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We study a mechanism of symmetry transition upon compactification of a 5-dimensional
field theory on S1/Z2. The transition occurs unless all components in a multiplet of a sym-
metry group have a common Z2 parity on S1/Z2. This mechanism is applied to a reduction
of SU(5) gauge symmetry in grand unified theory, and phenomenological implications are
discussed.

§1. Introduction

The study of physics beyond 4-dimensional (4D) space-time traces back to the
work by Kaluza and Klein. 1) The exsitence of an extra space is essential in super-
string theory 2), 3) and M-theory. 4) Recently, there is a lot of interesting research of
the phenomenological and theoretical implications of an extra space with large radii
based on several motivations. 5)

As a feature in theories with an extra compact space K, symmetries in the sys-
tem can change after compactification. Here we give typical examples, where K is
an n-dimensional torus Tn. Supersymmetry (SUSY) is, in general, enhanced by a
simple dimensional reduction. 6) Also, SUSY can be broken by the choice of different
boundary conditions for bosons and fermions in supermultiplets. This mechanism
is called the Scherk-Schwarz mechanism. 7) The other example is a gauge symmetry
breaking by the Hosotani mechanism. 8), 9) Gauge symmetry is broken by the appear-
ance of non-integrable phase factors which are dynamical degrees of freedom and are
related to Wilson loops of gauge fields along compactified directions.

The phenomenon of symmetry transition leads to the idea that symmetries in
4D low-energy theory are derived from a high-energy theory with extra dimensions.
It is meaningful to study the relation between symmetries and a compact space
more carefully, because the origin of symmetries in the Standard Model is not yet
known. As a compact space, the one-dimensional orbifold S1/Z2 has attracted our
attention since the study of heterotic M-theory. 4) Starting from 5-dimensional (5D)
SUSY model, 4D theory with N = 1 SUSY is derived through compactification on
S1/Z2. 10), 11) Bulk fields have a Z2 parity in a compact direction. The reduction of
SUSY originates from a non-universal Z2 parity assignment among component fields
in supermultiplets.

In this paper, we focus on 5D field theories and study a symmetry transition
upon compactification on S1/Z2. The above-mentioned SUSY reduction mechanism
is generalized as follows. Unless all components in a multiplet of some symmetry
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group G have a common Z2 parity on S1/Z2, the symmetry is not preserved after
the integration of the fifth dimension because zero modes, in general, do not form
a full multiplet of G. We apply this mechanism to a reduction of SU(5) gauge
symmetry in the grand unified theory (GUT).

This paper is organized as follows. In the next section, we explain the mechanism
of symmetry change on S1/Z2. For 5D SU(5) GUT with minimal particle content,
we discuss the reduction of gauge symmetry, the mass spectrum in 4D theory, and
its phenomenological implications in §3. Section 4 is devoted to conclusions and
discussion.

§2. Symmetry transition upon compactification

The space-time is assumed to be factorized into a product of 4D Minkowski
space-time M4 and the orbifold S1/Z2, whose coordinates are denoted by xµ (µ =
0, 1, 2, 3) and y(= x5), respectively. The 5D notation xM (M = 0, 1, 2, 3, 5) is also
used. The orbifold S1/Z2 is obtained by dividing a circle S1 with radius R with a
Z2 transformation which acts on S1 by y → −y. This compact space is regarded
as an interval with a distance of πR. There are two 4D walls placed at fixed points
y = 0 and y = πR on S1/Z2.

An intrinsic Z2 parity of the 5D bulk field φ(xµ, y) is defined by the transforma-
tion

φ(xµ, y) → φ(xµ,−y) = Pφ(xµ, y). (2.1)

The Lagrangian should be invariant under the Z2 transformation. By definition, P
equals 1 or −1. We denote the field with P = 1 (P = −1) by φ+ (φ−). The fields
φ+ and φ− are Fourier expanded as

φ+(xµ, y) =
1√
πR

∞∑
n=0

φ
(n)
+ (xµ) cos

ny

R
, (2.2)

φ−(xµ, y) =
1√
πR

∞∑
n=1

φ
(n)
− (xµ) sin

ny

R
, (2.3)

where n is an integer, and the fields φ(n)
± (xµ) acquire mass n/R upon compactifica-

tion. Note that 4D massless fields are absent in φ−(xµ, y).
Let us study the case in which a field Φ(xµ, y) is an N -plet under some symmetry

group G. Each component of Φ is denoted by φk, i.e., Φ = (φ1, φ2, ..., φN)T . The Z2

transformation of Φ is given by the same form as (2.1), but in this case P is an N×N
matrix∗) which satisfies P 2 = I, where I is the unit matrix. The Z2 invariance of the
Lagrangian does not necessarily require that P be I or −I. Unless all components
of Φ have common Z2 parity (i.e., if P �= ±I), a symmetry transition occurs upon
compactification because of the lack of zero modes in components with odd parity.

Here we give two simple examples of a symmetry transition.
(a) Scalar field with Nf flavors

∗) P is a unitary and hermitian matrix.
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We consider a 5D Lagrangian density given by

L(5)
S ≡ |∂MΦ|2 =

Nf∑
k=1

|∂Mφk|2, (2.4)

where Φ(xµ, y) is a 5D complex scalar field with Nf components. The Lagrangian is
invariant under the transformation Φ(xµ, y) → Φ(xµ,−y) = PΦ(xµ, y), with P 2 = I.
If we take P = diag(1, · · · , 1,−1, · · · ,−1) where the first Mf elements equal 1, we
derive the following 4D Lagrangian density after integrating out the fifth dimension
and rescaling the 4D fields φ(n)

k (xµ):

L(4)
S =

Mf∑
k=1

|∂µφ
(0)
k |2 +

∞∑
n=1

Nf∑
k=1

(
|∂µφ

(n)
k |2 +

n2

R2
|φ(n)

k |2
)
. (2.5)

The global symmetry U(Nf ) in 5D theory is reduced to its subgroup U(Mf ) upon
compactification. Note that the Kaluza-Klein excitations φ(n)

k (xµ) form a full multi-
plet of U(Nf ).
(b) Dirac fermion with Nf flavors

We consider a 5D Lagrangian density given by

L(5)
D = iΨ̄γM∂MΨ =

Nf∑
k=1

iψ̄kγ
M∂Mψk, (2.6)

where Ψ = (ΨL, ΨR)T is a 5D Dirac fermion with Nf components denoted by ψk.
The Lagrangian is invariant under the transformation ΨL(xµ, y) → ΨL(xµ,−y) =
PΨL(xµ, y) and ΨR(xµ, y) → ΨR(xµ,−y) = −PΨR(xµ, y), with P 2 = I. When we
take P = diag(1, · · · , 1,−1, · · · ,−1), where the first Mf elements equal 1, we obtain
the 4D Lagrangian density

L(4)
D =

Mf∑
k=1

iψ
(0)†
Lk σµ∂µψ

(0)
Lk +

Nf−Mf∑
k=1

iψ
(0)†
Rk σ̄µ∂µψ

(0)
Rk

+
∞∑

n=1

Nf∑
k=1

(
iψ̄

(n)
k γµ∂µψ

(n)
k − n

R
ψ̄

(n)
k ψ

(n)
k

)
, (2.7)

after integrating out the fifth dimension and rescaling the 4D fields ψ(n)
k (xµ). Here

the components of ΨL and ΨR are denoted by ψLk and ψRk, respectively. The 5D
theory has the global symmetry SU(Nf )V × U(1)V , but a symmetry in 4D theory
turns out to be SU(Mf )L ×SU(Nf −Mf )R×U(1)V ×U(1)A in the decoupling limit
of Kaluza-Klein modes, which form a full multiplet of SU(Nf )V × U(1)V .

§3. A model with SU(5) gauge symmetry

We apply the symmetry transition mechanism to 5D SU(5) GUT with minimal
particle content. We assume that the 5D gauge boson AM (xµ, y) and the Higgs
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boson Φ(xµ, y) exist in the bulk M4 × S1/Z2. The fields AM and Φ form an adjoint
representation 24 and a fundamental representation 5 of SU(5), respectively. We
assume that our visible world is one of 4D walls (we choose the wall fixed at y = 0
as the visible one and call it wall I) and that three families of quarks and leptons,
3{ψ5̄ + ψ10}, are located on wall I. That is, matter fields contain no excited states
along the S1/Z2 direction.

The gauge invariant action is given by

S =
∫

L(5)d5x+
∫

L(4)d4x, (3.1)

L(5) ≡ −1
2
trF 2

MN + |DMΦ|2 − V (Φ), (3.2)

L(4) ≡
∑

3 families

(iψ̄10γ
µDµψ10 + iψ̄5̄γ

µDµψ5̄

+fU(5)Φψ10ψ10 + fD(5)Φ
†ψ10ψ5̄ + h.c.), (3.3)

where DM ≡ ∂M − ig(5)AM (xµ, y), g(5) is a 5D gauge coupling constant, and fU(5)

and fD(5) are 5D Yukawa coupling matrices. The representations of ψ5̄ and ψ10 are
5̄ and 10 under SU(5), respectively. In L(4), the bulk fields Aµ and Φ are replaced
by fields with values at wall I, Aµ(xµ, 0) and Φ(xµ, 0). The Lagrangian is invariant
under the Z2 transformation

Aµ(xµ, y) → Aµ(xµ,−y) = PAµ(xµ, y)P−1,

A5(xµ, y) → A5(xµ,−y) = −PA5(xµ, y)P−1,

Φ(xµ, y) → Φ(xµ,−y) = PΦ(xµ, y). (3.4)

When we take P = diag(−1,−1,−1, 1, 1), the SU(5) gauge symmetry is reduced
to that of the Standard Model, GSM ≡ SU(3)×SU(2)×U(1), in 4D theory.∗) This
is because the boundary conditions on S1/Z2 given in (3.4) do not respect SU(5)
symmetry, as we see from the relations for the gauge generators Tα (α = 1, 2, · · · , 24),

PT aP−1 = T a, PT âP−1 = −T â. (3.5)

The T as are gauge generators of GSM and the T âs are other gauge generators.∗∗)
After integrating out the fifth dimension, we obtain the 4D lagrangian density

L(4)
eff = L(4)

B + L(4), (3.6)

L(4)
B ≡ −1

4

∑
a

F a(0)
µν

2
+ |DµA

â(0)
5 |2

+|Dµφ
(0)
W |2 + g2

U |Aâ(0)
5 φ

(0)
W |2 − V (φ(0)

W ) + · · · , (3.7)

∗) Our symmetry reduction mechanism is different from the Hosotani mechanism. In fact, the

Hosotani mechanism does not work in our case, because Aa
5(x

µ, y) has odd parity, as given in (3.4),

and its VEV should vanish.
∗∗) We expect that the specific Z2 parity given by P = diag(−1,−1,−1, 1, 1) is determined

non-perturbatively in an underlying theory.
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L(4) ≡
∑

3 families

[
iψ̄10γ

µ
(
∂µ − igU

∞∑
n=0

Aa(n)
µ T a(10)

)
ψ10

+iψ̄5̄γ
µ
(
∂µ − igU

∞∑
n=0

Aa(n)
µ T a(5̄)

)
ψ5̄

+fU

∞∑
n=0

φ
(n)
W qū+ fD

∞∑
n=0

φ̃
(n)
W qd̄+ fD

∞∑
n=0

φ̃
(n)
W lē+ h.c.

+
∞∑

n=0

(gU ψ̄10γ
5A

â(n)
5 T â(10)ψ10 + gU ψ̄5̄γ

5A
â(n)
5 T â(5̄)ψ5̄)

]
, (3.8)

where the dots in L(4)
B represent terms including Kaluza-Klein modes, gU (≡ g(5)

/
√
πR) is a 4D gauge coupling constant, fU (≡ fU(5)/

√
πR) and fD (≡ fD(5)/

√
πR)

are 4D Yukawa coupling matrices, q, ū and d̄ are quarks, l and ē are leptons, and φW

(φ̃(n)
W ≡ iτ2φ

(n)∗
W ) is a weak Higgs doublet. The massive modes should be rescaled

by a factor of
√
2, e.g., Aa(n)

µ → √
2Aa(n)

µ and φ
(n)
W → √

2φ(n)
W (n �= 0), as a re-

sult of the proper normalization of their kinetic terms. The mass spectrum after
compactification is given in Table I. In the second column, we give SU(3) × SU(2)
quantum numbers of 4D fields. The triplet-doublet mass splitting of the Higgs bo-
son is realized by projecting out zero modes of colored components in the Higgs
boson. There exist extra 4D scalar fields Aâ(0)

5 (xµ), whose quantum numbers are
(3,2,−5/6)+ (3̄,2, 5/6) under GSM , and they couple to GSM gauge bosons, a weak
Higgs doublet, and matter fermions. There is a possibility that Aâ(0)

5 becomes su-
perheavy and that the proton decay induced by the exchange of Aâ(0)

5 is suppressed,
while φ(0)

W remains in the weak scale spectrum after radiative corrections are received.
This is based on the following premises. The field A

â(0)
5 has a vanishing bare mass

because of gauge symmetry, but φ(0)
W has a mass whose square is given by

µ2 =
∂2V

∂φ
(0)2
W

. (3.9)

Both A
â(0)
5 and φ

(0)
W receive radiative corrections. The renormalized mass of φ(0)

W is
on the order of the weak scale.

Table I. Mass spectrum at the tree level.

4D fields Quantum numbers Mass

A
a(0)
µ (xµ) (8,1) + (1,3) + (1,1) 0

A
â(0)
5 (xµ) (3,2) + (3̄,2) 0

φ
(0)
W (xµ) (1,2)

√
µ2

A
α(n)
M (xµ) (8,1) + (1,3) + (1,1) n/R

(n �= 0) + (3,2) + (3̄,2)

Φ(n)(xµ) (3,1) + (1,2)
√

(n/R)2 + µ2

(n �= 0)

ψ5̄(x
µ) (3̄,1) + (1,2) 0

ψ10(x
µ) (3,2) + (3̄,1) + (1,1) 0
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618 Y. Kawamura

The theory predicts that coupling constants are unified around the compactifi-
cation scale MC(≡ 1/R), as in the ordinary SU(5) GUT, 12)

g3 = g2 = g1 = gU , fd = fe = fD, (3.10)

where fd and fe are Yukawa coupling matrices on down-type quarks and electron-
type leptons, respectively.∗) The other feature is that quarks and leptons couple
neither to X and Y gauge bosons Aâ(n)

µ nor to the colored Higgs triplet φ(n)
C at the

tree level. Hence it is expected that the proton decay process due to X and Y gauge
bosons Aâ(n)

µ is suppressed.∗∗)

§4. Conclusions and discussion

We have studied a mechanism of symmetry transition upon compactification of
5D field theory on S1/Z2. The transition occurs unless all components in a multiplet
of a symmetry group have a common Z2 parity on S1/Z2. This mechanism has been
applied to a reduction of gauge symmetry in 5D SU(5) GUT. Under the assumption
that our visible world is a 4D wall fixed at y = 0 and that quarks and leptons live
on the wall, we have derived the same type of action as that in the Standard Model.
The triplet-doublet mass splitting on Higgs bosons is realized at the tree level by the
Z2 projection. In the sector with renormalizable interactions, the theory predicts
the coupling unification g3 = g2 = g1 = gU and fd = fe = fD. Quarks and leptons
couple neither to off-diagonal gauge bosons Aâ

µ nor to the colored Higgs triplet φC

at the tree level.
On the other hand, there are several problems in our SU(5) model. Here we

list some of them. The first one is the existence of 4D scalar fields Aâ(0)
5 (xµ) with

quantum numbers (3,2,−5/6)+(3̄,2, 5/6) under GSM in the weak scale spectrum at
the tree level. Their presence induces a dangerous proton decay because they couple
to quarks and leptons at the tree level. To avoid this problem, these scalar fields
should be superheavy. They can acquire superheavy masses by radiative corrections.
Unless the radiative corrections to Aâ(0)

5 (xµ) are finite, the renormalizability can be
violated because of the lack of mass and self-interaction terms of Aâ(0)

5 (xµ). This
problem is under investigation based on the 5-dimensional calculation discussed in
Ref. 15). Otherwise it is necessary to introduce extra Higgs bosons in order to
eliminate unwanted particles from the low-energy spectrum. The second problem
involves the question of how to break the electro-weak symmetry naturally and how
to stabilize the weak scale. Our model suffers from gauge hierarchy problem. 14) The
third problem regards the reality of coupling unification, i.e., whether or not our
model is consistent with experimental data of gauge couplings and fermion masses.
Power-law corrections from the extra space S1/Z2 should also be considered. 13) The
fourth problem concerns the necessity of non-universal Z2 parity, i.e., whether or not
there is a selection rule which picks out a specific Z2 parity to break SU(5) down

∗) The unification conditions are, in general, corrected by non-renormalizable interactions.
∗∗) If we consider non-renormalizable interactions, there are dangeorous interactions including

derivatives with respect to the fifth coordinate, which can induce a rapid proton decay.
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to GSM . The last problem regards how matter fields are localized on the 4D wall.
In spite of these problems, it would be worthwhile to search for a realistic model of
grand unification in this direction.∗)
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L. Antoniadis, C. Muñoz and M. Quirós, Nucl. Phys. B397 (1993), 515.
J. Lykken, Phys. Rev. D54 (1996), 3693.
N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998), 263.
G. Shiu and S. -H. H. Tye, Phys. Rev. D58 (1998), 106007.
H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A13 (1998), 2601.
C. P. Bachas, hep-ph/9807415.
Z. Kakushadze, hep-th/9811193; hep-th/9812163.

6) L. Brink, J. H. Schwarz and J. Sherk, Nucl. Phys. B121 (1977), 77.
7) J. Scherk and J.H. Schwarz, Nucl. Phys. B153 (1979), 61; Phys. Lett. 82B (1979), 60.
8) Y. Hosotani, Phys. Lett. B126 (1983), 309; Ann. of Phys. 190 (1989), 233.
9) E. Witten, Nucl. Phys. 258 (1985), 75.

10) E. A. Mirabelli and M. Peskin, Phys. Rev. D58 (1998), 065002.
11) A. Pomarol and M. Quirós, Phys. Lett. B438 (1998), 255.
12) H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974), 438.
13) K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436 (1998), 55.
14) E. Gildener, Phys. Rev. D14 (1976), 1667.
15) H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A13 (1998), 2601.
16) D. Kapetanakis and G. Zoupanos, Phys. Rep. 219 (1992), 1 and references therein.

∗) Attempts to construct GUT have been made through the dimensional reduction over coset

space. 16)

 at Shinshu U
niversity on Septem

ber 11, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/

