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Purpose of review

We review the evidence that environmental stimuli that perturb naturally selected host–microbe interactions
are driving the increasing prevalence of food allergy and examine the mechanisms by which commensal
bacteria regulate tolerance to dietary allergens.

Recent findings

Antibiotic use and the consumption of a high-fat/low-fiber diet have a major and rapid impact on gut
bacterial populations, with long-term consequences for both overall microbial community structure and the
regulation of host immunity. Recent work emphasizes the role of mucosa-associated commensal bacteria in
eliciting a barrier-protective response critical to preventing allergic sensitization to food. Murine model
studies are informing the development of novel live biotherapeutic approaches as an adjunctive therapy to
enhance antigen-specific oral desensitization and to promote lasting tolerance in patients with food allergy.

Summary

Strategies based on modulating the composition and/or functionality of the gut microbiome hold promise
for the treatment of food allergy.
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INTRODUCTION

Allergic responses to food are increasingly prevalent
in industrialized societies, rising by as much as 20%
in the recent 10-year period [1–3]. We have pro-
posed that this dramatic generational upsurge is a
consequence of environmentally induced alter-
ations in the composition of the commensal bac-
teria that normally populate the gastrointestinal
tract [4–6]. During the past decade, our understand-
ing of the commensal microbiota – the collection of
microbes that reside on our skin and mucosal
surfaces – has been transformed by the introduction
of culture-independent methods of analysis. The
numbers alone are staggering. Our bodies contain
10 times more microbes than eukaryotic cells, which
collectively encode 100–1000 times more genetic
information, and are referred to as the microbiome
[7,8]. Over the course of millions of years of co-
evolution, commensal bacteria have taken on many
physiological functions essential to our health,
including, but not restricted to, the production of
vitamins and the digestion of insoluble dietary
fibers [9]. Other constituent microbes including
bacteriophage and viruses are at least as numerous
but much less well understood or characterized.
ht © 2015 Wolters Kluwe
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What is becoming clear, however, is that 21st
Century lifestyle practices have shifted the compo-
sition of our commensal bacteria away from that
which populated our ancestors; this modern-day
bacterial community is increasingly correlated with
disease [9]. Some environmental influences that can
affect the microbiome include pervasive antibiotic
use, consumption of a ‘Western’ diet high in fat and
sugar and low in fiber, the elimination of previously
common enteropathogens, vaccination/reduced
r Health, Inc. All rights reserved.
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KEY POINTS

� The trillions of bacteria that populate our skin and
mucosal surfaces critically regulate key physiological
functions.

� Environmentally induced changes in commensal
bacterial communities have created a dysbiosis that is
linked to the increasing prevalence of complex immune-
mediated disease.

� Understanding how indigenous bacterial communities
interact with the innate and adaptive immune system
will inform the development of novel live
biotherapeutics to prevent or treat food allergy.

Food allergy
exposure to infectious disease, Caesarean birth, and
formula feeding (reviewed in [6]).

Commensal bacterial community composition
varies by anatomic site [8,9]. We are populated with
our founder microbiota at birth which, until com-
paratively recently, occurred for most humans by
natural delivery. Enterobacteria and vaginally
derived lactic acid-producing bacteria initially pre-
dominate; breast milk, which harbors its own micro-
biome, favors the emergence of Bifidobacteria,
which extract nutrients from human milk glycans
[10,11]. Subsequent microbial successions eventu-
ally result in a diverse and unique microbiota [12].
Surgical delivery disturbs this process; founder bac-
terial populations in infants born by Caesarean
section are derived from the skin of the mother or
caregiver [13]. The neonatal period is a time of great
plasticity for the emerging microbiome, which is
critically intertwined with the maturation of the
immune system of its host. Recent work has high-
lighted the profound influence of environmental
factors on the developing microbiome.
ANTIBIOTIC USE AND DIET SHAPE THE
MICROBIOTA AND INFLUENCE
SUSCEPTIBILITY TO FOOD ALLERGY

Beyond the targeted depletion of particular bacterial
taxa, the effects of antibiotics on microbial com-
munity structure often persist long after cessation
of the treatment [14]. Medical exposure is only one
source; the widespread usage of antibiotics in
agriculture, especially for their growth-promoting
properties for livestock, has contributed to their
increasing low-residue presence in the food chain
[15]. In the United States (and many other devel-
oped countries), most infants receive multiple
courses of antibiotics during the first 2 years of life
[16]. Murine model studies [4,17,18,19

&&

] have
demonstrated that early-life exposure to orally
 Copyright © 2015 Wolters Kluwer 
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administered broad-spectrum antibiotics is associ-
ated with aberrant immunity to respiratory and
dietary antigens. Recent work from our laboratory
showed that neonatal antibiotic treatment reduced
microbial diversity and bacterial load in both fecal
and ileal samples, and enhanced food allergen sen-
sitization [19

&&

]. Other recent studies support the
idea that the neonatal period is particularly critical.
Even low-dose early-life antibiotic exposure can lead
to long-lasting effects on metabolic and immune
responsiveness [20

&&

]. Data emerging from human
studies link the use of antimicrobial agents to the
increasing prevalence of food allergy. Maternal use
of antibiotics before and during pregnancy, as well
as antibiotic courses during the first month of life, is
associated with an increased risk of cow’s milk
allergy in infants [21]. Higher urinary levels of the
common antibacterial agent triclosan are detected
in children sensitized to food and aeroallergens [22].

Given that its components serve as a source of
nutrition for both the host and its microbial inhabi-
tants, it is not surprising that intestinal microbial
community structure is strongly influenced by the
composition of the diet. The gut microbiota of
children, consuming a Western-style diet of proc-
essed food high in sugar and fat and low in fiber
content, differs markedly from that of children from
a rural African community consuming a low-fat,
high-fiber plant-based diet (potentially resembling
that of Neolithic subsistence farmers from
10 000 years ago) [23]. However, the rapidity and
extent with which diet can alter human microbial
communities has not been well understood; a recent
study [24

&&

] suggests that marked changes can be
observed on daily time-scales, particularly in
response to fiber intake. Moreover, rapid and repro-
ducible alterations in particular gut bacterial taxa
can be detected after a short-term dietary inter-
vention [25

&&

]. Shifts in the abundance of fecal
microbial communities were noted in human
volunteers after only 5 days of consumption of a
plant-based diet (high in fruits, vegetables, grains,
and legumes) or an animal-based diet of meat, eggs,
and cheese [25

&&

]. Of particular interest, in indivi-
duals consuming an animal-based diet, a reduced
abundance of Firmicutes genera that ferment plant
polysaccharides was evident even in this short time-
frame. These results suggest that the timing of intro-
duction of solid food and the types of food con-
sumed may influence the development of food
allergy by changing the composition of the intesti-
nal microbiota. A recent study [26

&

] examining the
influence of dietary patterns during the first year of
life on the development of food allergy at 2 years of
age provides some support for this hypothesis.
Principal component analysis of prospective food
Health, Inc. All rights reserved.
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Commensal microbiota in dietary allergen tolerance Berni Canani et al.
diary data in a nested, case-control, within-cohort
study [26

&

] showed that nonallergic infants had an
ongoing diet that was high in fruits, vegetables, and
home-prepared (nonprocessed) foods when com-
pared with the diet of their challenge-proven
food-allergic counterparts.

A new study [27
&&

] also suggests that microbial
transmission patterns have changed with urbaniz-
ation as humans have become a predominantly
indoor species, and with this lifestyle change we,
and our children, are being predominantly exposed
to our own microbiome. The controlled indoor
environment, which has only arisen in the past
100 years, has fundamentally altered our exposure
to the microbial world. These environments are
designed, through controlled temperature, humid-
ity, and light, to be ‘antimicrobial’ [28]. We spend
approximately 90% of our lives in this ‘clean’ eco-
system. It is likely this significantly reduces our
microbial exposure, which may serve to limit the
development of our immune system, our associated
microbial diversity, and the ability of our commen-
sal microbiota to rebound from composition-alter-
ing exposures. Whether the built environment
contributes to allergic susceptibility (or might be
manipulated to prevent disease) is an idea that is
only beginning to be explored.
ALTERATION OF THE INTESTINAL
MICROBIOTA IN FOOD ALLERGY

Given the profound influence of multiple environ-
mental stimuli on the composition of the micro-
biota (and their confounding effects on its analysis),
the available data characterizing the microbiota of
patients with food allergy are still quite preliminary
[29]. Most of the data come from pediatric patients.
16S rRNA profiling suggests that potentially nega-
tive alterations in the gut microbiome composition
(dysbiosis) may precede the occurrence of allergic
manifestations. Azad et al. [30

&

] found that an
increased Enterobacteriaceae/Bacteroidaceae ratio
and low Ruminococcaceae abundance, in the con-
text of low gut microbiota richness in early infancy,
are associated with subsequent food sensitization,
suggesting that early gut dysbiosis contributes to
subsequent development of food allergy. Particular
bacterial phylotypes, but not the overall gut
microbial diversity, were significantly altered in a
cohort of Chinese infants with food allergy [31].
When sampled at 5 months of age, the fecal micro-
biota of the food-allergic infants was characterized
by increased relative abundance of Clostridium clus-
ter I and Anaerobacter, and a decreased relative abun-
dance of Bacteroides and Clostridium XVIII [31]. We
have examined the intestinal microbiota of infants
 Copyright © 2015 Wolters Kluwe
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allergic to cow’s milk at the time of diagnosis (by
double-blind oral food challenge) in comparison to
age-matched healthy 4-month-old controls [32

&&

].
We found that the microbiota of allergic infants in
our study was significantly more diverse than that of
healthy controls. Strikingly, although the healthy
infants’ microbiota was dominated by Bifidobacter-
iaceae, Enterobactericeae, and Enterococcaceae, the
microbiota of the allergic infants demonstrated a
significant increase in the abundance of Rumino-
coccaceae and Lachnospiraceae, which typically
predominate in the adult gut [32

&&

].
TREATMENT OF FOOD ALLERGY WITH
CURRENTLY AVAILABLE PROBIOTICS

The evidence reviewed thus far suggests that thera-
peutic modulation of the commensal microbiota
may be beneficial for the prevention or treatment
of food allergy. Probiotics are defined as micro-
organisms that, when ingested, confer health
benefits to the host [33]. Studies examining the effi-
cacy of currently available probiotics in treating food
allergy have yieldedconflicting results. Differences in
the study design, populations, probiotic strains, and
dosages may be responsible for the discrepancies
observed [33]. A meta-analysis of clinical trials con-
cluded that administration of probiotics prenatally,
or during the period shortly after birth, reduced
total IgE levels and the risk of atopic sensitization,
but not asthma or wheezing [34]. Recently published
guidelines for atopic disease prevention from the
World Allergy Organization concluded that there is
a likely net benefit in using probiotics for eczema
prevention [35]. However strain selection is import-
ant. Administration of Lactobacillus acidophilus,
for example, was associated with a significantly
increased risk of atopic sensitization when compared
with other strains [34]. Allen et al. [36] demonstrated
that high-dose administration of multiple strains of
Lactobacilli and Bifidobacteria to mothers during
late pregnancy and to their infants from birth to
6 months of age did not prevent eczema or reduce
the frequency of asthma in early childhood, but did
promote a reduced frequency of sensitivity to food
antigens. A Japanese study [37] showed that both
prenatal and postnatal supplementation with Bifido-
bacteria was associated with a significantly reduced
risk of eczema/atopic dermatitis during the first
18 months of life. Studies investigating the thera-
peutic effect of probiotics on challenge-confirmed
food-allergic infants are scant. In one randomized,
double-blind, placebo-controlled study [38] of
infants with challenge-proven cow’s milk allergy,
administration of Lactobacillus casei CRL431 and
Bifidobacterium lactis Bb12 for 12 months did not
r Health, Inc. All rights reserved.
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Food allergy
affect the acquisition of tolerance to cow’s milk. In
contrast, Berni Canani et al. [39,40] demonstrated
in two different prospective clinical trials that an
extensively hydrolyzed casein formula containing
Lactobacillus rhamnosus GG (LGG) accelerated the
development of tolerance acquisition in infants with
cow’s milk allergy. When we compared the fecal
microbiota of infants receiving this tolerance-induc-
ing probiotic-supplemented therapy to that obtained
from infants receiving an extensively hydrolyzed
casein formula (EHCF) alone, we found statistically
significant positive correlations between the abun-
dance of genera with the potential for producing
butyrate and the concentration of fecal butyrate in
the infants that received EHCF supplemented with
LGG [32

&&

]. Strain-level demarcations for butyrate-
producing genera (including Roseburia, Coprococcus,
and Blautia) identified in infants that acquired toler-
ance to cow’s milk suggest that LGG treatment con-
tributes to acquisition of tolerance by altering the
strain-level community structure of taxa with the
potential to produce butyrate [32

&&

].
Oral immunotherapy (OIT) has shown promise

in eliciting desensitization in patients with food
allergy, but its ability to induce long-lasting toler-
ance in the absence of ongoing allergen adminis-
tration has not been reliably demonstrated [41]. A
double-blind, placebo-controlled randomized trial
evaluated the efficacy of 18 months of therapy,
combining oral peanut desensitization with admin-
istration of the probiotic L. rhamnosus CGMCC in
1–10-year-old children with peanut allergy [42

&

].
Although ‘possible sustained unresponsiveness’
2–5 weeks after cessation of OIT was noted in most
(82%) of the children receiving the probiotic and
OIT, no comparison was made to treatment groups
receiving either OIT or probiotic alone. The effect of
daily L. rhamnosus CGMCC treatment on microbial
community structure was not evaluated.
DEVELOPMENT OF NOVEL LIVE
BIOTHERAPEUTICS FOR THE PREVENTION
AND TREATMENT OF FOOD ALLERGY

Increasing appreciation of the role of the microbiota
in regulating complex immune-mediated diseases
has led to the emergence of a number of biotech-
nology companies seeking to commercialize novel
live biotherapeutics with microbiome-modulating
properties [43]. The efficacy of fecal transplantation
in resolving disease in patients with relapsing
Clostridium difficile infection has provided proof of
principle for therapeutic approaches based on oral
administration of constituents of the normal com-
mensal microbiota [44]. Preclinical studies have
been facilitated by the use of germ-free mice, which
 Copyright © 2015 Wolters Kluwer 
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lack commensal microbes. Both the cell-mediated
(Treg) and humoral (IgA) arms of the immune sys-
tem are dramatically under-developed in these mice
[45]. Honda and colleagues have identified mucosa-
associated Firmicutes in the Clostridia class as the
anaerobic component of the indigenous microbiota
critical for the induction of Tregs in the colonic
lamina propria [46]. Atarashi et al. [47

&&

] showed
that Tregs are also induced when spore-forming
Clostridia isolated from human feces are transferred
into germ-free mice. A Treg-inducing mixture of
human isolates that can be cultured in vitro has been
selected for development as a novel biotherapeutic
for the treatment of inflammatory bowel diseases
[48].

New work from our laboratory shows that this
type of approach may also hold promise for the
treatment of food allergy. We found that sensitiz-
ation to a food allergen is enhanced in germ-free
mice and in mice that have been treated by neonatal
antibiotic administration [19

&&

]. Selective coloniza-
tion of germ-free mice demonstrated that the
allergy-protective capacity is contained within the
Clostridia class. Moreover, re-introduction of a Clos-
tridia-containing microbiota to antibiotic-treated
mice blocked sensitization to a food allergen
[19

&&

]. Clostridia colonization of germ-free mice
restored both the Treg and IgA compartments.
Microarray analysis of the isolated intestinal epi-
thelial cells led to the identification of a novel
innate mechanism by which Clostridia protect
against sensitization to dietary antigens. Prior work
has implicated defects in intestinal permeability to
aberrantallergic responses to food [49]. Ourdiscovery
that Clostridia colonization induces the production
of the barrier-protective cytokine interleukin (IL)-22
provided mechanistic insight into how commensal
bacteria regulate intestinal barrier permeability. We
used a sensitive capture ELISA to demonstrate that
IL-22 acts to reduce the concentration of orally
administered dietary antigen detectable in the
systemiccirculation [19

&&

].Ourdata therefore suggest
that Clostridia stimulate both innate and adaptive
immune-signaling pathways to maintain tolerance
to food. This is a paradigm shift since oral tolerance
has typically been attributed primarily to an antigen-
specific Treg response [50,51]. Our work suggests a
new model in which tolerance to dietary antigen
requires both food antigen-specific Tregs and a bac-
teria-induced barrier-protective response [19

&&

,52].
It is not yet clear whether Clostridia modulate

host immunity by direct cell-to-cell contact,
secreted metabolites, or both. The ability of particu-
lar bacterial taxa to ferment dietary fiber for the
production of short-chain fatty acids (SCFAs) helps
to explain the health-promoting role of bacterially
Health, Inc. All rights reserved.
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FIGURE 1. Commensal bacteria ferment insoluble dietary fiber to produce short-chain fatty acids (SCFAs), the most abundant
of which are propionate, butyrate, and acetate. Colonocytes metabolize butyrate as their primary energy source. The
production of immunoregulatory metabolites is one way that commensal bacteria interact with the host immune cells to
promote nonresponsiveness to innocuous luminal antigens. Recent work suggests that SCFAs, particularly butyrate, contribute
to mucosal homeostasis through the induction of regulatory T cells and the regulation of epithelial barrier permeability.

Commensal microbiota in dietary allergen tolerance Berni Canani et al.
produced metabolites [53]. Of the major SCFAs,
butyrate is the preferred energy source for colono-
cytes (Fig. 1). Its abundant presence in the gut is
often considered a sensor of intestinal health [54].
Butyrate-producing bacteria comprise a functional,
rather than a taxonomic group, although the Clos-
tridial families Lachnospiraceae and Ruminococ-
ceae are among its most prominent producers
[55]. Bacteria-produced SCFAs have been implicated
in the regulation of both the proportions and func-
tional capabilities of colonic Tregs [56,57], which, in
some studies, has been specifically attributed to
butyrate production by spore-forming Clostridiales
[58

&&

]. Preliminary data from our laboratory also link
 Copyright © 2015 Wolters Kluwe

Table 1. Analysis of the role of the commensal gut microbiome i

Study participants Comparative evaluation of a well characterized pati
history, positive screening test for immune respons
healthy individuals matched for age, sex, and exp
the microbiome, including: antibiotic use, birth ord
degree of social exposure (child care), vaccinatio
inhibitors

Methods Stool samples will be collected from patients at initia
time for each patient to capture variation in the m
environmental interactions are monitored. These d
questionnaires collected in an unsupervised setting
stool using standard techniques outlined by the Ea
The DNA will then be processed for either 16S rR
metagenomic analysis with Illumina sequencing [6
methods (e.g. refs. [27&&,65]), followed by a suite
significant differences between cohorts, through ti
databases of human microbiome data (e.g. hmpd
determine if observed trends show any statistical p

1528-4050 Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
butyrate, but not other SCFAs, to regulation of
epithelial barrier permeability (Feehley et al.,
personal communication). The clinical relevance
of this mouse model work is highlighted by a recent
study [59

&

] which correlated the severity of atopic
disease with intestinal microbial diversity and the
abundance of butyrate-producing bacteria.
CONCLUSION

Taken together, these findings provide a compelling
rationale for exploring the administration of novel
Clostridia-based biotherapeutics or the adminis-
tration of butyrate as adjunctive therapies to
r Health, Inc. All rights reserved.
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Food allergy
promote tolerance to food allergens. Protocols
which analyze the efficacy of OIT based on multi-
parameter flow cytometric analysis of peripheral
blood may have limited utility; an elegant recent
study [60

&&

] has shown that most T-effector/memory
cells are tissue-resident. In this regard, evaluation of
allergen concentration in the bloodstream in the
hours following gavage may provide a more clini-
cally (and immunologically) relevant form of assess-
ment. Moreover, it is tempting to speculate that
poor digestibility and the access of undigested
protein to the bloodstream with B-cell epitopes
intact may be a distinguishing feature of food aller-
gens (see refs. [61–63]) for peanut, b-lactoglobulin,
and wheat). Whether this is in fact the case, and
whether commensal bacteria regulate the systemic
concentration of allergens other than peanut, is
now readily testable in preclinical murine models.
Variations of this assay can be adapted to clinical
trials to evaluate the efficacy of administered live
biotherapeutic agents/butyrate in modulating aller-
gen concentrations in serum during double-blind
oral food challenge. Several methodological chal-
lenges to the understanding of the gut microbiome
in food allergy must be considered in future studies
and will require multidisciplinary teams of immu-
nologists, clinicians, microbial ecologists, and bio-
informaticians (Table 1) [27

&&

,64–66].
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