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A B S T R A C T

Many optimization problems are formulated using more than one ob-
jective function. In the overwhelming majority of cases, the solution
of a multi-objective problem is not a single element, but a set of solu-
tions that can be no longer improved upon in all objectives simultane-
ously. Evolutionary algorithms are a naturally good tool to solve such
problems, since they generate many solutions in one run. Differential
evolution (DE) is one of the most simple and powerful evolutionary
algorithms and its application to multi-objective optimization arises
naturally. However, DE was originally developed for single-objective
optimization and its generalization to the multi-objective model is not
trivial.

The need to have a simple, powerful optimizer capable of solving
continuous multi-objective problems has led many researchers to de-
velop various versions of multi-objective DE. This rapid innovation
happened without answering many outstanding questions, while in-
troducing new ones. The first goal of this thesis is to answer some of
these questions. In particular, we concentrate on the questions aris-
ing in parameter setting of multi-objective differential evolution. We
investigate the relationships between the DE parameters and its per-
formance as well as analyze the existing mechanisms to set the pa-
rameters automatically.

The next issue that arises with the transition to the multi-objective
realm is the increased computational cost. Each solution now has a
vector of objective function values and the mutual relationships of
these vectors need to be tracked. This leads to several computational
geometric problems. The reduction of computational cost of these
problems is the second goal of this thesis.

In the first part, we concentrate on the first goal, that is improv-
ing our understanding of how DE works on multi-objective optimiza-
tion problems. In single-objective DE it has been shown that the suc-
cess of DE is highly affected by the right choice of its mutation and
crossover parameters. Unfortunately, in multi-objective optimization
the influence of these parameters on the performance of the algo-
rithm is a poorly understood subject. Many authors use parameters
which do not render the algorithm invariant with respect to rotation of
the coordinate axes. This is a possible vulnerability, since the success
of their algorithms may be caused by a hidden feature of the opti-
mization problem and may be lost by simply rotating the coordinate
axes of the problem. First, we try to see if such choice of parameters
can bring consistently good performance under various rotations of
the problem. We do this by extensive experimentation, using a large
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number of parameter combinations generated on a grid, with system-
atically rotated benchmark problems. We find that our results are con-
sistent with the single-objective theory, but only for unimodal problems.
On multi-modal problems, unexpectedly, parameter settings which
do not render the algorithm rotationally invariant have a consistently
good performance for all studied rotations.

To mitigate the problem of parameter setting, methods have been
developed to automatically adjust the parameters. These methods are
usually presented as a part of a unified algorithm and since these
algorithms vary in other aspects than the parameter control mecha-
nism, it is difficult to compare them and to evaluate their viability in
the multi-objective environment. We go through various determinis-
tic, adaptive, and self-adaptive approaches to parameter setting, iso-
late the underlying parameter control mechanisms and apply them to
a single simple differential evolution algorithm. We then observe its
performance and behavior on a set of benchmark problems. We find
that even very simple parameter control mechanisms can compete
with parameter settings found by exhaustive grid search. We also no-
tice that self-adaptive mechanisms seem to perform better on problems
which can be optimized with a very limited set of parameters. Adap-
tive methods on the other hand encounter significant difficulties and
seem to behave similarly on each benchmark problem. This is a sig-
nificant vulnerability and it should be explored in more depth.

In the second part of the thesis, we address the second goal, that is
the computational cost reduction. We are concerned with non-dominated
sorting, archiving, and diversity estimation procedures. We propose a
special data structure, called the M-front, to hold the best found (non-
dominated) individuals. The M-front uses the geometric and alge-
braic properties of the Pareto dominance relation to convert orthog-
onal range queries into interval queries using a mechanism based on
the nearest neighbor search. These interval queries are answered us-
ing dynamically sorted linked lists. The M-front can serve either to
reduce the cost of non-dominated sorting, to reduce the cost of diver-
sity estimation or as a fast archive. Experimental results show that our
method can perform significantly faster than the state of the art algo-
rithm for non-dominated sorting, with the added benefit of keeping
track of all the non-dominated individuals all times.

We conclude our thesis with a summary of our contributions and
by outlining promising directions for future work.
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Part I

I N T R O D U C T I O N T O M U LT I - O B J E C T I V E
D I F F E R E N T I A L E V O L U T I O N

In this part we define the subject of this thesis. We start
with an introduction to the broad field of computational
intelligence and gradually narrow down our focus.





1
I N T R O D U C T I O N

1.1 computational intelligence

There is relatively little consensus on what computational intelligence
(CI) is. For the purposes of this thesis, we use a broad definition
by Duch [22]: “Computational intelligence is a branch of computer sci-
ence studying problems for which there are no effective computational al-
gorithms.” There are many other definitions, mostly focusing on the
tools being used, instead of problems being solved.

What do we mean by effective computational algorithms? Accord-
ing to the Webster’s English Dictionary, effective means: “adequate to
accomplish a purpose; producing the intended or expected result”. That is,
computational intelligence studies computational problems that we
are currently simply incapable of solving. One example is to design
an autopilot that can safely land a Boeing 747 aircraft. One other
example is to computationally distinguish a dog and a wolf on a pho-
tograph. Even if we had all the computational power we need, there
is as yet no way in which these things can be accomplished.

One major group of problems Duch’s definition omits are problems
for which we have effective algorithms, but these algorithms are not
efficient. The Webster’s English Dictionary defines efficient as: “satis-
factory and economical to use”. In this category we have all NP-hard
problems as well as any problem for which the state-of-the-art algo-
rithms perform unsatisfactorily. Computational intelligence studies
these problems as well.

Computational intelligence is heavily influenced (but not defined),
by the study of living organisms. Human pilots land Boeing 747 air-
craft every day and sheep can distinguish the dog from a wolf very
successfully. Many methods in CI seek inspiration in nature.

Some of the main branches of CI inspired by nature are:

• Computational swarm intelligence, which attempts to solve com-
plex problems using inspiration from the behavior of societies
of living organisms.

• Artificial neural networks, which do so by constructing a simpli-
fied model of a brain.

• Evolutionary computation, which is inspired by the evolution of
living organisms molded by natural selection, survival of the
fittest, and genetics.

There are other branches, such as fuzzy systems, artificial immune
systems, and many other smaller branches, some of which are cov-
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4 introduction

ered in [25]. In this thesis we will be concerned entirely with evolu-
tionary computation.

1.2 evolutionary computation

Life is hard. The environment is full of dangers and it is constantly
changing. Yet it is full of living organisms which successfully inhabit
this planet for billions of years. Each individual living being is a sur-
vival expert and survival is definitely a problem for which there are
no effective algorithms. It is therefore natural that when solving diffi-
cult problems, humans look for inspiration in the science of survival,
which is called evolution.

In a population of living organisms there is a never-ceasing strug-
gle to reproduce. Individuals try to manifest their ability to survive,
for example by competing in mating tournaments and rituals. Strong
individual have a greater chance to succeed in these tournaments,
mate and to pass their genes to the next generation. This mating pres-
sure creates bias which favors genes that lead to stronger individu-
als. Genes which produce weak individuals have a smaller chance to
proliferate, since their bearer has a smaller chance to survive until
maturity and once mature, has a smaller chance to mate and produce
offspring.

1.2.1 Fundamental ideas

The main idea of evolutionary computation is to solve complex prob-
lems by simulating evolution. We formalize the metaphor into a uni-
fied framework, described in Algorithm 1.

Algorithm 1: Evolutionary algorithm

1 generate a random population P = {X1, ...,XN}

2 while stopping condition not met do

3 Pparent := select_for_mating(P)
4 Poffspring := recombine(Pparent)
5 Poffspring := mutate(Poffspring)
6 P := P ∪ Poffspring

7 P := select_for_survival(P)
8 end

9 return P

First, a set of random solutions to the problem are generated on
line 1. Each such solution represents an individual organism and the
set of solutions represents a population. Next, some individuals are
selected to generate new individuals (line 3). Usually this selection is
biased towards solutions which solve the problem better than their
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peers in some sense. Individuals in Pparent are combined in a man-
ner that imitates gene recombination, to produce new individuals
Poffspring. These individuals are randomly altered in a manner which
resembles gene mutation (line 5). The new individuals are added to
the population. Next, the survival of the fittest is simulated by re-
moving individuals from the polled population (line 7). Usually this
selection is biased to weed out solutions which solve the problem
relatively poorly compared to their peers. One such cycle is called a
generation. After a sufficiently large number of generations, hopefully
the solutions in P improve their ability to solve the problem.

1.2.2 Brief history

For an overview of the field of evolutionary computation, highlight-
ing the landmark papers see [27]. According to this book, ideas of
evolutionary computation date back as far as 1948 due to Alan Turing.
Serious work in the field began in the 60’s in three different places in-
dependently. Each working group solved slightly different problems
and developed their algorithms to best suite these problems. Their
work grew into three early paradigms of evolutionary computation:

• Genetic algorithms by Holland [32]

• Evolution strategies by Schwefel et al. [51]

• Evolutionary programming by Fogel et al. [28]

This division is mostly historical, since we do not view these three
fields as distinct as we once did. In the 90’s genetic programming [4]
and differential evolution [45] joined the group. Next, we briefly intro-
duce each field.

1.2.3 Genetic Algorithms

The invention of genetic algorithms by Holland was originally mo-
tivated by the desire to study adaptive behavior. However, soon they
became largely employed as function optimizers. Genetic algorithms
follow Algorithm 1.

What makes genetic algorithms distinct, is that they use primarily
binary coding. That is, each individual in the population is represented
by a string of 0s and 1s. This representation is particularly useful if
the problem being solved is itself binary in nature. One such problem
is the 0-1 knapsack problem whose objective is to select some items
from a list, subject to constraints, maximizing a utility function. In
this case, a 1 can mean that an item is selected and a 0 that it is not.

There are many ways to recombine (Algorithm 1 line 4) binary en-
coded individuals. One of the simplest ways is the n-point crossover,
which is illustrated in Figure 1. Here we see two parent individuals,
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P1,P2, which have been selected for recombination. First, the strings
are cut by n randomly generated lines and two child individuals,
C1,C2, are generated by alternately inheriting a part of the string
from either P1 or P2.

Figure 1: An illustration of two point crossover.

There are many variations to this type of recombination and all
genetic algorithms are not necessary binary encoded, but binary en-
coding was the original idea. As was said before, the distinctions
between some fields of evolutionary computation are mainly histor-
ical nowadays. Genetic algorithms were not primarily developed for
optimization and the basic loop of Algorithm 1 needs to be enhanced
in several ways to obtain a practical optimizer [11].

1.2.4 Evolution Strategies

The distinguishing features of evolution strategies (ESs) [5] are real
encoding and self-adaptation. Real encoding means that ESs are partic-
ularly well suited for continuous optimization.

In an application of ES to an optimization problem:

f : Rn ⊇ D �→ R; f is to be minimized (1)

each individual is represented by a vector of values X ∈ Rn, plus
a vector of parameters σ ∈ Rm. These parameters are used to mu-
tate the individual (Algorithm 1line 5), usually by adding a value
sampled from the multivariate normal distribution with covariance
matrix obtained by some transformation of σ.

The parameters σ undergo mutation and recombination along with
the vector X. This is the main principle of self-adaptation. Each individ-
ual is tied to the parameters, which determine the way it is mutated.
These parameters influence its chances to survive. Good parameters
generate good individuals, which have a high chance to mate and
to survive. These strong individuals then proliferate the good vales
of their parameters. Bad parameters generate bad individuals, which
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do not get the opportunity to mate and have a low chance to survive.
Therefore parameters are evolved along with the population.

1.2.5 Evolutionary Programming

The task evolutionary programming (EP) was designed to solve is
to generate artificial intelligence by interpreting evolution as a form
of learning. The individual in EP is a finite state machine, which is a
program with parameters, as opposed to binary strings or real vectors
of GA and ES.

1.2.6 Genetic Programming

The main difference between genetic and evolutionary programming
is in the representation of the program that is being optimized. In EP,
the structure is fixed and only the parameters are being evolved. Mu-
tation plays a major part here and recombination plays a very limited
role. On the other hand, in genetic programming (GP) the structure of
the program is subject to evolution. The individual in GP is encoded
as a parse tree of the program. Crossover, which exchanges subtrees
between individuals plays a major role. Mutation on the other hand
plays a very limited role here.

1.2.7 Differential Evolution

One of the newest fields of evolutionary computation, which was
largely inspired by ES and GA is differential evolution (DE). The dis-
tinguishing feature of DE is its real encoding of individuals, the same
as in ES, and a particular way in which individuals are being recom-
bined.

The fundamental principle of DE is to create new individuals by
adding scaled differences of other individuals to each other. Let P =

{X1, ...,XNP} where Xi = (xi,1, . . . , xi,n) ∈ Rn, be the population. In
its most basic form, DE traverses through this population, while try-
ing to improve each individual Xtarget by generating a new individ-
ual Xtrial in the following fashion. First, three distinct individuals
Xr1 ,Xr2 ,Xr3 are chosen from P. Then a scaled difference of two of
these individuals is added to the third one and and intermediate in-
dividual Xmutant is created:

Xmutant := Xr1 + F(Xr2 −Xr3). (2)

The scaling factor F is the first parameter of DE. Then the Xtrial is gen-
erated by randomly inheriting variables from either Xmutant or from
Xtarget. In a problem with n variables, one variable called inv is au-
tomatically inherited from Xmutant to avoid generating an individual
which is already in the population. This can be seen in (3), where
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randU(0, 1) is a generator of uniformly randomly distributed num-
bers in [0; 1].

xtrial,i :=

⎧⎨
⎩xmutant,i if randU(0, 1) < Cr or i = inv

xtarget,i else
(3)

The number Cr in (3) is the second parameter of DE and it is called
the crossover probability. Cr controls the proportion of variables which
change in a single individual. When Cr = 0, only one variable changes
at a time, hence this value is particularly well suited for separable prob-
lems.

1.3 optimization

Next, we look at one of the main applications of differential evolution
and evolutionary computation in general.

1.3.1 Single-objective Model

Optimization in general is the endeavor to find a solution that is ex-
tremal in some sense. In the simplest case, the problem is to find
the global minimum or maximum of a function, often subject to con-
straints, such as in (1). Since minimization and maximization are mu-
tually interchangeable by substituting f for −f, from now on we deal
only with minimization. The function f, that we are trying to optimize
is called an objective.

If we know the algebraic definition of f, we can find the global
extrema by exact methods, such as by finding the zeros of its gradi-
ent. Similarly, when the definition of f falls into some specific class
of well understood optimization problems, we may use the appropri-
ate method. One example of well understood optimization problems
are the linear or convex problems. However, sometimes the definition
of f is so complicated that it falls out of the realm of exact methods.
This is especially the case when the evaluation of f involves running
a computer simulation, such as with the design of the trajectory of
spacecraft around Jupiter’s moons [35]. In such cases evolutionary
computation is particularly useful, since it does not make any as-
sumptions on what f looks like.

More often than not, there is more than one quantity which we
endeavor to optimize. For example, we may want to design an engine
which has low consumption but high power. In such situations we
say that we have more than one objective.
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1.3.2 Multi-objective Model

In many regards, the field of multi-objective optimization is differ-
ent from single-objective optimization. In single-objective optimiza-
tion there is usually one single solution to the problem. But in multi-
objective optimization, the solution which is optimal for one objective
is usually not optimal for the other objectives. The more we improve
the value of one objective, the more the values of other objectives
deteriorate. This means that there are trade-offs between the various
objectives.

For example, in a problem to find the optimal design of a car en-
gine, we may consider the

• gasoline consumption

• production cost and

• power

to be three objectives that we are trying to optimize. It is clear that
if we minimize the cost, we cannot afford to have a very powerful
or a very low consumption engine. On the other hand, if we want to
increase the power of the engine, we may do it by increasing its con-
sumption or by using better materials, thus increasing the production
cost. Similarly, if we want to minimize the gasoline consumption, we
may do it either by decreasing the power of the engine or again by
using better materials, thus increasing the production cost. The real
world is full of trade-offs and therefore multi-objective optimization
is a superior model to that of single-objective.

Instead of looking for one single solution to the problem, such as
in single-objective optimization, the goal of multi-objective optimiza-
tion is to find a large number of solutions. The set of these solutions
represents the trade-offs between the various objectives that are being
optimized.

It turns out that evolutionary algorithms are especially useful for
multi-objective optimization, since they already contain a population
of solutions, which means that they are able to generate arbitrarily
many solutions to the problem in one run.

1.4 goals

In the previous sections it was revealed that the differential evolu-
tion algorithm is a very good choice for continuous optimization prob-
lems. Next, we tried to persuade the reader that the most relevant
real world optimization problems are naturally formulated as multi-
objective problems. DE, being an evolutionary algorithm is especially
well suited for multi-objective problems. Problems which arise from
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application of DE to multi-objective optimization are the center of this
thesis.

In this work we explore the challenges that arise when we try to
apply differential evolution to solve multi-objective optimization prob-
lems. As the title of this thesis suggests, the first goal is to improve
our understanding of multi-objective DE. In particular, we concen-
trate on the DE parameters F, Cr. First, we explain the influence of
these parameters on the performance of DE. Once we have a basic
understanding of this subject, we explore and analyze various mech-
anisms for the automatic setting of DE parameters. The second goal
is to improve the performance of multi-objective differential evolu-
tion. In particular, we concentrate on the geometric computation that
is specific to the multi-objective domain. Next we look at each goal
separately and explain how this goal was accomplished.

1.4.1 Understand the role of parameters

The success of DE is highly affected by the right choice of parameters
F and Cr. Although significant progress has been made in the single-
objective realm, the choice of competitive DE parameters for multi-
objective problems is still far from being well understood. Authors
of successful multi-objective DE algorithms usually use parameters
which do not render the algorithm invariant with respect to rotation of
the coordinate axes in the decision space.

In Chapter 4 we try to see if such a choice can bring consistently
good performance under various rotations of the problem. We do this
by testing a DE algorithm with many combinations of parameters on
a testbed of bi-objective problems with different modality and separa-
bility characteristics. Then, we explore how the performance changes
when we rotate the axes in a controlled manner. We find out that
our results are consistent with the single-objective theory but only for
unimodal problems. On multi-modal problems, unexpectedly, parame-
ter settings which do not render the algorithm rotationally invariant
have a consistently good performance for all studied rotations. This
chapter is based on our earlier work [21].

1.4.2 Understand parameter control

As was mentioned before, parameter selection is a big issue for multi-
objective differential evolution. To mitigate the problem of setting pa-
rameters, methods have been developed to automatically adjust the
parameters. These methods are usually presented as a part of a uni-
fied algorithm and since these algorithms vary in other aspects than
the parameter control mechanism, it is difficult to compare them.

In Chapter 5, we go through various deterministic, adaptive, and
self-adaptive approaches to parameter setting, isolate the underlying
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parameter control mechanisms and apply them to a single simple dif-
ferential evolution algorithm. We then observe its performance and
behavior on a set of benchmark problems. We find that even the
simplest mechanisms can compete with parameter settings found by
exhaustive grid search. We also notice that self-adaptive mechanisms
seem to perform better on problems which can be optimized with
a very limited set of parameters. Adaptive mechanisms on the other
hand exhibit significant problems on the more difficult problems. By
examining the trajectory on which the evolved parameters move we
reveal that the parameters in adaptive methods evolve along more or
less the same path, regardless of the problem. This is a vulnerability
of the methods and it should be explored in more detail.

1.4.3 Improve performance

One of the biggest advantages of evolutionary algorithms, is their
ability to find many solutions at once. This is particularly useful in the
multi-objective model, where we are explicitly interested in finding
many distinct solutions.

However, there are drawbacks to this approach. Maintaining a big
population of individuals comes with computational overhead. Evo-
lutionary algorithms need to constantly evaluate the quality of indi-
viduals in the population in order to select individuals for survival
and for recombination (Algorithm 1, lines 3 and 7). This is done using
procedures such as non-dominated sorting [12] and diversity estimation
[37]. These procedures are specific to the multi-objective model and
they are relatively computationally expensive. Moreover, as we see
in Algorithm 1, they are performed in each generation and their cost
grows with the number of objectives and individuals.

In Chapter 6 we propose a new method to decrease the cost of
these procedures, with special emphasis to non-dominated sorting. Our
approach is to determine the non-dominated individuals at the start
of the evolutionary algorithm run and to update this knowledge as
the population changes. In order to do this efficiently we propose a
special data structure called the M-front, to hold the non-dominated
part of the population. The M-front uses the geometric and alge-
braic properties of the Pareto dominance relation to convert orthog-
onal range queries into interval queries using a mechanism based on
the nearest neighbor search. These interval queries are answered us-
ing dynamically sorted linked lists. Experimental results show that
our method can perform significantly faster than the state of the art
Jensen-Fortin’s algorithm [29], especially in many-objective scenarios.
A significant advantage of our approach is that if we change a sin-
gle individual in the population, we still know which individuals are
dominated and which are not.
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This approach is applicable to most multi-objective evolutionary al-
gorithms, however some features present specifically in differential
evolution can be exploited to achieve even greater reduction of com-
putational cost.



2
D I F F E R E N T I A L E V O L U T I O N

2.1 introduction

In this chapter we look at differential evolution in detail. We restrict
ourselves to the single-objective optimization model. We leave the
multi-objective model, which is the focus of this work, for the follow-
ing chapter.

Kenneth Price and Rainer Storn developed DE from the so called
Genetic Annealing Algorithm in 1995 [55, 53]. Their motivation was
to find a solution to the Chebyshev polynomial fitting problem, but
they found out that DE works remarkably well on a broad range
of problems [54]. Since then, DE has been applied to many other
problems with relatively great success. The main textbook on DE is
[45] and a recent survey of the state of the art is [8].

2.2 fundamental ideas of de

The main idea of differential evolution is to generate mutations of
individuals by adding the difference of existing individuals in the pop-
ulation. This may seem counterintuitive at first, but we explain the
motivation of such design in the next section. Now we explain the
canonical DE algorithm.

Let us have a continuous optimization problem:

f : Rn ⊇ H �→ R; f is to be minimized

where H is an n-dimensional hyperbox:

H = [a1;b1]× [a2;b2]× · · · × [an;bn] (4)

We call any element of Rn a solution to f. In the context of evo-
lutionary computation solutions are called individuals and from now
on we use the terms solution and individual interchangeably. Algo-
rithm 2 describes the simplest form of DE. Let P be the population.
First we fill P with NP individuals, each drawn independently from
a uniform random distribution on H (line 1). We get a population
P = {X1, ...,XNP}, where Xi = (xi,1, . . . , xi,n) ∈ Rn. This population
is then evolved for Gmax generations in a so called evolutionary loop.
The population size NP remains constant throughout the entire run
of the algorithm and it is one of the three fundamental parameters of
DE.

The population is traversed in a so called generational loop and the
algorithm is attempting to improve each individual in turn. The in-
cumbent individual being improved is called a target individual. For

13
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each target individual a trial individual, which is hopefully better
than target, is generated. The generation is performed in two steps.
At first an individual called mutant is generated by adding a scaled
difference of two randomly selected individuals to a third randomly
selected individual (line 5). The number F used for scaling is called
the amplification factor and it is the second fundamental parameter of
DE.

The next step is to construct the trial individual by crossover be-
tween the mutant and the target. There are various types of crossover,
but in the simplest case uniform crossover is used. In order to avoid
inheriting all variables from the target and generating a duplicate in-
dividual, a random index inv is selected and the variable with this
index is inherited from the mutant. Next, the trial inherits variables
either from the mutant, with probability Cr, or from the target, with
probability 1 − Cr. The number Cr is called the crossover probability
and it is the final parameter of DE.

Algorithm 2: Default differential evolution algorithm

1 initialize P = {X1, ...,XNP} uniformly randomly in H

2 for generation := 1 to Gmax do Evolutionary loop
3 for target := 1 to NP do Generational loop
4 randomly generate mutually distinct r1, r2, r3 �= target
5 Xmutant := Xr1 + F(Xr2 −Xr3)

6 randomly generate inv ∈ {1, . . . ,n}
7 for i := 1 to n do

8 if rand(0.0; 1.0) < Cr or i = inv then

9 xtrial,i := xmutant,i

10 else

11 xtrial,i := xtarget,i

12 end

13 end

14 project Xtrial to H

15 if f(Xtrial) � f(Xtarget) then

16 Xtarget := Xtrial

17 end

18 end

19 end

20 report best X in P

After a trial individual is generated, it is projected back to H in
order to satisfy the problem constraints (4). It is then compared to the
target individual on line 15. If the trial achieves a better or equal value
of f, the target is replaced with the trial to simulate the survival of
the fittest. The fact that an equal value of f also triggers the target to
be replaced is an important part of DE, since it allows the algorithm
to remain in motion even if f contains flat regions.
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2.3 intuition behind de

Most people find the idea of adding random differences of vectors to
other vectors baffling. Here we try to explain the motivation behind
this design. We track the progress of Algorithm 2 with F = 0.5, Cr =

0.2, NP = 100 on the peaks test function: 1

f(x,y) := 3(1− x)2 ∗ e−x2−(y+1)2

− 10(
x

5
− x3 − y5)e−x2−y2

−
1

3
e−(x+1)2−y2

(a) Population (b) Scaled differences

Figure 2: Generation 1

This function has several local minima and maxima. The initial pop-
ulation which is generated randomly in [−3; 3]× [−3; 3] is shown in
Figure 2a. The scaled difference vectors F(Xr2 − Xr3) which are gen-
erated in the first generation are plotted in Figure 2b. These vectors
represent the search directions in the next generation, since they are
added to existing individuals to produce new individuals. At the
beginning of the algorithm, when the population is uniformly dis-
tributed, these vectors point more or less uniformly in all directions
and their magnitude is relatively big. This allows the population to
explore the search space.

The population after 5 generations is shown in Figure 3. It is start-
ing to concentrate around the two local minima. As the population
starts to concentrate more and more in more favorable regions of
the search space, the scaled difference vectors decrease in size as in
Figure 4b.

After 20 and 30 generations, as the population collapses around
the local minima, the difference vector distribution also collapses.
This means that the favorable area have been discovered and the al-

1 This parameter setting is far from optimal for the given problem but it results in
progress which illustrates the DE concepts very clearly.
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(a) Population (b) Scaled differences

Figure 3: Generation 5

(a) Population (b) Scaled differences

Figure 4: Generation 10

gorithm is searching in their vicinity. The search process went from
being global to local. We can see this in figures 5 and 6.

There are two local minima, one of which has a lower value of f.
The algorithm generates individuals in both these optima, but the
individuals generated in the weaker cannot prevail against the ones
in the stronger one and die out. After 50 generations the population
converges in the more favorable local optimum, which is also the
global optimum. We can see this in Figure 7.

The fact that the search directions are generated by sampling dif-
ferences of individuals means that the algorithm does not change its
behavior if the scale of the variables changes. The search directions
adapt to the population. This behavior is called contour matching [45].

2.4 differential evolution parameters

Now we review our knowledge about how DE parameters influence
the search process.
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(a) Population (b) Scaled differences

Figure 5: Generation 20

(a) Population (b) Scaled differences

Figure 6: Generation 30

2.4.1 Crossover Probability and Separability

The crossover probability Cr has a very significant meaning in the
context of objective function separability. In this section we summa-
rize what we know about the relationship between the separability of
the test functions and the good choice of the Cr parameter.

There are many different types of separability. One of the simplest
is additive separability. A function f : D ⊆ Rn → R is called additively
separable if:

∃f1, . . . , fn such that f(x1, . . . , xn) =
n∑

i=1

fi(xi) (5)

The most important consequence of additive separability is that the
n-dimensional problem can be optimized sequentially one variable at
a time. Therefore separable problems do not become much more diffi-
cult when the dimension of the search space increases [49].

Salomon [49] illustrates the problems of algorithms which vary the
individuals one variable at a time on a quadratic function of two vari-
ables in Figure 8. The ellipses in the left part are contours of a separable
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(a) Population (b) Scaled differences

Figure 7: Generation 50

Figure 8: Illustration of variable-wise optimization on a rotated quadratic
function

quadratic function. We can see two individuals on one of the contours.
The blue individual represents an individual in a randomized algo-
rithm. If we mutate one variable of this individual, the probability to
get an improvement in the objective function is relatively high, since
the improvement intervals d1,d2 are long. If we rotate the coordinate
axes, thus rendering the function non-separable, the improvement in-
tervals shrink.

One more illustration of problems which arise is using a sequential
deterministic algorithm which finds the optimum with respect to one
variable at a time. The red individual illustrates the path of one such an
algorithm. When the function is aligned with the axes, this algorithm
achieves optimum in just two iterations, while in the rotated case the
algorithm not only progresses slower, but never actually reaches the
optimum.

In the context of DE, Cr is the approximate number of variables that
the trial inherits from the mutant. If Cr = 0, then only one variable is
inherited and the new individual is almost entirely the same as the
target individual, which is already in the population. That is, small
values of Cr induce the algorithm to search along the axes. this means
that small values of Cr are good for separable problems, but may run
into significant difficulties on non-separable problems.
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2.4.2 Variance as a Common Currency

Probably the most significant work on the theoretical properties of
DE has been written by Zaharie [61]. Let us collect all the trial vectors
that are generated in the course of one generational loop of Algorithm
2 into a set Ptrial. Then the relationship between the variance in search
space of P and Ptrial is given by the simple equation E[Var(Ptrial)] =

cE[Var(P)] where:

c = 2F2Cr +
Cr2 − 2Cr

N
+ 1 (6)

Zaharie omits the fact that in most DE variants the individuals
which generate the trial individual are chosen distinct from the target
individual (Algorithm 2 line 5). However her results hold unchanged
also after adding this assumption.

The work of Zaharie is important since it transforms the two pa-
rameters into a single number c (common currency) which has a very
intuitive interpretation. If c < 1 we see that the algorithm tends to con-
tract the population while if c > 1 it expands the population. Based
on empirical data Kukkonen concluded in [39] [48] that a good choice
of parameters is one that satisfies c ∈ [1.0; 1.5] with the upper bound
not very strict.

Having established the fundamental concepts and notation of single-
objective DE, let us now look at the multi-objective realm in the fol-
lowing chapter.
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M U LT I - O B J E C T I V E D I F F E R E N T I A L E V O L U T I O N

First we introduce the concept of Pareto dominance, which is essen-
tial for all multi-objective problems. Then we explain how this con-
cept is applied to differential evolution to produce a working multi-
objective optimizer and finally we go briefly through some examples
of successful multi-objective differential evolution algorithms.

3.1 pareto dominance

Let us have a minimization problem F consisting of M objective func-
tions:

F = (f1, f2, . . . , fM) .

Each function has n variables:

fi : D ⊆ Rn �→ R for i = 1, . . . ,M.

The problem may contain arbitrary constraints. We say that F maps
the decision space D to the objective space RM. We call the members of
the decision space decision vectors and the members of objective space
objective vectors.

Only in extremely rare occasions it holds that there is one solution,
or a set of solutions, which optimizes all the objectives:

argmin
f1

= argmin
f2

= · · · = argmin
fM

.

Usually a solution that produces the optimal value of one objective
produces sub-optimal values of the other functions. The original con-
cept of an optimal solution needs to be revised for multi-objective
problems.

A solution of a multi-objective optimization problem is said to
Pareto dominate, or simply dominate, a different solution if it is bet-
ter with respect to at least one objective while not being worse with
respect to any objective.

More formally, we say that an individual X1 dominates an individual
X2 if

fi(X1) < fi(X2) for some i ∈ {1, . . . ,M}

and
fi(X1) � fi(X2) for all i ∈ {1, . . . ,M}.

We call this relation Pareto dominance and denote it as:

X1 ≺ X2 : X1 dominates X2.

21
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If for two individuals X1,X2 neither X1 ≺ X2 nor X2 ≺ X1, we call X1

and X2 mutually non-dominated.
We call an individual X Pareto optimal if it is not dominated by

any other individual X ∈ D. We call the set of all Pareto optimal
individuals the Pareto optimal set and the image of the Pareto optimal
set under F the Pareto front. Dominance gives us a tool to objectively
compare two solutions of a multi-objective problem. It is the goal of
multi-objective optimization to find the Pareto optimal set, or at least
its approximation.

3.2 pareto dominance as a quality control mechanism

The Pareto dominance relation determines which solutions of a multi-
objective problem are optimal. Moreover, it can be used to determine
the relative quality of individuals in the population at any given mo-
ment. In Figure 9 we see the population of an evolutionary algorithm
on a problem with objectives f1, f2. The blue circles depict individu-
als which are not dominated by any other individual in the population.
The red area depicts the part of objective space that is dominated by
some individual in the population and the red circles depict individ-
uals that are dominated.

Figure 9: Non-dominated individuals in a population.

The population is now divided into dominated individuals, which
are of a lesser quality, and non-dominated individuals, which are of a
greater quality. This quality measure is somewhat crude and we can
refine it in the following way.

The non-dominated individuals are of the best quality in the pop-
ulation. Let us say that they belong to the first non-dominated front.
Now, let us remove the non-dominated individuals out of the popu-
lation and determine the non-dominated individuals in this reduced
population. We record these individuals as belonging to the second
non-dominated front. Next we remove these individuals and repeat the
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Figure 10: Non-dominated sorting of a population.

process until there are no more individuals left. We divided the pop-
ulation into non-dominated fronts, each defining a particular quality
category. Non-dominated sorting is the process of dividing the popu-
lation of a multi-objective evolutionary algorithm (MOEA) into fronts
with respect to Pareto dominance. The result of non-dominated sort-
ing, dividing the population of an evolutionary algorithm into fronts
{F1, F2, F3, F4} is shown in Figure 10.

Figure 11: Selection for survival based on dominance.

Non-dominated sorting [12] is used primarily in the selection for
survival (Algorithm 1 line 7). If we have a population of k individ-
uals and we want to select the best j individuals to survive to the
next generation, we can perform non-dominated sorting and select
the individuals according to their non-dominated front. This is illus-
trated in Figure 11. We discard F3 and F4, but we cannot discard F2,
because we would lose too many individuals. Therefore survival se-
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lection based on dominance is usually supplemented by a secondary
quality criterion, such as diversity.

3.3 simple example of multi-objective differential evo-
lution

By applying the concepts from the previous section to Algorithm 2,
Robič and Filipič created an algorithm called DEMO [47]. This algo-
rithm is described in Algorithm 3.

Algorithm 3: DEMO [47] algorithm

1 initialize P = {X1, ...,XNP} uniformly randomly in the decision
space

2 for generation := 1 to Gmax do Evolutionary loop
3 for target := 1 to NP do Generational loop
4 randomly generate mutually distinct r1, r2, r3 �= target
5 Xmutant := Xr1 + F(Xr2 −Xr3)

6 randomly generate inv ∈ {1, . . . ,n}
7 for i := 1 to n do

8 if rand(0.0; 1.0) < Cr or i = inv then

9 xtrial,i := xmutant,i

10 else

11 xtrial,i := xtarget,i

12 end

13 end

14 project Xtrial to decision space
15 if Xtarget dominates Xtrial then

16 discard Xtrial

17 else if Xtrial dominates Xtarget then

18 replace Xtarget with Xtrial

19 else if Xtarget and Xtrial are mutually non-dominated then

20 add Xtrial to the end of the population
21 end

22 end

23 Trim the P to size N using non-dominated sorting[47] and
MNN diversity[37]

24 end

The part from line 4 to line 14 is identical to that of Algorithm 2.
The one-to-one survival selection of original DE (Algorithm 2 line 15)
cannot be straightforwardly generalized to multi-objective problems
for reasons we mentioned in the previous section. What happens in-
stead is that the Xtrial and Xtarget are compared with respect to Pareto
dominance. If one of them dominates the latter, only one of them
survives. The other one is discarded. If the two are mutually non-
dominated (line 19), Xtrial is added into the population, increasing the
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population size. Therefore, at the end of each generational loop we
end up with a population whose size is in the interval [NP; 2NP]. In
order to maintain the same population size, the number of individu-
als needs to be reduced to NP. This is performed using non-dominated
sorting and diversity estimation (line 23). In the original paper, Robič
and Filipič use the crowding distance [12] procedure to estimate diver-
sity, but in this work we shall use a more modern product of M nearest
neighbor distances procedure [37].

Next we illustrate the working of this algorithm on a simple bi-
objective problem:

f(x,y) = (x− 1)2 + 3y2

g(x,y) = (y− 1)2 + 3x2

The contour lines of these functions are depicted in Figure 12. The
contours of f are drawn with solid lines and the contour lines of g

are drawn with dashed lines. Some Pareto optimal points are plotted
with black dots. Note that these points are either the optima of f or g
itself or points where the contour lines of f and g touch.

Figure 12: Decision space.

We initialize the population randomly and plot both the decision
space and objective space in Figure 13. The situation after 5 genera-
tions is plotted in Figure 14. Already after 5 generations we see that
the population starts to shift towards the places where the two sets
of contour lines touch. In the objective space on the other hand, we
see that the population begins to concentrate closer and closer to the
origin, signifying that the value of both functions is decreasing.

The situation after 10, 30 and 100 generations is depicted in Figures
15, 16 and 17 respectively. We see a sharp contrast with the single-
objective differential evolution, where the population collapsed to a
single point. In the multi-objective case, the population converges to
the Pareto optimal set, which is a curve connecting the global minima
of f and g.
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(a) Objective space (b) Decision space

Figure 13: Generation 1

(a) Objective space (b) Decision space

Figure 14: Generation 5

Since the population never collapses, the difference vector size re-
mains big, which prevents the population from exploring the area
near the Pareto optimal set in more detail. This causes the popula-
tion in generation 100 look not much different than the population
in generation 10. This testifies that the generalization of differential
evolution to the multi-objective model is not trivial and many aspects
need to be considered.

Next, we briefly go through the most notable work in multi-objective
differential evolution.

3.4 notable algorithms

[43] contains an overview of multi-objective differential evolution al-
gorithms until the year 2008. One of the first attempts to generalize
DE to the multi-objective realm was by Abbass [2], who proposed the
PDE (Pareto-frontier differential evolution). Shortly after, Abbass im-
proved his algorithm by introducing self-adaptation to automatically
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(a) Objective space (b) Decision space

Figure 15: Generation 10

(a) Objective space (b) Decision space

Figure 16: Generation 30

(a) Objective space (b) Decision space

Figure 17: Generation 100
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set the parameters F and Cr. Algorithms designed to deal with con-
straints have been developed by Kukkonen [37]. Much effort has been
invested into automatic parameter setting, known as parameter con-
trol. We will investigate these algorithms in Chapter 5. Recently algo-
rithms specifically designed for problems containing a great number
of objectives have been proposed [56, 14].

3.5 comparison with other methods

To illustrate the power of DE, we present a comparison of the simple
DEMO algorithm [47], presented in Algorithm 3, with the very well
known NSGAII algorithm [12]. We have chosen NSGAII in particular,
because it is very similar to the DEMO algorithm. In fact, the pruning
procedure, based on dominance depth and crowding distance is the
same. This means that the observed difference in performance can
be attributed to the difference in the algorithm fundamentals, instead
of auxiliary mechanism, such as pruning. The results are taken from
[47].

Two versions of NSGAII have been compared. One with binary en-
coding of the individuals and one with real encoding. The parameters
of DE are F = 0.5, Cr = 0.3, and NP = 100. The presented results are
averages and standard deviations for 10 independent 250-generation
runs. For each problem, the best result is marked in bold.

Table 1: Comparison of DEMO and NSGAII on the ZDT problems

Average Euclidean distance from the Pareto front

NSGAII binary NSGAII real DEMO

ZDT1 0.000894 (0.00000) 0.033482 (0.00475) 0.001083 (0.00011)

ZDT2 0.000824 (0.00000) 0.072391 (0.03168) 0.000755 (0.00004)

ZDT3 0.043411 (0.00004) 0.114500 (0.00794) 0.001178 (0.00005)

ZDT4 3.227636 (7.30763) 0.513053 (0.11846) 0.001037 (0.00013)

ZDT6 7.806798 (0.00166) 0.296564 (0.01313) 0.000629 (0.00004)

We can see that DEMO outperformed both versions of NSGAII on
all but one problem. These experiment are only illustrative, since the
scope of this experiment is very limited. Nevertheless, DE is much
more simple to understand and implement than the SBX operators
and polynomial mutation present in NSGAII. Therefore DE should
be considered as a promising direction of further research.



Part II

I M P R O V I N G O U R U N D E R S TA N D I N G O F
M U LT I - O B J E C T I V E D E

In this part we will analyze existing multi-objective dif-
ferential evolution algorithms and try to understand their
behavior.
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R O L E O F PA R A M E T E R S I N M U LT I - O B J E C T I V E
D I F F E R E N T I A L E V O L U T I O N

4.1 introduction

The need for a versatile multi-objective optimizer has motivated re-
searchers to generalize the basic DE for multi-objective problems.
Now we have a great number of multi-objective DE variants. Many
of them use the mechanism in Algorithm 2 to generate new individ-
uals. In a problem with n variables a new individual is created using
a crossover variation operator which randomly selects k;k � n vari-
ables which are perturbed. The magnitude of the mutation is gener-
ated by scaling a difference of randomly chosen individuals.

Many research papers on DE such as [14] or [47] provide little in-
sight into how the authors chose the parameters for their benchmark-
ing. We find this striking, since many authors choose their parame-
ters such that the crossover operator perturbs only a small number
of variables in an existing individual. In other words, the search for
the Pareto optimal set proceeds along the coordinate axes. Since these
algorithms perform very well [14, 47], we have a suspicion that this
may be due to some characteristic of the problem, such as separabil-
ity (section 2.4.1), that makes it easy to optimize along the axes. This
would mean that if the axes are transformed, the algorithm should
lose some performance.

Very strict warning against the practice of perturbing a small num-
ber of variables at a time has been raised as soon as 1996 by Salomon
[49]. Salomon empirically demonstrated that the stellar performance
of many popular single-objective genetic algorithms owes to the fact
that most of the benchmark functions were separable and that the
low mutation rate caused them to be optimized one component at a
time. Once Salomon stripped the separability by rotating the principal
axes of the benchmark functions, many algorithms were significantly
slowed down, while some failed to converge completely. Salomon’s
theoretical results state that, in some cases, the probability of finding
the global optimum can drop below that of random search. We are
concerned that the same is true for the multi-objective realm since
many authors perform their experiments with separable test func-
tions.

In DE the number of variables that are perturbed is controlled by
the Cr parameter. If all variables are perturbed, the algorithm has
the same performance regardless of rotation. Let us have a parameter
setting, that perturbs only a small proportion of the variables, which

31
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outperforms a setting that perturbs all variables. In this chapter we
attempt to answer this question: Is this exceptionally good performance
on a problem with a particular alignment of the coordinate axes bal-
anced by exceptionally bad performance on a different alignment?

We do this empirically by observing the performance of a simple
multi-objective algorithm DEMO (Differential evolution for multi-objective
optimization (Algorithm 3)) [47] on a bi-objective subset of the WFG
(Walking Fish Group) test suite [34]. We run all our experiments with
a fixed population size and a fixed number of variables, while varying
the parameters. Then we gradually rotate the problems in a controlled
manner and observe the new behavior.

The answer to our question is, unexpectedly, negative. We find a
statistically significant difference between the performance on the ro-
tated problems and the original ones. Closer inspection reveals that
a systematic performance loss happens when we rotate the separable
problems, but the performance is still significantly better than for a
rotationally invariant algorithm. We find that this happens for multi-
modal problems, while single-modal problems exhibit the behavior we
would expect from the work of Salomon.

In the following section we provide some background information
on separability in the multi-objective realm. Next, we introduce the
experimental design, where we explain which problems are used and
why were they chosen. In addition we introduce a new performance
metric called the relative hypervolume, and explain the controlled man-
ner in which the rotations are generated. Finally, we present our data
along with a discussion.

4.2 separability of multi-objective problems

Huband et al. from the Walking Fish Group (WFG) define separability
from the optimizational standpoint [34]. A variable xi is separable if
the set of global optima of a problem:

argmin
xi

f(x1, . . . , xn)

is the same for any choice of the other variables x1, . . . , xi−1, xi+1, . . . , xn.
For example, an additively separable function is WFG-separable, hence
WFG-separability is a generalization of additive separability. The au-
thors define a separable multi-objective problem as one where each
objective is separable. The majority of the frequently used DTLZ and
ZDT problems [13] are WFG-separable [34], while their objective func-
tions are not additively separable as in (5).

We mentioned in Chapter 2 that in the single-objective realm sep-
arable problems are easily solvable using small values of Cr, while
non-separable ones may produce significant difficulties. The multi-
objective model is fundamentally different from the single-objective
model because all objectives are being optimized simultaneously. The
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global optima of each optimized function constitute only a relatively
small subset of the Pareto optimal set. Therefore, it is appropriate
to ask if the problems of sequential algorithms which are illustrated
in Figure 8 persist in multi-objective optimization. Also, while ad-
ditively separable unimodal functions are inherently similar to the
quadratic function in Figure 8, it is not clear if the intuition holds
for multi-modal functions or for functions which are WFG-separable
but not additively separable.

Note that Cr = 1 is the only value of Cr for which the DE algorithm
is rotationally invariant with probability 1. Rotational invariance does
not by itself imply good performance. Its merit is that it allows us to
generalize a single observation to an entire invariance class [31].

4.3 experimental design

In this section, we describe which test problems we chose and why.
We explain what we mean by rotating the problem and we propose a
new performance metric which we use. We perform all our experi-
ments using Algorithm 3.

4.3.1 WFG Problems

In order to explore the relationship between the control parameters
of DE and the characteristics of the problem, we chose 4 problems
from the WFG test suite [34]. These problems have been chosen since
they have the same Pareto front and contain all possible combinations
of the WFG-separability and modality characteristics. They are summa-
rized in Table 2. We chose the number of variables to be 10 of which
one is a positional variable.

Table 2: Characteristics of the selected WFG problems

WFG4 WFG7 WFG6 WFG9

separable yes yes no no

unimodal no yes yes no

4.3.2 Rotations in Rn

As humans we have a very good intuitive understanding of rotation
in 2 or 3 dimensional space. However in higher dimensions things
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(a) Decision space (b) Objective space

Figure 18: Illustration of DE population on problems with various rotations

are not as intuitive as they might seem. An elementary rotation by
the angle φ is characterized by the matrix:

Re =

(
cos(φ) −sin(φ)

sin(φ) cos(φ)

)

We can generalize this rotation to n-dimensional space by taking
an n-dimensional identity matrix I and replacing Ii,i, Ii,j, Ij,i, Ij,j by
Re
1,1,Re

1,2,Re
2,1,Re

2,2 respectively. We can see that the rotation is not ex-
ecuted around an axis as we might intuitively feel, but around an n− 2

dimensional subspace which is coincidentally a 1-dimensional axis in
the intuitive 3-dimensional case. For our experiments, we generate
the rotation matrix R by applying a rotation to each n− 2 dimensional
subspace in sequence, one rotation after the other.

We rotate the entire decision space (DS). This way the entire Pareto
optimal set is always attainable since the entire decision space ro-
tates along. In the case of WFG problems this means rotating a n-
dimensional hyper-box. For example, in order to initialize the popula-
tion in Algorithm 3 in the rotated DS (line 1), we first initialize the
population in the original DS and then multiply by R−1. Similar pro-
cess is used to project the individual to the rotated DS on line 14.
To evaluate the objective value of an individual we first multiply the
decision vector by R and evaluate the original objective functions.

In Figure 18 we can see an illustration of the DEMO algorithm pop-
ulation after 250 generations, with a small value of Cr = 0.2 on the
WFG7 problem with 2 objectives and 3 variables, which is rotated by
0, 15, 30, 45, 60, 75, and 90 degrees. Various colors show the popula-
tion on various rotations of the same problem. We see that the Parto
front (in objective space) remains the same, while the Pareto optimal
set (in decision space) rotates.
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4.3.3 Relative Hypervolume

In our experiments, we use only one performance metric, the hyper-
volume (HV) [65], since it includes information on both convergence
and spread of the individuals. With WFG problems, it is not easy to
choose the reference point for the HV. Even if we choose the point as
tight as possible, there are some individuals after the initialization of
DE which dominate the reference point. Therefore the HV at the start
is not zero and it is hard to say if a certain attained HV is good or
bad. Moreover, it is hard to make quantitative comparisons based on
HV. If some algorithm achieves HV of 100 and another one achieves
a HV of 99.98, it may seem that the difference is not very big, but it
all depends on the HV at initialization. If the algorithms started with
HV = 0, the interpretation of the results would be quite different
from one where HV = 99.99 at the start.

We attempt to mitigate this problem by subtracting the HV at ini-
tialization (HVinit) and normalizing the result using the maximal at-
tainable hypervolume (HVmax). We define the relative hypervolume (RHV)
in the following equation:

RHV :=
HV − HVinit

HVmax − HVinit
. (7)

We compute HVmax deterministically by integrating the space be-
tween the true Pareto front (PF) and the reference point. From (7),
we have RHV ∈ [1;−∞). RHV = 1 implies convergence, RHV at ini-
tialization is 0 and RHV < 0 indicates an algorithm which is receding
from the Pareto front.

We use RHV since its normalized nature is more intuitive and it is
more robust with respect to the selection of the reference point. It may
be more meaningful to compare two algorithm runs in terms of RHV.
If we have two algorithm runs starting from the same randomly ini-
tialized population then the ratio of their RHVs is independent of the
choice of the reference point. 1 On the other hand, two independent
runs which produce the same final population may yield different
relative hypervolume.

4.4 results and discussion

In our experiments we varied the parameters F ∈ [0.05; 1.5], Cr ∈ [0; 1]
equidistantly with a resolution of 0.05. For each combination we per-
formed 10 runs of Algorithm 3. To simplify the setup, the population
size was kept constant at 100 individuals and the length of each run
was 250 generations. We explored the rotations from 0 to 90 degrees
with a resolution of 5 degrees. In the following we discuss our results

1 Given that the reference point is dominated by all individuals in the population.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 19: Average RHV without rotation

on a subset of the experimental data. To simplify the analysis, in each
section we keep either F, Cr or the rotation angle fixed.

4.4.1 Fixed Rotation Angle

Figure 19 shows the average RHV on non-rotated problems. For il-
lustration, we plot the combinations of F and Cr which result in
c = 1.0, 1.5 and 3.0 according to (6). The circle marks the combination
of parameters with the best RHV. For each problem, an L-shaped
favorable region containing RHV of 0.8 and higher, roughly corre-
sponds to c ∈ [1; 1.5]. Low value of Cr is more robust, since it allows
for a wider interval of F values. Unexpectedly, this holds also for non-
separable problems WFG6 and WFG9.

The effect of introducing a rotation by 5 degrees is shown in Figure
20. The two figures seem identical, but the ratio of these averages in
Figure 21 reveals a difference. A value of less than 1 indicates that the
rotation caused the performance to decrease. We highlighted the con-
tour at level 1 and marked the maximal and minimal value by circles.
In order to make the results most readable we chose a color scale of
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 20: Average RHV with rotation angle of 5 degrees

[0.5; 1.2] for separable problems and [0.6; 1.7] for non-separable prob-
lems. The separable problems on the left half exhibit a performance
loss consistent with Salomon’s single-objective results. Performance
dropped for almost all Cr smaller than 1. Non-separable WFG6 and
WFG9 do not show such a systematic decrease. In some areas we even
see an increase of performance.

It seems that there is relatively little difference between the ro-
tated and non-rotated data. These result may seem not as signifi-
cant as Salomon’s. However, there is an important methodological
difference. When he mentions that the performance on the rotated
benchmark is six orders of magnitude worse than the performance on
the non-rotated benchmark ([49, p.273]), he means that the minimal
attained value 2.65 · 105 is six orders of magnitude worse in absolute
numbers. But the value at initialization was three orders of magnitude
greater yet. This means that both algorithms started somewhere near
2.65 · 108 and the non-rotated one progressed to 2.65 · 10−1 while the
rotated one progressed to 2.65 · 105. In terms of relative hypervolume,
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 21: Average RHV with a rotation of 5 degrees
Average RHV without a rotation

this would be a very small difference 2. In order to provide a scale-
independent comparison, we compared all data using a two-tailed
Wilcoxon signed rank test at a significance level of 0.05. For separable
problems in Figures 21 and 22 we separate the parameter space with
a dashed line into two areas. The area on the right is such that the
rotated and non-rotated data is not significantly different, while on
the left there is a significant decrease in performance. The data for non-
separable problems contains areas of both significant decrease and
significant decrease, as well as areas with no significant difference so
in this case the separation cannot be plotted so comprendiously.

The effects are more visible with 45 degree rotation in Figure 22.
Again, there is a systematic decrease in performance for the separable
problems for Cr < 1. However, this decrease does not imply that Cr =
1 is a good choice. Looking at Figures 19 and 20, we see that Cr = 1

2 Assuming that the minimum of the given function is 0, the difference would be on
the order of 10−3.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 22: Average RHV with a rotation of 45 degrees
Average RHV without a rotation

is a consistently bad choice for the multi-modal problems WFG4 and
WFG9.

4.4.2 Fixed F

In Figures 19 and 20 we see that F = 0.5 is compatible with many
different values of Cr and achieves consistently good performance.
The average RHV for F = 0.5 is shown in Figure 23. For multi-modal
problems WFG4 and WFG9, very low values of Cr are consistently
good for all studied rotations, while for uni-modal problems WFG6
and WFG7 big values of Cr yield a consistently good performance. On
the other hand, poor performance is achieved with big values of Cr
for multi-modal problems and small values for uni-modal problems.
The data for WFG4 and WFG9 suggests that the exceptionally good
performance of a small Cr setting does not have to be balanced by an
exceptionally bad performance after the problem is rotated. Based on
the observation from Figure 23 we see that for each problem either
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 23: Average RHV for F = 0.5

Cr = 0.1 or Cr = 0.9 perform well through the observed spectrum of
rotations.

4.4.3 Fixed Cr

In Figures 24 and 25 we see data with a fixed value of Cr = 0.1
and Cr = 0.9 respectively. For Cr = 0.1 the regions with the best
performance are for rotations which are either close to 0 or 90 degrees.
This is true also for non-separable problems, but it is more visible
for separable problems. The data for Cr = 0.9 seems different. The
choice of Cr close to 1 means that the algorithm is nearly rotationally
invariant. The gained robustness with respect to coordinate rotation
is balanced by lost robustness in the choice of F. Almost in all cases
the interval with favorable values of F became shorter.

We see that for values of Cr < 1 there is a performance loss when
the coordinate axes are rotated, but does the performance drop bel-
low that of a rotationally invariant choice of Cr = 1? The data sup-



4.4 results and discussion 41

(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 24: Average RHV for Cr = 0.1

porting a negative answer is presented in Figure 26. Here we divided
the average RHV with Cr = 0.1 by the average RHV attained with a
rotationally invariant Cr = 1. The interpretation of the dashed and
full contour lines is the same as for Figures 21 and 22. For WFG4,
the setting of Cr = 0.1 statistically significantly outperformed Cr = 1

for all rotations and all values of F. This means a definitive negative
answer to our main question. The results are similar for the second
multi-modal problem WFG9. Here we see a small region in which the
data for Cr = 0.1 and Cr = 1 are not significantly different and Cr = 1

is significantly better in a few isolated cases. The unimodal problems
on the other hand show that Cr = 1 is significantly better for most
rotations and for the best performing values of F.

4.4.4 Comparison in terms of generational distance

Until now, we were concerned with a single performance metric, the
dominated hypervolume. In order to give a more complete image, we
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 25: Average RHV for Cr = 0.9

give the results in terms of a different metric, the so called generational
distance. The generational distance GD of a Pareto front approxima-
tion A = {Y1, . . . , YN} is given by:

GD(A) =

∑N
i=1 d(Yi)

N

where d(Yi) is the squared Euclidean distance of Yi from the closest
point on the true Pareto front. GD is only concerned with conver-
gence and is indifferent to other quality criteria. The difference with
hypervolume is that GD is to be minimized instead of maximized.

In Figure 27 we see the results of the same experiment as for Figure 26,
that is, the comparison of a small and big value of Cr. Again, the hy-
pothetical isocurve, where the two average performances are the same
is marked by a bold line.

When we take into account that GD is to be minimized, the pattern
is strikingly similar. Again, for multi-modal problems the small value
of Cr = 0.1 surprisingly outperforms the rotationally invariant big
value Cr = 1.0 for almost the entire spectrum of rotations. On the
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 26: Average RHV with Cr = 0.1
Average RHV with Cr = 1

other hand, for unimodal problems, we can see a performance loss.
This performance loss is more systematic for the separable WFG7
problem, which is consistent with the single-objective theory.

4.5 conclusion

In this chapter we showed how the behavior of the differential evo-
lution algorithm on bi-objective problems changes when the coordi-
nate axes of the decision space are rotated. Our findings show that
the change is significant even for small rotations. There is a consis-
tent drop in performance on separable problems while the qualitative
properties of the change for non-separable problems are much less
predictable. Unexpectedly, for multi-modal problems, low values of
crossover probability perform better through the observed spectrum
of rotations. As a future work we propose to see if this holds for prob-
lems other than the ones we studied and if this is the case, to find the
cause of this behavior.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM)

(c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Figure 27: Average GD with Cr = 0.1
Average GD with Cr = 1



5
C O M PA R I S O N O F PA R A M E T E R C O N T R O L
M E C H A N I S M S

It seems that perfection is attained,
not when there is nothing more to add,

but when there is nothing more to take away.

— Antoine de Saint Exupéry

5.1 introduction

Differential evolution (DE) [45] is a simple to understand, but never-
theless powerful optimizer. However, as we showed in the previous
chapter, its performance of is highly sensitive to the choice of param-
eters. Moreover, this dependency changes from problem to problem.
Selection of well performing fixed parameters for a particular opti-
mization problem is a relatively little understood subject, especially
in the multi-objective realm. In order to solve this problem and to
bring the differential evolution algorithms closer to perfection by sim-
plifying the parameter selection process, many researchers proposed
methods to set the parameters automatically.

According to the taxonomy proposed in [23], parameter setting
techniques are divided into parameter tuning, which happens before
the run, and parameter control, which happens during the run. Pa-
rameter control techniques are further divided into deterministic, adap-
tive, and self-adaptive. Deterministic techniques apply the parameters
according to a given rule, while ignoring any feedback from the
search process. Adaptive techniques continually update their param-
eters using feedback from the population. Self-adaptive techniques,
which originate in evolution strategies, attach different parameters
to each individual. These parameters undergo mutation and recombi-
nation along with the individuals. Better parameter values lead to in-
dividuals with a higher chance to survive and therefore have a higher
chance to propagate to the next generation.

Each mentioned paradigm of parameter control is represented by
numerous algorithms in the literature. One of the first attempts to con-
trol parameters in DE is the (multi-objective) SPDE algorithm [1] be-
longing to the self-adaptive category. An adaptive mechanism based
on population diversity for both single- and multi-objective DE has
been proposed by Zaharie in [60]. The use of fuzzy controllers to
adapt the parameters has been proposed by Liu et al. [41] The SaDE
algorithm [46], originally proposed for single-objective DE, adapts the
used DE strategies as well as the parameters. SaDE, which is an adap-

45
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tive algorithm according to our classification, has been generalized
to multi-objective realm and subsequently improved to OW-MOSaDE
[33]. A comparison of single-objective adaptive and self-adaptive meth-
ods is presented in [7] and in [6].

A typical modern multi-objective algorithm is in fact an orchestra
of sub-algorithms, each playing its own instrument. There is a sub-
algorithm to initialize the population, a sub-algorithm to select indi-
viduals for reproduction, a sub-algorithm to maintain diversity and
so on. Various techniques for parameter control are usually published
as a part of a unified production-ready algorithm. Apart from the pa-
rameter control mechanism, this algorithm usually has its own sub-
algorithms to perform tasks not related to parameter control. These
sub-algorithms usually vary from algorithm to algorithm and make
the comparison of algorithms difficult, since it is not clear if the dif-
ference in performance should be attributed to the parameter control
mechanism itself or to the difference in sub-algorithms. For example,
to estimate diversity of an individual, the OW-MOSaDE algorithm
[33] uses the harmonic average distance measure, while the JADE2
algorithm [63] uses the product of distances. In order to isolate these
effects, we implement all the parameter control methods within a sim-
ple multi-objective DE algorithm DEMO [47] with the product of M
nearest neighbors pruning procedure [37].

In this work we want to find out if some parameter control paradigm
is inherently better in terms of performance and whether the param-
eter control mechanisms can find favorable parameters in problems
which can be successfully optimized only with a limited set of param-
eters. We are also interested in finding an explanation of the observed
performance. We do this by observing the evolution of parameters
used by the parameter control methods throughout the optimization
process. For this paper, we tried to choose representative examples
from each group. We compare one deterministic, three adaptive and
four self-adaptive methods. Some of the methods we present here are
originally used only for single-objective optimization, but they can be
easily adopted to multi-objective optimization.

We conclude, based on our limited results, that self-adaptive meth-
ods are the most robust methods, while performing on par with the
best fixed parameter settings. We found out that adaptive methods
may have significant problems to find favorable values of parameters.
Moreover, they seem to adapt their parameters in patterns regardless
of the problem.

The population size NP is also considered a parameter of DE, and
there have been attempts to adapt the population size as well [57], but
in this paper we restrict ourselves to parameters F and Cr. Moreover,
strategies to generate Xtrial, different than the one in (2) and (3) have
been proposed, but in this work we shall consider only the default
strategy. Next, we present all the parameter control mechanisms that
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we consider in this study. Then we explain the details of our experi-
mental setup. Finally, we discuss the results obtained.

5.2 approaches to parameter control in de

Now we introduce the mechanisms that we use in this chapter, using
the classification introduced in the previous section.

5.2.1 Deterministic Mechanism for Parameter Control

The parameters in the MDDE algorithm [64] are initialized as rela-
tively big values to prevent premature convergence, and then mono-
tonically decreased in a geometric sequence according to:

Fg := F0 exp(−a0
g

gmax
)

Crg := Cr0 exp(−a1
g

gmax
),

where g is the current generation and gmax is the maximum number
of generations.

5.2.2 Adaptive Mechanisms for Parameter Control

5.2.2.1 JADE2

The adaptive mechanism in the JADE2 algorithm generates new val-
ues of F and Cr each time a new Xtrial is to be generated. If a particular
Xtrial Pareto dominates the Xtarget, the combination of F and Cr which
generated the Xtrial is recorded as a successful one. The values of F
are generated from a Cauchy distribution with median μF and scale
γ = 0.1, while the values of Cr from a Normal distribution with mean
μCr and σ = 0.1. At the end of each generation the parameters of these
distributions are updated by:

μF := (1− c)μF + c.avgL(Fs)

μCr := (1− c)μCr + c.avgA(Crs),

where c ∈ [0; 1] is a learning factor, avgL(Fs) is the Lehmer mean of
all successful F’s and avgA is the arithmetic mean of successful Cr’s
in the previous generation. In our experiments we held c = 0.1 in
accordance with the advice of authors.

5.2.2.2 OW-MOSaDE

Objective-wise MOSaDE [33] attempts to learn which value of Cr is
good for a particular objective. For each objective fi ∈ (f1, . . . , fm)

OW-MOSaDE holds one value of μi,Cr. These values are updated at
the end of each generation if the Xtrial generated by a particular Cr
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improves objective fi. In addition, a master μCr is updated if all objec-
tives are improved simultaneously. At each generation, one of these
m+ 1 values is randomly chosen to serve as the mean of a normal
random distribution with σ = 0.1, which is sampled to generate the
values of Cr. That is, each generation the algorithm concentrates on
either one randomly chosen objective or attempts to improve all ob-
jectives at once. As opposed to JADE2, there is no learning factor,
but the successful values of Cr are retained for lp generations, where
lp = 50 is a learning period. The value F is not adapted, but gen-
erated randomly from a fixed set of normal distributions for each
individual.

5.2.2.3 Control of Diversity Adaptation Algorithm (PDCaDE)

Zaharie discovered a simple algebraic relationship between the ex-
pected variance of the DE population before and after the genera-
tion of new individuals [61]. Based on her theoretical results, Zaharie
developed an algorithm which monitors the variance of the popu-
lation in the decision space and alters the parameters according to
this relationship, so that the variance of the population decreases in a
specified, evenly manner throughout the entire run. The motivation
behind this algorithm is to prevent premature convergence and to use
the allocated budget of generations evenly.

The algorithm does not have a specific name, so we call it Popula-
tion Diversity Control Adaptive DE (PDCaDE) in the rest of this article.
PDCaDE introduces a new parameter γ, which we held constant at
γ = 1.25 for all our experiments. This value was determined by some
limited tuning, since the author does not provide a fixed value which
should be used for multi-objective problems.

5.2.3 Self-adaptive Mechanisms for Parameter Control

The main idea behind self adaptive mechanisms is that each individ-
ual remembers the set of parameters by which it was created. This way
if an individual is created by a good set of parameters and survives
into the next generation, the parameters it carries survive too. On the
other hand bad parameter combinations get pruned away.

In all self-adaptive DE mechanisms considered in this paper, the
principle is the same. New individuals Xtrial are generated using (2)
and (3) with the exception that the F and Cr are not fixed, but replaced
by Ftrial and Crtrial, which are created on the spot and then attached
to the newly generated Xtrial. If we denote by Fi and Cri the parame-
ter values attached to individual Xi, then the methods to create Ftrial

and Crtrial can be summarized using simple equations which we sum-
marize in Table 3. These approaches introduce new parameters, but
some authors claim that these parameters should be fixed at values
in Table 4. We too use the parameters in Table 4 in our experiments.
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Table 3: Summary of used self-adaptive mechanisms

Name Main formula

SPDE [1] Ftrial := randN(0, 1)

Crtrial := Crr1 + randN(0, 1)(Crr2 − Crr3)

jDE [6] Ftrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ1

Ftarget else

Crtrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ2

Crtarget else

DEMOwSA Ftrial =
Fi+Fr1

+Fr2
+Fr3

4 eτrandN(0,1)

[62] Crtrial =
Cri+Crr1+Crr2+Crr3

4 eτrandN(0,1)

SAMDE [44] Ftrial = Fr1 + F ′(Fr2 − Fr3)

Crtrial = Crr1 + F ′(Crr2 − Crr3)

randN(μ,σ) - generator of normal random numbers

randU(a,b) - generator of uniform random numbers

5.3 experimental design

5.3.1 Algorithmic Framework

Algorithm 4 shows the unified framework which we use for compar-
ing the selected parameter control mechanisms. The lines that apply
only to self-adaptive mechanisms are highlighted in yellow, while the
ones that apply only to adaptive mechanisms are highlighted in blue.
All our methods with the exception of PDCaDE follow this model.
The implementation of PDCaDE has its specifics, which are limited
to line 8, since each variable has its own set of parameters.

Some methods have their own parameters, which we held constant
at the values recommended by their authors. Some methods also use
several strategies to generate new individuals, but in this work we
limited ourselves to the default strategy described in Equations (2)
and (3).

5.3.2 Problems

5.3.2.1 WFG problems

To test the mechanisms in various conditions, we chose a subset of
the WFG [34] test suite with the same concave Pareto front and all
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Table 4: Additional parameters of self-adaptive mechanisms

Name additional parameters

SPDE [1] Crinit := randN(0.5, 0.15)

jDE [6] τ1 = 0.1, τ2 = 0.1

DEMOwSA [62] τ = 1√
2n

SAMDE [44] F ′ := randU(0.7, 1.0)

randN(μ,σ) - generator of normal random numbers

randU(a,b) - generator of uniform random numbers

Algorithm 4: Adaptive and self-adaptive DEMO [47] algorithm

1 initialize P = {X1, ...,XNP} uniformly randomly in the decision
space

2 initialize F and Cr generators
3 initialize values of Fi and Cri for i = 1, . . . , NP
4 for generation := 1 to Gmax do Evolutionary loop
5 for target := 1 to NP do Generational loop
6 generate Ftrial and Crtrial

7 compute Ftrial and Crtrial using Table 3
8 generate Xtrial using Ftrial and Crtrial from (2) and (3)
9 attach Ftrial and Crtrial to Xtrial

10 project Xtrial to decision space
11 if Xtarget dominates Xtrial then

12 discard Xtrial

13 else if Xtrial dominates Xtarget then

14 replace Xtarget with Xtrial

15 else if Xtarget and Xtrial are mutually non-dominated then

16 add Xtrial to the end of the population
17 end

18 update success memories
19 end

20 update parameter generators
21 Trim P to size NP using non-dominated sorting [47] and

MNN diversity [37]
22 end
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possible combinations of separability and modality characteristics as
in the previous chapter. These problems are summarized in Table 2.
We held the number of variables fixed at 10 and performed tests for
2 and 3 objectives and 10 variables.

5.3.2.2 Quadratic problems

As we shall later see, even the non-separable multi-modal WFG prob-
lems can be successfully optimized using many combinations of fixed
parameters. To test the ability of parameter control mechanisms to
solve challenging problems we developed a scalable problem, that
can be solved by relatively few combinations of F and Cr, called Q.
The problem Q consists of m functions: Q = (q1, . . . ,qm). Each func-
tion is a quadratic form qm(X) = (X− cm)Dm(X− cm)T where

D1 = diag(1, 2, 4, . . . , 2n−1),

D2 = diag(2n−1, 1, 2, . . . , 2n−2),

. . .

and the vectors ci are generated uniformly randomly in a unit
sphere. The resulting problem is then rotated in the decision space
around all n − 2 rotation subspaces by 45 degrees. 1 Moreover, the
population for this problem is generated randomly uniformly in a
sphere of radius 210 which is shifted from the origin in a random
direction by 214.

In this work, we explore the Q problem for 2, 3, and 4 objectives,
while the number of variables remains fixed at 10.

5.3.3 Observed Statistics

In this work we are interested in the performance of the various meth-
ods as well as in observing their behavior. To measure the perfor-
mance, we use the hypervolume [65] metric, since it measures both
convergence and diversity of the resulting Pareto front approxima-
tion. As a reference point for both types of problems we first construct
the hyperbox which contains the entire true Pareto front and add a
unit vector to its upper corner.

In order to simplify the interpretation of the hypervolume, we nor-
malize it by dividing it by the maximal attainable hypervolume in
the case of WFG problems, and by the volume of the hyperbox be-
tween the origin and the reference point for the Q problem. This way
we know that the maximal attainable normalized hypervolume, cor-
responding to complete convergence is 1.

In order to observe the behavior of the mechanisms, we log each
combination of F and Cr that the algorithm uses in one generation.

1 Details on this methodology can be found in [21].
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(a) WFG4 (S-MM) (b) WFG6 (S-UM)

(c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Figure 28: Average normalized hypervolume for 2 objectives

5.4 results and discussion

5.4.1 Parameter Tuning

For each problem we performed a preliminary tuning of the F and
Cr parameters by grid search. We explored the ranges F ∈ [0.05; 1.5]
and Cr ∈ [0; 1] with a resolution of 0.05. For each combination of
parameters, we ran 10 independent runs of the Algorithm 4 with fixed
parameters. The average normalized hypervolume from this tuning
is presented in the form of heat-maps, with hot colors meaning good
performance. The tuning results for the WFG problems are in Figure
28 and 29. In each figure we see a red, L-shaped region of favorable
values. We provided theoretical explanation of this shape in section
4.4.1.

5.4.2 Parameter Control on WFG problems

For each of the studied methods we ran 50 independent runs with
a fixed population size NP = 500 individuals. Each run was limited
by 500 generations. The average normal hypervolume along with the
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(a) WFG4 (S-MM) (b) WFG6 (S-UM)

(c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Figure 29: Average normalized hypervolume for 3 objectives

standard deviation across the 50 runs is presented in Tables 5 and
6. The value of normalized hypervolume at the start of the run is
denoted as start. For each problem, based on the initial tuning, we
constructed an ideal set of fixed parameters and ran the algorithm for
50 independent runs with these settings. Within the group of adap-
tive methods and the group of self-adaptive methods we marked the
highest value in bold.

We can see that both adaptive and self-adaptive methods are per-
forming quite good in comparison with the ideal parameter set. The
only exception is the deterministic MDDE algorithm, which shows
significant problems for the non-separable WFG6 and WFG9 prob-
lems.

For each method we plot the path of the average used F and Cr
with respect to the generation. We call this plot the trajectory of that
method. The trajectories of adaptive methods along with the deter-
ministic MDDE method are plotted in Figure 30 and the trajectories
for the self-adaptive methods are in Figure 31. The small crosses are
plotted for each 10 generations and the final reached value is marked
by a large square. The optimal value of F and Cr is marked by a black
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Table 5: Average normalized hypervolume for 2-objective WFG problems

2 objectives

WFG4 WFG6 WFG7 WFG9

start 0.774
(1.2e-02)

0.618
(1.5e-02)

0.706
(8.6e-03)

0.666
(2.2e-02)

ideal 0.999
(6.9e-05)

0.999
(5.9e-04)

0.999
(3.5e-04)

0.996
(1.4e-03)

MDDE 0.998
(3.4e-04)

0.820
(8.6e-04)

0.999
(7.5e-06)

0.905
(8.3e-02)

ad
ap

ti
ve JADE2 0.999

(7.2e-06)
0.992
(4.4e-03)

0.999
(1.0e-05)

0.996
(8.7e-04)

OW-
MOSaDE

0.997
(6.6e-04)

0.975
(6.4e-03)

0.999
(9.1e-06)

0.993
(2.0e-03)

PDCaDE 0.998
(1.7e-03)

0.980
(7.1e-03)

0.999
(4.9e-05)

0.993
(2.2e-03)

se
lf

-a
da

pt
iv

e DEMOwSA 0.998
(2.9e-04)

0.991
(3.8e-03)

0.999
(2.1e-05)

0.989
(3.5e-03)

jDE 0.999
(7.5e-06)

0.985
(1.7e-02)

0.999
(1.4e-05)

0.996
(1.0e-03)

SAMDE 0.999
(8.0e-06)

0.980
(1.4e-02)

0.999
(1.5e-05)

0.995
(9.5e-04)

SPDE 0.999
(1.1e-05)

0.970
(1.1e-02)

0.999
(8.8e-06)

0.996
(4.7e-04)

circle in each graph. Moreover, all graphs contain the contour lines of
the average normalized hypervolume obtained by parameter tuning.

We can see that the adaptive methods behave consistently and their
trajectories look alike across the various problems. On the other hand
their self-adaptive counterparts seem a lot less consistent.

The situation is very similar for 3 objectives. The trajectories for
the adaptive and deterministic methods in Figure 32 seem to behave
indifferently with respect to the problem and to the number of ob-
jectives. On the other hand, self-adaptive methods in Figure 33 again
perform much less predictably. Looking at the results of parameter
tuning in Figures 28 and 29 we see a possible explanation. The heat-
maps of normalized hypervolume for problems WFG4 and WFG6
have more structure than those of WFG7 and WFG9. The contour
lines are more evenly distributed, which may help the algorithms
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Table 6: Average normalized hypervolume for 3-objective WFG problems

3 objectives

WFG4 WFG6 WFG7 WFG9

start 0.669
(1.9e-02)

0.563
(8.9e-03)

0.646
(1.0e-02)

0.575
(2.0e-02)

ideal 0.987
(2.2e-04)

0.983
(1.6e-03)

0.988
(1.1e-04)

0.976
(2.9e-03)

MDDE 0.978
(6.7e-04)

0.807
(3.6e-02)

0.986
(1.4e-04)

0.892
(8.4e-02)

ad
ap

ti
ve JADE2 0.982

(4.3e-04)
0.977
(3.5e-03)

0.978
(4.5e-04)

0.965
(1.9e-03)

OW-
MOSaDE

0.968
(1.3e-03)

0.971
(8.3e-03)

0.977
(5.2e-04)

0.961
(1.6e-03)

PDCaDE 0.974
(2.6e-03)

0.966
(8.4e-03)

0.979
(9.6e-04)

0.962
(2.2e-03)

se
lf

-a
da

pt
iv

e DEMOwSA 0.972
(1.0e-03)

0.979
(1.6e-03)

0.975
(9.3e-04)

0.959
(1.8e-03)

jDE 0.982
(7.0e-04)

0.967
(1.3e-02)

0.981
(5.3e-04)

0.968
(2.7e-03)

SAMDE 0.983
(5.8e-04)

0.968
(8.8e-03)

0.977
(5.4e-04)

0.963
(1.5e-03)

SPDE 0.985
(6.6e-04)

0.964
(1.1e-02)

0.980
(3.8e-04)

0.965
(1.6e-03)

find favorable parameter values. On the other hand, the heat-maps
for WFG7 and WFG9 have large plateaus associated with favorable
parameters, separated by steep cliffs from plateaus with unfavorable
parameters. Consequently we see that on WFG4 and WFG6 problems,
the trajectories of self-adaptive methods aim correctly for the more
favorable regions, while on the WFG7 and WFG9 problems, the be-
havior seems more random.

5.4.3 Q problems

In the same way as for the WFG problems, we performed a limited
parameter tuning on the Q problems. The corresponding heat-maps
are in Figure 34.
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)
Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Figure 30: Parameter trajectories of adaptive and deterministic methods for
2 objectives

The contrast with the data for WFG is immediately visible. Espe-
cially for 2 objectives, the area of favorable parameter combinations is
relatively small. Moreover the favorable area is surrounded by steep
cliffs. Even a small change in one parameter may mean the differ-
ence between a successful convergence and total failure. On such
hard problems, the difference in performance of parameter control
methods becomes apparent. The averages and standard deviations of
50 independent runs for 500 generations with a fixed population size
of 500 individuals are in Table 7.

On the 2-objective Q problem all the adaptive methods fail com-
pletely. Out of 50 runs, not one of them approached close enough to
the Pareto front. Some minor success has been achieved by the deter-
ministic MDDE method, but the best performers are the self-adaptive
methods. On the 3-objective problem, OW-MOSaDE catches up, while
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(a) WFG4 (S-MM) (b) WFG6 (S-UM)

(c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Figure 31: Parameter trajectories of self-adaptive methods for 2 objectives

the other adaptive methods are lagging. For the 4-objective problem,
the performances even out. We see a steady decrease in hypervolume
as we increase the number of objectives. But this decrease applies also
to the algorithm with ideal parameters and may be attributed either
to the fact that the number of individuals needed to represent the
Pareto front rises exponential with the dimension of the problem [3],
or that the problems with more objectives are simply more difficult.

Let us examine this behavior in more detail. The trajectories for
adaptive methods are in Figure 35, and for self-adaptive methods in
Figure 36. The adaptive trajectories for the 2, 3 and 4 objective Q

problems are very similar. Also they resemble those of the WFG prob-
lems. The PDCaDE algorithm seems to always converge to Cr = 0.4
and F = 0.8. The OW-MOSaDE cannot adapt the distribution of the F
parameter and invariably pushes the value of Cr down. This makes
sense for the WFG problems, but it is counterproductive for the 2-
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)
Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Figure 32: Parameter trajectories of adaptive methods for 3 objectives

objective Q problem. The JADE2 mechanism seems to be lured to-
wards small values of Cr even more. This suggests that small values
of Cr tend to produce individuals which have a relatively high prob-
ability to dominate other individuals.

The behavior of self-adaptive mechanisms is completely different.
On the 2-objective problem all self-adaptive mechanisms achieve at
least half of the possible hypervolume. This is even true for the SPDE
mechanism which does not find the area of favorable parameter com-
binations. It seems that the fact that the parameters of SPDE are gen-
erated randomly helps it generate favorable parameter combinations
often enough to converge partially. The adaptive algorithms also gen-
erate their parameters randomly, but the centers of the random dis-
tributions from which these parameters are generated are shifting in
the wrong direction.
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(a) WFG4 (S-MM) (b) WFG6 (S-UM)

(c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Figure 33: Parameter trajectories of self-adaptive methods for 3 objectives

(a) 2 objectives (b) 3 objectives (c) 4 objectives

Figure 34: Average normalized hypervolume for the Q problem



60 comparison of parameter control mechanisms

Table 7: Average normalized hypervolume for the Q problem

2 objectives 3 objectives 4 objectives

start 0.000
(0.0e+00)

0.000
(0.0e+00)

0.000
(0.0e+00)

ideal 0.999
(2.1e-05)

0.783
(6.7e-04)

0.673
(2.4e-03)

MDDE 0.128
(2.8e-01)

0.732
(1.2e-01)

0.653
(5.7e-03)

ad
ap

ti
ve JADE2 0.000

(0.0e+00)
0.175
(2.8e-01)

0.648
(5.8e-03)

OW-
MOSaDE

0.000
(0.0e+00)

0.668
(1.1e-01)

0.654
(4.3e-03)

PDCaDE 0.000
(0.0e+00)

0.000
(0.0e+00)

0.659
(8.7e-03)

se
lf

-a
da

pt
iv

e DEMOwSA 0.999
(2.1e-05)

0.783
(6.8e-04)

0.652
(5.8e-03)

jDE 0.745
(4.0e-01)

0.433
(3.7e-01)

0.651
(6.1e-03)

SAMDE 0.994
(1.5e-02)

0.778
(2.0e-03)

0.638
(7.6e-03)

SPDE 0.548
(4.6e-01)

0.640
(2.4e-01)

0.643
(6.7e-03)

Deterministic DE MDDE
Adaptive DE JADE2

(a) 2 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(b) 3 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(c) 4 objectives

Figure 35: Parameter trajectories of deterministic and adaptive methods for
the Q problem.
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(a) 2 objectives (b) 3 objectives (c) 4 objectives

Figure 36: Parameter trajectories of self-adaptive methods for the Q prob-
lem.

The relatively good performance of the deterministic MDDE algo-
rithm can be attributed to luck, since the trajectory of this algorithm
briefly crosses the region containing favorable parameter values.

5.5 conclusion

In this chapter we compared various deterministic, adaptive, and self-
adaptive mechanisms of parameter control in multi-objective differen-
tial evolution. We did this by isolating the mechanisms and applying
them to a single multi-objective algorithm. We then tested this algo-
rithm on a set of known benchmark problems as well as one new
problem. We measured the performance of these methods in terms of
hypervolume, as well as their behavior in measuring which parameters
they found.

We found out that on the usual benchmark problems even the sim-
ple mechanisms can lead to results comparable with parameter tun-
ing. On the new problem, which we proposed exactly because it can
be optimized only by a small set of parameters, the self-adaptive meth-
ods were the only ones that managed to find a satisfactory Pareto
front for all objective dimensionalities. The deterministic method also
achieved some limited success, but it is hard to determine if we can
attribute this to luck or to the underlying quality of the method. Af-
ter examining the progress of the parameters used by the adaptive
methods we found out that each algorithm evolves its parameters in
a more or less problem independent way. This effect should be exam-
ined in more detail as a part of future work.





Part III

I M P R O V I N G T H E P E R F O R M A N C E O F
M U LT I - O B J E C T I V E D E

Here we introduce some innovations which reduce the
computational cost of mutli-objective evolutionary algo-
rithms in general, but which are especially well suited for
differential evolution algorithms.





6
R E D U C I N G T H E C O M P U TAT I O N A L C O S T

6.1 introduction

As we saw in section 3.1, belonging to a specific non-dominated front
gives us a measure of relative quality of an individual with respect to
the rest of the population. Many MOEAs such as NSGA-II [12], GDE3
[38] or DEMO [47] require that non-dominated sorting is performed
at each generation to determine the individuals that survive into the
next generation. This procedure often becomes time-consuming com-
pared to the rest of the algorithm. This is especially the case with
large populations and/or high number of objectives. One can paral-
lelize the objective function evaluations for the population into avail-
able processors, however the sorting has to be performed in serial
and costs more computational time as the number of objectives grows
due to the nature of Pareto dominance. As an example we profiled a
run of a MOEA algorithm called GDE3 [38] implemented on a single
processor on a WFG9 [34] problem with 4 objectives and an initial
population size of 1000 individuals for 500 generations. We found
out that approximately 82% of computer time and 79% of computer
instructions1 were used on non-dominated sorting.

In computationally expensive problems this ratio will change. Nev-
ertheless, there are many problems that are impossible to solve with
exact methods, whose objective functions are extremely cheap to eval-
uate. For example, the objective value of a solution in the traveling
salesman problem with tens of thousands of nodes can be evaluated
on the order of milliseconds. The same goes for the vehicle routing
problem [24]. There are many instances of real world problems, where
reducing the cost of non-dominated sorting brings very significant
improvement in the entire calculation.

The first to recognize and address this problem were Deb et al. in
[12]. Their method called the fast non-dominated sorting compares each
individual with each other and caches the result of these comparisons
in order to avoid comparing the same two individuals twice.

For further improvement, several researchers have proposed dif-
ferent approaches, which are mainly categorized into the following
three.
Divide and conquer: These methods are based on an article by Kung
et al. [40]. They divide the problem with respect to both dimension
(number of objectives) and population size. The first attempt by Jensen

1 We used a computer profiler Callgrind, which runs the program on a virtual machine
and counts the instructions executed.

65
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[36] in 2003 achieved significant speedup and a reduction in com-
putational complexity, but it failed to deal with the case where two
individuals have a same value for a certain objective. Treating this
case turned out to be more difficult than it seemed. Luckily, this prob-
lem was recently solved by Fortin et al. [29] while preserving both
speed and computational complexity. These algorithms achieve as-
tonishing improvement in both theory (computational complexity) as
well as in practice (computational wall clock time). Unfortunately the
performance declines to the level of fast non-dominated sorting for a
high number of objectives. Moreover these algorithms are rather com-
plicated and static in the sense that when one individual is changed
there is no easy way to determine the non-dominated fronts of the
modified population other than to run the algorithm again.
Reducing the number of dominance comparisons: These methods try to in-
fer domination relationships using the transitivity property of Pareto
dominance. Notable recent algorithms are the climbing sort and the
deductive sort by McClymont and Keedwell [42]. These algorithms
achieve very significant speedup, but they are specifically designed
for populations where the domination relationship between individ-
uals is relatively common. Unfortunately this assumption does not hold
for problems with a large number of objectives. The fewer domination
relationships there are, the fewer such relationships can be inferred
and the performance suffers. Even so, these methods constitute a sig-
nificant innovation since they are dynamic in the sense that when one
individual changes, the information about the non-dominated fronts
can be efficiently updated.
Archiving the non-dominated individuals: The problem these methods
try to solve is different from the original non-dominated sorting. Schütze
[52] calls this problem the dynamic non-dominance problem. Instead of
starting from scratch and computing the non-dominated fronts for a
certain population, these methods concentrate on keeping and updat-
ing a single non-dominated front. These methods are of course dy-
namic as in the previous paragraph. Notable research has been done
by Fieldsend et al. [26] and by Schütze [52]. Both studies propose orig-
inal data structures to hold and maintain the set of non-dominated
individuals. Although the speedup achieved by these methods over
the brute force method is significant, it is not competitive with the
divide and conquer methods.

In this chapter we propose a new method to reduce the cost of non-
dominated sorting. This method is closely linked with the dynamic
non-dominance problem.

The main idea is to compute which individuals are non-dominated
at the beginning of the MOEA and then update this knowledge each time
an individual changes. This way the non-dominated individuals are
known at all times. Thus we do not need to call non-dominated sort-
ing to compute the first front. In the case there is more than one front
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to compute then we apply non-dominated sorting just on the sub-
set of dominated individuals. When the number of objectives grows,
there are fewer and fewer dominated individuals which reduces the
need to call non-dominated sorting. Therefore our method thrives on
problems in which the number of non-dominated solutions is large.

We keep track of the non-dominated individuals by storing them
in a special data structure which we call an archive. We update this
archive whenever an individual in the population changes. The com-
putational cost of updating the archive is critical, therefore a major
part of our work is dedicated to an efficient implementation of a fast
archive which we call an M-front.

The M-front keeps track of all the non-dominated individuals in
the population. This means that when a new individual is generated,
the M-front needs to determine if this individual is dominated by any
individual from the M-front and if it is not, to determine which indi-
viduals are dominated by the new individual. The M-front uses the
geometric and algebraic properties of the Pareto dominance relation
to reduce the number of individuals which need to be compared. It
converts the orthogonal range queries related to Pareto dominance to
interval queries. In order to answer these interval queries efficiently,
the M-front keeps all its individuals sorted in linked lists. There is one
linked list for each objective and this list keeps all the individuals
sorted with respect to that objective. In order to convert an orthog-
onal range query into interval queries, an auxiliary individual needs
to be chosen from the M-front. The role of this individual is just to
perform the conversion. We found out that the closer this auxiliary
individual is to the new individual, the smaller are the resulting in-
terval queries and the faster is the computation. In order to find an
auxiliary individual which is as close as possible to the new individual,
the M-front keeps an internal K-d tree data structure to perform ap-
proximate nearest neighbor search. In case of DE, the entire K-d tree
mechanism can be avoided, since the trial individual, which is newly
generated is close either to the target individual or to some other in-
dividual, depending on the particular DE strategy being used [18].
The M-front can be also used as a stand-alone archive for algorithms
which use unbounded archives such as [30] or [26].

Experiments confirm that our method can outperform the state
of the art Jensen-Fortin’s divide and conquer algorithm up to cer-
tain population sizes. The performance of our method scales well,
especially for a large number of objectives. Since our approach is dy-
namic in nature, the non-dominated individuals are known at all times
which is a significant advantage over the state of the art method.

There are algorithms which use more precise methods, such as the
hypervolume [65], to estimate the quality of individuals in the popu-
lation. These algorithms can yield better solutions than algorithms
which use less precise mechanisms [56]. However, the main problem
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with such algorithms is that the hypervolume is extremely costly to
compute for big populations and large numbers of objectives [59].
In addition, even if the hypervolume could be computed fast, there
would still be the need to determine the non-dominated individuals
because the hypervolume is computed from them.

This chapter is based on a significant revision and extension of our
previous work [18], in which we were restricted to differential evolu-
tion [45] algorithms. Later we generalized our method to any multi-
objective evolutionary algorithm (MOEA) which uses non-dominated
sorting [19]. In addition, as we mentioned before, now our approach
can be applied to handle archives of MOEAs. We have also improved
the implementation of our method. In our original work we use skip
lists to keep the individuals sorted by each objective. Now we use
simple linked lists and a hash-table to retrieve the positions of individ-
uals in the linked lists. This results in faster insertions and removals,
smaller memory usage and simpler implementation. The K-d tree is a
data structure which gets unbalanced after many insertions and dele-
tions. In our previous work we mitigated this problem by rebuilding
the K-d tree from scratch after a fixed number of insertions and dele-
tions. Now we propose a new, more frugal mechanism which detects
if the K-d tree is unbalanced. We also now include a comparison with
the state of the art Jensen-Fortin’s algorithm on both practical and
conceptual level. Lastly, we added a theoretical section which derives
the average case expected computational complexity on a random
model.

The organization of this chapter is as follows: first, we introduce a
general framework of our approach. This framework introduces the
concept of an archive and explains its usage in detail, while the con-
crete implementation of one such archive is described in the subse-
quent section. Next, the computational complexity of the proposed
approach is theoretically explored. In the subsequent section we pro-
vide a conceptual comparison with Jensen-Fortin’s algorithm while
the experimental comparison is shown in the final section. The exper-
imental section also contains a comparison with fast non-dominated
sorting.

6.2 proposed method

For the purposes of this chapter we re-define the notion of an indi-
vidual so that we may formulate our ideas more clearly.

We define an individual to be a pair (id,X) where id ∈N is a unique
identifier and X ∈ Rn is a decision vector. This way we can distinguish
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between several individuals with the same value in the decision space.
2

To avoid confusion when using subscripts and to simplify notation
we use the following convention: when we have an individual a =

(ida,Xa) then instead of writing fi (Xa) to denote the value of i-th
objective for individual a, we simply write fi (a). Similarly, instead
of F (Xa) we simply write F (a) to denote the objective vector of a.

6.2.1 Applicability

Our method requires some modifications to the usual computational
flow of the MOEA. To illustrate this, we restrict ourselves to an evo-
lutionary algorithm following the scheme in Algorithm 5. We demon-
strate our method on this generic version of a MOEA. Popular al-
gorithms such as NSGA-II [12] or GDE3 [38] mentioned earlier both
follow this scheme.

Algorithm 5: MOEA that can use our method
Input: Initial population size N

Output: Approximation of the Pareto front by a population P

1 initialize population P = {a1, ...,aN}

2 while arbitrary stopping condition not satisfied do Evolutionary
loop

3 while arbitrary stopping condition not satisfied do

Generating phase
4 generate new individual a ′

5 insert a ′ into P

6 remove arbitrary dominated a ∈ P if needed
7 end

8 non-dominated sorting
9 remove worst non-dominated fronts

10 trim P back to size N using a secondary criterion
11 end

12 report P

The algorithm has a generating phase on lines 3 to 7 and a survival
selection phase on lines 8 to 10. In order for an algorithm to benefit
from our method we need to modify both phases. We get an equivalent
algorithm described in Algorithm 6.

The individual-by-individual steady-state generation and insertion
of individuals, which is specific to DE, may be confusing, but indeed
also algorithms which generate their individuals in large chunks,
such as the NSGA-II, can be rearranged to conform to Algorithm 5.
The mechanism which generates a new individual on line 4 is com-
pletely arbitrary. Therefore for NSGA-II the step on line 4 can be just

2 In our implementation the id is simply a C++ pointer to the vector X in memory. In
order for the id to remain valid, the individuals do not change their addresses in the
memory once they are created.
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taking the new individual from the offspring population. NSGA-II
does not remove individuals in the generating phase, but some algo-
rithms such as GDE3 do. Therefore we allow for such removals on
line 6.

Note that in the generating phase we can remove only individuals
which are dominated. This is a limitation of our approach. Later we
shall explain why we need this limitation.

6.2.2 Overnondomination

It is a well known fact that there is a tendency for a large proportion
of the population to become non-dominated when the number of objec-
tives increases. This may also happen for 2 and 3 objective problems,
especially in the later stage of the search, depending on the problem
[3]. We call this phenomenon overnondomination.

Overnondomination is usually a bad thing. It causes some MOEAs
to stagnate and even recede from the Pareto front. As we mentioned
in the introduction it also causes problems for novel non-dominated
sorting methods that try to infer domination relationships, such as
the deductive sort.

In this work on the other hand, we use overnondomination to our
advantage. We use it to bridge the dynamic non-dominance problem
to the non-dominated sorting problem.

6.2.3 Using an archive to avoid non-dominated sorting

In the following we use the term archive to mean a data structure
which holds a set of mutually non-dominated individuals. Later we pro-
vide an exact implementation of an archive which we call the M-front,
but all results in this section are applicable to any archive.

Algorithm 5 uses non-dominated sorting to determine which indi-
viduals get discarded after the end of the generating phase. What we
need to realize is that the algorithm does not need to know all the fronts.
It only needs enough fronts so that they contain at least N individuals.

If the population suffers from overnondomination such as in the
right side of Figure 37, there is a good chance that the algorithm only
needs to know the first non-dominated front i.e. the non-dominated part
of the population.

Our method is to keep track of the non-dominated part of the popu-
lation at all times. We do this by keeping it in an archive A. We update
the archive with each single change to the population so that it con-
tains only non-dominated individuals. We can see this in lines 5 to 10
of Algorithm 6.

If we know into which front an individual a belongs, we say that
a has a determined front. All the individuals in the archive have deter-
mined fronts, since they belong to the first front.
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We can now see the explanation of our limitation of removing only
dominated individuals in the generation phase of Algorithm 5. If we
would remove a non-dominated individual a from the archive A,
there is a possibility that some individual a ′ ∈ P \A (in P but not
in A) which was dominated by a might become no longer dominated
and we would need to insert it into A to keep the integrity of the
archive. Then we would need a mechanism to detect such individu-
als a ′ efficiently. In this work however, we limit ourselves to the case
where non-dominated individuals cannot be removed from the pop-
ulation if there are some dominated individuals. If P \ A is empty,
then we are free to remove even non-dominated individuals without
breaking the integrity of the archive.

Algorithm 6: Generic MOEA using our method
Input: Initial population size N

Output: Approximation of the Pareto front by a population P

1 initialize population P = {a1, ...,aN}

2 determine non-dominated individuals in P

3 construct archive A from the non-dominated individuals
4 while arbitrary stopping criterion not satisfied do Evolutionary

loop
5 while arbitrary stopping criterion not satisfied do Generating

phase
6 generate new individual a ′

7 insert a ′ into A and P

8 remove dominated individuals from A

9 remove arbitrary a ∈ P \A if needed
10 end

11 if A contains more than N individuals then

12 remove all individuals not in A from P

13 trim A and P to size N using a secondary criterion
14 else

15 while # individuals with determined front < N do

16 determine next non-dominated front
17 end

18 remove individuals with undetermined fronts
19 trim P back to size N using a secondary criterion
20 end

21 end

22 report P

When it comes to discarding the worst non-dominated fronts at the
end of the evolutionary loop of Algorithm 6, we have a good chance
that we do not need to perform any non-dominated sorting at all (line 11).
We just discard all the individuals which are not in the archive.

If the archive contains fewer than N individuals (line 14), we need
to determine additional fronts. We do this using the simple method
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Figure 37: Survival selection based on non-dominated sorting.

described in Algorithm 7. We initialize an empty set S to hold can-
didates for non-dominated individuals (line 1). For each individual
ai in the population of size k we determine whether the individual is
dominated by an individual from S (lines 3 to 9). If it is not dominated
(line 10) we add this individual to S and check which individuals in S

it dominates. These individuals are then removed from S (line 14). We
run this procedure repeatedly until enough individuals have their
front determined.

Even if the archive does not contain more individuals than we
need for the next generation (at least N) our task is greatly reduced
since we need to compute the additional non-dominated fronts from
a smaller set P \A.

The computational complexity of our approach depends on how
fast we can perform insertions and removals from the archive. In the
following section we shall provide a fast archive whose usage can
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result in average case complexity of O(M2N2− 1
M−1 ) which we prove

in Section IV.
Algorithm 7: Determine non-dominated individuals

Input: Population P = {a1, . . . ,ak}

Output: S - set of non-dominated individuals S ⊆ P

1 S← ∅

2 for i := 1 to : k do

3 bool ai_non_dominated← true
4 forall the a ∈ S do

5 if a ≺ ai then

6 ai_non_dominated← false
7 break
8 end

9 end

10 if ai_non_dominated then

11 insert ai into S

12 forall the a ∈ S do

13 if ai ≺ a then

14 remove a from S

15 end

16 end

17 end

18 end

19 report S as the non-dominated front

6.3 implementation of the archive

6.3.1 Characterization

In the previous section we argued that the problem of reducing the
cost of non-dominated sorting can be approached if we had a suffi-
ciently fast data-structure that manages a mutually non-dominated
part of the population. Here we describe such a data structure, which
we call an M-front. In the following sections, we gradually build up
the main ideas behind the M-front.

The M-front data structure is a container which holds a set (in the
mathematical sense) of individuals. It has the important invariance
property that all individuals it contains are mutually non-dominated. This
means that if we insert a new individual into the data structure, we
need to determine and remove all individuals which have become dom-
inated. Next we shall explain how to do this efficiently.
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6.3.2 Geometric motivation

We illustrate our ideas on a two-dimensional (2 objectives) example.
The circles in Figure 38 represent individuals in an archive of mutu-
ally non-dominated individuals. We insert an individual new into the

new new

new

Figure 38: Insertion into a 2-dimensional archive.

archive A. In order to preserve the invariant of A we need to find out:

1. if new dominates any individuals in A

2. if new is dominated by any individuals in A

Note that a positive answer to one of these questions implies a neg-
ative answer to the other, but there is a case when both answers are
negative.

In the geometrical sense, we need to find out which individuals are
in the areas dominated by or dominating new. These areas are rectan-
gles aligned with the axes. The task of finding all the vectors which
lie in such a rectangle is called an orthogonal range query. This is a
well researched subject in the area of computational geometry and
many clever techniques were developed to perform this task effi-
ciently. Some are described in [10].

However the specific nature of our problem allows us to use a dif-
ferent approach. As we shall see in the following section, we can trans-
form the orthogonal range query into an interval query, which is simpler.
This is thanks to the specific shape of the orthogonal queries which
come from the domination computation.

6.3.3 Transformation of orthogonal queries

First we select an arbitrary individual in the archive. We call this in-
dividual the reference individual and mark it with the symbol ref.
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Next we compare the ref and new for dominance. There are three
possible outcomes:

1. ref dominates new

2. new dominates ref

3. ref and new are mutually non-dominated

The first case is simple. We simply abort inserting new.
Let us look at the second case which is illustrated in Figure 39. We

already know that new belongs into the archive since it cannot be
dominated by any other individual. We still need to determine all the
individuals which are dominated by new.

new

ref
new

ref

new

ref

new
ref

Figure 39: Transformation of an orthogonal query into interval queries
(case where new dominates ref).

We see that the area dominated by ref does not contain any individu-
als from the archive, since this would violate the invariance. Therefore
we can subtract this area from the area dominated by new and we get
two intervals which contain all the individuals which are dominated
by new.
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If an individual a is dominated by new then:

f1 (a) ∈ [f1 (new) ; f1 (ref)]

or f2 (a) ∈ [f2 (new) ; f2 (ref)]

The 2-dimensional case where new dominates ref is misleadingly
simple. We see that the individuals which lie in at least one of the
intervals are exactly the ones that are dominated by the new. In more
than 2 dimensions the individuals which lie in at least one of the
intervals form a superset of the individuals dominated by new and
therefore we need to compare all of them for dominance.

Let us move to the last case. The ref and new are mutually non-
dominated. Here we need to find out both if new itself is dominated
and if it is not, which individuals new dominates. We do this by con-
structing the areas which are dominating and dominated by new,
choosing a ref, constructing these areas for ref and subtracting them
from the areas for new. This process is illustrated in Figure 40.

new

ref

new

ref

ref

new

new

ref

new

new

Figure 40: Transformation of an orthogonal query into interval queries
(case where new and ref are mutually non-dominated).
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Instead of searching the orthogonal areas which are left by this
subtraction, we search the intervals marked by letters U and L in
Figure 40. More formally:

If an individual a dominates new then:

f1 (a) ∈ [f1 (ref) ; f1 (new)] =: U

and if it is dominated by new then:

f2 (a) ∈ [f2 (new) ; f2 (ref)] =: L.

We can see that there are individuals which belong to these inter-
vals, but neither dominate nor are dominated by new. Therefore we
need to compare all of them for dominance with new. In the future we
hope to find a way how to avoid having to do this. Next, we formalize
our findings in a more rigorous manner.

6.3.4 Reference sets

In the previous section we described a method to transform the areas
that need to be searched when we insert a new individual into the
archive. Here we formalize our ideas. First we define the area that
needs to be searched.

Definition 1 (Reference areas and reference sets). Let A = {a1, ...,aN}

be a set of mutually non-dominated individuals. Let new be an individual
which does not belong to A and let ref be an arbitrary individual from A.

The upper reference area for individual new induced by individual ref
is the set RAU (new, ref) ⊆ RM given by:

RAU(new, ref) :=
⋃

i such that
fi(ref)<fi(new)

{
Y ∈ RM | yi ∈ [fi(ref); fi(new)]

}
. (8)

We call the set of all individuals in A whose objective vector lies in
RAU(new, ref) the upper reference set of individual new induced by indi-
vidual ref. We shall denote it by:

RSU(new, ref) := {a ∈ A | F(a) ∈ RAU(new, ref)}. (9)

Conversely, the lower reference area for individual new induced by indi-
vidual ref is the set RAL (new, ref) ⊆ RM given by:

RAL(new, ref) :=
⋃

i such that
fi(new)<fi(ref)

{
Y ∈ RM | yi ∈ [fi(new); fi(ref)]

}
. (10)

Analogously we have the lower reference set:

RSL(new, ref) := {a ∈ A | F(a) ∈ RAL(new, ref)}. (11)
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new

ref

Figure 41: Reference areas induced by different choices of reference indi-

vidual.

This definition is slightly more strict than in our previous work [18].
We can see an illustration of both upper and lower reference areas for
several different choices of reference individual in Figure 41.

The following theorem says that when we are inserting a new in-
dividual into the archive, we need to compare it only to individuals
from the upper and lower reference set.

Theorem 1 (Properties of reference sets). Let A = {a1, ...,aN} be a set of
mutually non-dominated individuals. Let new be an individual which does
not belong to A and let ref be an arbitrary individual from A.

Then:

1. if new dominates some a ∈ A then

a ∈ RSL(new, ref),

2. if some a ∈ A dominates new then

a ∈ RSU(new, ref).
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We shall prove only the first statement. The proof of the second
statement is analogical.

Proof. We assume that new dominates some a. The situation is illus-
trated in Figure 42.

First we establish that F(new) �= F(ref). If F(new) = F(ref) were true,
this would imply that ref dominates a, which is in conflict with the
assumption that all individuals in A are mutually non-dominated.

Now let us handle the trivial case where F(a) = F(ref). Since new

dominates a, there must exist an objective fi such that fi(new) <

fi(a) = fi(ref). Therefore the union on the right side of (10) is not
empty and contains F(a).

Now we establish that there exists an objective fi such that:

fi(a) < fi(ref) (12)

If the opposite were true, then either F(a) = F(ref) would hold, or
ref would dominate a. We already handled the first case and the
second is in conflict with the assumption of the theorem.

Since new dominates a, we have:

fi(new) � fi(a). (13)

By combining (12) and (13) we get:

fi(new) < fi(ref) and fi(a) ∈ [fi(new); fi(ref)],

which means that a belongs to the lower reference set.

new

ref

Figure 42: Illustration of the proof of Theorem 1. f1, . . . , f5 are the axes of
individual objective functions.
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6.3.5 M-list

6.3.5.1 Data structure

Now we describe how to construct the reference sets for a given pair
(new, ref) efficiently.

To construct a reference set, we need to find all the individuals
whose objective values lie in certain intervals. If we want to determine
all the items whose attribute lies in a certain interval, it is helpful to
have that data sorted by that attribute. We need to search according to
all objectives, therefore we keep the population sorted by each objective.
We keep a sorted doubly linked list for each objective. An illustration of
these lists is shown in Figure 43. The upper and lower reference sets
can be constructed simply by iterating between the positions of ref
and new.

ref

new

Figure 43: Constructing reference sets using linked lists.

However, the lists do not support random access. There is also no
mechanism for fast insertion in logarithmic time such as with RB
trees or skip-lists. This is again a slight modification to our previous
work [18] where we used skip-lists. In order to remove or insert an
individual into these lists while maintaining the ordering we use an
alternative mechanism. We maintain a hash-table that maps the id’s of
the individuals in the archive to an object which holds the positions of that
individual in each list. 3 We call the resulting data structure consisting
of M linked lists and a hash-table an M-list.

6.3.5.2 Insertions and removals

The M-list supports these two fundamental operations:

3 We implemented this in C++ using a std::unordered_map mapping Individual*
pointers to an object that held M iterators of type std::list::iterator, one for
each list.



6.3 implementation of the archive 81

• remove(a) removes an arbitrary individual

• insert(new, ref) inserts a new individual using a reference
individual

Removal of an arbitrary individual is simple. We just:

1. Retrieve the positions of a from the hash-table

2. Remove the entry for a from the hash-table

3. Remove the entry for a from each list

In the average case retrieval and removal from the hash-table is an
O(1) operation. Removal from a linked list is also an O(1) operation.
Since we have M lists, removal is a O(M) operation.

On the other hand, the insert procedure is significantly more com-
plex. This procedure is illustrated in Figure 44 and described in Algo-
rithm 8. The key idea is the combination of the creation of reference
sets with finding the correct position for the new in each list.

In the description of the algorithm we use the programming con-
cept of an iterator. An iterator marks the position of an element in a
data structure. If it is an iterator, then by *it we denote the item
at that position. In our example iterator it marks the position of a
certain individual in a linked list and *it is the individual itself. We
establish the convention that the linked lists in the M-list are sorted
in an ascending order.

ref

new

Refid

ref

Figure 44: Insertion into the M-list.

The insertion is illustrated in Figure 44 and described in Algorithm 8
which has a helper procedure described in Algorithm 9. When we in-
sert a new individual into the M-list, we first check if it is dominated
by the reference individual (Algorithm 8 line 2). If this is the case, we
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know immediately that the new individual cannot be inserted into
the archive and abort the insertion. If new dominates ref (line 7) we
know that new is not dominated by any individual in the M-list. We
store this information for future optimization (line 8).

If new is not dominated by ref, we proceed with constructing the
reference sets. We initialize the upper and lower reference sets,

RSU(new, ref) and RSL(new, ref),

as empty. Then for each list we must determine the correct position
for new. This is accomplished by Algorithm 9.

We initialize an iterator to the position of ref in the current list. If
the value of the current objective fi is the same for new and ref, we
know that objective is not relevant for creation of the reference sets.
We also know that the position of ref is also the correct position of
new. In this case we just insert new to a neighboring position to ref

and move to the next objective (line 4).
If fi(new) < fi(ref), we know that fi is relevant for the creation of

the lower reference set. There may be more than one individual a with
f(a) = fi(ref) in the list, so we increment4 the iterator to the last po-
sition where this holds since we want to capture all individuals from
the interval [fi(new); fi(ref)]. We then start to decrement the iterator,
which moves it toward the place where fi(new) belongs in the list. Si-
multaneously we are creating the proper reference set (line 9). After
each decrement, we check if fi(*it) � fi(new), which is equivalent to
the lower reference set requirement: fi(*it) ∈ [fi(new); fi(ref)]. If this
condition holds, we insert the individual at position it into the lower
reference set. Once the condition fails, we know that we have found
the right place to insert new. We insert new and move to the next list
(line 12).

If fi(new) > fi(ref) the situation is symmetrical. We perform the
exact opposite of all operations from the previous case while con-
structing the upper reference set.

Once the insertion of new into the lists and the construction of the
reference sets is complete we create a position object holding the po-
sition of new in each list. We insert this object into the hash-table (line
15) so that we can retrieve new from the lists in constant time.

Then we check if new dominates some individuals in the M-list
by comparing new to each individual in the lower reference set. If
we find such an individual, we remove it from the M-list immedi-
ately (removal from M-list is fast as mentioned above) and set the
new_non_dominated flag. If there is an individual that is dominated
by new, that means that new is not dominated by any individual in the
entire M-list and we can skip the following step.

4 In Figure 44 incrementing may be seen as a downward movement by one box.
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Algorithm 8: M-list::insert(ref, new)
Input: ref, new
Output: R - set of removed individuals from the M-list

1 R← ∅

2 if ref dominates new then

3 insert new into R

4 return R

5 end

6 bool new_non_dominated← false
7 if new dominates ref then

8 new_non_dominated← true
9 end

10 RSU(new, ref)← ∅

11 RSL(new, ref)← ∅

12 retrieve the position object of ref from H

13 position object of new =
14 M-list::insert_to_lists(new, position object of ref)
15 insert position object of new into H

16 forall the a ∈ RSL(new, ref) do

17 if new dominates a then

18 remove a from the archive
19 insert a into R

20 new_non_dominated← true
21 end

22 end

23 if new_non_dominated then

24 return R

25 end

26 forall the a ∈ RSU(new, ref) do

27 if a dominates new then

28 remove new from the archive
29 insert new into R

30 return R

31 end

32 end

33 return R
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Algorithm 9: M-list::insert_to_lists(new, Position object of ref)
Input: new, Position object of ref
Output: Position object of new

1 for i := 1 to : M do

2 initialize iterator it to the position of ref in listi
3 if fi(new) = fi(ref) then

4 insert new before or after it
5 add position to the position object
6 if fi(new) < fi(ref) then

7 increment it to the last position where
fi(*it) = fi(ref)

8 while fi(*it) � fi(new) do

9 insert *it into RSL(new, ref)
10 decrement it
11 end

12 insert new right after it
13 add position to the position object
14 if fi(new) > fi(ref) then

15 decrement it to the last position where
fi(*it) = fi(ref)

16 while fi(*it) � fi(new) do

17 insert *it into RSU(new, ref)
18 increment it
19 end

20 insert new right before it
21 add position to the position object
22 end

23 end

24 return position object of ref

Last of all we check if new is dominated by some individual in the
archive. We do this by comparing new to each individual in the upper
reference set.

6.3.5.3 Important programming details

We conclude this subsection with an important tip to implement an
efficient M-list.

In the previous section we did not explain how to implement the
data structures symbolizing the reference sets. At first sight this does
not look like a significant problem. The most obvious solution is to
use a container that represents a mathematical set. For example the
std::set or std::unordered_set data structure from the C++ stan-
dard library. In general, a container that is implemented either as a
sorted list or as a hash-table. This would assure that
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• We can perform insertions quickly

• We know if the item being inserted already is in the set

Using a computer program profiler5 we found out that the opera-
tions involving insertions and traversal of reference sets are critical to
the performance of the entire algorithm.

Armed with this knowledge we tried to implement the reference
sets using several alternatives. We tried to use programming classes
which model the mathematical concept of a set using either a hash-
table or a red-black tree internally.6 We also tried our own implementa-
tion of hash-table with size growing according to powers of two and
linear probing collision resolution.

Lastly we tried to implement the set as a simple array based stack,
while relaxing the unique entry property of a mathematical set. If
we insert a particular individual more than once, it will be in the set
more than once. This may happen if an individual is between the new

and ref in more than one list in the M-list.
Surprisingly, the stack implementation outperformed all other im-

plementations in almost all instances. The additional cost of having
to compare some individuals for dominance more than once was out-
weighed by the speed of the stack data structure. Consequently, we
perform all our experiments using the stack data structure.

6.3.6 K-d trees

6.3.6.1 Nearest neighbor problem

In this section we turn ourselves to the question of selecting a reference
individual. We understand intuitively that if the reference individual
is close to the new individual, the reference set induced will be small
and we will not have much work comparing the new individual to
all individuals in it. In our previous work [18] we provide experi-
mental justification for this. Therefore we try to choose the reference
individual as close as possible to the newly inserted individual.

Formally, we define this problem of finding a close reference indi-
vidual as follows. Given an M-list ML, a metric d and an individual
being inserted new /∈ML we hope to find ref satisfying:

ref ∈ML such that ∀a ∈ML : d(ref, new) � d(a, new)

For example, if the metric is the L1-distance in the objective space,
i.e., d(x,y) :=

∑M
i=1|fi(x) − fi(y)|, this measures the sum of widths of

the reference areas in each objective, as illustrated in Fig. 39. Then, a

5 Callgrind.
6 We tried the std::set and std::unordered_set containers from the gcc 4.8.1 imple-

mentation of the C++ Standard Library. The std::set is implemented as a red-black
tree and std::unordered_set is implemented as a hash-table with a prime size and
separate chaining collision resolution.
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reference point close to new w.r.t. this metric tends to provide a small
reference set. This task is a well studied problem with name nearest
neighbor search.

Importantly, our objective here is not to find out the nearest individ-
ual in a strict manner, but a relatively close reference point. Especially,
we do not want to spend much more time to find out the exact solu-
tion than to perform the operations described in the previous section.
Therefore, an approximation approach to the nearest neighbor search
is a good candidate for our purpose.

We employ the K-d tree approach [10] to perform an approximate
nearest neighbor search. K-d tree is a hierarchical data structure which
supports fast nearest neighbor and approximate nearest neighbor queries.
The K-d tree structure has been reported to have a good performance
when the dimension of the problem is small. Dimensions until about 8 are
considered very small in the nearest neighbor community, whereas
the MOEA community considers problems with more than 4 objec-
tives as many-objective. Therefore, we maintain a K-d tree along the
M-list.

We will not describe the general mechanism of the K-d tree since
there are many publications that provide an excellent description (see
e.g. [50]). We describe only the details of the particular K-d tree im-
plementation that we tested ourselves and to which our experimental
results apply.

6.3.6.2 Implementation details

With each insertion to the M-list we need to perform an insertion into
the K-d tree and the same goes for removals. Because we need to use
the K-d tree in such a dynamic manner, we use a slightly modified
version. We keep the data only in the leaves of the tree. This results in
somewhat simpler removals and insertions into the tree.

The approximate nearest neighbor procedure proceeds exactly as
the standard exact nearest neighbor procedure, but allows for only
4 evaluations of metric d. Once these 4 evaluations have been spent,
the procedure returns the closest individual found so far. We chose 4
evaluations ad hoc, since it seemed to perform well in many problem
instances.

6.3.6.3 Re-balancing the K-d tree

The major problem with using K-d trees is that it is primarily a static
data structure. That is, it is not well suited for the dynamic character
of the multi-objective optimization. When many insertions and dele-
tions are performed, the tree tends to become unbalanced. To our best
knowledge there is no efficient method to detect the fact that the tree
is unbalanced and to perform the re-balancing. Therefore we devel-
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oped a heuristic to determine if the tree is out of balance and if it is,
we simply destroy it and construct it again.

Our mechanism to detect the loss of balance of a K-d tree is as
follows. At the beginning of the algorithm, we compute the bounding
hyper-box of the population in the M-list (illustrated in Figure 45)
and denote it by Hold. During optimization, we periodically compute
the bounding hyper-box Hnew of the population which is currently in
the M-list. Then we compute the ratio of the volume of the intersection
of these boxes to their union:

α :=
vol(Hnew ∩Hold)

vol(Hnew ∪Hold)
. (14)

A value of α from (14) near 1 means that the boxes are almost identi-
cal, while a value close to 0 means that they are quite different. This
can happen either by the box Hnew becoming too small, too big, or
moving away from Hold. If the value drops bellow a predefined level
(we have chosen 0.5 ad hoc), we rebuild the tree from scratch and
replace Hold by Hnew.

Figure 45: Computing α in (14).

A nice feature of the α indicator in (14) is that α ∈ [0; 1] and that it
is invariant to the scaling of the axes.

6.3.7 M-front

There is another reason why we chose the K-d tree in particular. As
[10, p.101] suggests, the construction of the K-d tree can get expensive
because of the need to compute the medians at each node to split the
data uniformly. On the same page, the author suggests pre-sorting
the data with respect to each dimension, in order to avoid the costly
computation of the medians. The M-list is a data structure where the
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data already is sorted with respect to each dimension, which reduces
the computational cost even further. To express this affinity of the
M-list and K-d tree, we call the combined structure the M-front.

An insertion into the M-front is described in Algorithm 10. When
we insert new into the M-front, a reference individual is chosen as
the approximate nearest neighbor to new (line 1). new is next inserted
into both parts of the M-front, i.e. the M-list and the K-d tree. The
individuals that are removed from M-list (they may contain also new)
must be also removed from the K-d tree (line 5).

Algorithm 10: Insertion into the M-front
Input: M-front internals: K-d tree K, M-list ML, new
Output: R - set of removed individuals from the M-front

1 ref← retrieve approximate nearest neighbor to new using K

2 insert new into K

3 R← insert(ref, new) into ML
4 forall the a ∈ R do

5 remove a from K

6 end

7 return R

We can also remove arbitrary individuals from the M-front by re-
moving them from the M-list and from the K-d tree. This is partic-
ularly useful when we want to prune the set of non-dominated in-
dividuals. Here one can take advantage of the M-front internals. For
example, one method to prune non-dominated individuals is the par-
titioned quasi-random selection (PQRS) [26]. The computational cost of
this procedure is decreased if the population is sorted with respect to
each objective. Hence the M-list can be used to decrease the cost of
PQRS. Similarly, one can take advantage of the K-d tree, which is a
data structure suitable for efficient nearest neighbor computation, to
reduce the computational cost of pruning procedures which perform
these computations, such as the M nearest neighbors pruning [37].

Source code for all mentioned data structures can be found in [15].

6.4 computational complexity

In this section we theoretically explore the computational complex-
ity, i.e. the number of required operations, especially floating point
number comparisons, in our algorithm. Since the core of our method
is the insertion into the M-front, we investigate the computational
complexity of one such insertion.

6.4.1 Best and worst case complexity of our method

The M-front is composed of two data structures, namely the M-list
and the K-d tree. Each insertion starts with the retrieval of the refer-
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ence individual from the K-d tree. If the K-d tree containing N items
is balanced, then approximate nearest neighbor queries can be per-
formed in O(ln(N)) time. Therefore if we restrict our usage of the K-d
tree to computing just the approximate nearest neighbors, the cost of
retrieving the reference individual is O(ln(N)). After the reference in-
dividual is retrieved, it is compared to the newly inserted individual
for dominance. If the reference individual dominates the newly in-
serted individual, the insertion is aborted, leaving the computational
cost at O(ln(N)). If the reference individual does not dominate the
new individual, its position object is retrieved from the hash-table in
the M-list. This operation is O(1) in the average case and O(N) in the
worst case.

Afterwards, the reference sets are constructed while inserting the
new individual into the linked lists of the M-list. There is a non neg-
ligible chance that the upper and lower reference sets are empty or
contain only the reference individual itself. In this case there are no
more operations needed. This is especially likely if there is a refer-
ence individual which is particularly closer to the new individual
than the other individuals in the M-front. We can see an illustration
of a sequence of 5 best case insertions in Figure 46. Each time the

Figure 46: Sequence of insertions with empty reference sets.

new individual is paired with its reference individual in the archive.
All insertions yield empty upper and lower reference sets. Intuitively
we see that the probability of such a sequence is not infinitesimally
small, but it may actually happen. Especially if the underlying MOEA
is evolving the population by perturbing one individual at a time. The
individual being perturbed may serve as a reference individual, sav-
ing thus the cost of the K-d tree.

In the worst case, the reference sets contain all the individuals in
the archive. In this case there are N domination comparisons needed,
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i.e. O(MN) floating point number comparisons, and the complexity
is the same as the brute force comparison.

An insertion could cause the K-d tree to be considered unbalanced.
In that case it needs to be rebuilt. The cost of rebuilding a K-d tree
is O(MN ln(N)) [10]. However if the tree is checked for imbalance
periodically each T insertions and if T � N then there is at most
1 rebuilding of the tree for N insertions. Then the average cost for
one insertion is O(M ln(N)) which does not change the worst case
complexity.

6.4.2 Average case complexity of our method

We model the average case complexity of our method using the con-
cept of random variables from probability theory. Similarly as when
establishing the best case complexity, we estimate the computational
complexity of inserting a single individual into an M-front archive.
We model the population using random vectors. Therefore the com-
plexity that we estimate is itself a random variable. We estimate its
expected value and asymptotic properties.

We try to use familiar naming conventions but from now on, we
deal with random individuals.

Definition 2 (Random individual). A random individual a is the or-
dered pair (ida, Ya) where:

1. ida ∈N is the identifier,

2. Ya = (ya,1, . . . ,ya,M) ∈ RM is a random vector.

The vector Ya is supposed to model the objective vector. In this sec-
tion we are not interested in the decision vectors at all. We are just
trying to model a snapshot of the population in a MOEA.

The most important property of an M-front is that all the individ-
uals within are mutually non-dominated. We model the population of
the M-front using the following definition:

Definition 3 (Random front). Let RF = {a1, . . . ,an} be a set of random
individuals. If the probability that there are individuals ai,aj ∈ RF such
that ai dominates aj is zero, then we call RF a random front.

We shall estimate the computational complexity of inserting an in-
dividual into an M-front whose population is a certain specific type
of a random front.

Definition 4 (Uniform front). Let Pf : RM−1 → R be a function that is
strictly decreasing with respect to each variable.

Let RFPf = {a1, . . . ,an} be a set of random individuals whose objective
vectors are independent identically distributed (i.i.d.) random vectors with
the following distribution: Each vector’s first M − 1 components are i.i.d.
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uniform random variables on [0; 1]. The last component is the value of func-
tion Pf of the first M− 1 components

Y = (y1, . . . ,yM−1, Pf (y1, . . . ,yM−1)) .

We call RFPf a uniform front with shape Pf .

The mutual non-domination of individuals is guaranteed thanks
to the decreasing nature of the shape function Pf , as is formally de-
scribed in the following theorem.

Theorem 2 (Correctness of uniform front). A uniform front is indeed a
random front in the sense of Definition 3.

The proof can be found in the Appendix A.
The uniform random front models the individuals in an M-front.

Let us now investigate the computational cost of an insertion into
such an M-front. As we explained earlier, this cost is proportional to
the number of individuals in the reference sets. Therefore we estimate
the expected cardinality of the reference sets. In order to keep things as
simple as possible, we shall assume that the inserted individual is in
the center of the uniform random front. That is:

Ynew = (0.5, . . . , 0.5, Pf (0.5, . . . , 0.5)) .

Furthermore we shall add some assumptions on the shape function
of the front Pf .

Theorem 3 (Expected cardinality of the reference sets). Let Pf : RM−1 →
R be a

• Lipschitz function with respect to the maximum metric with constant
L, i.e. ∀X, Y ∈ RM−1; |Pf (X) − Pf (Y)| � L ·maxi∈�1;M−1�|xi − yi|,
and

• there exists an S ∈ R such that the probability density function fPf of
the random variable Pf (y1, . . . ,yM−1) where yi ∼ U[0; 1] are i.i.d.,
is bounded by S.

Let dM−1 : RM×RM �→ [0;∞) be the maximum pseudo-metric defined
by:

dM−1(X, Y) := max
i∈�1;M−1�

|xi − yi| .

Let RFPf be a uniform random front with shape Pf containing N indi-
viduals, new be a newly inserted individual with objective vector

Ynew = (0.5, . . . , 0.5, Pf (0.5, . . . , 0.5))

and ref be a reference individual chosen as the closest individual to new

with respect to dM−1.
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Let the number of individuals which fall either into the upper or lower
reference sets denoted by CM,N. Then E[CM,N] exists for all M, N ∈ N,
M > 1, and

E[CM,N] ∈ O(MN1− 1
M−1 ) (15)

for a fixed M.

The proof can be found in Appendix B.
The requirements imposed on Pf may seem complicated and heavy

handed but we do it for the sake of simplicity of the proof. One ex-
ample of such a function is an arbitrary linear function with all coef-
ficients negative.

Since each dominance comparison has the computational cost of
O(M), we see that the expected computational cost of inserting into an
M-front is

O(M2N1− 1
M−1 ) (16)

floating point comparisons.

6.4.3 Summary

We have estimated the computational cost of insertions into the M-
front. The most costly operation is comparing against individuals in
the reference sets. Therefore we were concerned with the cardinality
of the reference sets.

If we look at the algorithm in Figure 6 and assume overnondom-
ination, there are approximately the same number of individuals in
the M-front as there are individuals in the initial population. There-
fore the N in both contexts is roughly the same. In order to be able to
compare the computational complexity to an algorithm that performs
non-dominated sorting, we shall multiply the costs of inserting one in-
dividual (16) by N, since in the course of one generation of algorithm
in Figure 6 there are N insertions. We summarize the computational
complexities in Table 8. As we see in Table 8, our approach scales
better with respect to M than Jensen-Fortin’s algorithm in the aver-
age case. On the other hand Jensen-Fortin’s algorithm scales better in
terms of N for a fixed M.

6.5 comparison with jensen-fortin’s method

Jensen-Fortin’s algorithm [36] [29] is one of the fastest non-dominated
sorting algorithms so far. Our algorithm is different on many levels
other than speed. In this section we shall go into depth on all the
details in which the two algorithms differ.
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Table 8: Computational complexities where
N is the population size and M is the dimension.

Jensen-Fortin M-front

Best case O(MN) O(MN) or
O(MN ln(N)) using
the K-d tree

Average case O(N lnM−1(N)) O(M2N2− 1
M−1 )

Worst case O(MN2) O(MN2)

6.5.1 Description of Jensen-Fortin’s algorithm

We mentioned Jensen-Fortin’s algorithm in the introduction. Here we
shall describe it in a little more detail. Jensen-Fortin’s algorithm is
based on Kung’s algorithm [40]. This algorithm computes the set of
non-dominated individuals in a population. Instead of repeatedly us-
ing Kung’s algorithm to compute non-dominated fronts one by one,
Jensen chose a cleaner approach which constructs all non-dominated
fronts in one run.

Unfortunately the algorithm did not work well in the general case
where more than one individual has the same value for some objec-
tive. This was recently fixed by Fortin et al. From now on, we shall
work only with the Fortin’s version of the algorithm. We call this
algorithm the Jensen-Fortin’s algorithm. The algorithm uses a divide-
and-conquer strategy. This is illustrated in Figure 47.

In the notation of Fortin et al., the algorithm has two main proce-
dures, Helper_A and Helper_B, and two splitting procedures, Split_A
and Split_B. After some preprocessing, the algorithm calls the pro-
cedure Helper_A which does essentially all the work. This procedure
splits the problem into problems of smaller size and merges the re-
sults using the Helper_B procedure which is itself a recursive divide-
and-conquer algorithm. Helper_B splits the problem again using the
Split_B procedure. The problem is further divided until either the
dimension M or the problem size N gets reduced to 2, which are
handled as final cases.

6.5.2 Conceptual comparison

The main difference between the two methods is that Jensen’s method
is a procedure while our method is essentially a data structure. Our data
structure keeps track of the non-dominated individuals at all times
and this knowledge is updated with each change in the population.
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Figure 47: Jensen-Fortin’s algorithm.

This is not possible with Jensen’s algorithm. Once a single individual
changes the entire computation needs to be executed again.

The advantage of Jensen’s method is that it computes all the non-
dominated fronts, while our method computes only those fronts that
are needed by the trimming procedure.

6.5.3 Computational speed

In the section on experimental results we show that Jensen’s algo-
rithm performs well on large populations, while our algorithm works
well with a large number of objectives.

Another main difference is that Jensen’s algorithm performs the
entire computation at once, while our method allows the cost to be
distributed along the entire run of the algorithm. As soon as an indi-
vidual’s objective value is evaluated, we can insert it into the M-front.
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6.5.4 Flexibility

The Jensen’s algorithm is fairly difficult to modify. It took 10 years
since the original publication by Jensen for someone to undertake
the task to generalize the algorithm to be able to handle the case
of multiple individuals sharing the same objective value. No other
modifications are known.

On the other hand, the core of our algorithm is just the M-list. The
way in which reference individuals are chosen depends entirely on
the user. The user is free to choose any strategy to select the reference
individual. There are probably many data structures more sophisti-
cated than the K-d tree. Some algorithms compute the nearest neigh-
bor in the objective space for their own purposes. This computation
can be reused in inserting an individual into the M-list. A notable
example of such an algorithm is the DEMO/obj algorithm [47]. Other
algorithms perturb the population one individual at a time. In this
case the unperturbed individual is likely to be close to the perturbed
one, and may serve as the reference individual. One example of such
a MOEA is differential evolution. We used this approach in our previ-
ous work [18].

The M-list itself can be modified to use a different type of dom-
inance, such as the ε-dominance. This may be also possible with
Jensen’s algorithm, but it is not very straightforward.

Lastly, the M-front is a standalone archive which can be used in
algorithms such as [58] that store their non-dominated individuals.

6.5.5 Parallelization

The Helper_A procedure splits the problem into three subproblems
which need to be solved in a particular order. Even though divide-
and-conquer algorithms are usually easy to parallelize, there is a se-
quential dependence in Helper_A.

The three problems created by Helper_B, on the other hand, can be
executed in any order. Therefore we suppose that Jensen’s algorithm
can be easily parallelized.

Our algorithm performs many insertions and removals each of
which locks the M-front. Parallelization within each transaction is
possible but because the insertion is a relatively small operation we
are not sure if significant speedup can be achieved.

6.5.6 Summary

The differences between Jensen-Fortin’s algorithm and our method
are summarized in Table 9.

When deciding which algorithm to use for one’s application, the
most important question one needs to answer is whether all the non-
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Table 9: Comparison of the Jensen-Fortin’s algorithm and our method.

Jensen-Fortin M-front

Average complexity O(N lnM−1(N)) O(M2N2− 1
M−1 )

Best performance on High N High M

Main concept Procedure Data structure

Computes all fronts Yes No

Flexibility No Yes

Parallelization Yes Yes

dominated solutions should be known at all times. If this is so, one
should use our approach, since there is no way to update the non-
dominated set once one individual changes. If however, the underly-
ing algorithm needs to know the non-dominated individuals only at
some specified instant in the course of optimization, the user should
consider the population size and the dimensionality of the problem
and consult the experimental data in the flowing section.

6.6 experimental results

6.6.1 Experimental setup

In order to test the performance of our algorithm we have imple-
mented the GDE3 (Generalized Differential Evolution) MOEA [38]
using three non-dominated sorting methods:

• Our method (M-front)

• Jensen-Fortin’s algorithm

• Deb’s fast non-dominated sorting

The three algorithms produce identical outputs. Only thing that is
different is the speed. We ran the algorithm on a variety of DTLZ1
[13] and WFG9 [34] problems.

We chose WFG9 in particular because it is multi-modal and non-
separable and therefore we hope that it resembles a large number of
real world problems.

We chose DTLZ1 because its objective functions are relatively steep.
This means that the evaluation of the initial randomly initialized pop-
ulation is quite far from the true Pareto front. The randomly initialized
population has objective values in the ranges of hundreds while the
true Pareto front is a simplex within the hyper-box [0; 0.5]M. During
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the run of the MOEA, the population needs to travel a significant
distance. This should test our K-d tree re-balancing mechanism.

The GDE3 algorithm has two main parameters. The crossover op-
erator and the scaling factor F. We have chosen exponential crossover
and a value of 0.2 for both F and the crossover probability Cr. We chose
the parameters according to empirical results by Kukkonen [48] and
after an informal off-line calibration of the algorithm.

We ran experiments with various initial population sizes N and var-
ious numbers of objectives M. The population sizes start at 50 indi-
viduals and increase in an almost geometric progression up to 8000
individuals. We chose such big populations to clearly demonstrate at
which population size the asymptotic superiority of Jensen-Fortin’s
algorithm prevails and our method is outperformed. Large popula-
tion sizes are especially useful for many objective problems where
the number of individuals needed to approximate the Pareto front
with a fixed precision grows exponentially with the number of objec-
tives [3].

The number of objectives ranges from 3 to 8, while the number of
variables is always 15. For each configuration we ran the algorithm for
500 generations, 10 times with different random seeds, and averaged
the results. The experimental setup is summarized in Table 10.

Table 10: Experimental setup.

Crossover exponential

Cr 0.2

F 0.2

initial population size N 50, 125, 250, 500, 1000, 2000, 4000, 8000

number of objectives M 3, 4, 5, 6, 7, 8

number of generations 500

number of runs 10

number of variables 15

We implemented all algorithms in C++ and compiled them us-
ing the gcc 4.8.1 compiler using the aggressive compiler optimiza-
tion flag -O2. We ran the experiments on a desktop PC with an
Intel R© CoreTM i7-2600 CPU @ 3.40GHz x 8 processor running Ubuntu
13.04 operating system with Linux 3.8.0-19.29 kernel. We ran the ex-
periments one at a time, with no other programs running.
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Figure 48: Ratio of average total non-dominated sorting time: Jensen-Fortin
M-front .

6.6.2 Comparison with Jensen-Fortin’s algorithm

6.6.2.1 Total computation time

First we measured the total wall clock computation time spent just
on non-dominated sorting using the C++11 <chrono> library. Instead of
presenting the absolute times, which we believe to be more susceptible
to change from platform to platform, we present ratios of the average
time used by Jensen-Fortin’s algorithm divided by the average time
used by our method. Since we have the same number of runs for
both algorithms, the presented ratios become:

ratio =

∑10
k=1 JFk∑10
k=1 MFk

where JF1, . . . , JF10 are the times taken by Jensen-Fortin’s algorithm
and MF1, . . . , MF10 are the times taken by the M-front method. All re-
sults are summarized in Table 11 and Table 12. All results have been
tested for significance using the Wilcoxon signed rank test on the sig-
nificance level 0.05. A number in boldface means that our method
significantly outperformed the competitor, while a number in italics
means that our method has been significantly outperformed for that
particular configuration. A number without boldface or italics means
that the results were not significantly different. We use the same
notation in Table 14, where we compare our results with fast non-
dominated sorting.

Numbers greater than one mean that our method is faster in this
instance. For the sake of perspective, we provide the average times
used by Jensen-Fortin’s algorithm for the most complex and least com-
plex problem setup in Table 15. The numbers in parentheses are the
standard deviations across the 10 runs.

We can see that for 3 objectives the Jensen-Fortin’s method is faster
in almost all instances. For 4 objectives and higher our method catches
up and outperforms the Jensen-Fortin’s algorithm for all population
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Table 11: Ratio of average time for non-dominated sorting:
Jensen-Fortin

M-front for the WFG9 problem.

M N = 50 125 250 500 1000 2000 4000 8000

Total (ratios)

8 3.13 3.50 2.79 2.54 2.05 1.57 1.10 0.56

7 2.79 3.77 3.08 2.67 2.28 1.72 1.21 0.59

6 2.79 3.61 3.36 2.98 2.41 1.86 1.29 0.68

5 2.96 3.78 3.17 2.78 2.33 1.87 1.36 0.76

4 2.27 2.70 2.23 2.10 1.82 1.58 1.14 0.68

3 1.00 1.29 1.09 0.96 0.82 0.69 0.44 0.28

In the last generation (ratios)

8 2.38 3.68 2.87 2.60 2.17 1.68 1.14 0.59

7 3.30 4.61 3.04 2.72 2.33 1.78 1.24 0.61

6 2.15 4.07 3.45 3.08 2.45 1.89 1.33 0.70

5 2.64 3.42 3.10 2.67 2.31 1.87 1.41 0.79

4 2.94 3.01 2.21 2.01 1.79 1.69 1.27 0.79

3 0.77 1.37 1.04 1.04 0.89 0.86 0.62 0.48

sizes up to 4000 individuals. There the asymptotic superiority of
Jensen-Fortin’s algorithm becomes apparent.

The smaller the population the better our method performs in com-
parison to Jensen-Fortin’s algorithm. However, this trend breaks down
for 50 individuals. This is probably due to the fixed cost that the K-d
tree carries along.

The reader should note that the initial population sizes do not cor-
respond exactly to the size of the domination sorting problem being
solved. The GDE3 algorithm produces a population that has some-
where between N and 2N individuals, which needs to be trimmed
to N individuals. Therefore the size of the problem being solved is
slightly bigger.

We can interpolate our experimental results so that the pattern is
more visible. In Figure 48 we can see a contour plot which interpo-
lates our experimental results. Population sizes in our experiments
grow exponentially, but Figure 48 tries to give us a better understand-
ing of the overall pattern. The isocurve for 1, that is the hypothetical
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Table 12: Ratio of averages Jensen-Fortin
M-front for the DTLZ1 problem.

M N = 50 125 250 500 1000 2000 4000 8000

Total non-dominated sorting time (ratios)

8 1.96 2.97 2.53 2.03 1.40 0.90 0.57 0.29

7 2.20 3.97 3.27 2.61 1.64 1.11 0.65 0.33

6 2.32 5.08 4.23 3.23 1.94 1.15 0.59 0.34

5 2.44 5.30 4.40 2.78 1.69 0.94 0.52 0.32

4 1.91 3.93 2.89 1.89 1.10 0.62 0.37 0.23

3 1.11 1.48 1.01 0.82 0.57 0.35 0.21 0.13

Non-dominated sorting time in the last generation (ratios)

8 2.15 3.66 2.24 2.30 1.47 0.89 0.62 0.32

7 2.07 4.27 3.36 2.67 1.78 1.04 0.67 0.30

6 2.17 4.28 4.57 3.18 1.91 1.16 0.58 0.34

5 2.01 4.03 4.00 2.70 1.96 1.19 0.74 0.40

4 1.65 3.05 3.11 2.58 1.88 1.26 0.81 0.51

3 0.90 1.58 1.26 1.32 1.01 0.82 0.54 0.42

curve on which the two algorithms perform with the same speed, is
shown in bold black.

When we look at the results for DTLZ1 in Table 12 we see a similar
pattern. The asymptotic superiority of Jensen-Fortin’s method is im-
mediately visible. Moreover we see that for large populations the re-
sults are more favorable for Jensen-Fortin’s method. Already for 2000
individuals the performance of the two algorithms are tied, while for
4000 and 8000 individuals Jensen-Fortin’s algorithm is faster. On the
other hand, for small population sizes and high number of objectives,
our method is faster.

6.6.2.2 Computation time in the last generation

On first sight it may seem strange that the results for 3 objectives are
so unfavorable for our method. We shall now examine this situation
in detail.

Let us look at the computational time spent on non-dominated sort-
ing in each generation. In Figure 49a we can see the averaged compu-
tational times for the DTLZ1 problem with 3 objectives and 500 in-
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Figure 49: Influence of overnondomination on computational speed of our
method for DTLZ1 - 500 individuals - 3 objectives. All series are
surrounded by a band of ±2 standard deviations.

dividuals. Our method is significantly slower, but around generation
200 it accelerates and becomes faster than Jensen-Fortin’s algorithm.

The reason for this behavior is that the proportion of non-dominated
individuals is relatively small in the first 200 generations. We can
see this in the lower part of Figure 49b. When the number of non-
dominated individuals is small, our algorithm needs to resort to us-
ing the algorithm in Figure 7 to determine additional fronts. Once
the number of non-dominated individuals is greater than the initial
population size, 500 individuals in this case, the GDE3 algorithm has
enough non-dominated individuals in the M-front and does not need
to invoke the auxiliary algorithm (Figure 7) to compute an additional
non-dominated front.

We can examine how strong this effect is, by comparing the average
computational times only in the last generation. The intuition is that
by the last generation the population has almost converged and the
proportion of the non-dominated individuals is high.

These results are summarized in the bottom of Table 11 and Table 12.
By comparing the data for the last generation to the total data we
can see that the most significant differences are visible for 3 objec-
tives. The reason is that for 3 objectives the overnondomination phe-
nomenon is not yet present.

6.6.3 Comparison with fast non-dominated sorting

Here we present only the results for the WFG9 algorithm in order
to save space, since the core of our experimental section is the com-
parison with Jensen-Fortin’s algorithm. The results for DTLZ1 were
slightly worse, but similar to those for WFG9. This can be inferred
from looking at Table 11 and Table 12.

We choose the same methodology of presenting our data as when
comparing with Jensen-Fortin’s algorithm.
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In Table 14 we see that our algorithm outperforms the fast non-
dominated sorting in all problem instances. With few exceptions the
relative performance of our algorithm increases with population size and
decreases with number of objectives. This is in accordance with our esti-
mation of average computational complexity.

Table 13: Ratio of averages Fast non-dominated sorting
M-front for the WFG9 problem.

Total non-dominated sorting time (ratios)

M N = 50 125 250 500 1000 2000 4000 8000

8 1.30 2.06 2.38 3.23 3.81 4.11 4.17 3.54

7 1.23 2.37 2.80 3.65 4.75 5.35 5.49 4.53

6 1.33 2.51 3.43 4.82 6.19 7.40 7.94 7.09

5 1.59 3.18 4.11 6.05 8.61 11.36 13.69 13.28

4 1.69 3.60 5.04 8.65 13.64 20.53 26.39 28.10

3 1.78 5.11 7.94 13.56 21.89 33.49 37.80 43.58

Total number of domination comparisons (ratios)

8 3.8 5.1 5.6 5.9 6.4 6.8 7.2 7.6

7 4.6 6.4 7.2 7.9 8.5 9.1 9.6 10.1

6 6.0 8.7 10.0 11.0 12.0 13.1 14.3 15.8

5 8.2 12.3 15.0 17.6 20.2 23.1 26.3 29.6

4 11.4 20.5 29.8 37.2 44.9 51.0 57.9 63.9

3 22.4 46.4 68.8 80.3 89.9 90.1 89.5 88.7

To quantify the importance of overnondomination, we also present
the comparison of computational times for the last generation. By
comparing these results with the total times in Table 14, we can see
that the biggest difference is for 3 objectives. This is consistent with
our previous analysis.

The fast non-dominated sorting algorithm performs domination com-
parisons between pairs of individuals. Our algorithm also performs
domination comparisons when it compares the inserted individual to
the individuals in the reference sets. We can count the number of
these comparisons which are executed during the entire run of the
optimizer. This way we get a measure which is independent from the
underlying hardware and programming language, since all imple-
mentations should perform exactly the same steps.
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Table 14: Ratio of averages Fast non-dominated sorting
M-front for the WFG9 problem in

the last generation.

Non-dominated sorting time (ratios)

M N = 50 125 250 500 1000 2000 4000 8000

8 0.97 1.99 2.34 3.26 3.92 4.29 4.25 3.52

7 1.43 2.70 2.66 3.64 4.77 5.43 5.58 4.54

6 1.03 2.66 3.38 4.89 6.22 7.52 8.15 7.11

5 1.37 2.80 4.00 5.78 8.57 11.40 13.92 13.66

4 2.11 3.81 4.94 8.26 13.58 22.22 29.45 32.35

3 1.38 5.64 7.80 15.22 24.80 42.93 55.14 75.79

Number of domination comparisons (ratios)

8 4.3 5.5 5.9 6.2 6.7 7.1 7.3 7.7

7 5.1 6.9 7.8 8.3 8.6 9.2 9.7 10.3

6 6.3 9.3 10.4 11.2 12.2 13.3 14.6 16.1

5 8.6 12.3 16.2 17.7 20.6 23.8 27.6 31.5

4 11.8 20.3 32.3 40.2 50.6 62.2 74.7 89.9

3 25.0 50.7 88.3 125.2 178.9 240.8 341.8 469.6

We can see the comparison in terms of domination comparisons in
the bottom part of Table 14. We can see that these results are strongly
correlated to the results in terms of computational time. This favors
the hypothesis that a major part of the computational time is con-
sumed by domination comparisons.

It is also interesting to see that the results in terms of domination
comparisons are more favorable for our algorithm than the results
in terms of computational time. In other words our algorithm does
not reach its full potential. For example with 3 objectives and 1000
individuals our algorithm requires 89.9 times fewer domination com-
parisons, but overall it is only 21.89 times faster. This is caused by
all the additional data structures that our algorithm needs to main-
tain. This includes primarily the K-d tree, but also the sorted lists,
the reference sets, and the hash-table. The results for the number of
dominance comparisons can be improved using exact nearest neigh-
bor computation within the M-front.

To see the importance of overnondomination in our algorithm we
provide the ratios of domination comparisons needed in the last gen-
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eration in the bottom right part of Table 14. Again the differences
between the total numbers of domination comparisons and domina-
tion comparisons in the last generation are most pronounced for 3
objectives, where the overnondomination is weakest.

6.6.4 Confirmation of theoretical results

In the chapter on computational complexity, we tried to model the
population in an M-front using random vectors and then use the tech-
niques from the theory of probability to model the computational cost
of operations on the M-front. During this modeling, we have made a
number of assumptions on the distribution of the individuals in the
population. These assumptions are relatively simple in order to make
the proofs of our theorems simple. Now we shall confront this model
to the experimental data.

We have shown that an average insertion into the M-front needs
O(MN1− 1

M−1 ) domination comparisons where N is the number of
individuals in the M-front. Assuming overnondomination, there are
roughly as many individuals in the M-front as is the initial popula-
tion size. We can try to substitute the initial population size in our
experimental data for N.

The number of insertions in one generation is exactly the same
as the initial population size. Therefore the computational cost is
roughly O(MN2− 1

M−1 ) domination comparisons, where N is the ini-
tial population size.

For a fixed M this gives the power function:

f(N) = αNβ. (17)

We tried to fit the general curve given by (17) to our experimental
results on the WFG9 problem using the least squares method. In al-
most all cases the approximation was appropriate. First let us look at
the data for the number of domination comparisons in the last generation
which is presented in Table 16.

We can see that the estimated β coefficients are not very far from
their theoretical counterparts. There is a slight tendency for the exper-
imental coefficients to be higher. On the other hand the (less impor-
tant) α coefficients seem to be more or less constant with respect to
M. We believe that this is due to the fact that we used the maximum
metric in our theoretical computation, but in experiments we used
the more strict Manhattan metric.

Next we present the comparison in terms of actual wall clock time.
The comparison of fitted and theoretical coefficients for the elapsed
time in the last generation is in Table 17.

Here we see that the β coefficients are slightly underestimated for
all values of M. Nevertheless, the theoretical and estimated coeffi-
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Table 15: Average absolute time taken by Jensen-Fortin’s algorithm for the
most complex and least complex problem setup (milliseconds).

Total

M = 3,N = 50 M = 8,N = 8000

WFG9 52.7061 (0.818) 615 008 (11619.6)

DTLZ1 26.5054 (0.383) 259 788 (6472.1)

In the last generation

WFG9 0.1024 (0.0045) 1279.94 (36.14)

DTLZ1 0.0522 (0.0039) 581.20 (18.98)

Table 16: Fitting of curve f(N) = αNβ to experimental data:
Number of domination comparisons in the last generation
(WFG9).

M β theoretical β estimate α estimate

8 1.857 1.902 1.170

7 1.833 1.890 0.978

6 1.800 1.848 0.923

5 1.750 1.768 0.958

4 1.667 1.625 1.122

3 1.500 1.442 1.095

Table 17: Fitting of curve f(N) = αNβ to experimental data:
Time elapsed in the last generation (microseconds) (WFG9).

M β theoretical β estimate α estimate

8 1.857 1.818 0.111

7 1.833 1.832 0.078

6 1.800 1.704 0.145

5 1.750 1.607 0.196

4 1.667 1.503 0.226

3 1.500 1.304 0.500
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cients follow a similar pattern as we increase the number of objec-
tives.

6.7 conclusion

We have presented a new method to decrease the cost of non-dominated
sorting. The main idea is to use a special data structure which holds
and updates the knowledge of non-dominated individuals during the
run of a MOEA. We have provided one such data structure which we
call the M-front.

Jensen-Fortin’s algorithm is the latest, and in terms of computa-
tional complexity, fastest algorithm. We have demonstrated that al-
though the M-front does not provide an improvement in terms of
average computational complexity, it is faster than Jensen-Fortin’s
algorithm on some problems for a broad range of population sizes
and numbers of objectives. For very big populations the asymptotic
superiority of Jensen-Fortin’s algorithm eventually prevails but our
algorithm can perform faster up to a fairly big population size (ap-
proximately 4000 individuals). Besides that, our algorithm scales very
well with the number of objectives. This is because our algorithm
uses the fact that a large proportion of the population tends to be
non-dominated in such instances to its advantage.

All performance results aside, an important advantage of our method
is that the non-dominated individuals are known at all times. If one
individual changes, the change in the non-dominated front is imme-
diately recorded. The core of our algorithm is the M-front which can
be reused as a cost-effective data structure for MOEAs which archive
their non-dominated individuals.

In future we should explore different implementations of the fast
archive. An implementation using segment trees [10] seems to be a
promising candidate. Also, replacing the K-d tree in the M-front with
a more sophisticated nearest neighbor data structure may bring fur-
ther improvement.



7
C O N C L U S I O N A N D D I S C U S S I O N

This thesis had two goals. First, to improve our understanding of
differential evolution in the multi-objective realm, and second to im-
prove the computational efficiency of these algorithms.

In the first part of this thesis we explored the issue of rotational in-
variance. The degree to which a differential evolution algorithm is
rotation invariant depends on the crossover probability parameter.
While the only value for which DE is rotationally invariant is 1, many
authors use values which are much smaller. It is therefore of great
interest to see how the performance for such choices of parameters
changes when the problem axes are rotated. In chapter 4 we studied
the effects of rotation on bi-objective problems. We found out that the
change in performance is significant even for small rotations. There is
a consistent drop in performance on separable problems while the qual-
itative properties of the change for non-separable problems are much
less predictable. Unexpectedly, for multi-modal problems, low values
of crossover probability perform better through the observed spec-
trum of rotations. This is an interesting finding, but more research
is needed to either confirm or refute this claim. We do not have an
explanation for this phenomenon yet.

Next, we confronted the issue of parameter control. The relative sen-
sitivity and difficulty to properly tune the DE parameters has moti-
vated researchers to develop methods to automatically adjust these
parameters during the optimization run. However, these methods
were presented only as parts of unified multi-objective optimizers
and therefore they were impossible to compare. In Chapter 5 we
isolated the underlying parameter control mechanisms from various
deterministic, adaptive, and self-adaptive algorithms and implanted
them into a unified algorithm. We then tested this algorithm on a set
of known benchmark problems as well as one new problem. We mea-
sured the performance of these methods in terms of hypervolume,
as well as their behavior in measuring which parameters they found.
We found out that on the usual benchmark problems even the simple
mechanisms can lead to results comparable with parameter tuning.
On the new problem, which we proposed exactly because it can be
optimized only by a small set of parameters, the self-adaptive methods
were the only ones that managed to find a satisfactory Pareto front
for all objective dimensionalities. After examining the progress of the
parameters used by the adaptive methods we found out that each
algorithm evolves its parameters in a more or less problem indepen-
dent way. This is a potential vulnerability of adaptive methods and it
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implies that their relative success may be accidental. Development of
adaptive methods which are competitive with the self-adaptive ones
is an interesting subject for future work.

In the second part of this thesis we presented a mechanism to re-
duce the computational cost of multi-objective DE. We concentrated
on reducing the cost of the non-dominated sorting, diversity estimation
and archiving. The main idea is to use a special data structure which
holds and updates the knowledge of non-dominated individuals dur-
ing the run of the algorithm. We have provided one such data struc-
ture which we call the M-front. This data-structure maintains the
knowledge of non-dominated individuals up to date at all times.
This reduces the cost of non-dominated sorting, since the first non-
dominated front does not need to be determined. Its application to
archiving is straightforward and moreover its internal structure al-
lows several diversity estimation procedures to be performed more
efficiently. The M-front can be applied to most multi-objective pop-
ulation based algorithms, but the particular workings of DE can be
exploited to achieve even greater speedups. In future we should ex-
plore different implementations of the fast archive. An implementa-
tion using segment trees [10] seems to be a promising candidate. Also,
replacing the K-d tree in the M-front with a more sophisticated near-
est neighbor data structure may bring further improvement.

We conclude that even a restricted field, such as multi-objective
differential evolution opens many questions and many directions for
innovation.



Part IV

A P P E N D I C E S

Here we prove theorems from Chapter 6.





A
A P P E N D I X T E S T

a.1 proof of theorem 2

Proof. Suppose that we have two individuals a,b ∈ RFPf , whose ob-
jective values are:

Ya = (ya,1,ya,2, . . . ,ya,M−1, Pf (ya,1,ya,2, . . . ,ya,M−1))

Yb = (yb,1,yb,2, . . . ,yb,M−1, Pf (yb,1,yb,2, . . . ,yb,M−1))

For a to dominate b it is necessary that ya,i � yb,i for all i and
ya,j < yb,j for at least one j, for i, j ∈ �1;M�. However, if there is
such a j < M we have

ya,M = Pf (ya,1, . . . ,ya,M−1)>Pf (yb,1, . . . ,yb,M−1) = yb,M

and if there is not a such j < M, meaning ya,i = yb,i for all i < M, it
implies

ya,M = Pf (ya,1, . . . ,ya,M−1) = yb,M.

Hence a cannot dominate b. This ends the proof.

a.2 proof of theorem 3

We shall need the following three lemmas in our proof.

Lemma 1 (First order statistic). Let x1, . . . , xn be i.i.d. random variables
and F be the cumulative distribution function (cdf) of these variables. Then
the cdf of the random variable

xmin := min(x1, . . . , xn) (18)

is given by:
Fmin(x) = 1− (1− F(x))n . (19)

The xmin from (18) is called a first order statistic. More information
on order statistics can be found in[9].

Lemma 2 (Expected distance of closest point). Let X1, . . . ,XN be i.i.d.
random vectors with uniform distribution on [0; 1]M. Let Xmin denote the
random vector which is closest to the center c = (0.5, 0.5, . . . , 0.5) of the
hyper-box [0; 1]M with respect to the maximum metric d. Then, the ex-
pected distance of Xmin from the center c,

DM,N := E[d(Xmin, c)] , (20)
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can be expressed in a closed form as:

DM,N =
N

2
B(N, 1+

1

M
) , (21)

where B(x,y) :=
∫1
0 t

x−1(1− t)y−1dt is the beta function.

Proof. Let us first construct the cumulative distribution function (cdf)
F1 for the distance d(Xi, c) of an arbitrary Xi from c. By definition,
the value of a cdf in x ∈ R is the probability that the random variable
is smaller than x. The set of all vectors whose distance to c is less
than x with respect to the maximum measure forms a cube with edge
length of 2x. Then, since Xi ∼ U[0; 1]M, the probability of Xi falling
into such a cube is equal to the volume of the cube, namely (2x)M.
That is, F1(x) = (2x)M for x ∈ [0; 0.5].

Then, since the distance of the closest individual to c is in fact the
minimum of the distances, we have from (19) that the cdf of d(Xmin, c)
is

FN(x) = 1− (1− (2x)M)N for any x ∈ [0; 0.5].

Since d(Xmin, c) is nonnegative, its expectation is computed by

DM,N =

∫1/2
0

(1− FN(x))dx =

∫1/2
0

(1− (2x)M)Ndx

=
1

2M

∫1
0

(1− t)Nt
1
M−1dt =

1

2M
B(N+ 1,

1

M
)

=
N

2
B(N,

1

M
+ 1) .

This completes the proof.

The asymptotic properties of this expected distance are summa-
rized in the following theorem:

Lemma 3 (Asymptotic properties of DM,N). Let DM,N be the expected
distance from (20). Then for any M � 1:

lim
N→∞N

1
MDM,N =

1

2
Γ(1+

1

M
) . (22)

Here Γ is the Gamma function.

Proof. Note that

B(N,
1

M
+ 1) =

Γ(N)Γ( 1
M + 1)

Γ(N+ 1
M + 1)

.

Using the asymptotic property of the Gamma function, derived from
Stirling’s formula:

lim
n→∞

Γ(n+ x)

nxΓ(n)
= 1, for any x ∈ R,
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we have

N
1
MDM,N =

N
1
M+1

2
B(N,

1

M
+ 1)

=
N

1
M+1Γ(N)

Γ(N+ 1
M + 1)

Γ( 1
M + 1)

2

N→∞−−−−→ Γ( 1
M + 1)

2
.

This ends the proof.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. A random individual a ∈ RFPf belongs to a refer-
ence set induced by ref and new iff the following condition is satisfied
for some i ∈ {1, 2, . . . ,M}:

ya,i ∈ [ynew,i;yref,i] or ya,i ∈ [yref,i;ynew,i]. (23)

Define sets

A(x):={y∈[0;1]M−1|∃i∈�1;M−1�, yi∈[0.5−x;0.5+x]}

B(x):=[Pf (0.5+x, . . . ,0.5+x);Pf (0.5−x, . . . ,0.5−x)]

and a random variable δ = dM−1(Yref, Ynew). Since Pf is strictly de-
creasing w.r.t. each element and Ynew = (0.5, . . . , 0.5, Pf (0.5, . . . , 0.5)),
the reference area induced by Yref is a subset of A(δ)× B(δ). There-
fore, letting ČM,N denote the number of individuals whose first M−1

components exist in A(δ) and ĈM,N denote the number of individu-
als whose last component exists in B(δ), we have CM,N � ČM,N +

ĈM,N. Since the inequality inherits when the expectation is taken, we
find

E[CM,N] � E[ČM,N] + E[ĈM,N] . (24)

Hence, it suffices to show the right-hand side is bounded by a desired
order.

First, we consider E[ČM,N]. Let I{X} be the indicator which is 1 if
the event X happens and 0 otherwise. For the simplicity of notation,
we let Za be the first M− 1 components of a ∈ RFPf . Then,

E[ČM,N] = E
[∑N

i=1 I{Zi ∈ A(δ)}
]

=
∑N

i=1 E [I{Zi ∈ A(δ)}] .

Remember that

ref = argmin
i∈�1;N�

dM−1(Zi,Znew)

δ = dM−1(Zref,Znew) = min
i∈�1;N�

dM−1(Zi,Znew).
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The inside of the summation is then

E[I{Zi ∈ A(δ)}]

= E[I{i = ref}+ I{i �= ref}I{Zi ∈ A(δ)}]

= 1/N+ E[I{i �= ref}I{Zi ∈ A(δ)}]

= 1/N+ E[I{i �= ref}I{Zi ∈ A(min
i∈�1;N�

dM−1(Zi,Znew))}]

= 1/N+ E[I{i �= ref}I{Zi ∈ A(min
j∈�1;N�\{i}

dM−1(Zj,Znew))}]

� 1/N+ Pr[Zi ∈ A(min
j∈�1;N�\{i}

dM−1(Zj,Znew))] . (25)

For the last inequality we used E[I{X}I{Y}] � E[I{X}]E[I{Y}] and E[I{X}] =

Pr[X]. Note that on the right-most side Zi is independent of

min
j∈�1;N�\{i}

dM−1(Zj,Znew).

Since Zi is uniformly distributed in [0; 1]M−1, given

δi = min
j∈�1;N�\{i}

dM−1(Yj, Ynew)

the above probability is the proportion of the volume of A(δi) to
[0; 1]M−1, which is bounded above by 2(M− 1)δi. Then,

E[ČM,N] � 1+ 2(M− 1)
∑N

i=1 E[δi] . (26)

Next, we consider E[ĈM,N]. For the simplicity of notation, we let
Wa be the last component of a ∈ RFPf . Then, By definition

E[ĈM,N] = E
[∑N

i=1 I{Wi ∈ B(δ)}
]

=
∑N

i=1 E [I{Wi ∈ B(δ)}] .

Analogously to (25), we have

E [I{Wi ∈ B(δ)}] = 1/N+ Pr[Wi ∈ B(δi)] .

Note that on the right-most side Wi is independent of δi. Given δi,
the above probability reads

Pr[Wi ∈ B(δi) | δi]

=
∫Pf(0.5−δi,...,0.5−δi)

Pf(0.5+δi,...,0.5+δi)
fPf (w)dw

�
∫Pf(0.5−δi,...,0.5−δi)

Pf(0.5+δi,...,0.5+δi)
Sdw

= S|Pf (0.5− δi, . . . , 0.5− δi) − Pf (0.5+ δi, . . . , 0.5+ δi)|

� 2SLδi.

Taking the expectation over δi and plugging it into the above inequal-
ities we have

E[ĈM,N] � 1+ 2SL
∑N

i=1 E[δi] . (27)
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With (24), (26) and (27) we have

E[CM,N] � 2+ 2((M− 1) + SL)
∑N

i=1 E[δi] . (28)

Note that E[δi] is nothing but DM−1,N−1 in Lemma 2. Hence, we find

E[CM,N] � 2+ 2((M− 1) + SL)NDM−1,N−1 . (29)

For the limit of N→∞, using Theorem 3 we obtain

lim
N→∞

E[CM,N]

N1− 1
M−1

� lim
N→∞

2+ 2((M− 1) + SL)NDM−1,N−1

N1− 1
M−1

= ((M− 1) + SL)Γ(1+
1

M− 1
) ∈ O(M) .

Therefore, we find E[CM,N] ∈ O(MN1− 1
M−1 ).
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