briefly comment on the relation between a Darboux transformation and one state

adding Abraham-Moses transformation [19, 20]. Let us first execute a Darboux transforma-

tion by picking up a seed solution (ϕ, Ẽ) of type I (2.6):

H → H[1] def
= − d2

dx2
+ U [1](x), U [1](x)

def
= U(x) − 2

d2

dx2
log |ϕ|,

ψ → ψ[1] def
= ψ′ − ϕ′

ϕ
ψ, H[1]ψ[1] = Eψ[1].

Next we perform a second Darboux transformation in terms of a particular solution of H[1]:

ϕ̄[1] def
=

1

ϕ
(1 + 〈ϕ, ϕ〉), H[1]ϕ̄[1] = Ẽϕ̄[1], (2.64)

H[1] → H[2] def
= H[1] − 2

d2

dx2
log

∣

∣ ϕ̄[1]
∣

∣ = H− 2
d2

dx2
log

(

1 + 〈ϕ, ϕ〉
)

,

ψ[1] → ψ[2] def
=

(

ψ[1]
)′ − (ϕ̄[1])′

ϕ̄[1]
ψ[1] = (Ẽ − E)ψ − 1

ϕ̄[1]
W[ϕ, ψ].

Since ψ and ϕ satisfy the boundary conditions (2.4) and (2.6), the Wronskian W[ϕ, ψ] can

be expressed in terms of an integral W[ϕ, ψ] = (Ẽ − E)〈ϕ, ψ〉 as in (2.24). Thus we arrive at

the one state adding Abraham-Moses transformation (2.11)

ψ[2] = (Ẽ − E)
(

ψ − ϕ

1 + 〈ϕ, ϕ〉〈ϕ, ψ〉
)

. (2.65)

Instead of a seed solution (ϕ, Ẽ), an eigenstate (φd, Ed) and φ̄[1]
d

def
= 1

φd
(1− 〈φd, φd〉) are used,

the one eigenstate deleting Abraham-Moses transformation (2.54) is obtained. The relation
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between the two seed solutions ϕ ↔ ϕ̄[1] (2.64) and its many disguises have been discussed

by many authors in connection with Abraham-Moses transformations [16].

3 Generalised Virtual State Wavefunctions

Here we present the explicit forms of various seed solutions for some exactly solvable poten-

tials [1, 2], in particular the radial oscillator and the Darboux-Pöschl-Teller potential and a

few more. (The harmonic oscillator case has been discussed in the original Abraham-Moses

paper [6].) They are necessary in order to carry out the program of ‘generating exactly

solvable potentials’ by adding a finite number of eigenstates with arbitrary energies through

multiple Abraham-Moses transformations. These seed solutions are tentatively called ‘gen-

eralised virtual state wavefunctions.’ The ‘virtual state wavefunctions’ have been introduced

by the present authors [7, 9, 10] and extensively used to generate ‘rational or polynomial

extensions’ of various solvable potentials, through multiple Darboux-Crum transformations

[4, 5, 22]. Obtained from the eigenfunctions by a discrete symmetry operation of the original

Hamiltonian, these virtual state wavefunctions are of polynomial character and their ener-

gies are discretised and negative by restricting the ranges of their degrees. They have been

indispensable for the construction of the ‘multi-indexed Jacobi and Laguerre polynomials’ [7]

including various exceptional orthogonal polynomials as the simplest cases [11]–[15]. Since

the negative energy condition is irrelevant, these virtual state wavefunctions of type I and

II, without any restrictions to their degrees, are bona fide seed solutions for Abraham-Moses

transformations, easiest to use in practical applications.

In order to construct seed solutions of arbitrary real energies , we generalise the polynomial

type virtual state wavefunctions as well as the eigenfunctions to hypergeometric functions

(2F1 and 1F1) type, by making the degree of polynomial type solutions to be a continuous

real number. This has been done in our previous paper [25]. See also [26]. For the Darboux-

Pöschl-Teller potential, we also report another genre of real seed solutions corresponding to

‘complex degrees’.

3.1 Radial oscillator and Darboux-Pöschl-Teller potentials

We first recapitulate the known virtual state wavefunctions of type I and II of the Hamilto-

nian systems with the radial oscillator and Darboux-Pöschl-Teller potentials. The potentials
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are

U(x) =











x2 +
g(g − 1)

x2
− (1 + 2g), x1 = 0, x2 = ∞, g > 3

2
: L

g(g − 1)

sin2 x
+
h(h− 1)

cos2 x
− (g + h)2, x1 = 0, x2 =

π
2
, g, h > 3

2
: J

, (3.1)

in which L and J stand for the names of their eigenfunctions, the Laguerre and Jacobi

polynomials. The parameter ranges are consistent with the restrictions for the eigenfunctions

(2.4) and for the seed solutions (2.6), (2.7). The eigenfunctions are factorised into the

groundstate eigenfunction and the polynomial in a functions η = η(x), called sinusoidal

coordinate [3, 27]:

φn(x;λ) = φ0(x;λ)Pn

(

η(x);λ
)

, (3.2)

in which λ stands for the parameters, g for L and (g, h) for J. Their explicit forms are

L : φ0(x; g) = e−
1

2
x2

xg, Pn(η; g) = L
(g− 1

2
)

n (η), η(x) = x2,

En(g) = 4n, hn(g) =
1

2n!
Γ(n+ g + 1

2
), (3.3)

J : φ0(x; g, h) = (sin x)g(cosx)h, Pn(η; g, h) = P
(g− 1

2
,h− 1

2
)

n (η), η(x) = cos 2x,

En(g, h) = 4n(n + g + h), hn(g, h) =
Γ(n+ g + 1

2
)Γ(n+ h+ 1

2
)

2n!(2n+ g + h)Γ(n+ g + h)
, (3.4)

in which hn is the normalisation constant of the norm introduced in (2.3).

It is obvious that the above potential (3.1) without the constant term (−(1+2g) for L and

−(g+h)2 for J) are invariant under the discrete transformation g ↔ 1−g and/or h↔ 1−h.
The Hamiltonian for L without the constant term changes the sign under x→ ix. These are

the discrete symmetry transformations mapping the above eigenfunctions to seed solutions

of type I and II, which are again polynomial solutions . The virtual states wavefunctions for

L are:

L1 : φ̃I
v(x; g)

def
= e

1

2
x2

xgL
(g− 1

2
)

v

(

−η(x)
)

, Ẽ I
v(g) = −4(g + v + 1

2
) (v ∈ Z≥0), (3.5)

L2 : φ̃II
v (x; g)

def
= e−

1

2
x2

x1−gL
( 1
2
−g)

v

(

η(x)
)

, Ẽ II
v (g) = −4(g − v− 1

2
) (v ∈ Z≥0). (3.6)

The virtual states wavefunctions for J are:

J1 : φ̃I
v(x; g, h)

def
= (sin x)g(cosx)1−hP

(g− 1

2
, 1
2
−h)

v

(

η(x)
)

,

Ẽ I
v(g, h) = −4(g + v + 1

2
)(h− v− 1

2
) (v ∈ Z≥0), (3.7)

J2 : φ̃II
v (x; g, h)

def
= (sin x)1−g(cosx)hP

( 1
2
−g,h− 1

2
)

v

(

η(x)
)

,
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Ẽ II
v (g, h) = −4(g − v− 1

2
)(h+ v + 1

2
) (v ∈ Z≥0). (3.8)

Due to the parity property of the Jacobi polynomial P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x), the two

virtual state polynomials for J are related by this parity transformation. It is obvious that

the virtual state wavefunctions satisfy the boundary conditions (2.6) and (2.7) and that the

type I solutions are not square integrable at the upper boundary x2 and the type II solutions

are not square integrable at the lower boundary x1. If the two types of the discrete symmetry

operations are applied, the resulting solutions are not square integrable at either boundary.

They are called pseudo virtual state wavefunctions [24] and they cannot be used for the

Abraham-Moses transformations.

At each step of state adding Abraham-Moses transformation, the parameters of the above

virtual state wavefunctions describing the boundary conditions change:

J1 : h→ h− 2, L2 & J2 : g → g − 2. (3.9)

These are consistent with the interpretation that Abraham-Moses transformations can be

understood as special two-step Darboux transformations. This also means that the total

number of addable eigenstates is limited when using the above J1, J2 and L2 seed solutions.

As stressed in [10], the L1 case is obtained from J1 by the confluence limit, h → ∞. Thus

their boundary conditions are not affected by each Abraham-Moses transformation and the

L1 virtual state wavefunctions can be used as many as wanted.

These known virtual state wavefunctions are all of polynomial type and their energies

Ẽv take only discretised values for integer v, which is the degree of the polynomial. In the

next subsection, we generalise the virtual state wavefunctions to take arbitrary real energies.

It should be easy for each explicit example of seed solutions to calculate the change of the

boundary parameters as above.

3.1.1 generalised virtual state wavefunctions

The strategy for the generalisation is quite simple, as shown in [25] for the type I cases.

We rewrite the Laguerre and Jacobi polynomials in terms of (confluent) hypergeometric

functions:

L(α)
n (x) =

(α + 1)n
n!

n
∑

k=0

(−n)k
(α+ 1)k

xk

k!

=
Γ(α + 1 + n)

Γ(α + 1)Γ(n+ 1)
1F1

( −n
α+ 1

∣

∣

∣
x
)

, (3.10)
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P (α,β)
n (x) =

(α + 1)n
n!

n
∑

k=0

(−n)k(n+ α + β + 1)k
(α + 1)k k!

(1− x

2

)k

=
Γ(α + 1 + n)

Γ(α + 1)Γ(n+ 1)
2F1

(−n, n+ α + β + 1

α + 1

∣

∣

∣

1− x

2

)

. (3.11)

The expressions in terms of (confluent) hypergeometric functions are valid for any complex

number n and satisfy the Laguerre and Jacobi’s differential equation, respectively. Since

the overall scale of the seed solutions is irrelevant, we will drop the overall factors. The

non-polynomial forms of the seed solutions valid for a real number v (v ∈ R, v 6∈ Z≥0) are

L1 : φ̃I
v(x; g)

def
= e

1

2
x2

xg1F1

( −v

g + 1
2

∣

∣

∣
−η(x)

)

, (3.12)

L2 : φ̃II
v (x; g)

def
= e−

1

2
x2

x1−g
1F1

( −v
3
2
− g

∣

∣

∣
η(x)

)

, (3.13)

J1 : φ̃I
v(x; g, h)

def
= (sin x)g(cosx)1−h

2F1

(−v, v + g − h+ 1

g + 1
2

∣

∣

∣

1− η(x)

2

)

, (3.14)

J2 : φ̃II
v (x; g, h)

def
= (sin x)1−g(cos x)h2F1

(−v, v + h− g + 1

h+ 1
2

∣

∣

∣

1 + η(x)

2

)

. (3.15)

The energy formulas (3.5)–(3.8) are now valid for any real number v. By using the Kummer’s

transformation formulas,

1F1

(α

β

∣

∣

∣
x
)

= ex1F1

(β − α

β

∣

∣

∣
−x

)

, (3.16)

2F1

(α, β

γ

∣

∣

∣
x
)

= (1− x)γ−α−β
2F1

(γ − α, γ − β

γ

∣

∣

∣
x
)

, (3.17)

they can be rewritten [25]. For example,

L1 (3.12) φ̃I
v(x; g) = e−

1

2
x2

xg1F1

(g + 1
2
+ v

g + 1
2

∣

∣

∣
η(x)

)

,

J1 (3.14) φ̃I
v(x; g, h) = (sin x)g(cosx)h2F1

(g + 1
2
+ v, h− 1

2
− v

g + 1
2

∣

∣

∣

1− η(x)

2

)

.

The same procedure, polynomials to (confluent) hypergeometric series , can be applied to

the eigenfunctions to obtain another type of L1, J1 and J2 seed solutions (v ∈ R, v 6∈ Z≥0) :

L1 : φI
v(x; g)

def
= e−

1

2
x2

xg1F1

( −v

g + 1
2

∣

∣

∣
η(x)

)

, (3.18)

J1 : φI
v(x; g, h)

def
= (sin x)g(cosx)h2F1

(−v, v + g + h

g + 1
2

∣

∣

∣

1− η(x)

2

)

, (3.19)

J2 : φII
v (x; g, h)

def
= (sin x)g(cosx)h2F1

(−v, v + g + h

h+ 1
2

∣

∣

∣

1 + η(x)

2

)

. (3.20)
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Another generalisation exists for the J1, J2 seed solutions. For certain complex values of

v (B ∈ R, B 6= 0) :

{

J1 (3.14) : v = 1
2
(h− g − 1) + iB

J2 (3.15) : v = 1
2
(g − h− 1) + iB

, (3.21)

{

J1 (3.19) : v = −1
2
(g + h) + iB

J2 (3.20) : v = −1
2
(g + h) + iB

, (3.22)

the seed solutions (3.14), (3.15), (3.19) and (3.20) and the corresponding energies (3.4), (3.7)

and (3.8) are real:

Ẽv(g, h) = −
(

(g + h)2 + 4B2
)

< 0. (3.23)

3.2 Other solvable potentials

Among various solvable potentials, some have only finitely many discrete eigenstates , which

are labeled by the degrees of the polynomial eigenfunctions, n = 0, 1, . . . , nmax. For these, the

same polynomial wavefunctions as the eigenfunctions with higher degrees than the highest

energy eigenfunction n > nmax provide seed solutions, on the assumption that the boundary

condition at one boundary is satisfied [28, 29, 30]. These are called overshoot eigenfunctions ,

[23]. Here we report that the following four potentials have overshoot eigenfunctions.

3.2.1 Morse potential

The system has finitely many discrete eigenstates 0 ≤ n ≤ nmax = [h]′ in the specified

parameter range ([a]′ denotes the greatest integer not exceeding and not equal to a):

U(x; h, µ) = µ2e2x − µ(2h+ 1)ex + h2, x1 = −∞, x2 = ∞, h, µ > 0,

En(h, µ) = h2 − (h− n)2, η(x) = e−x,

φn(x; h, µ) = ehx−µex(2µη−1)−nL(2h−2n)
n (2µη−1), hn(h, µ) =

Γ(2h− n + 1)

(2µ)2hn! 2(h− n)
.

For n > h, the overshoot eigenfunctions provide type II seed solutions.

3.2.2 Rosen-Morse potential

The system has finitely many discrete eigenstates 0 ≤ n ≤ nmax = [h−√
µ ]′ in the specified

parameter range:

U(x; h, µ) = −h(h + 1)

cosh2 x
+ 2µ tanhx+ h2 +

µ2

h2
, x1 = −∞, x2 = ∞, h >

√
µ > 0,
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En(h, µ) = h2 − (h− n)2 +
µ2

h2
− µ2

(h− n)2
, η(x) = tanhx,

φn(x; h, µ) = e−
µ

h−n
x(cosh x)−h+nPn

(

η(x); h, µ
)

,

Pn(η; h, µ) = P (αn,βn)
n (η), αn = h− n+

µ

h− n
, βn = h− n− µ

h− n
,

hn(h, µ) =
22h−2n(h− n)Γ(h + µ

h−n
+ 1)Γ(h− µ

h−n
+ 1)

n!
(

(h− n)2 − µ2

(h−n)2

)

Γ(2h− n + 1)
.

The overshoot eigenfunctions provide type II seed solutions for h−√
µ < n < h and type I

seed solutions for h < n < h +
√
µ.

3.2.3 Kepler problem in hyperbolic space

This potential is also called Eckart potential. It has finitely many discrete eigenstates 0 ≤
n ≤ nmax = [

√
µ− g]′ in the specified parameter range:

U(x; g, µ) =
g(g − 1)

sinh2 x
− 2µ cothx+ g2 +

µ2

g2
, x1 = 0, x2 = ∞,

√
µ > g >

3

2
,

En(g, µ) = g2 − (g + n)2 +
µ2

g2
− µ2

(g + n)2
, η(x) = coth x,

φn(x; g, µ) = e−
µ

g+n
x(sinh x)g+nPn

(

η(x); g, µ
)

,

Pn(η; g, µ) = P (αn,βn)
n (η), αn = −g − n+

µ

g + n
, βn = −g − n− µ

g + n
,

hn(g, µ) =
(g + n)Γ(1− g + µ

g+n
)Γ(2g + n)

22g+2nn!
(

µ2

(g+n)2
− (g + n)2

)

Γ(g + µ

g+n
)
.

For n >
√
µ− g, the overshoot eigenfunctions provide type I seed solutions.

3.2.4 hyperbolic Darboux-Pöschl-Teller potential

This has finitely many discrete eigenstates 0 ≤ n ≤ nmax = [h−g

2
]′ in the specified parameter

range:

U(x; g, h) =
g(g − 1)

sinh2 x
− h(h+ 1)

cosh2 x
+ (h− g)2, x1 = 0, x2 = ∞, h > g >

3

2
,

En(g, h) = 4n(h− g − n), η(x) = cosh 2x,

φn(x; g, h) = (sinh x)g(cosh x)−h P
(g− 1

2
,−h− 1

2
)

n

(

η(x)
)

,

hn(g, h) =
Γ(n+ g + 1

2
)Γ(h− g − n + 1)

2n! (h− g − 2n)Γ(h− n+ 1
2
)
.

The overshoot eigenfunctions provide type I seed solutions for n > h−g

2
.
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See [23] for polynomial extensions of known solvable potentials having finitely many

discrete eigenfunctions.

3.2.5 seed solutions based on discrete symmetries

In [24] we have examined several well-known exactly solvable potentials and shown that

the discrete symmetries of harmonic oscillator, Kepler problem in spherical space, Morse

potential, soliton potential, Rosen-Morse potential, hyperbolic symmetric top II, do not

provide either type I or II virtual state wavefunctions which could be used as seed solutions

for state adding Abraham-Moses transformations.

For the hyperbolic Darboux-Pöschl-Teller potential, Kepler problem in hyperbolic space

and Coulomb potential plus the centrifugal barrier, the discrete symmetry produces type I

or II virtual state wavefunctions.

Like the trigonometric Darboux-Pöschl-Teller potential, the hyperbolic Darboux-Pöschl-

Teller potential has type I and II virtual state wavefunctions obtained by discrete symmetries

h↔ −(h + 1), g ↔ 1− g from the eigenfunctions and they give seed solutions:

φ̃I
v(x; g, h) = (sinh x)g(cosh x)h+1P

(g− 1

2
,h+ 1

2
)

v

(

η(x)
)

(v ∈ Z≥0),

Ẽ I
v(g, h) = −4(v + 1

2
+ g)(v + 1

2
+ h),

φ̃II
v (x; g, h) = (sinh x)1−g(cosh x)−hP

( 1
2
−g,−h− 1

2
)

v

(

η(x)
)

(v ∈ Z≥0, v <
1
2
(h + g − 1)),

Ẽ II
v (g, h) = −4(v + 1

2
− g)(v + 1

2
− h).

The second example is Kepler problem in hyperbolic space. The virtual state wavefunc-

tion is obtained by discrete symmetry g ↔ 1− g from the eigenfunction:

φ̃v(x; g, µ) = e
µ

g−v−1
x(sinh x)−g+v+1Pv

(

η(x); 1− g, µ
)

, Ẽv(g, µ) = E−v−1(g, µ).

For g−1 < v < g−1+
√
µ (v ∈ Z≥0), the above wavefunctions become type II seed solutions

[29, 24].

Coulomb potential plus the centrifugal barrier has infinitely many discrete eigenstates in

the specified parameter range:

U(x; g) =
g(g − 1)

x2
− 2

x
+

1

g2
, x1 = 0, x2 = ∞, g >

3

2
,

En(g) =
1

g2
− 1

(g + n)2
, η(x) = x−1,
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φn(x; g) = e−
x

g+nxg+nηnL(2g−1)
n

(

2
g+n

η−1
)

, hn(g) =
(g + n

2

)2g+2 4

n!
Γ(2g + n).

The discrete symmetry g ↔ 1− g generates the type II seed solutions v > g − 1 (v ∈ Z≥0),

[31]:

φ̃v(x; g) = e
x

g−v−1x1−g+vηvL(1−2g)
v

(

2
1−g+v

η−1
)

, Ẽv(g) = E−v−1(g).

It is also possible to generalise the degree n or v to a real number (or certain com-

plex number with real energy) in the above overshoot eigenfunctions or those wavefunctions

obtained by discrete symmetry.

4 Summary and discussions

In order to carry out the program of Abraham-Moses [6] to enlarge the list of exactly solvable

potentials through extensions by adding a finite number of eigenstates of arbitrary energies ,

one needs proper seed solutions . Infinitely many seed solutions of different sorts are presented

for some well-known solvable potentials, e.g. the radial oscillator, the Darboux-Pöschl-

Teller and the Morse potentials, etc. They are the same virtual state wavefunctions which

have produced the multi-indexed Laguerre and Jacobi polynomials via multiple Darboux

transformations, and their straightforward generalisations. There are two types of seed

solutions, type I and II, corresponding to the integral transformations starting from the

lower and upper boundary points, respectively.

The basic formulas of adding as well as deleting Abraham-Moses transformations are

recapitulated. They are presented purely algebraically without the inverse scattering formu-

lation. It is pointed out that the multiple eigenstates addition transformations are a good

example of orthonormalisation procedures of non-normalisable vectors.

It would be a good challenge to formulate the difference equation analogues of Abraham-

Moses transformations. The theory of difference Schrödinger equations is now well devel-

oped as ‘discrete quantum mechanics’ [32], and most of the orthogonal polynomials of Askey

scheme [33, 34], e.g. the Askey-Wilson and the q-Racah polynomials, are the eigenfunctions

of various solvable models [35, 36]. The discrete analogues of various methods and results of

quantum mechanics, including the Heisenberg equation of motion [27], the Darboux trans-

formations [37, 38], and the multi-indexed Askey-Wilson and q-Racah polynomials [39, 40]

are already established.
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