
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria Informatica

Energy consumption
of parallel algorithms for solving

linear systems on HPC architecture

Tesi di laurea in
Sistemi Operativi M

Relatore
Prof. Anna Ciampolini

Correlatore
Prof. Daniela Loreti

Correlatore
Ing. Marcello Artioli

Candidato
Sofia Montebugnoli

III Sessione di Laurea

Anno Accademico 2021-2022

ii

Abstract

Modern High-Performance Computing HPC systems are gradually increasing in
size and complexity due to the correspondent demand of larger simulations re-
quiring more complicated tasks and higher accuracy. However, as side effects
of the Dennard’s scaling approaching its ultimate power limit, the efficiency of
software plays also an important role in increasing the overall performance of a
computation. Tools to measure application performance in these increasingly com-
plex environments provide insights into the intricate ways in which software and
hardware interact. The monitoring of the power consumption in order to save
energy is possible through processors interfaces like Intel Running Average Power
Limit RAPL. Given the low level of these interfaces, they are often paired with an
application-level tool like Performance Application Programming Interface PAPI.
Since several problems in many heterogeneous fields can be represented as a com-
plex linear system, an optimized and scalable linear system solver algorithm can
decrease significantly the time spent to compute its resolution. One of the most
widely used algorithms deployed for the resolution of large simulation is the Gaus-
sian Elimination, which has its most popular implementation for HPC systems
in the Scalable Linear Algebra PACKage ScaLAPACK library. However, another
relevant algorithm, which is increasing in popularity in the academic field, is the
Inhibition Method. This thesis compares the energy consumption of the Inhibi-
tion Method and Gaussian Elimination from ScaLAPACK to profile their execu-
tion during the resolution of linear systems above the HPC architecture offered
by CINECA. Moreover, it also collates the energy and power values for different
ranks, nodes, and sockets configurations. The monitoring tools employed to track
the energy consumption of these algorithms are PAPI and RAPL, that will be in-
tegrated with the parallel execution of the algorithms managed with the Message
Passing Interface MPI.

iii

iv

Contents

Abstract iii

1 Introduction 1

2 State of the Art 5
2.1 High Performance Computing . 5

2.1.1 Parallelization . 6
2.1.2 Parallel programming . 7

2.2 Cineca Architecture . 8
2.3 Energy saving . 9

2.3.1 Energy metrics . 10
2.3.2 Energy efficient algorithms 11

2.4 RAPL . 11
2.4.1 Advantages in using RAPL 15
2.4.2 Disadvantages in using RAPL 16

2.5 Powercap . 17
2.5.1 Relation between frequency, power and performances 17
2.5.2 Powercap framework . 18

2.6 PAPI . 18
2.6.1 Events . 19
2.6.2 Low-level API . 21
2.6.3 High-level API . 21
2.6.4 Multiplexing . 21
2.6.5 Handlers . 22
2.6.6 Thread support . 22
2.6.7 Tools . 23
2.6.8 PAPI and RAPL . 23
2.6.9 PAPI and Powercap . 25
2.6.10 PAPI and MPI . 28

2.7 Fault Tolerance . 30
2.8 Linear systems solver algorithms . 31

v

vi CONTENTS

2.8.1 Gauss Elimination Method 31

2.8.2 Inhibition method . 32

2.8.3 Parallelization of IMe . 34

2.8.4 Scalable LAPACK . 37

3 Design and implementation 41

3.1 Requirements . 41

3.2 Naive solution . 42

3.2.1 Implementation . 44

3.3 Common node solution . 44

3.3.1 Implementation . 45

3.4 Tester: command line interface . 46

3.4.1 Tester.c . 46

3.4.2 Test routines . 48

3.4.3 Algorithms versions . 49

4 Configuration and Execution 53

4.1 Configuration . 53

4.1.1 Machine configuration . 53

4.1.2 Building LAPACK and BLAS 53

4.1.3 Building IMe and ScaLAPACK 54

4.2 Execution . 55

4.2.1 Launch tests on MARCONI 55

5 Monitoring IMe and ScaLAPACK 59

5.1 Parameters of the tests . 59

5.1.1 Monitored phases: allocation and execution 60

5.1.2 Nodes, ranks, sockets . 60

5.2 Data collection . 61

5.2.1 Directories hierarchy . 61

5.2.2 Launching the tests and collecting the results 62

5.2.3 Composition of multiple CSV files 63

5.2.4 Data aggregation from Comma-Separated Files to Excel . . 64

5.3 Significant charts . 65

5.4 Concluding remarks . 72

5.4.1 General observations . 72

5.4.2 Summary comparison between IMe and ScaLAPACK 73

6 Conclusions 75

6.1 Future developments . 76

CONTENTS vii

A Results in detail vii
A.1 Results for matrix 8640 x 8640 . vii

A.1.1 Deployed ranks: 144 . vii
A.1.2 Deployed ranks: 576 . ix
A.1.3 Deployed ranks: 1296 . xi

A.2 Results for matrix 17280 x 17280 xi
A.2.1 Deployed ranks: 144 . xi
A.2.2 Deployed ranks: 576 . xv
A.2.3 Deployed ranks: 1296 . xvi

A.3 Results for matrix 25920 x 25920 xvii
A.3.1 Deployed ranks: 144 . xvii
A.3.2 Deployed ranks: 576 . xix
A.3.3 Deployed ranks: 1296 . xxii

A.4 Results for matrix 34560 x 34560 xxii
A.4.1 Deployed ranks: 144 . xxii
A.4.2 Deployed ranks: 576 . xxvi
A.4.3 Deployed ranks: 1296 . xxvii

viii CONTENTS

List of Figures

2.1 HPC schema . 5
2.2 RAPL architecture, hierarchy of the power domain [23] 13
2.3 Structure of SkyLake processors [34] 14
2.4 PAPI architecture, hierarchy of power domains [8] 20

3.1 Structure of the MPI communicator in the näıve solution, with the
execution on four different processors 42

3.2 Structure of the MPI program in the näıve solution 43
3.3 Structure of the four MPI node communicators in the second solu-

tion, with the execution on four different processors 45
3.4 Structure of the MPI program in the common nodes solution 50
3.5 Dependencies of the C files . 51

5.1 IMe and ScaLAPACK breakdown on the total energy consumption 66
5.2 Comparison between full loaded processors and half loaded processors 67
5.3 IMe and ScaLAPACK energy and time at fixed ranks size 68
5.4 IMe and ScaLAPACK energy and time at fixed matrix size 69
5.5 Energy and power consumption of IMe and ScaLAPACK at fixed

ranks size . 70
5.6 Energy and power consumption of IMe and ScaLAPACK at fixed

matrix size . 71

ix

x LIST OF FIGURES

Listings

2.1 basic MPI structure . 7
2.2 basic program with PAPI and MPI 28
4.1 Compile script for LAPACK library 53
4.2 Batch script submitted at each execution to SLURM 56

xi

xii LISTINGS

Chapter 1

Introduction

Nowadays the reduction of energy consumption is a core issue for many companies,
especially for the most energy consuming, like data centers. Since the advent of
Green IT, in other words the study and practice of environmentally sustainable
computing or IT, the interest in creating more efficient High Performance Com-
puting Systems has increased. This was caused initially by Dennard ‘s scaling
law approaching and reaching their ends in CMOS technology, secondly from the
increasing request of exascale systems, and finally from the unpredictable sub-
stantial increase of the energy price due to the last years catastrophes. Hence,
the thermal and power challenges represent a renewed issue that is disrupting the
typical programming model adopted so far by the scientific community.

The breakdown of the effectiveness of Dennard’s scaling around 2006 led to
the inability to significantly increase the clock frequencies, therefore most of CPU
manufactures has focused on multicore processors alternative way to improve per-
formance. An increased core count benefits many workloads, but the increase in
active switching elements from having multiple cores still results in increased over-
all power consumption and thus worsens CPU power dissipation issues [14] [19].
The result is that only some fraction of an integrated circuit can be active at any
given point in time without violating power constraints, in other words the to-
tal power consumption of each device limits the practical achievable performance.
Moreover, due to the overheating of the cores the cooling systems consumes more
additional power, and this impacts directly on the power budget available for the
data center. Until 2013 the power budget of the Top500[2] for supercomputers has
increased, but in the last years raising the performances directly means increasing
the power budget, and consequently the economic budget to power these HPC sys-
tems. Thus, the efficiency is a core issue if it is impossible to increase the energy
consumption.

The exascale systems are considered resources of National interest for many
countries, due to the progress in research reachable through the modelling of com-

1

2 CHAPTER 1. INTRODUCTION

plex systems. The U.S. Department of Energy states[1] that these systems are
fundamental for National security issues like: stockpile stewardship, simulation
tools for assessing nuclear weapons performance, response to hostile threat envi-
ronments. Moreover, they play an important part in cosmological probing of the
standard model, in the analysis of molecular structure and interaction in biology,
in health care, energy security and economic security. Hence, HPC systems will
be the tool used to tackle all these complex issues that can be only theoretically
modelled before.

Finally, the complex geopolitical situation faced in the last years, due to climate
crisis, war and pandemic has showed how the cost of energy can rapidly change
reaching high and low peeks. This instability affects the quantity of energy that
can be consumed, because a facility like CINECA that currently absorbs 10 MW
per 250 Pflops will have to dramatically increase the budget to buy the energy
needed to power the supercomputers. Hence, reaching an efficient power usage
effectiveness index is not only contributing to a more sustainable HPC systems,
but it also helps to reduce the actual costs. To increase efficiency is important
both to decrease the energy absorbed by the plants, by reaching the requirements
imposed by international standard organizations like ISO 50001 Energy manage-
ment systems [3] and to optimize the energy consumption of the code run on the
CPUs of HPC systems.

This thesis wants to explore the energy consumption of parallel algorithms on
HPC architectures, with the focus on linear systems resolution algorithms, which
represent several real-world applications, spanning from the field of medicine (e.g.,
medical image processing, computed tomography, etc.) to that of engineering (e.g.,
aerodynamic design, circuit simulation, etc.).

When a program is executed on HPC systems using a parallel paradigm, im-
proving the efficiency of the algorithm is a core issue. In fact, all those problems
which are CPUs intensive and aim to solve complex problems often requires days of
computation. Therefore, each instruction should be optimized and strictly neces-
sary for the resolution of the problem, because irrelevant, repetitive, or superfluous
instructions can cause a delay in the end of computation of several hours, origi-
nating a waste of energy, computational resources, and money. Some of the most
complex problems can be represented through matrices and their resolution is rep-
resented by the solution of the matrix as a linear system. Hence, the study of
linear system solver algorithms is important to solve a wide set of problems from
many fields with real-world applications. These linear systems involve thousands
of equations, that can be managed efficiently from parallel architectures like HPC
systems. With the purpose of improving this class of algorithms it can be helpful
to study their performances on the HPC systems by monitoring the execution of
these tasks.

3

In particular, this thesis focuses on two different algorithms deployed for the
linear systems resolution which are: the Gaussian Elimination and the Inhibi-
tion Method IMe [11]. The Gaussian Elimination also known as row reduction
is the most efficient algorithm for solving systems of linear equations both in a
parallel and in a sequential form with an arithmetic complexity of 2/3n3 +O(n2).
Whereas, the Inhibition method in the last available version has reached a com-
plexity of 3/2n3 +O(n2) so far. However, recently it was proved [7] that IMe has
a good integrated low-cost multiple fault tolerance, which is more efficient than
the checkpoint/restart technique usually applied in Gaussian Elimination linear
systems resolution. Therefore, a deep analysis and understanding of IME can lead
to significant contribute to the available algorithms for liner systems resolution
and for further optimizations. Both the Gaussian Elimination and the Inhibition
Method have a parallel version which is implemented by the Netlib organization in
the ScaLAPACK library in the first case, and by ENEA and University of Bologna
in the second case. To analyse the efficiency of these algorithms is useful to mea-
sure and compare the energy consumption during their execution and understand,
if possible, which parts of the processor are more stressed. In this phase the linear
systems solver algorithms will be tested and monitored to collect data about their
energy consumption.

Thesis outline Accordingly, the reminder of this thesis is structured as follows.
Chapter Chapter 2 covers the technologies and studies about the HPC systems,
the energy measurements and capping, and the definition of the main algorithms
linear systems resolution, with particular focus on the Inhibition Method. Chapter
Chapter 3 focuses on how the Message Passing Interface and the Performance API
should integrate to monitor the designated metrics, moreover it contains a catego-
rization of the different possible approaches to sample the metrics and it explains
how the monitoring program is integrated and implemented in the code of the
linear systems solver algorithms, the last part of this chapter explains how every-
thing is presented to the user with a command line interface. Chapter Chapter 4
clarifies which are the settings needed to configure the Marconi A3 environment
and it points out the steps to execute the parallel code on it. Chapter chapter 5
specifies the parameters of the performed tests, and the obtained results, through
charts and observations. The parameters consists in a set of different variables
for the execution which are tested during the monitoring. Whilst, the results of
the several executions are showed and reviewed in the second part of the chapter.
Finally, Chapter 6 concludes this thesis by summarising its main contribution and
presents its future developments.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

2.1 High Performance Computing

High-Performance Computing HPC is defined as the set of technologies used by a
computer cluster to create a computation system capable of providing high per-
formances through the parallel computation.

As far as the Flynn’s taxonomy for computer architecture is concerned, it is
possible to classify the HPC systems as a combination of the Multiple instruction
streams, multiple data streams MIMD and the Single Instruction stream, Multiple
Data stream SIMD. Between the MIMD architectures the most popular for HPC
systems is the Distributed Memory System SMD. Consequently, in most of the
HPC systems there is a cluster with distributed memory nodes connected through
low-latency high-bandwidth networks, in which each node is multiprocessor.

Compute nodes are often organized in limited lifetime sub-clusters created at
execution time by the system scheduler to satisfy the user’s request which has
exclusive access to this set of nodes. The resource request happens through a
batch queue system that allows the users to submit the application jobs.

Figure 2.1: HPC schema

To develop software which can fit the HPC architecture and make the most
out of the hardware parallelism, it is important to apply the concepts of par-

5

6 CHAPTER 2. STATE OF THE ART

allel programming. There are two possible approaches: on one hand, the code
parallelization can be automatic, especially through special compilers capable of
translate sequential code into the parallel one, even though the performances are
not fulfilling; on the other hand, in the explicit parallelization the developer articu-
lates the parallelism in the code using ad-hoc programming languages and libraries
like MPI for message exchange models, or OpenMP for shared memory models.

The Single Program Multiple Data SPMD is an execution model characterized
by a set of cores in which each one executes the same program; what is more the
conditional branching allows to differentiate the code executed by each core and,
the personalization of the code is possible using the rank of the node in which the
process is executing.

2.1.1 Parallelization

Since parallelization is an advanced form of programming, most of the time the first
version of the program is sequential. Then the sequential version is transformed
into a more efficient parallel one by splitting the execution in many processes.
When a program is parallelized, it is ready to be run on an HPC system.

Ideally, the execution time of the program should decrease with the increase
of the employed nodes, nevertheless parallelization process introduces an overhead
and the execution time does not decline linearly. As a matter of fact, this happens
because not all the algorithms are embarrassingly parallel; if an interaction depends
on the previous computations, some synchronization points or message exchange
are needed. To generalize the workflow to perform a parallelization, the developer
should:

– Split the algorithm between the available processes in order to balance the
load and minimize the interactions.

– Design the synchronization between the parallel processes

– Establish the condition for the communication between the processes.

The last two points are mutually exclusive because the choice depends on the ar-
chitecture of the HPC system: in shared memory systems processes engage through
synchronizations, whilst distributed memory systems are based on communication
and message exchange. The metric for performance measurement is the flop (float-
ing point operations per second). As far as HPC systems are concerned, the metrics
are slightly different due to the evaluation of parallel programming.

Speedup is defined ad S = Tseq/Tpar; where Tseq is the time taken for the
execution of the program in its sequential form on a single node, while Tpar is the
execution time of the program in its parallel version. The speedup measures the

2.1. HIGH PERFORMANCE COMPUTING 7

Listing 2.1: basic MPI structure�
1 main () {

2 // sequential part

3 MPI_Init () ;

4 //< code with calls to MPI library >

5 // parallel part

6 MPI_Finalize () ;

7 // sequential part

8 }
� �
difference between the sequential version and the parallel version, in other words
it is the gain in the application of the parallelization.

2.1.2 Parallel programming

As mentioned before there are two possible architectures: shared memory and
message exchange. MPI defines a communication protocol for processes in parallel
systems. The standard is implemented in different libraries for many languages:
C/C++, Fortran, Python. The standardized interface increases portability on
different architectures and implementations.

MPI follows a SPMD paradigm,; the execution of a parallel program is held
from different instances of the same program, where each one is executed on a dif-
ferent node. Moreover, MPI offers a huge set of functions to perform point-to-point
and many-to-many communication, eventually with synchronous or asynchronous
communication. A key feature of MPI is represented by the powerful tools for
data partitioning and data collecting, with a static and implicit management of
the degree of parallelism.

The block MPI Init/MPI Finalize defines the space for the usage of MPI func-
tions. Every process in MPI runs the same program, conditional branching is
used to differentiate the behaviour according to the role. The MPI communica-
tor is an abstraction that defines a communication domain, where some processes
are allowed to communicate between each other, and two processes not belong-
ing to the same domain cannot communicate. Each MPI program has a default
communicator called MPI_COMM_WORLD. It is possible to create sub-groups of pro-
cesses, or sub-communicators and the division is made using an established crite-
rion. They can be defined by the programmer or exposed by the MPI library like
MPI_COMM_TYPE_SHARED, which differentiates ranks that run on the same node.
There are two types of communicators:

8 CHAPTER 2. STATE OF THE ART

– Intra-communicator is a collection of processes that can send messages to
each other and engage in collective communication operations.

– Inter-communicator is used to send messages between processes belonging to
disjoint intra-communicators.

A intra-communicator is composed of a group which is an ordered collection of
processes. If a group consists of p processes, each process in the group gets as-
signed a unique rank, which is a non-negative integer in the range 0, 1, . . . , p-1.
A context where is a system-defined object uniquely identifies a communicator.
Two distinct communicators have different contexts, even if they have identical
underlying groups. Finally, attributes allow to specify the topology.

2.2 Cineca Architecture

The tests of this thesis are executed on Marconi U3 partition on CINECA. Mar-
coni is the new Tier-0 system, co-designed by Cineca and based on the Lenovo
NeXtScale platform, that substitutes the former IBM BG/Q system (FERMI).
MARCONI, based on the next-generation of the Intel® Xeon Phi™ family along-
side with Intel® Xeon® processor E5-2600 v4 family product, offers the scientific
community a technologically advanced and energy-efficient high performance com-
puting system. The system, logically named ‘MARCONI’, has been designed to
be gradually completed in about 18 months. Marconi A3 is the last part added to
the system and it reaches a total computational power of about 20Pflop/s making
use of the future generation Intel Xeon processors (Sky Lakes).

This supercomputer takes advantage of the new Intel® Omni-Path Architec-
ture, which provides the high-performance interconnectivity required to efficiently
scale out the system’s thousand of servers.

A high-performance Lenovo GSS storage subsystem, that integrates the IBM
Spectrum Scale™ (GPFS) file system, is connected to the Intel Omni-Path Fabric
and provides data storage capacity. The progressive development of the Mar-
coni system allows the use of the state-of-the-art processor technology, enabling
an extremely high-performance system but still with a ‘green’ soul. One of the
parameters of the project developed by the Cineca team is in fact to gradually in-
crease the computational power up to 50Pflop/s without exceeding, at any stage,
the limit of 3MWatt power consumption.

The architecture of Marconi is Intel OmniPath Cluster, with 17PB of local
storage. There are eight login nodes. Each one contains two Intel Xeon Processor
E5-2697 v4 with a clock of 2.30GHz and 128 GB of memory. Login nodes are
shared between three partitions: A1 (BDW), A2 (KNL) and A3 (SKL). The three
partitions are served by a single SLURM server. The performance of Marconi A3

2.3. ENERGY SAVING 9

comprehends forty-five racks, 3188 nodes and each one has 2 x 24-cores Intel Xeon
8160 CPU (Skylake) at 2.10 GHz, therefore the total cores per nodes are 48, whilst
a 192 GB of DDR4 RAM is provided to every node. A single node can reach a
peak performance of 3.2 TFlop/s, whereas the overall MARCONI A3 architecture
can achieve a 10 PFlop/s peak [33].

2.3 Energy saving

Nowadays, computers include different power management techniques which sup-
port the reduction of energy consumption[13]. Examples are dynamic voltage
frequency scaling DVFS, clock gating, and power gating. Moreover, the usage
of special instructions and specialized coprocessors can help reducing energy con-
sumption.

DVFS can reduce the clock frequency and voltage level of different components
of the compute node (processors, DRAM memories, etc.) at the expense of some
performance degradation. Currently, DVFS is broadly supported by low-power and
high-performance processors provided by different manufacturers under different
names (e.g. SpeedStep in Intel processors and PowerNow or Cool ‘n’ Quiet in
AMD processors). There are three factors that need to be considered when DVFS
is applied:

– the dynamic power, which has a quadratic relationship with frequency-
voltage scaling;

– the static power, which increases exponentially with the voltage;

– the performance, which has a linear relationship with the frequency.

Clock Gating reduces the power consumption by disabling the clock in those
parts of the circuit that are idle or like in the case of flip-flops, maintain a steady
state that does not need to be refreshed. The power used to drive the clock signal
can represent more than a half of the overall power consumption. Therefore, clock
gating can potentially achieve a significant energy reduction. This technique can
be controlled both at hardware and software level. Hardware-level approaches
typically provide a finer granularity, allowing also to disable components inside a
functional block. Software-level approaches are usually applied at entire functional
blocks, but they allow more elaborated energy-saving policies.

Power gating is a more aggressive approach in which a functional block is
disconnected from the power supply, powering of all its components. Nowadays,
existing processors contain clock gating logic managed by a power reduction policy
for almost every functional block. For some components clock gating is used in
combination with power gating features. Given that the entire functional unit is

10 CHAPTER 2. STATE OF THE ART

disconnected, power gating achieves a better power reduction than clock gating.
However, given that the functional unit state is erased, it is necessary to provide
mechanisms for saving and restoring the states of the functional units, which in-
creases the complexity and complicates resource utilization when applying power
gating to active components that need to preserve their state.

In order to obtain the benefits offered by an Ultrascale or Exascale system, it
will be increasingly important to provide system services for an effective manage-
ment of the system resources on behalf of the applications. Those services can
be offered to the applications through the programming environment or through
specialized libraries, but they should be as transparent to the user as possible
to support application porting and sustainability. As energy is a cross-layer is-
sue, several aspects of the system software and the operating system should be
involved in energy efficiency resource management, but it is also paramount to
provide metrics and facilities to monitor and express energy at the processor and
system level.

2.3.1 Energy metrics

In order to properly evaluate a specific system property, it is necessary to define
corresponding metrics. With regard to energy, the main basic metric is usually
the unit of work or amount of heat transferred, measured in Joule (J), while the
power, i.e. the amount of transferred energy in time, is measured in Watt (W). In
the computing system context, several initiatives related to energy measurement
and management have been started, mostly grouped under the umbrella of Green
IT. There are two main metrics for evaluating energy efficiency in data centers:
metrics[31]: Power Usage Effectiveness (PUE), and Data center Infrastructure
Efficiency (DCiE). PUE is defined as follows:

PUE =
TotalFacilityEnergy

ITEquipmentEnergy

while DCiE is specified as its reciprocal:

DCiE =
1

PUE
=

ITEquipmentEnergy

TotalFacilityEnergy
x100

The energy for the total facility is the overall amount of energy consumed by the
whole data center, including IT systems and facilities. The IT systems energy is the
energy consumed by just the IT equipment only, such as processing, storage, and
network components for data management and processing. The facilities include
all the other subsystems, such as UPS and power management systems, cooling
systems, lighting systems, etc.

2.4. RAPL 11

2.3.2 Energy efficient algorithms

It is important to study the influence of Hardware mechanisms to reduce energy
consumption on algorithms and applications. It must be investigated whether
these techniques can be employed to reduce the energy consumption of algorithms,
and which specific characteristics of algorithms may influence the resulting energy
consumption. If the influencing factors are known and can be captured quan-
titatively, this information can be used to tune applications towards a smaller
energy consumption by applying suitable algorithmic transformation techniques
[9]. The energy consumption E of an algorithm can be described by the power
consumption P of the execution resources employed and by integrating P over the
execution time of the algorithm: E = R × tmax × t = t0P (t)dt. Typically, the
power consumption varies during the execution time of the application, depending
on the specific execution situation of the application and the resulting usage of the
different execution resources. The variations of the power consumption during the
execution time can be measured in detail with specialized power meters, power
acquisition systems, or hardware counters (e.g. Intel RAPL interface).

The power consumption of processors comprises a dynamic and a static power
consumption part[10]. The dynamic power consumption Pdyn is related to the
switching activity of the processor during execution and it can be expected that
it is smaller during processor idle periods. The static power consumption Pstat
captures the leakage power, which becomes more important for processors with
smaller transistor size, and it is present even if there is no switching activity of
the transistors. For DVFS processors, the dynamic power consumption increases
significantly with the operational frequency f, and often, a dependence Pdyn(f) =
γfα with 2.5 ≤ α ≤ 9 is assumed, where is a suitable parameter. The dependence
of the static power consumption Pstat on f is typically quite small and is often
neglected and assumed to be constant.

For parallel applications, the speedup obtained plays a role and it can be ob-
served that applications with a larger speedup tend to have a larger power con-
sumption than applications with a smaller speedup. This can be explained by the
fact that applications with a smaller speedup typically include more idle times dur-
ing which some parts of the processing cores can be powered down, thus reducing
the average power consumption.

2.4 RAPL

All the Intel CPUs offer power management interfaces that are not architectural
but address the power management needs of several platform’s specific compo-
nents. RAPL (Running Average Power Limit) interfaces provide mechanisms to

12 CHAPTER 2. STATE OF THE ART

enforce power consumption limit. Power limiting usages have specific usages in
client and server platforms[12]. For client platform power limit control and for
server platforms used in a data center, the following power and thermal related
usages are desirable:

– Platform Thermal Management: Robust mechanisms to manage component,
platform, and group-level thermals, either proactively or reactively (e.g., in
response to a platform-level thermal trip point).

– Platform Power Limiting: More deterministic control over the system ’ s
power consumption, for example to meet battery life targets on rack-level or
container-level power consumption goals within a data center.

– Power / Performance Budgeting: Efficient means to control the power con-
sumed (and therefore the sustained performance delivered) within and across
platforms.

The server and client usage models are addressed by RAPL interfaces, which
expose multiple domains of power rationing within each processor socket. The
RAPL power domain is a physically meaningful domain for power management.
Each power domain informs the energy consumption of the domain, allows to limit
the power consumption of that domain over a specified time window, monitors the
performance impact of the power limit and provides other useful information, that
is, energy measurement units, minimum or maximum power supported by the
domain.

The figure 2.2 shows the hierarchy of the power domains graphically. RAPL
provides the following power domains for both measuring and limiting energy
consumption:

– Package: Package (PKG) domain measures the energy consumption of the
processor die. It includes the consumption of all the cores, integrated graph-
ics and also the uncore components (last level caches, memory controller).

– Power Plane 0: Power Plane 0 (PP0) domain measures the energy consump-
tion of all processor cores on the socket.

– Power Plane 1: Power Plane 1 (PP1) domain measures the energy consump-
tion of processor graphics (GPU) on the socket (desktop models only).

– Memory domain includes the directly attached DRAM, memory domain mea-
sures the energy consumption of random-access memory (RAM) attached to
the integrated memory controller.

2.4. RAPL 13

Figure 2.2: RAPL architecture, hierarchy of the power domain [23]

– PSys: Intel Skylake has introduced a new RAPL Domain named PSys. It
monitors and controls the thermal and power specifications of the entire
SoC and it is useful especially when the source of the power consumption
is neither the CPU nor the GPU. As Figure 1 suggests, PSys includes the
power consumption of the package domain, System Agent, PCH, eDRAM
and a few more domains on a single socket SoC.

In order to manage the power consumed across multiple sockets via RAPL, in-
dividual limits must be programmed for each processor complex. Programming
specific RAPL domain across multiple sockets is not supported. As matter of
facts, the SkyLake architecture contains two packages, named PK0 and PK1, and
each of them is linked to a different DRAM, respectively DRAM0 and DRAM1.
Therefore, the actual structure can be schematized as showed in figure 2.3.

RAPL interfaces consist of non-architectural Model Specific Registers MSR.
The counters are 32-bit registers that indicate the energy consumed since the pro-
cessor was booted up. The counters are updated approximately once a millisecond

14 CHAPTER 2. STATE OF THE ART

Figure 2.3: Structure of SkyLake processors [34]

(due to jitter). The MSRs can be accessed directly on Linux using the MSR driver
in the kernel. For direct MSR access the MSR driver must be enabled, and the read
access permission must be set for the driver. Reading RAPL domain values di-
rectly from MSRs requires detecting the CPU model and reading the RAPL energy
units before reading the RAPL domain (i.e., PKG, PP0, PP1, etc.) consumption
values.

Once the CPU model is detected, the RAPL domains can be read per package
of the CPU by reading the corresponding ’MSR status’ register. Each RAPL
domain supports the following set of capabilities, some of which are optional as
stated below.

– POWER LIMIT-MSR interfaces to specify power limit, TIME WINDOW
lock bit, clamp bit etc.

– Energy Status - Power metering interface providing energy consumption in-
formation.

– PERF STATUS (Optional) - Interface providing information on the perfor-
mance effects (regression) due to power limits. It is defined as a duration
metric that measures the power limit effect in the respective domain. The
meaning of duration is domain specific.

2.4. RAPL 15

– Power Info (Optional) - Interface providing information on the range of pa-
rameters for a given domain, minimum power, maximum power etc.

– Policy (Optional) - 4-bit priority information that is a hint to hardware for
dividing budget between sub-domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them.
Power is expressed in Watts, Time is expressed in Seconds, and Energy is expressed
in Joules. Scaling factors are supplied to each unit to make the information pre-
sented meaningful in a finite number of bits. Units for power, energy, and time are
exposed in the read-only MSR RAPL POWER UNIT MSR. Apart from directly
reading MSRs, RAPL readings can also be read from sysfs interface, perf events
or through the PAPI library. RAPL support for the sysfs powercap interface is
enabled from Linux Kernel version 3.13 and the perf event open support requires
Linux Kernel version 3.14. PAPI library is used for gathering performance-related
data. It is platform independent, and it has a RAPL interface, which uses the
MSR driver to report RAPL values.

2.4.1 Advantages in using RAPL

RAPL has several advantages due to its integration directly in the processor
through the MSR. The accuracy of RAPL energy readings is high even though
it is based on activity counters and the accuracy varies across different processing
architectures. RAPL power values are promisingly accurate, and these values can
be used to predict or model full-system power consumption. Moreover, the RAPL
energy calculations are implemented in the hardware. There is no need to do
any complex calculations, such as numerical integration in the software. Energy
consumption can be measured on the same machine without significant overhead.
No additional equipment is needed, which makes RAPL a very-low-cost option
for energy measurements. It is important to control the temperature of the CPU
to obtain accurate power readings through RAPL. There is a good correlation
between the RAPL package power and temperature. Nevertheless, CPU tempera-
ture can influence the CPU package power draw. To obtain accurate RAPL power
readings it would be good to warm up the CPU before obtaining any RAPL mea-
surements. A 2min warm-up period should be enough for any suitable program
that keeps the CPU package busy. RAPL updates the energy counters approxi-
mately once every 1ms, that is, 1,000Hz. This frequency is much higher compared
to external power meters that typically measure power only once a second. It
is demonstrated that many HPC benchmarks have phases with different package
and DRAM power consumption characteristics. Besides, the RAPL sample rate
is sufficient to distinguish different execution phases in applications. RAPL starts

16 CHAPTER 2. STATE OF THE ART

running as soon as the processor boots up. There is no need to configure it if one
wants to measure energy consumption, which makes it very easy to use. Since
RAPL is always running, there is very little additional overhead introduced by
reading the energy counters.

2.4.2 Disadvantages in using RAPL

Since RAPL interface is strictly connected to the CPU[23], it is affected by some
limitations. The energy counters are limited to 32bits even though the MSRs are
64bit wide. Therefore, they will eventually overflow. Fortunately, these overflows
are quite rare. The overflows can be mitigated easily by sampling the energy
counters more frequently than toverflow = 232×Eu

P
, where Eu is the energy units

used and P is the power consumption. Frequent-enough sampling allows detecting
every overflow that occurs. Generally, sampling the counters every 5 minutes
should be sufficient for any CPU model.

Measurements show a time delay between updates to different energy counters,
which means that the RAPL updates are not atomic. The non-atomicity intro-
duces errors when sampling multiple counters at high sampling rates. It is possible
to read both fresh and stale values of different counters. There was an issue in
validating the RAPL values specifically for the RAPL DRAM domain. The initial
findings suggest that RAPL DRAM values were unstable and unreliable for earlier
versions of processors that included RAPL. DRAM values were only available to
server grade systems prior to Haswell. Prior to Haswell, the RAPL DRAM values
followed different trends depending on the benchmark, and the values also differed
substantially at times with reference values. Since the introduction of Haswell,
RAPL DRAM values are now more reliable and follow a strong correlation with
AC reference measurements.

The update interval of the RAPL energy counters is approximately 1ms. Intel
documentation states that the time unit used by RAPL is 0.976ms. Unfortunately,
the updates do not have any timestamps associated with them. In addition, there
seems to be no way to predict the exact timing of future RAPL updates. Never-
theless, there are several solutions to cope with this problem:

– busy polling. It is possible to determine the exact timing of the RAPL up-
dates by busy polling the counters for updates. This technique allows the
exact synchronization with the RAPL updates. Hähnel et al. [17] demon-
strated that this method can be used to measure the energy consumption of
short functions.

– supersampling. Every update can be observed without the timing by sam-
pling more often than every 1ms, for example, every 0.9ms. The method

2.5. POWERCAP 17

will occasionally produce duplicate values, but they can be filtered out eas-
ily. The main advantage is the reduced overhead compared to busy polling.
However, the relative overhead is still quite large.

– High frequency sampling. Sampling frequencies in the range 50–1,000Hz fall
into this category. The advantage is a lower overhead due to a lower sampling
rate. A 50Hz sampling rate is still sufficient to distinguish different execution
phases.

– Low frequency sampling. At sampling rates slower than 50Hz, the relative
error due to the spikes is less than 0.5%, which is small enough to be ignored.
The energy values should remain accurate even with long sampling periods,
since they are calculated by the hardware. Thus, the only drawback with
slow sampling is the loss of temporal precision.

It is not possible to increase the sampling rate from the default of 1,000 samples per
second, which limits the ability to measure the energy consumption of individual
functions.

One solution is to force the application to sleep before and after the execution
of a single function. In this manner only a single function is executed during one
RAPL update period. Hähnel et al. [17] showed that this method works.

RAPL does not support the measurement of the power consumption of indi-
vidual CPU cores. The Power Plane 0 domain only gives the total energy con-
sumed by all cores in a single package. Each core has its own MSRs, but Khan
et. al. [23] found that all cores show the same values for the RAPL counters.
This prevents us from separating the power consumption of different processes or
threads running concurrently on the same processor. Moreover, individual core
measurement is further complicated by hyperthreading, which allows one core to
simultaneously run instructions form two threads. The only possible solution is
to use disable explicitly hyperthreading and to apply techniques which implies the
hardware counters to model and attribute the power consumption to individual
threads such as HaPPy[38], notwithstanding these models reportedly have large
errors (≈ 10%).

2.5 Powercap

2.5.1 Relation between frequency, power and performances

Modern hardware is constrained by power and temperature limitations, often quan-
tified as Thermal Design Power. A popular mechanism for balancing performance
and power consumption is Dynamic Voltage and Frequency Scaling DVFS. For

18 CHAPTER 2. STATE OF THE ART

compute-bound applications, DVFS provides a linear relationship between fre-
quency and performance. However, power is non-linear with frequency since an
increase in frequency also requires an increase in voltage.

Although the relationship between performance and power is more difficult to
model, hardware can be better at optimizing voltage and frequency than software
while still respecting a power cap over a time window. Power capping allows a
system administrator to configure an upper limit on the power consumption of
various hardware components while letting the hardware more efficiently manage
voltage and frequency. Setting a power cap does not imply that the component
will consume that power, only that it will not violate that limit on average over
the specified time window [21].

2.5.2 Powercap framework

The power capping framework provides a consistent interface between the Linux
kernel and the user space that allows power capping drivers to expose the settings
to user space in a uniform way [20].

The framework exposes power capping devices to user space via sysfs in the
form of a tree of objects. The objects at the root level of the tree represent ‘control
types’, which correspond to different methods of power capping. For example,
the intel-rapl control type represents the Intel “Running Average Power Limit”
(RAPL) technology, whereas the ‘idle-injection’ control type corresponds to the
use of idle injection for controlling power.

Power zones represent different parts of the system, which can be controlled
and monitored using the power capping method determined by the control type
the given zone belongs to. They each contain attributes for monitoring power,
as well as controls represented in the form of power constraints. If the parts of
the system represented by different power zones are hierarchical, meaning that,
one bigger part consists of multiple smaller parts with their own power controls,
those power zones may also be organized in a hierarchy with one parent power
zone containing multiple subzones and so on, in order to reflect the power control
topology of the system. In that case, it is possible to apply power capping to a
set of devices together with the parent power zone; moreover, if more fine-grained
control is required, it can be applied through the subzones.

2.6 PAPI

Performance Application Programming Interface PAPI is an interface for accessing
performance counters on different platforms in a common way. As each processor
vendor defines different processor interfaces to the performance counters, PAPI

2.6. PAPI 19

was built to solve this problem and to handle requests to these counters in a
comfortable way.

As for the development of PAPI the main goal was a common and convenient
way to access performance counters on different platforms: PAPI is build up on
different layers for a better abstraction of different tasks found in each layer as
shown in figure 2.4. The main layers are the Portable Layer which offers an API
for tool and application developers and the Machine Specific Layer used to access
performance counters on a given platform. A given platform consists possibly of
a certain processor architecture, a certain operating system, available libraries or
a combination of these.

The Portable Layer consists of the PAPI Low Level-API enabling a developer
to access all core functions of PAPI and a direct interaction with the counter
interface on a given platform. The PAPI High Level-API defines only a fraction of
functions compared to the PAPI Low Level-API to access the counters, but these
functions are enough to extract performance data using pre-sets defined by PAPI.

The Machine Specific Layer handles all direct access to a given platform. The
term direct access is meant to express the access either to the counters on a plat-
form directly or by using an operating system interface for accessing these processor
specific functions. The Machine Specific Layer also limits PAPI in its functionality,
as PAPI supports many different platforms where some platforms do not support
specific functionalities.

Between the Portable Layer and the Machine Specific Layer is the core function-
ality of PAPI with support for managing the counter access. Memory allocation,
thread binding and event related issues are handled here, invisible for the developer
of a tool or application for performance counter instrumentation [8].

2.6.1 Events

Preset Events Pre-set events can be defined as a single event native to a given
CPU or can be derived from linear combination of native events. More complex
derived combinations of events can be expressed in reverse polish notation and
computed at run-time by PAPI [36]. By calling papi_avail it is possible to
examine the list of preset events on the given platform.

Native Events PAPI components contains tables of native event information
allowing native events to be programmed in essentially the same way as a preset
event. Each native event may have several attributes, called unit masks, that can
act as filters on what gets counted. These attributes can be appended to a native
event name to tell PAPI exactly what to count. Attributes can be appended in
any order or combination, and are separated by colon characters [36]. By calling

20 CHAPTER 2. STATE OF THE ART

Figure 2.4: PAPI architecture, hierarchy of power domains [8]

papi_native_avail it is possible to examine the list of native events with all the
correspondent available attributes.

Event Sets PAPI provides an abstraction from hardware events called EventSets.
An EventSet consists of events that the user wishes to count as a group. There
are two reasons for this abstraction. The first reason is efficiency in accessing the
counters through the operating system. Most operating systems allow the pro-
grammer to move the counter values in bulk without the need to make a separate
system call for each counter. By exposing this grouping to the user, the PAPI li-
brary can greatly reduce its overhead when accessing the counters. This efficiency
is especially important when PAPI is used to measure small regions of code inside
loops with large iteration counts. The second reason for EventSets is that users
can evolve their own specialized counter groupings specific to their application
areas [36]. The use of EventsSet is directly related to the Low Level API.

2.6. PAPI 21

2.6.2 Low-level API

The low-level API manages hardware events in user-defined groups called Event
Sets. It is meant for experienced application programmers and tool developers
wanting fine-grained measurement and control of the PAPI interface. Unlike the
high-level interface, it allows both PAPI pre-set and native events. Other features
of the low-level API are the ability to obtain information about the executable
and the hardware as well as to set options for multiplexing and overflow handling.
One of the benefits of using the low-level API rather than the high-level API is
that it increases efficiency and functionality.

It should also be noted that the low-level interface could be used in conjunction
with the high-level interface, as long as attention is paid to ensure that the PAPI
library is initialized prior to the first low-level PAPI call.

The low-level API is only as powerful as the substrate upon which it is built.
Thus, some features may not be available on every platform. The converse may
also be true; more advanced features may be available on every platform and
defined in the header file [27]. Moreover, the low-level interface is particularly
interesting for the use of RAPL and powercap.

2.6.3 High-level API

The high-level provides the ability to record performance events inside instru-
mented regions of serial, multi-processing (MPI, SHMEM) and thread (OpenMP,
Pthreads) parallel applications. It is intended for users who want to perform
simple event measurements in a very convenient way as they only must mark
code sections. Events to be recorded are determined via an environment variable
(PAPI EVENTS) that lists comma separated events for any component. This en-
ables users to perform different measurements without recompiling. In addition,
users do not need to take care of printing performance events since an output is
generated at the end of each measurement.

Another benefit of high-level API rather than the low-level API is that it is eas-
ier to use and requires less setup. For instance, the dynamic setting of performance
events via the environment variable and the automatic detection of components
makes the use of the high-level API extremely simple. It should also be noted that
the high-level API can be used in conjunction with the low-level API and, in fact,
it does call the low-level API [26].

2.6.4 Multiplexing

Most modern microprocessors have a very limited number of events than can be
counted simultaneously. This limitation severely restricts the amount of perfor-

22 CHAPTER 2. STATE OF THE ART

mance information that the user can gather during a single run. As a result, large
applications with many hours of run time may require days or weeks of profiling
in order to gather enough information to base a performance analysis on it. This
limitation can be overcome by multiplexing the counter hardware. By subdividing
the usage of the counter hardware over time, multiplexing presents the user with
the view that many more hardware events are countable simultaneously. This un-
avoidably incurs a small amount of overhead and can adversely affect the accuracy
of reported counter values [36].

2.6.5 Handlers

One of the most significant features of PAPI for the tool writer is its ability to
call user-defined handlers when a particular hardware event exceeds a specified
threshold. This is accomplished by setting up a high-resolution interval timer and
installing a timer interrupt handler. For systems that do not support counter
overflow at the operating system level, PAPI uses SIGPROF and ITIMER PROF.
PAPI handles the signal by comparing the current counter value against the thresh-
old. If the current value exceeds the threshold, then the user’s handler is called
from within the signal context with some additional arguments. These arguments
allow the user to determine which event overflowed,how much, and in which loca-
tion of the source code it overflowed [36].

2.6.6 Thread support

As very large SMP’s become ever more popular in the HPC community, fully
thread aware performance tools are becoming a necessity. As with any API, the
interface must be re-entrant, because any number of threads may simultaneously
call the same PAPI function. This means that any globally writeable structures
must be locked while in use. This requirement has the potential of increasing
overhead and introducing large sections of machine dependent code to the top
layer. PAPI has only one global data structure, which keeps track of process wide
PAPI options and thread specific pointer maps. Fortunately, this structure is only
written by two API calls that are almost exclusively used during the initialization
and termination of threads and the PAPI library [36].

A second problem is the accuracy of event counts as returned by threads calling
the API. In order to support threaded operation, the operating system must save
and restore the counter hardware upon context switches among different threads
or processes. The PAPI library must keep thread-specific copies of the counter
data structures and values [36].

Although PAPI attempts to introduce as little overhead as possible and thus
perturb application performance to only a minor degree, some perturbation is

2.6. PAPI 23

inevitable and has yet to be measured. Counts produced for various PAPI metrics
may vary from one run to another of the same program on the same inputs on
some architectures, due to contention for resources with other applications or the
operating system. The vendor-provided counter interfaces may occasionally have
bugs that cause inaccurate reporting of hardware counter data [36].

2.6.7 Tools

The PAPI project has developed two tools that demonstrate graphical display of
PAPI performance data in a useful manner for the application developer. These
tools are meant to demonstrate the capabilities of PAPI rather than its production
quality tools. The tool front ends are written in Java and can be run on a separate
machine from the program being monitored. All that is required for real-time
monitoring and display of application performance is a socket connection between
the machines. The first tool, called the perfometer, provides a runtime trace of a
chosen PAPI metric; the second tool, called the profometer, provides a histogram
that relates to the occurrences of a chosen PAPI event to the text addressed in
the program [36].

2.6.8 PAPI and RAPL

It is important to highlight the link between PAPI and RAPL. While the RAPL
values can be measured in-band and consumed by the program, RAPL is system-
wide, so a separate process may be used to measure energy and power. In this
way the running code does not need to be instrumented and some of the PAPI
overhead can be avoided. In fact, the internal circuitry of the Intel processor can
estimate current energy usage based on a model driven by hardware counters,
temperature, and leakage models. The results of this model are available to the
user via a model specific register (MSR), with an update frequency on the order
of milliseconds. Accessing MSRs requires ring-0 access to the hardware; typically,
only the operating system kernel can do this. This means accessing the RAPL
values requires a kernel driver.

PAPI offers many components which are a specification of a low-level API.
The RAPL component enables PAPI to access Linux RAPL energy measurements.
This tool can be used to gather energy measurements on a SandyBridge, IvyBridge
or Haswell Intel chip using RAPL. RAPL directly access MSR registers, but this
can have many significant performance and security implications. In order to
encourage system administrators to give wider secure access to the MSRs on a
machine, LLNL has released a Linux kernel module (msr_safe) which provides
safer, white-listed access to the MSRs that can be tuned by the site administrator
[24]. LLNL has released a library libmsr to provide a simple, safe, consistent

24 CHAPTER 2. STATE OF THE ART

interface to several of the model-specific registers (MSRs) in Intel processors via
the msr_safe kernel module [37].

PAPI API can read the state of power consumption on a CPU socket and
the current performance of the code. It can also make determinations about the
desired CPU performance, and it can adjust and cap the power consumption as
desired. RAPL allows users to set power limits over two specific time windows,
meaning, one can have local power spikes while keeping the power low over a larger
time window [22].

To enable reading RAPL counters the user needs to link against a PAPI library
that was configured with the RAPL component enabled. At configuration time is
necessary to perform ./configure --with-components="rapl" and to have read
permissions on the /dev/cpu/*/msr files. This is sufficient to enable the compo-
nent. Typically, the utility papi_components_avail will display the components
available to the user, whether they are disabled, and when they are disabled and
why [29].

The RAPL component works by using PAPI to poll the RAPL stats every
100ms. It will dump each statistic to different files, which then can be plotted.
The measurements are made in nJ. The frequency can be adjusted by changing
the source code. The files can be elaborated and put them into a plotting program
like gnu-plot.

The available RAPL events wihich are added to PAPI event set and corresponds
to the available events on Marconi U3 are:

– rapl:::THERMAL SPEC CNT:PACKAGE0 ;

– rapl:::THERMAL SPEC CNT:PACKAGE1 ;

– rapl:::MINIMUM POWER CNT:PACKAGE0 ;

– rapl:::MINIMUM POWER CNT:PACKAGE1 ;

– rapl:::MAXIMUM POWER CNT:PACKAGE0 ;

– rapl:::MAXIMUM POWER CNT:PACKAGE0 ;

– rapl:::MAXIMUM POWER CNT:PACKAGE1 ;

– rapl:::MAXIMUM TIME WINDOW CNT:PACKAGE0 ;

– rapl:::MAXIMUM TIME WINDOW CNT:PACKAGE1 ;

– rapl:::PACKAGE ENERGY CNT:PACKAGE0 ;

– rapl:::PACKAGE ENERGY CNT:PACKAGE1 ;

2.6. PAPI 25

– rapl:::DRAM ENERGY CNT:PACKAGE0 ;

– rapl:::DRAM ENERGY CNT:PACKAGE1 ;

– rapl:::PP0 ENERGY CNT:PACKAGE0 ;

– rapl:::PP0 ENERGY CNT:PACKAGE1 ;

– rapl:::THERMAL SPEC:PACKAGE0 ;

– rapl:::THERMAL SPEC:PACKAGE1 ;

– rapl:::MINIMUM POWER:PACKAGE0 ;

– rapl:::MINIMUM POWER:PACKAGE1 ;

– rapl:::MAXIMUM POWER:PACKAGE0 ;

– rapl:::MAXIMUM POWER:PACKAGE1 ;

– rapl:::MAXIMUM TIME WINDOW:PACKAGE0 ;

– rapl:::MAXIMUM TIME WINDOW:PACKAGE1 ;

– rapl:::PACKAGE ENERGY:PACKAGE0 ;

– rapl:::PACKAGE ENERGY:PACKAGE1 ;

– rapl:::DRAM ENERGY:PACKAGE0 ;

– rapl:::DRAM ENERGY:PACKAGE1 ;

– rapl:::PP0 ENERGY:PACKAGE0 ;

– rapl:::PP0 ENERGY:PACKAGE1 ;

2.6.9 PAPI and Powercap

Powercap Linux kernel interface has the purpose of this interface is to expose the
RAPL settings to the user. Powercap exposes an intuitive sysfs tree representing
all the power “zones” of a processor. These zones represent different parts of
a processor that support power monitoring capabilities. The top-level zone is
the CPU package that contains “subzones,”, which can be associated with core,
graphics, and DRAM power attributes. Depending on the system, only a subset
of the subzones may be available. For example, Sandy Bridge processors have two
packages, each having core, graphics, and DRAM subzones, which, in addition,

26 CHAPTER 2. STATE OF THE ART

allows the calculation of uncore (last level caches, memory controller) power by
simply subtracting core and graphics from package. On the other hand, KNL
processors have a single package containing only core and DRAM subzones. Power
measurements can be collected, and power limits enforced, at the zone or the
subzone level. Applying a power limit to the package level will also affect all the
subzones in that package [18].

The POWERCAP component of PAPI supports measuring and capping power
usage on recent Intel architectures, using the powercap interface exposed through
the Linux kernel. The powercap component exposes power attributes that can be
read to retrieve their values and a smaller set of attributes that can be written to
set system variables. All power attributes are mapped to events in PAPI, which
matches its well-understood format.

It is possible to write a small test application that uses the component to poll
the appropriate events for energy statistics at regular intervals. This information
could then be logged for later analysis. Also, it is possible to create a test program
that applies power limits to any of the power “zones” discussed in the previous
section by specifying the appropriate event names in the component. For example,
one could apply separate power limits for DRAM than for core events to a CPU
package. Alternatively, a power limit could be applied one level up in the hierarchy
at the CPU package level. With this added flexibility, which is the result of our
development on this component, the powercap component can aid a user in finding
opportunities for energy efficiency within each application [18].

To enable the reading of POWERCAP counters the user needs to link against a
PAPI library that was configured with the POWERCAP component enabled. For
example ./configure --with-components="powercap" is sufficient to enable the
component. The powercap sysfs interface exposes energy counters and R/W
register-like power settings. The counters and R/W settings apply to a power
domain on a system.

Typically, the utility papi_components_avail will display the components
available to the user, whether they are disabled and why [28]. In the events
listed below, Zone 0 corresponds to package 1 in figure 2.3, zone 1 corresponds to
package 0 in figure 2.3, and and zone 0 subzone 0 and zone 1 subzone 0 represents
respectively the DRAMs 0 and 1.

– powercap:::ENERGY UJ:ZONE0 ;

– powercap:::MAX ENERGY RANGE UJ:ZONE0 ;

– powercap:::MAX POWER A UW:ZONE0 ;

– powercap:::POWER LIMIT A UW:ZONE0 ;

2.6. PAPI 27

– powercap:::TIME WINDOW A US:ZONE0 ;

– powercap:::MAX POWER B UW:ZONE0 ;

– powercap:::MAX POWER B UW:ZONE0 ;

– powercap:::POWER LIMIT B UW:ZONE0 ;

– powercap:::TIME WINDOW B:ZONE0 ;

– powercap:::ENABLED:ZONE0 ;

– powercap:::NAME:ZONE0 package 1;

– powercap:::ENERGY UJ:ZONE0 SUBZONE0 ;

– powercap:::MAX ENERGY RANGE UJ:ZONE0 SUBZONE0 ;

– powercap:::MAX POWER A UW:ZONE0 SUBZONE0 ;

– powercap:::POWER LIMIT A UW:ZONE0 SUBZONE0 ;

– powercap:::TIME WINDOW A US:ZONE0 SUBZONE0 ;

– powercap:::ENABLED:ZONE0 SUBZONE0 ;

– powercap:::NAME:ZONE0 SUBZONE0 DRAM 1;

– powercap:::ENERGY UJ:ZONE1 ;

– powercap:::MAX ENERGY RANGE UJ:ZONE1 ;

– powercap:::MAX POWER A UW:ZONE1 ;

– powercap:::POWER LIMIT A UW:ZONE1 ;

– powercap:::TIME WINDOW A US:ZONE1 ;

– powercap:::MAX POWER B UW:ZONE1 ;

– powercap:::POWER LIMIT B UW:ZONE1 ;

– powercap:::TIME WINDOW B:ZONE1 ;

– powercap:::ENABLED:ZONE1 ;

– powercap:::NAME:ZONE1 package 0;

28 CHAPTER 2. STATE OF THE ART

– powercap:::ENERGY UJ:ZONE1 SUBZONE0 ;

– powercap:::MAX ENERGY RANGE UJ:ZONE1 SUBZONE0 ;

– powercap:::MAX POWER A UW:ZONE1 SUBZONE0 ;

– powercap:::POWER LIMIT A UW:ZONE1 SUBZONE0 ;

– powercap:::TIME WINDOW A US:ZONE1 SUBZONE0 ;

– powercap:::ENABLED:ZONE1 SUBZONE0 ;

– powercap:::NAME:ZONE1 SUBZONE0 DRAM 0;

2.6.10 PAPI and MPI

PAPI supports MPI [30]. Since MPI is widely used in HPC systems that are
very energy consuming, the need for a library capable of measuring the relevant
events and metrics also on exascale systems is significant both for academic studies
and companies. PAPI supports MPI since the very first version and there are
many papers leveraging this technology to study the impact of algorithms on
HPC systems. One must further bear in mind certain other considerations. In
fact, when using timers in applications that contain multiplexing, profiling, and
overflow, MPI uses a default virtual timer and must be converted to a real timer
for the application to work properly. Otherwise, the application will exit. The
very first program used to test the architecture, RAPL, Powercap events and
MPI was the computation of pigreco with Montecarlo method as showed in listing
Listing 2.2. The MPI initialization and Finalization are executed before the PAPI
initialization, and that in this simple example all ranks monitor the designated
PAPI event.

Listing 2.2: basic program with PAPI and MPI�
1 #include <papi.h>

2 #include <mpi.h>

3 #include <math.h>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include "papi_test.h"

7

8 int main(int argc , char *argv []){

9

10 int n, myid , numprocs , i, retval , EventSet =

PAPI_NULL , code=-1;

2.6. PAPI 29

11 double PI25DT = 3.141592653589793238462643;

12 double mypi , pi, h, sum , x;

13 char eventname [] ="powercap ::: ENERGY_UJ:ZONE0";

14 long_long values [1] = {(long_long) 0};

15

16 MPI_Init (&argc ,&argv);

17 MPI_Comm_size(MPI_COMM_WORLD ,& numprocs);

18 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

19

20 /* Initialize the PAPI library */

21 retval = PAPI_library_init(PAPI_VER_CURRENT);

22 if (retval != PAPI_VER_CURRENT)

23 test_fail(__FILE__ , __LINE__ , "PAPI_library_init

failed\n", retval);

24

25 /* Create an EventSet */

26 retval = PAPI_create_eventset (& EventSet);

27 if (retval != PAPI_OK)

28 test_fail(__FILE__ , __LINE__ , "PAPI_create_eventset

failed\n", retval);

29

30 /* Translate event name to its code */

31 retval = PAPI_event_name_to_code(eventname , &code);

32 if (retval != PAPI_OK)

33 test_fail(__FILE__ , __LINE__ , "

PAPI_event_name_to_code", retval);

34

35 /* Add Total Instructions Executed to our EventSet */

36 retval = PAPI_add_event(EventSet , code);

37 if (retval != PAPI_OK)

38 test_fail(__FILE__ , __LINE__ , "PAPI_add_eventset

failed\n", retval);

39

40 /* Start counting */

41 retval = PAPI_start(EventSet);

42 if (retval != PAPI_OK)

43 test_fail(__FILE__ , __LINE__ , "PAPI_start failed\n",

retval);

44

45 n=1000;

30 CHAPTER 2. STATE OF THE ART

46 MPI_Bcast (&n, 1, MPI_INT , 0, MPI_COMM_WORLD);

47 h = 1.0 / (double) n;

48 sum = 0.0;

49 for (i = myid + 1; i <= n; i += numprocs) {

50 x = h * ((double)i - 0.5);

51 sum += 4.0 / (1.0 + x*x);

52 }

53 mypi = h * sum;

54 MPI_Reduce (&mypi , &pi, 1, MPI_DOUBLE , MPI_SUM , 0,

MPI_COMM_WORLD);

55 if (myid == 0)

56 printf("pi is approximately %.16f, Error is %.16

f\n", pi , fabs(pi - PI25DT));

57

58

59 /* Read the counters */

60 retval = PAPI_read(EventSet , values);

61 if (retval != PAPI_OK)

62 test_fail(__FILE__ , __LINE__ , "PAPI_read failed\n",

retval);

63

64 printf("After reading counters: %lld\n",values [0]);

65

66 /* Stop the counters */

67 retval = PAPI_stop(EventSet , values);

68 if (retval != PAPI_OK)

69 test_fail(__FILE__ , __LINE__ , "PAPI_stop failed\n",

retval);

70

71 printf("After stopping counters: %lld\n",values [0]);

72

73 MPI_Finalize ();

74 }
� �
2.7 Fault Tolerance

As an effect of the steeply increase in size of the HPC systems, the Mean Time
Between Failures MTBF has plunged. Consequently, the research on new fault tol-
erance techniques has a huge impact on the improvement of the run-time behaviour

2.8. LINEAR SYSTEMS SOLVER ALGORITHMS 31

of these clusters, the management of the malfunctions affecting the computation
is a crucial issue. To better understand how a failure occurs, it is necessary to
define fault and errors. Failure is defined as a behaviour not conforming with the
requirements, error is a problem that can generate an incorrect behaviour and a
fault is a set of events that can cause errors. Fault is the concrete causing oc-
currence, error is a sequence of events, whereas failure is the visible effect of the
two quoted above. Faults are classified as transient, intermittent, and permanent,
failures are classified as Bohrbug: a repeatable and neat failures, often easy to be
corrected, and Eisenbug: a less repeatable, hard to be understood failure, errors
are classified as soft errors or fail-continue and hard-errors or fail-stop.

The fail-stop errors may anticipate a catastrophic result by aborting a long,
energy-intensive computation. The phases that follow the occurrence of the error
are the identification and the recovery. As matter of fact one of the first approach
to the fault tolerance in HPC systems was the Checkpoint Restart, which consists
in saving the state of long-running programs. One of the most relevant revolutions
of this approach suggest saving the state in memory to make the recovery faster,
this was proposed by Plank et al. [32] and called diskless. The checkpoint/ restart
can be applied at four different levels: system, compiler, user, algorithm.

The large-scale linear algebra problems are a relevant part of the issues tackled
through the use of HPC system. Since the computations are long and expansive
in terms of resources, it is necessary to apply the fault tolerance techniques to the
linear systems resolution. Algorithm Based Fault Tolerance ABFT is a series of
algorithm-specific recovery actions that are devised to handle both soft-errors and
hard-errors.

2.8 Linear systems solver algorithms

To better understand the Inhibition Method algorithm is necessary to make a
premise by introducing the Gauss elimination method which is the most notori-
ous algorithm for linear systems resolution. To enhance the importance of linear
systems resolution as a key-issue in many fields, in this section is also presented a
remarkable alternative to IMe: ScaLAPACK.

2.8.1 Gauss Elimination Method

Gaussian elimination, also known as row reduction, is an algorithm for solving
systems of linear equations. It consists of a sequence of operations performed on
the corresponding matrix of coefficients. This method can also be used to compute
the rank of a matrix, the determinant of a square matrix, and the inverse of an

32 CHAPTER 2. STATE OF THE ART

invertible matrix[16]. The Gauss elimination applied to a matrix A consist in 4
four steps[4]:

– We consider the first non-null column of A with index j1. If the first element
of this column a1j1 is 0, we pass to the third step, if ai1j1 is not 0 with i1 > 1
we pass to the second step.

– We swap the first row with the i1 row, obtaining a new matrix where the
element in 1, j1 position is other than zero.

– We delete in the j1 column all the elements different from zero from the
second row to the bottom, by leaving the first row unchanged, and by using
it to perform the elimination from the others. In this way we obtain a new
matrix that has ai,j1 = 0 for i = 2, . . . ,m.

– By leaving the first row unchanged, now we proceed by repeating the first
the second and the third step on the (m− 1)× n matrix of the m− 1 rows
only if they are not completely null, in that case we stop.

After the completion of these steps the matrix is in the echelon form which
means that all rows consisting of only zeroes are at the bottom, and the leading
coefficient (also called pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

Instead of stopping when the matrix is in echelon form, one could continue
until the matrix is in the reduced row echelon form, which means that all the
leading coefficients have 1 as value. The process of row reducing until the matrix
is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish it
from stopping after reaching the echelon form[25].

2.8.2 Inhibition method

The Inhibition Method was proposed in 1963[11] to simplify the analysis of complex
electric circuit. Then it turned out to be useful also in the resolution of physical
linear systems and square matrix inversion. This algorithm is general because it
can be applied to every linear system or non-liner system due to one of them, and
it is independent from the physical nature of the system itself.

The Inhibition Method (IME) is an iterative, exact, non-inverting method to
solve any linear system. It derives from the Cross method, from which IME inherits
the fundamental characteristic of decomposing the problem into easier to solve
sub-problems, even though the cross method is non-exact[6].

IME produces a hierarchical sequence of sub-systems, at the end of which only
elementary systems can be found. Hence, they can be solved rapidly with the
minimum of knowledge, consequently only few program code lines are needed.

2.8. LINEAR SYSTEMS SOLVER ALGORITHMS 33

The first step of the algorithm consists in the splitting process. The prob-
lem is split into more simple sub-systems by inhibiting a component. Then after
decomposing the problem into the most elementary element to solve, there is a
recollecting process to unify all the result and obtain the resolution of the prob-
lem.

Due to the splitting and recollecting process the method introduces a series of
additional computations that does not guarantee high efficiency.

IMe starts from considering the linear system with n equations and n unknowns
in its matrix form: Ax = b, where A is the n × n matrix of coefficients, b is the
vector of constant terms and x contains the unknowns. First, it prescribes to
compute a matrix T (n) , called inhibition table, and a vector h(n) of elements,
called auxiliary quantities. T (n) is built using only the ai,j coefficients from A as
follows:

T (n) =

1
a1,1

0 0 a2,1
a1,1

. an,1

a1,1

0 1
a2,2

. 0 a1,2
a2,2

1 an,2

a2,2
...

...
. . .

...
...

...
...

. . .
...

...

0 1
an−1,n−1

0
...

... . . . 1 an,n−1

an−1,n−1

0 0 1
an,n

a1,n
an,n

. an−1,n

an,n
1

The algorithm is divided in two parts: the first part is the INITIME procedure.

It handles handles the initialization of the T (n) matrix. The second part reduces
iteratively the number of rows and columns. The matrix T (n) and the vector h(n)
can be seen as a decomposition of the original problem into n sub-problems (one
for each row). The auxiliary quantities initialization is the result of the following
formula.

h
(n)
i =

1

1− t
(n)
n,n+1t

(n)
i,2n

Along with T (n) and h(n), the algorithm imposes to initialize the vectors b (n)
and x (n) as showed in 2.1.

The problem splitting ends the first phase. Thus, it is possible to proceed with
the second part which consist in applying to each element of T(n) an equation to
iteratively reduce the number of rows and columns. At each step, usually called
level, l(withl = n, ..., 1), T (l) represents the original problem decomposed into l
sub-problems. The equation, called fundamental formula, is as follows.

t
(l−1)
i,j = (t

(l)
i,j − t

(l)
l,j · t

(l)
i,n+l) · h

(l)
i (1)

with i, j, l such that i = 1, . . ., l − 1, j = 1, . . .,n+ l − 1, l = n, . . ., 1

34 CHAPTER 2. STATE OF THE ART

It should be noted that each element of the inhibition table (t
(l−1)
i,j is recomputed

using: its previous value (t
(l)
i,j , the element on the last row (t

(l)
l,j and column (t

(l)
i,n+l

of the previous inhibition table and the corresponding auxiliary quantity (h
(l)
i .

Furthermore, it should be emphasized that due to how T (n) was initialized, the
value of the 0-entries in the first l − 1 columns of any T (l) is still null in T (l−1)

because the last elements of these columns are all 0. Hence the fundamental
formula, should be applied only to those elements which change at every step, and
this represents a significant optimization in terms of flops.

To summarize, the h vector should be determined at each new level;- only the
element in the last row (t

(l)
l,n+i) and column (t

(l)
i,n+l) of T

(l) are needed at each level,

moreover at each level l also the l−n elements of the vector x(n) and l−1 elements of
b(n) are modified. At level l = 1, when T (1) matrix has only one row and n columns,
the iteration stops, and the solution of the linear system can be found in the vector
x(1). The complexity measured in terms of flops needed for the computation of the
sequential algorithm depends on the complexity of the two parts, the initialization
part has a n2 complexity, whilst the second part has a 3/2n3 +O(n2) complexity.
The flops needed for the Gauss Jordan elimination and this IMe are comparable.
The memory to store floating point values of the IMe algorithm is 2n2+3n, in this
case Gauss Jordan Elimination is less memory-consuming n2 +O(n) than IMe.

2.8.3 Parallelization of IMe

One of the best ways to compute an algorithm faster is to parallelize parts which
are independent from the others, ascertaining that the amount of data replicated
and exchanged by the nodes is minimized. In the following procedure, we will use
t(l) ,j and t(l) i, to address the j-th column and the i-th row of T (l) , respectively,
and N as number of nodes, considering N-1 slaves and one master. Under certain
condition the fundamental formula allows an independent computation of each

Initialization Update

b b
(n)
i =

{
bn, i = n

bi − t
(n)
n,n+ibn, o/w

b
(l−1)
i = b

(l)
i − t

(l−1)
l−1,n+ib

(l)
l ,

i = 1 . . . l − 2

x x
(n)
i =

{
t
(n)
n,i · bn, i = n

0, o/w
x
(l−1)
i = x

(l)
i + t

(l−1)
l−1,i b

(l)
l ,

i = l − 1 . . . n

Table 2.1: IMe prescribed steps to compute the system’s solution

2.8. LINEAR SYSTEMS SOLVER ALGORITHMS 35

element of T. Precisely, three different parallelization schemes are possible:

i) column-wise, entailing that the node computing the last column t
(l)
∗,n+l should

make it available to all the others, and all the nodes should share h(l) ;

ii) row-wise, symmetrically, the node computing the last row t
(l)
l,∗ should make

it available to all the others and h(l) is shared;

iii) block-wise, combining row-wise and column-wise parallelization.

As a matter of fact, the scheme used in the Inhibition Method Parallelized
IMeP is the column-wise because its characteristic fits the integration with the
fault tolerance requirements better than the others. Each computing node works
on a subset T

′
of T , by iteratively applying the fundamental formula. At every

level it is also necessary to broadcast from the master to the slaves h, whilst the
node in charge of the computation of the last column t∗,n+l should broadcast it to
all the other nodes, and besides only the n elements of the last row which result
modified after the application of the fundamental formula must be sent to the
master.

One of the concerns of parallelization is the memory usage: by spreading the
execution of the algorithm in N nodes the memory occupation increases from
2n2 + 3n to moIMeP = 2n2 + 2nN + 3n, whereas the flops remain the same.
Furthermore, the distributed environment forces to message exchange, which has
a cost. The traffic generated by the exchanged messages is measured in number of
messages, and volume, meaning the number of floating points. The total number
and volume of messages exchanged is:

MIMeP = n2 + 2(N − 1)n+ 2(N − 1)

VIMeP = (N + 2)n2 + 2(N − 1)n

Which is the sum of:

– the broadcast of the last column t∗,2n from the master to all the slaves, for
the initialization.

– h is broadcasted from the master to all slaves.

– the node that oversees of the last column t∗,n+l broadcasts it to all the other
nodes.

– all the slaves send the last entry of their columns to the master. Only n
elements of the last row are exchanged, because all the others are certainly
0.

36 CHAPTER 2. STATE OF THE ART

Fault tolerance applied to Inhibition method

As mentioned before there is a huge interest in the solution of linear system on
HPC systems, therefore a fault tolerance approach in the execution of IMe should
be adopted. To avoid the use of the Checkpoint/Restart technique, which is in-
efficient, it is possible to modify IMe to Implement the fault tolerance strategy
directly into the algorithm. The fault tolerant Inhibition method IMeFT uses the
column wise parallelization to compute a row-wise sum of all the entries of T (l).
This checksum vector s(l) is stored in the memory of an additional computing pro-
cessor and in case of fail-stop involving a column of T (l) it is possible to recover its
entries just by solving n linear equations. Each entry of the s(l) vector is computer
through this formula:

s
(l)
i =

n+l∑
k=1

t
(l)
i,k∀i ∈ 1 . . . l (2.1)

The application of this checksum technique to IMe comes with a notable prop-
erty. Given s(l) checksum vector of the inhibition tableT at level l, the application
of the fundamental formula to s(l) produces a vector s(l−1), which is again the
checksum vector of T (l−1).

The property above allows to calculate the checksum vector only once at the
beginning of the computation. The processor hosting s(l) can apply the funda-
mental formula on it just as all the other processors do on the columns of T . The
vector computed in this way will continue to host the checksums of T (l) for any
following level.

The complexity of IMe depends on the number of processors employed in the
computation. To run IMeFT a processor to handle the checksum vector is neces-
sary, hence the number of processors will be N+1. The overall complexity of the
algorithm in terms of flops is:

flopsIMeFT =
3

2
n3 +

11

2
n2 − 4n =

3

2
n3 +O(n2)

Since the cells of the checksum vector (as well as those of the inhibition table)
can be reused at each level, when enhancing IMe with fault tolerance, the memory
occupation increases only of the dimension of s:

moIMeFT = moPIMe + n = 2n2 + 2Nn+ 4n

Since the communication now involves N+1 nodes the number and volume of
exchanged messages can be expressed as follows.

MIMeFT = n2 + 2Nn+ 2N

2.8. LINEAR SYSTEMS SOLVER ALGORITHMS 37

VIMeFT = (N + 3)n2 + 2Nn+ n

Applying the fault tolerance directly to IMe without the use of the C/R tech-
niques has a huge impact on performances[7], because the algorithm is naturally
resilient to errors, and it is not necessary to save periodically the state of compu-
tation on disk or on memory, which is acknowledged as a slower solution both in
the saving phase and in the restart phase. Moreover, the C/R technique forces to
restore the computation at the saved checkpoint; this means that many already
performed operations which were not saved must be repeated. Another strength
of the checksum vector is its tolerance to hard errors. A hard error can occur on
a processor in which more than one column of the linear systems was computed
without compromising the result of the computation. In order to guarantee this
feature, the checksum vectors and the assignments of the columns to the nodes
must be conveniently performed. Moreover, recent studies has showed that IMe is
resilient also to multiple faults, only with slight changes to the checksum vectors
of the original single fault tolerant algorithm, and this is possible without adding
significant overhead to the computation.

2.8.4 Scalable LAPACK

ScaLAPACKs, acronym for Scalable Linear Algebra PACKage[5], is a library of
high-performance linear algebra routines for distributed memory computers sup-
porting MPI. ScaLAPACK solves dense and banded linear systems, least squares
problems, eigenvalue problems, and singular value problems. The key ideas incor-
porated into ScaLAPACK include the use of:

– a block cyclic data distribution for dense matrices and a block data distri-
bution for banded matrices, parametrizable at runtime.

– block-partitioned algorithms to ensure high levels of data reuse.

– well-designed low-level modular components that simplify the task of paral-
lelizing the high-level routines by making their source code the same as in
the sequential case.

ScaLAPACK is highly portable due to the limited dependencies from other
libraries, it needs Basic Linear Algebra Subprograms (BLAS) and Basic Linear
Algebra Communication Subprograms (BLACS) to run. LAPACK uses the level
3 of BLAS which includes the matrix-Matrix operations. ScaLAPACK is written
in Fortran, except for a few symmetric eigenproblem auxiliary routines written
in C. As far as the Gaussian Elimination is concerned, to optimize the numerical
instability caused by the roundoff error it is necessary to introduce the Partial

38 CHAPTER 2. STATE OF THE ART

Algorithm 1 Parallel IMe factorization with fault resilience.

Input: A, matrix of coefficients; b vector of constant terms.
Output: x solution vector.

1: procedure IMeHP(A, b)
2: T ,x, b← InitIMe(A)
3: ▷ Each processor gets a subset T ′ of columns in T :
4: T ′ ← scatterColumns(T , root = 0)
5: for l← n . . . 2 do
6: q′ ← processor holding last column of T
7: ▷ processors exchange last column and row of T :
8: t∗,n+l ← Broadcast(t∗,n+l,root=q′)
9: tl,∗ ← AllGather(tl,∗)
10: ▷ only one processor computes the solution:
11: if rank == 0 then
12: for i← l . . . n do
13: xi ← xi + tl,ibl
14: end for
15: end if
16: for i← 1 . . . l − 1 do
17: if rank == 0 then
18: bi ← bi − tl,n+ibl
19: end if
20: hi = 1/(1− ti,n+l ∗ tl,n+i)
21: for each t∗,j ∈ T ′ do
22: if j == i or (j ≥ l and j ̸= n+ i) then
23: ▷ apply the fundamental formula:
24: ti,j ← (ti,j − tl,j · ti,n+l) · hi

25: end if
26: end for
27: end for
28: end for
29: return x
30: end procedure

2.8. LINEAR SYSTEMS SOLVER ALGORITHMS 39

Pivoting technique, which consists in swapping rows so that A(i,i) is the largest in
column. In fact, the problem of numerical instability occurs when diagonal A(i,i) is
tiny (not just zero) and the algorithm may terminate but get a completely wrong
answer.

40 CHAPTER 2. STATE OF THE ART

Chapter 3

Design and implementation

The objective of this work consists in monitoring the behaviour of the linear system
solver algorithms through the energy consumption of the CPU package 0 and 1
and DRAM 0 and 1, which represent the total consumption of the CPU and the
power consumed by the random-access memory (RAM), respectively.

3.1 Requirements

In order to monitor the whole execution, the program should be easily portable
since it should adapt to different algorithms. Moreover, it should fit both a white
box approach and a black box approach introducing only small changes. Another
important characteristic is the efficiency of the adopted solution because the over-
head caused by the monitoring libraries should not affect the performance of the
algorithm itself, or at least the impact should be very low. Eventually, also the
modularity plays a remarkable role. The structure of the monitoring system re-
quires a function call to begin the monitoring and a function call at the end. These
parts should not interact directly even if they will be working on the same arrays
of events to modify the values.

The testing framework should support both simple and complex tests. More-
over, it is important that results are collected automatically and saved in a human
readable format in order to review them. The test framework should not impact the
structure of the tested algorithms and of the overall performances. The structure
of tests should adapt to the different algorithms and work properly. Furthermore,
since the test are run multiple nodes architecture in which each node will have
different energy values, all the measurements should be collected properly, and the
solution should be scalable in order to manage the execution on different nodes.

41

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2 Naive solution

The first proposed solution entails the redefinition of the MPI primitives for ini-
tialization and finalization. The new functions are wrappers that also contains the
initialization and the termination of PAPI monitored events in addition to the MPI
primitives. The redesigned MPI initialization function has a first part in which
are performed the PAPI operation for: library initialization, thread initialization,
event set creation with the specification of all the desired events. These functions
calls are followed by the actual begin of the parallel program represented by the
MPI initialization. As far as the MPI finalization function is concerned, it should
stop the monitoring performed throughout the PAPI events, then it should gather
the values of the PAPI event set from all the MPI ranks. Finally, it is possible to
save the values of the event set in a new file opened by the master rank. After per-
sisting the values of the PAPI events it is possible to perform the MPI finalization
of the parallel part of the program.

Figure 3.1: Structure of the MPI communicator in the näıve solution, with the
execution on four different processors

The followed approach is black box, because through the redefinition of the
MPI primitives it is possible to keep the linear system solver algorithm as it is.
The only significant edit to apply to the original file is the incorporation of the
dependency from the header file in which the functions are defined.

3.2. NAIVE SOLUTION 43

The whole program is launched from the main function in which the linear
system solver algorithm is written between the redefined function for MPI initial-
ization and MPI finalization. Since the monitoring is injected at the beginning
and at the end of the algorithm, the computation of the metrics is coarse-grained.
As a matter of fact, the measures are sampled at the beginning and at the end
without considering the distinction between the initialization of the matrix and
the actual computation of the solution. This coarse-grained solution respects the
requirements of modularity and portability, although the efficiency is particularly
compromised by the execution of the monitoring on each rank of the MPI program.
Hence, each rank included in the execution will perform both the monitoring and
the linear system solver algorithm. This creates a slight overhead in the com-
putation designated for each node, but with regards to the whole execution, the
repetition of the monitoring on each node is redundant. Therefore, the second
approach should aim to the optimization of the monitoring by assigning only one
rank per node to complete this computation.

Figure 3.2: Structure of the MPI program in the näıve solution

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.1 Implementation

The first proposed solution entails the redefinition of MPI_Init() and MPI_Finalize().
The new function for MPI initialization should call the functions of the papi.h

library and it should perform the library initialization; and the thread initial-
ization, it should create the event set and add all the desired events. All these
operations are performed before the PMPI_Init() which is the last instruction of
MPI_Init(). Whilst the MPI_Finalize() should call PAPI_stop() in the first

place, and then through MPI_Gather() it can collect the values of the PAPI event
set from all the MPI ranks. Finally, it is possible to save the values of the event
set in a new file. The last instruction is PMPI_Finalize().

3.3 Common node solution

The second solution improves the efficiency of the first näıve solution by designat-
ing only one rank in each node to run the monitoring task. As a matter of fact,
the collected metrics regards the overall energy consumption of the CPU package,
of the processor die and of the DRAM. Therefore, since by simplifying each node
represents a CPU and each rank represents a core, only one rank per processor
should run the monitoring. MPI communicators can establish which ranks belongs
to one node, thus it is possible to group ranks which shares the same processor
(or node) by creating new sub-communicators. After the implementation of the
sub-communicators, it is possible to appoint one rank for the monitoring task.
These nominated ranks will differentiate their execution from the others. Firstly,
they begin the monitoring by initializing PAPI, they start the measurements of
the chosen metrics, then they execute the assigned part of the linear system solver
algorithm like all the other ranks, finally after all the ranks on the same node have
finished the computation, they stop the measurements. Hence, the monitoring
ranks should wait all the processing ranks in their communicator before stopping
the measurements, to achieve this it is necessary to introduce an MPI barrier of
synchronization that grants the alignment at the same point of the execution for
all ranks in the same group. It is important to stress that the begin and the end
of the monitoring are always preceded by a MPI synchronization barrier for the
ranks on the same node to improve the correctness of the measurements.

The followed approach is white box because the monitoring part performed by
PAPI is injected in a specific rank per each node, thus it is necessary to group the
ranks first and then to appoint one rank for the monitoring.

This solution maintains the modular and portable structure of the näıve solu-
tion, but the efficiency is significantly improved by the differentiated execution of
the ranks. This solution compromises with the time spent for the synchronization

3.3. COMMON NODE SOLUTION 45

Figure 3.3: Structure of the four MPI node communicators in the second solution,
with the execution on four different processors

in order to achieve accurate measurements, as a matter of fact the synchronization
slows the execution of the program and adds some overhead, not directly to the
linear system solver algorithm but to the whole execution. Another remarkable
difference between the näıve solution and the parallel one regards the PAPI initial-
ization: in the first one it occurs before the MPI initialization, when the program
is still sequential, whilst in the second solution the PAPI initialization take place
only in the ranks designated for monitoring.

3.3.1 Implementation

The second proposed solution entails the designation of one rank per each node
where to perform the monitoring. After MPI_init() a new communicator for each
is created through the method MPI_Comm_split_type(), through the constant
split type MPI COMM TYPE SHARED the ranks are automatically divided in
group based on their rank. The following step is to designate the monitoring
rank, which is always the one which has the highest rank value in the communica-
tor. If the rank is designated for monitoring it calls start_monitoring() from
papi_monitoring.h. The values are passed as reference because also the fuction
end_monitoring() needs the events values to process the monitoring measure-

ments. The method start_monitoring() uses PWCAP_plot_init() to initialize

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

PAPI. The functions for PAPI initialization perform the library initialization, the
thread initialization, the creation of the event set and the addition of all the desired
events. Eventually, start_monitoring() calls PAPI_start_AND_time() which
starts PAPI monitoring. The algorithm is executed between start_monitoring()

andstop_monitoring(). Before stopping the whole monitoring, ranks which run
on the same node are synchronized to the MPI_Barrier().When all the ranks has
terminated the execution of the linear system solver algorithm the PAPI monitor-
ing procedure is ended by the monitoring ranks. The function end_monitoring()

from papi_monitoring.h stops PAPI event counters with PAPI_stop_AND_time() ,
then it creates one file for each processor with file_management(). In each file
are saved the values of PAPI event counters for the processor in which the node
waa run. The function PAPI_term() cleans up and destroys PAPI Event set. After
that the monitoring is completed and MPI_Finalize() is performed.

Since most of the RAPL events of interest are included in powercap event
set, which also adds the power capping functionalities, the monitored events will
belong only to powercap event set. Therefore, the array event_names which is
used to list the names of the monitored events in papi_monitoring.h will con-
tain all the powercap event set displayed by PAPI. This array is a parameter of
papi_event_name_to_code which translates the names into the macros of the
PAPI library.

3.4 Tester: command line interface

3.4.1 Tester.c

The solutions discussed above are integrated in a more complex system that is
capable of launching all the different versions of IMe, ScaLAPACK and LAPACK,
with many different options. This application is called tester, and it offers a
command line interface where to specify the version of the linear system solver,
the options and the commands needed for the execution.

User can launch tester by specifying four different commands:

– --help prints information about the usage of the command line interface;

– --list prints the list of testable routines;

– --save saves the generated matrices to files;

– --run runs the specified tests. The name specified by the user after this
command will be parsed from the routine mapper that will launch the right
test routine and execute the correct version of the linear solver algorithm.

3.4. TESTER: COMMAND LINE INTERFACE 47

Furthermore many options can be specified:

– -v <integer number> specifies the verbosity level for 0 to 3, in which 0
correspond to quiet;

– -nm <integer number> specifies the matrix rank;

– (-nrhs <integer number> is the Right Hand Side (RHS) of the equation,
considering the expression Ax = b RHS number represents b;

– -seed <integer number> is the seed of the random generation of the linear
system coefficients;

– -cnd <integer number> is the condition number of the input matrix;

– -no-cnd-set disables matrix pre-conditioning;

– -no-cnd-readback disables condition number checking after generation;

– -no-nre-readback disable normwise relative error checking due to compu-
tation with float and not fractions;

– -mat-gen <string [par or ser] > is the type of the random generation
parallel or sequential;

– -r <integer number> run multiple times corresponded to the specified
number of repetitions;

– -o <file path> saves the output to CSV file

– -i <file path> takes as input matrices base the ones saved at the specified
the file path name (.A, .X, .B auto appended)

– -ft <integer number> is the fault-tolerance level [0-..] (0=none);

– -fr <integer number> simulates a correspondent number faulty MPI ranks;

– -fl <integer number> simulates faulty IMe inhibition level;

– -npf <integer number> is the number of simulated faults [0-..] (0=none);

– -nps <integer number> number of spare processes for recovery [0-..] (0=none);

– -cp <integer number> checkpointing interval;

– -spk-nb <integer number> ScaLAPACK blocking factor;

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

– -ime-nb <integer number> IMe blocking factor;

– -ma <integer number>monitors the execution by measuring the energy val-
ues, =0 monitors the execution, , =1 monitors the allocation; =2 monitors
the allocation and the execution;

– -head <string> appends to the head of the monitoring file a string where
are specified the hardware parameters of the execution.

Since the version of the linear systems solver algorithm is specified in the com-
mand line after the -run command, there is a method that maps the string name
specified by the user with the correspondent algorithm test routine in order to
launch the correct version of the algorithm. This method is launched directly
from tester during the parse of user’s input.

Moreover, there are two more helpers: one is a container for the structures
used both from tester and from the algorithm test routines, and the other one is
a list of define directives which contains the name of all the available versions.

The structure container defines: a structure with the required parameters for
the algorithms that runs on a parallel environment, a structure with the required
parameters for the fault tolerant algorithms, a structure with the input matrices,
a structure for the output that contains the start and the end time of the tests,
and finally a result structure for the total time spent for the execution and the
result code.

3.4.2 Test routines

Each version of the linear systems solver algorithm depends on a routine which is
a sort of algorithm test wrapper. Into each routine, the linear system is initialized,
respecting all the options specified in the command line interface, the resolution
algorithm is performed, and the matrix representing the linear system is deallo-
cated. The routines are wrappers of the actual the linear systems solver. The
routine of correspondent versions of IMe, ScaLAPACK and LAPACK, have com-
mon signatures: e.g., if a version IMe supports multiple faults, the correspondent
ScaLAPACK test routine that wraps the multiple faults version of ScaLAPACK
will have the same signature of the function.

Since these routines are wrappers of the linear systems solver algorithms the
code for monitoring the execution is injected there. If the option -ma is specified
with code 2, start_monitoring and end_monitoring includes the allocation and
the monitoring. If the option -ma has code 0 only the execution of the code is
monitored, whilst if -ma is 1 only the allocation is monitored. This allows to collect
data about different parts of the execution. To maintain a more efficient code a new
test routine is created for each level of monitoring to avoid the injection of many

3.4. TESTER: COMMAND LINE INTERFACE 49

if statements and repeated parts. The monitoring is only possible for the IMe
version pbDGESV_CO.bf1.h and the ScaLAPACK version ScaLAPACK_pDGESV.h.
In the figure 3.5 are showed all the dependencies between the classes.

The --head option is added with the aim of specifying the parameters of the ex-
ecution on Marconi A3. These parameters are saved with the monitoring informa-
tion because they must be considered for the analysis of the energy consumption.
Hence, it is fundamental to save them with the collected data.

3.4.3 Algorithms versions

The tested version of IME is pbDGESV_CO.bf1.h that is a parallel double precision
general solver. CO stands for compression which is the new technique introduced
in the last version of IMe with the aim of improving the performances. Since this
is the last version of the algorithm and it is undergoing a patent approval, it will
not be further discussed in this work. The correspondent version of ScaLAPACK
is ScaLAPACK_pDGESV.h which is a parallel double precision general version of the
algorithm. Both IMe and ScaLAPACK algorithms are tested in their non-fault-
tolerant version.

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.4: Structure of the MPI program in the common nodes solution

3.4. TESTER: COMMAND LINE INTERFACE 51

Figure 3.5: Dependencies of the C files

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Configuration and Execution

4.1 Configuration

4.1.1 Machine configuration

To achieve the correct environment for the execution of the tests, at every access
to MARCONI via ssh it is necessary to load the required modules. As mentioned
before the architecture of Marconi A3 is Intel Skylake; therefore, a specific com-
piler option is needed to generate an optimized code for the architecture and the
supported features as AVX-512 instruction sets. This is possible by loading the
module env-skl/1.0 and the last available version of the GNU compiler. Since the
tests are designed to run on a parallel architecture, it is necessary to load the
openmpi module in the version openmpi/3.0.0–gnu–7.3.0 with the gnu compiler.
Also, PAPI requires its module thus it is loaded with previous ones.

4.1.2 Building LAPACK and BLAS

To compare the performance of IMe and the optimized Gaussian Elimination con-
tained in the ScaLAPACK library, some parts of this opensource library were mod-
ified to integrate the fault tolerance with the restart/checkpointing technique into
the original algorithm. Since the dependencies within LAPACK SCALAPACK
and BLACS are strong, it is necessary to recompile the whole library, even though
there is already a general installation of it provided by MARCONI A3. Through a
makefile BLAS Basic Linear Algebra Subprograms, and LAPACK Linear Algebra
PACKage are recompiled in the 3.9.0 version.

The make file requires to specify the type of compiler used for the tests and
the library used for basic linear algebra which is Blaslib as showed in Listing 4.1.

Listing 4.1: Compile script for LAPACK library�
53

54 CHAPTER 4. CONFIGURATION AND EXECUTION

1 #!/bin/bash

2 cd ime -papi -master/ime/src/testers/LAPACK/lapack -3.9.0/

3 make CC=mpicc FC=mpif77 blaslib
� �
4.1.3 Building IMe and ScaLAPACK

After building the libraries it is necessary to compile the whole project, which
contains several versions of IMe and ScaLAPACK implemented over the years.
This is made with a Makefile compatible with numerous architectures: Cineca
Galileo, Marconi and Marconi 100, Enea Cresco and Ubuntu, and many MPI
implementations: openmpi, intelmpi, ch mpi, and spectrucm mpi. Moreover, since
the math library is widely used, it is possible to specify the source of the libraries:
source code, math kernel library or system. The final instruction used to build
the project on Marconi A3 architecture is mpicc. When compiling the C files, it
should be called with some options:

– -march=skylake-avx512 this allows to have optimized compiled programs
for the Skylake architecture;

– -O3 is the CFLAG optimization strongly recommended by the Cineca user
support to compile files with gcc;

– -g builds the file in debug mode;

– --lgfortran links the GNU compiler for Fortran;

– -Wall enables all the warnings generated by the compiler;

– -Wextra enables some extra warning flags that are not enabled by -Wall;

– -fPIC generates position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all constant
addresses through a global offset table (GOT). The dynamic loader resolves
the GOT entries when the program starts, and it avoids any limit on the size
of the global offset table;

– -o writes the build output to an output file, in this case is will be $(BIN_DIR)/tester;

– -I adds includes directory of header files -I$(PAPI_INC) and -I$(PAPI_HOME)/share/papi/testlib;

– -L looks in directory for library files -L$(PAPI_LIB) -L$(PAPI_HOME)/share/papi/testlib;

– -ltestlib -papi are used to link the static libraries papi_test.h and
papi.h to the program.

4.2. EXECUTION 55

The result of building all those C files should produce the output file tester which
allows to execute any kind of IMe or ScaLAPACK version compiled before.

4.2 Execution

4.2.1 Launch tests on MARCONI

Marconi A3 allows the submission of both interactive and batch jobs, but in this
work are used batch jobs only. Therefore, the standard error and standard out-
put are saved into a result file. Marconi uses SLURM workload manager for
Linux clusters, hence, in order to execute a program in batch mode a script with
sbatch launcher.sh should be submitted. The script usually contains sbatch

directive for the execution on Marconi that specify information about the user, the
partition, the project linked to the execution, the resources, and the type of usage
of the resources. The SLURM script which is launched at each test contains:

– the specification of the project account try22_Loreti2;

– the partition of Marconi A3 where the program should be executed which is
skl_usr_prod for general executions;

– the name of the submitted job SKL_batch_job;

– the number of nodes deployed for the execution;

– the number of tasks per node deployed for the execution, the number of tasks
times nodes should be the same of the number of MPI ranks;

– the name of the file in which the standard output job.out will be printed;

– the name of the file in which the standard error job.err will be printed;

– in the option --gres there can be specified resources, for the execution
msrsafe is a plugin module which manages the MSR-SAFE kernel driver
and restores the MSR registers in a HPC production environment;

– the option exclusive specifies that the job allocation cannot share nodes
with other running jobs.

– all the modules are loaded again because the CPUs of Marconi U3 are inde-
pendent from the login ones. Therefore, since the environment is different is
necessary to load PAPI, OpenMPI, GNU and SKL again;

56 CHAPTER 4. CONFIGURATION AND EXECUTION

– srun is the standard SLURM command to start an MPI program, it should
be followed by the name of the executable file and its arguments, which is
tester;

As far as the parameters for tester are concerned, they are configured as follows:

– the output file is named after the matrix dimension (e.g output 8640.csv)
with the -o option;

– the number of repetitions -r is always set to 10, with the only exception for
the executions on 144 ranks for 34.560 and 25.920 matrix dimensions due to
the long time spent for their execution. In these cases, -r is set to 5;

– -no-cnd-readback, -no-cnd-set, -no- nre-readback are set to avoid un-
necessary checks on the input and output matrices;

– the matrix dimension is specified with -nm and can be set to 8.640, 17.280,
25.920 or 34.560, which are the tested dimensions;

– the input files are specified with -i option, each input file has three different
extensions that identify the matrices A, B and x, and they are specific for
each matrix dimension.

– -spk -nb 32 specifies the dimension of the blocks of computations for the
ScaLAPACK algorithm;

– the fault tolerance option -ft is always set to zero since the versions tested
are not fault tolerant;

– the monitoring option -ma is set to 0 or 2 depending on the type of monitoring
chosen for the execution (0 = only the algorithm execution, 2 = allocation,
deallocation and execution of the algorithm);

– the option -head allows to insert an execution specification at the beginning
of each monitoring file, in order to save also the SLRUM configuration of the
current job.

– the option --run is set to IMe-PB-SV-CO-bf1 or to SPK-SV depending on
the tested algorithm. The script launched at each execution on Marconi U3
is showed in listing Listing 4.2.

Listing 4.2: Batch script submitted at each execution to SLURM�
1 #!/bin/bash

2 #SBATCH -A try22_Loreti2

4.2. EXECUTION 57

3 #SBATCH --partition=skl_usr_prod

4 #SBATCH --job -name=SKL_batch_job

5 #SBATCH --nodes=3

6 #SBATCH --ntasks -per -node =48

7 #SBATCH -o job.out

8 #SBATCH -e job.err

9 #SBATCH --gres=msrsafe

10 #SBATCH --exclusive

11

12 module load autoload openmpi /3.0.0--gnu - -7.3.0 env -skl

/1.0 papi /6.0.0

13

14 srun ./ tester -o "output_8640.csv" \

15 -r 10 -no-cnd -readback -no-cnd -set -no -nre -readback \

16 -nm 8640 \

17 -i "/marconi_work/try22_Loreti2/test_matrices/

rank8640_cnd1_seed1" \

18 -spk -nb 32 \

19 -ft 0 \

20 -ma 0 \

21 -head "dim_matrix: 8640 ranks: 144 nodes:3 rXn :48

soc:2" \

22 --run IMe -PB -SV-CO-bf1
� �

58 CHAPTER 4. CONFIGURATION AND EXECUTION

Chapter 5

Monitoring IMe and ScaLAPACK

5.1 Parameters of the tests

The monitoring focuses on the measurements of the energy status values. However,
there are many combinations of the parameters listed in the next section that will
affect the measurements. By combining all the possibilities for each parameter
there are 108 different tested configurations.

Optimization level of the compiler The optimization level of the compiler
(CFLAG) is set for all the tests at O3, which is the maximum achievable level of
optimization. The time spent to perform the compilation and the efficiency of the
executable generally increases with the level assigned to CFLAG (-O0, -O1, -O2,
-O3). On the other hand, the time spent for the execution of the compiled file
decreases significantly.

Matrices allocation The matrices allocation is tested in a contiguous form.
This means that the matrix is stored in the RAM in contiguous cells of memory.
The advantage of contiguous memory allocation is the increase in the process-
ing speed. As the operating system uses the buffered I/O and reads the process
memory blocks consecutively it reduces the head movements. This speed ups the
processing.

Characteristics of the input linear systems The input linear system is not
generated by the algorithm at run-time, but it is loaded from a file with the -i

option, since it is not convenient to compute every time matrices of the same
dimension. With a fixed input, it is possible to repeat the measurements with the
guarantee that the input data is the same. In fact, this experimental approach is
highly recommended during the execution of large amount of tests.

59

60 CHAPTER 5. MONITORING IME AND SCALAPACK

There are four different matrices dimensions 8640, 17280, 25920 and 34560 which
are multiple between each other’s. The different dimensions are used to understand
the trend of the energy values with fixed dimensions for the ranks and nodes.
As explained in the following section 5.1.2 there is a strong dependency between
matrices dimensions and number of ranks.

Algorithms and repetitions As far as the linear system solver algorithms are
concerned, the chosen version of IMe for these tests is IMe pbDGESV CO bf1,
whilst the chosen one for ScaLAPACK is ScaLAPACK pDGESV. All the tests are
performed at the same conditions for both the algorithms.

Moreover, in order to achieve more realistic values which allows to truly com-
pare the metrics, the -r option of tester is set to ten. Therefore, for each job
scheduled are performed ten repetitions of the execution of the linear systems
solver.

5.1.1 Monitored phases: allocation and execution

The algorithm can be differentiated in two parts, the allocation of the matrix and
the effective execution. The algorithm is monitored during the execution of the
linear system resolution, and in its general execution which comprehends the al-
location, the deallocation, and the execution. The monitoring of the allocation
phase is avoided because it does not consider the deallocation part. Hence it is
preferrable to monitor the whole execution and then produce an esteem of the
energy consumption of the allocation and deallocation by computing the gap be-
tween the execution of the linear system algorithm and the whole test. Moreover,
this approach saves resources and energy that are not strictly necessary for the
aim of this work.

5.1.2 Nodes, ranks, sockets

Given a fixed matrix dimension the number of nodes and ranks heavily affects
the computation. The less the number of ranks, the higher the load for each of
them; therefore, there is a compromise between the time spent for the execution
(which increases with the load per rank), and the energy consumed to power more
ranks on different nodes. It should be evaluated whether to increase the energy
consumption by using more nodes to achieve a faster execution, or instead less
nodes for a longer period dealing with a slower execution.

Certainly, if the aim is to save energy it is important to exploit wisely the
resources. Thus, it should be assessed if it is more energy consuming to assign
exactly 48 ranks per node, or to assign only 24 ranks per processor by doubling

5.2. DATA COLLECTION 61

the total number of nodes. In the first case the level of parallelism of the proces-
sor which is 48 cores corresponds with the number of ranks assigned to the node.
Whilst, in the second case only half of the cores are used, and the other half is
powered, but it remains idle, because all the executions are performed with the
SLURM directive --exclusive.

Another aspect which is explored in these tests concerns the sockets inside the
processor. As explained in section 2.2, each processor of Marconi A3 has 48 cores
and it is divided into 2 sockets of 24 cores each. Therefore, when the algorithms
are executed only on 24 cores per processor, the ranks can be distributed in the
two sockets with 12 cores each, or it is possible to fill just one socket and keep the
other one idle, as showed in 4.2.1.

These tests are concerned especially on the observation of strong scalability to
study how the energy consumption varies with the number of processors for a fixed
total problem size. For each matrix dimension there are three possible values for
ranks, which are 144, 576 and 1296. These values are strictly related to the matrix
dimension, and they are not casual. In fact, IMe needs a square number of ranks,
so that the matrix dimension is a multiple of the square root of the number of
ranks. Moreover, there are limitations to the number ranks used for computation
which is affected also from the available resources at CINECA.

Table 5.1 summarizes the configuration of the hardware, by defining the number
of processors, the ranks and the sockets included. To compute the smallest number
of nodes for a given value of ranks, the ranks should be divided by 48. Then
to obtain the number of nodes for 24 cores per processor, the result should be
multiplied by two. The computation that requires less processors is the first one
with 144 ranks, here only three nodes are involved with 48 ranks assigned each,
whilst the most parallelized involves 54 nodes with 24 ranks each.

5.2 Data collection

Since the total number of tests is 144, the total number of files is 8250 and there
are many aspects to manage, some helpers were implemented.

5.2.1 Directories hierarchy

All the tests are organized in a hierarchical tree of directories with the same
structure for each matrix dimension. Into the leaves are contained a personal-
ized launcher with the correct parameters for the execution and a copy of tester.

62 CHAPTER 5. MONITORING IME AND SCALAPACK

Ranks Nodes Ranks per Node Sockets Ranks x Socket

144
3 48 2 24 24
6 24 1 24 0
6 24 2 12 12

576
12 48 2 24 24
24 24 1 24 0
24 24 2 12 12

1296
27 48 2 24 24
54 24 1 24 0
54 24 2 12 12

Table 5.1: test configurations for nodes, ranks and sockets

The directories are organized on five levels:

– The first level classifies the matrix dimension (e.g. 8.640, 17.280, 25.920,
34.560);

– The second level states the number of ranks (e.g. 144, 576, 1.296);

– The third level indicates three nodes configuration per number of ranks, the
number of nodes changes depending on the ranks (e.g. 3 nodes 48 cores, 6
nodes 24 cores 1 socket, 6 nodes 24 cores 2 sockets);

– The fourth level states the algorithm type which is IMe or ScaLAPACK;

– The fifth level indicates the monitored part of the execution (e.g. execution,
general);

This organization was necessary to distinguish the files generated at each execution
and to achieve a better management.

5.2.2 Launching the tests and collecting the results

Launcher for multiple jobs Since for each matrix dimension there are 36 tests
to execute distributed in the different directories, it was implemented a general
launcher script. The script launch-etor.sh recursively explores the hierarchy of
directories. Whenever it founds a leaf, it changes the launcher.sh and tester

permissions to executable and it executes the launcher.sh, which is the SLURM
script for the submission of the batch job listed in 4.2. The directory to explore is
requested as argument, if it is not specified the script fails.

5.2. DATA COLLECTION 63

Elimination of multiple files in case of wrong executions At the begging
some executions were interrupted due to time limit. Thus, the text files generated
were less than the requested number. This did not allow to proceed with the
generation of the CSV, since the number of repetitions did not correspond to
the target. It is important that the repetitions of the same test are run on the
same processor to grant equal conditions of the environment for the tests. The
elimin-etor.sh recursively deletes all the text files in the leaves. As argument is
should be stated the directory in which is necessary to delete the files, since the
script is recursive directories of any level are accepted.

Elimination of batch jobs in case of wrong executions For the same rea-
sons listed above, it was also necessary to delete large amounts of batch jobs.
Hence, it was implemented a bash script called s-scancel-etor.sh that deletes
all the jobs in queue. This script does not need any argument.

Update tester version Since the versions of IMe and ScaLAPACK are period-
ically updated it is necessary to change the tester version in the leaves directories.
In fact, to reach more modularity and avoid relative paths problems each leaf
contains the tester program to run IMe and ScaLAPACK. Therefore, it was imple-
mented copy-etor.sh which is a script for distributing the new versions of tester
to all the hierarchy. This script takes as arguments the file to distribute, and the
directory tree where to copy it ./copy-etor.sh <dir/file> <path>.

5.2.3 Composition of multiple CSV files

Generator of multiple CSV files When a job is run it generates one file
for each processor at each execution. Hence, the maximum number of text files
generated for one job can reach 540. The automation of the extraction of the
relevant data from these files is fundamental. To carry out this job, it was im-
plemented a text file parser and a bash script. The bash script recursively runs
the parser on each leaf, and it also creates the right file name by extracting the
information from the file path. The parser should be called with the file name
and the path where to find the files as arguments. Since the parser is written
in Kotlin[35] it should be run as .jar file, thus it needs the java -jar com-
mand to execute. The arguments requested from csv-etor.sh to create the
CVSs files is ./csv-etor.sh <directory> <command>, the directory represent
the place where to search for the text files, and as command it should be specified
java -jar ParserTxtCsv.jar.

64 CHAPTER 5. MONITORING IME AND SCALAPACK

Parser of the text files The parser of the text files has two tasks. The first is
to read and parse each file in the stated directory, the second task consists in the
CSV writing.

The structure of the data is organized into three classes. The Data class, de-
scribes two parameters: a key which is the name of the powercap event, and a float
value, which is the value of the powercap event. The Repetition class describes
all the columns of the CSV output file, which are the time duration, the repetition
number, and the list of the powercap events as Data objects. The Processor class
describes all the repetitions made on one processor; therefore, its parameters are
the name of the processor and a list of Repetions objects.

Given this structure the TxtReader class reads all the lines of the file and
loads them on the map of processor_name and Processor objects, this map is
called powercapDB and each entry represents one file. Each file contains three
header lines and then the powercap events list. The first line is saved as comment
because it contains the SLURM parameters, from the second line are saved the
processor name and the current repetition, and from the third line it is extracted
the duration of the execution. From all the other lines it is extracted the powercap
event name and its value which is converted in float.

Once the map powercapDB is filled with all the files into the directory. Ev-
ery Processor object in the map is written on the CSV file through the class
CsvWriter. The CsvWriter, iterated on the Processor objects, writes for each of
them in the first line the processor name, then it creates one column for each event
name contained in the Data list and it fills the following rows with the powercap
values of the 5 or 10 repetitions. The class iterates this for all the processors, and
it closes the file. Due to some problems with the settings of the decimals on Excel
it also replaces the period divider with comma.

The Main class checks the input directory; it opens it and executes the readData
method from class TxtReader on all the files found in the subdirectories. Af-
ter powercapDB map is filled, the Main class calls the method writeData from
CsvWriter that writes the CSV file, and it terminates.

5.2.4 Data aggregation from Comma-Separated Files to
Excel

The result of the parsing phase is a CSV file which contains data from all the
execution with the same configuration. This means that for each processor there

5.3. SIGNIFICANT CHARTS 65

are five or ten rows, with the values of all the powercap events as columns. Clearly,
it is essential that all data needs to be aggregated. Thus, with Visual Basic
programming language is created an Excel macro which is transformed in Add-ins
to run it on whatever CSV file. As matter of facts, since the number of nodes also
determines the number of rows, there is one macro and one Add-ins for each node
dimension (3, 6, 12, 24, 27, 54). The macro executes the following steps:

– for the first processor it computes the median and the maximum of the
time duration, the average of the power and energy consumption of package
0, of the power and energy consumption of package 1, of the power and
energy consumption of DRAM 0, and of the power and energy consumption
of DRAM 1 ;

– it copies the functions above at the end of each block of rows correspondent
to one processor, this will be iterated as many times as the number of nodes
minus one;

– at the end of the files it computes the maximum duration between all the
nodes, the median of the median of the durations, and the sum of the averages
for the power consumption of package 0, package 1, DRAM 0 and DRAM 1.

– it computes the sum of the values obtained for the total power and energy
consumption of package 0, package 1, DRAM 0 and DRAM 1. In this way, it
is obtained the total power consumption for one execution of the algorithm
with the set configuration.

The Add-ins is an Excel construct generated from an Excel macro which can
be added to the menu-bar of the Excel application, and that allows to execute the
linked macro in any kind of Excel file. In this way, to obtain the total values it is
simply necessary to open the CSV file, click the correspondent Add-in button in
the Excel menu and all the required values are computed.

The values obtained from each CSV file are aggregated in four more readable
files correspondent to the tested matrix dimensions. From here, it is possible to
extract all the graphs and the comments of the results.

5.3 Significant charts

The aim of this section is to emphasize the trends of energy consumption and
duration for the different configurations, and to remark the differences between IMe
and ScaLAPACK. Since the results did not show noticeable differences between
the monitored phases, the graphs only contain the general phase values of IMe and

66 CHAPTER 5. MONITORING IME AND SCALAPACK

Figure 5.1: IMe and ScaLAPACK breakdown on the total energy consumption

ScaLAPACK. Due to the large amount of the different tests and configurations,
the detailed description of them is showed in appendix A. Here is showed a more
significant data aggregation with combined charts.

Total energy consumption breakdown The charts 5.1 shows the total energy
consumption breakdown for IMe and ScaLAPACK. The percentage values are
very similar for all the executions, this means that the number of CPU intensive
instructions and the number I/O intensive instructions are strictly related. This
bond which is given from tester is respected through all the computation and
there are not anomalies. The DRAMs consumes a 8% of the computation, the
remaining part is equally divided between package 0 and package 1.

IMe vs ScaLAPACK full loaded processors and half loaded processors
The charts displayed at 5.2 show the behaviour of energy consumption in the full
and half loaded processor. The full loaded processor involves all the 48 cores into
the computation, each of them is assigned to one core. Whereas, the half loaded
is deployed in two different ways: in one case one socket is full with 24 cores
running 24 ranks and the other socket is empty, in the other case there are 12
ranks per sockets. From this graph is possible to note the difference in terms of
energy consumption between the three configurations for IMe and ScaLAPACK.
The full load configuration always consumes less that the other ones. Moreover,
there are only slight differences between the configuration that deploys 24 cores
on one socket or the one that distributes 24 cores on two sockets. In fact, the lines
overlap multiple times and for both IMe and ScaLAPACK, thus is impossible to
determine the best one.

5.3. SIGNIFICANT CHARTS 67

Figure 5.2: Comparison between full loaded processors and half loaded processors

68 CHAPTER 5. MONITORING IME AND SCALAPACK

Figure 5.3: IMe and ScaLAPACK energy and time at fixed ranks size

Total energy consumption and time duration for fixed ranks sizes The
total energy consumption and the duration of the execution increase with the
dimension of the input matrix. In particular, in these charts there are the values
obtained for the 48 cores deployments on 3 nodes, 12 nodes and 27 nodes. It
is evident that the energy consumption of IMe is always equal or higher than
ScaLAPACK. The trend of the energy consumption seems to be exponential, it
increases faster with the linear progression of the matrix dimensions, for both the
algorithms. From these charts 5.3 is possible to note the dependency between the
energy consumption and the duration, that clearly follows the same course for all
the ranks deployments.

Total Energy consumption and time for different matrices dimensions
These charts 5.4 compares the power consumption of the three different nodes
configurations for a given matrix size. In particular, in these charts there are the
values obtained for the 48 cores deployments on 3 nodes, 12 nodes and 27 nodes.
In this case there is not a clear pattern for the energy values. On one hand, ScaLA-

5.3. SIGNIFICANT CHARTS 69

Figure 5.4: IMe and ScaLAPACK energy and time at fixed matrix size

PACK tend to assume a linear trend, whereas IMe values do not follows a specific
trend. However, these charts clearly display the strong scalability behaviour of the
problem for both the algorithms. In fact, the time duration decreases with the
increase of the number of ranks on which is deployed the algorithm. The course
of the duration is inversely proportional. As far as a comparison between IMe
and ScaLAPACK are concerned, it is clear that ScaLAPACK is faster in the more
dense computations, whilst IMe is faster than ScaLAPACK in more distributed
computations, like for 576 an 1296 ranks for matrix dimensions 8640 and 17280.

Total energy consumption and power for different ranks These charts
5.5 compare the power consumption and the energy consumption of the three
different ranks configurations, by varing the matrix dimension. Since the power
consumption is obtained by dividing the energy in Joules, with the duration of
the execution, the result is a constant almost horizontal line between the various
matrices sizes. As matter of facts, power values, represented by the lines, reveal the
actual difference between IMe and ScaLAPACK per each second. With reference to

70 CHAPTER 5. MONITORING IME AND SCALAPACK

Figure 5.5: Energy and power consumption of IMe and ScaLAPACK at fixed ranks
size

the values of the secondary vertical axis the power values of IMe and ScaLAPACK
differs of the 12% 18%.

Total energy consumption and power for different matrices dimensions
The charts in 5.6 shows the trend of the energy and power consumption by varing
the number of ranks for a fixed matrix dimension. The energy consumption in
this case do not show a clear trend. However it is clear the dependency of power
from the deployed number of ranks. The values of power consumptions of IMe and
ScaLApack are similar for the different ranks values and strongly follows a directly
proportional course. Hence, it can be noticed that the power values enhance the
real trend of energy consumption.

5.3. SIGNIFICANT CHARTS 71

Figure 5.6: Energy and power consumption of IMe and ScaLAPACK at fixed
matrix size

72 CHAPTER 5. MONITORING IME AND SCALAPACK

5.4 Concluding remarks

5.4.1 General observations

The data about the general execution and only the computation part of the algo-
rithm does not show remarkable difference. As matter of facts, in some cases the
execution of the mere algorithm is even more energy consuming than the whole
execution. This is probably caused by the fact that the processors on which it is
executed varies at each execution. Thus, this does not grant high precision of the
measurements for this kind of comparison. To achieve more precise measurements,
it could have been helpful to work always on the same nodes, and to control also
other parameters of the surrounding environment. Furthermore, since the alloca-
tion and deallocation of the matrices especially impacts the DRAMs, the expected
result was a significant difference between the DRAMs energy values of the general
monitoring and of the computational phase. However, this trend is not detectable
from the measurements.

The computations on 48 cores saves more energy if compared to the 24 cores
per node execution. Furthermore, the expected behaviour in the 48 cores per node
deployments was a considerable increase in the time spent for the computation
due to the interactions of multiple tasks on the same resources. As matter of
facts, this behaviour can be detected only from the time durations of IMe in the
matrix 34560x34560 in the 144 ranks deployment. In the other scenarios, data
does not confirm this aspect, sometimes the values of the 48 cores computations
are more similar to the 24 cores deployments. However, in most of the cases work-
ing with a full load node saves more energy than an half load per node deployment.

Another aspect which was not expected is the behaviour of the deployments
on one socket or two sockets for the 24 cores solutions. The two values tend to be
very similar, and the variations are meaningless. Since the one socket deployment
uses just one package of the processor, the energy consumption of the second one
was expected to be low. However, this does not happen, instead the value of one
socket is 50-60% lower than the other one. The trend is confirmed also for the
two sockets deployments, the energy measurement of package 0 always doubles
package 1. This was unforeseen and it raises some doubts about the effectiveness
of the Slurm directives. In fact, the energy values for package 0 and package 1 in
the 12 cores per socket solution were expected to be similar and way less than the
energy consumption of package 0 in the 1 socket deployment.

5.4. CONCLUDING REMARKS 73

5.4.2 Summary comparison between IMe and ScaLAPACK

As far as the duration is concerned, the values for IMe and ScaLAPACK strongly
depends on the number of ranks. Whenever the matrix is distributed above many
ranks, and each of them receives only a small part of the problem, IMe has better
performances if compared to ScaLAPACK. Instead, if each task on each rank has
a greater dimension ScaLAPACK clearly prevails.

As far as the total energy consumption is concerned, ScaLAPACK saves more
energy than IMe. There are only some exceptions, in which the values are very
similar. However, the main trend is a gap of 50% to 60% between the two algo-
rithms. The gap tends to close with the increase in the number of ranks and the
decrease of the matrix dimension, but the evidence is that ScaLAPACK is less
energy consuming than IMe.

Even if the main contribution to the total power consumption comes from the
power consumed from package 0 and package 1, it also should be noted that the
gap between the power consumption of the DRAMs is even higher than 12-18%.
ScaLAPACK seems to better respond to less ranks deployments. Whenever, the
ranks are set to 144 the gap between the power consumption of the DRAMs of IMe
and ScaLAPACK reaches 42%. In the 24 cores deployments both for one socket
and two sockets the gap is around 33%.

Furthermore, both the algorithms seem to be affected from a significant gap
between package 0 and package 1 in any configuration that involves a 24 cores
deployment. Whereas this behaviour impacts ScaLAPACK only on packages, for
IMe it also involves the DRAMs. Nonetheless, the difference between the energy
consumption of package 0 and package 1 is very similar for both the algorithms.
In fact, it is around 50%.

The energy consumption of IMe is clearly higher than the energy consumption
of ScaLAPACK, but this is also due to the longer durantions of the executions
for IMe. Therefore, it was computed also the power consumption, that actually
confirms the gap between the two. However, the gap decreases and for the power
consumption it is around 12-18%.

74 CHAPTER 5. MONITORING IME AND SCALAPACK

Chapter 6

Conclusions

The current research aimed to monitor the energy consumption during the exe-
cution on HPC systems of two linear systems solver algorithms: the Inhibition
Method and ScaLAPACK. The central questions for this work were to determine
which algorithm best behave in terms of energy consumption, and to explore in
what ways the number of ranks, nodes and sockets impacts the energy consump-
tion.

In the first place, two different strategies were implemented to obtain the mea-
surements: the näıve solution and the common node solution. The second one
resulted to be more fine-grained, and more adaptable to the requirements. Thus,
it was integrated with the two analysed algorithms IMe and ScaLAPACK, accord-
ingly to a white box approach that allowed the monitoring of the different phases
of the algorithm.

To monitor the execution, tester was adapted to add the dependencies to
PAPI library that can monitor the RAPL and powercap event set. The implemen-
tation of the monitoring led to revision of the tester command line interface, in
which were included two more options. The first one to declare if the monitoring
is requested and which phase should be monitored. The second one concerns the
header of the text files produced during the monitoring. Since the deployment with
a full loaded processor (48 core), rather than the half loaded processor (24 cores
distributed on one socket or on two sockets) cannot be inferred from tester pro-
gram, the header option was used to report these configurations on the monitoring
output files.

The following phase regarded the identification and evaluation of the tested
parameters (number of ranks, number of nodes, number of cores per socket and
per node, phases of the algorithm, and the versions of the algorithms). After the
declaration and preparation of the environment for all the 144 different config-
urations of the tests, the monitoring phase got started. The data was gathered

75

76 CHAPTER 6. CONCLUSIONS

through the use of some helpers to automate the process, especially through a text
file parser and some Visual Basic macros.

The results showed some unexpected behaviours. The data about the just the
execution phase and the whole algorithm with the allocation and deallocation of
the matrices did not show substantial differences in terms of energy consumption.
The full loaded processors deployments are always significantly less energy con-
suming than the half loaded ones, and this is evident especially for the DRAMs
energy values. Instead, the distribution of the ranks on the half loaded proces-
sor on one socket or two sockets did not show remarkable patterns, however, the
first socket is always more energy consuming than the second one. As far as the
duration is concerned, the full load deployment takes less time than the half load
one for the smallest matrices. However, this is not true for the largest matrices
in which the time spent for the computation of the full load deployment is higher
than half loaded ones. This is probably due to numerous interactions on the same
data that slow the execution and give advantage to the more distributed deploy-
ments.

ScaLAPACK consumes less energy than IMe in most of the scenarios. IMe
performances for time and energy seem to suffer more in lower ranks deployments.
In terms of total energy consumption ScaLAPACK uses less energy and the gap
with IMe is wide due to longer executions. However, by comparing the power
consumption this gap between the two decrease.

This research clearly illustrates the differences between IMe and ScaLAPACK
and the results of the various configurations. Nonetheless, it should be questioned
the repeatability of these experiments. Indeed, these tests inevitably depends from
the architecture and from the nodes in which they are deployed which changed at
every test. Hence, on one hand the substantial differences and the clear trends
can be considered an evidence, whilst on the other hand the values that show mild
differences are not reliable and they should be investigated in further researches.

6.1 Future developments

The monitoring phase of this thesis discovers the energy consumptions of the two
algorithms. The following step is the application of power caps to limit the power
consumption during the execution, in order to reach more efficient computations,
and to investigate the behaviour of IMe and ScaLAPACK with different power
configurations.

6.1. FUTURE DEVELOPMENTS i

Furthermore, it should be explored the precision of the energy values contained
in the MSR registers, which are read by RAPL, powercap and PAPI. Indeed as
Fahad et. al. [15] have showed, the precision of those measurements might be
significantly inaccurate when compared with the energy measurements provided
by external power meters.

A further development involves the implementation of the nodes release for
IMe. In fact, as explained in appendix A, the nodes which run the ranks with the
higher code finish before the other ones, due to an unbalanced distribution of the
computation [7]. In order to obtain more accurate measurements and to increase
the energy efficiency of the algorithm itself, a future implementation of IMe can
introduce the nodes release.

ii CHAPTER 6. CONCLUSIONS

Bibliography

[1] High performance computing. https://www.energy.gov/science/

high-performance-computing.

[2] Top500. https://www.top500.org/lists/top500/.

[3] Iso 50001 - energy management. https://www.iso.org/

iso-50001-energy-management.htm, Dec 2020.

[4] Alessandro Gimigliano Alessandra Bernardi. Algebra lineare e geometria ana-
litica, Città Studi, 2018. Città Studi Elezioni, 2018.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[6] Marcello Artioli and F. Filippetti. Ime: a general method to analyse linear
systems and electric circuits. In Transactions on Engineering Sciences vol 31,
WIT Press, 2001, 2001.

[7] Marcello Artioli, Daniela Loreti, and Anna Ciampolini. Fault tolerant high
performance solver for linear equation systems. 2019 38th Symposium on
Reliable Distributed Systems (SRDS), 2019.

[8] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable program-
ming interface for performance evaluation on modern processors. The Interna-
tional Journal of High Performance Computing Applications, 14(3):189–204,
2000.

[9] Jesus Carretero, Salvatore Distefano, Dana Petcu, Daniel Pop, Thomas
Rauber, Gudula Rünger, and David Singh. Energy-efficient algorithms for
ultrascale systems. Supercomputing Frontiers and Innovations, 2(2), 2015.

iii

https://www.energy.gov/science/high-performance-computing
https://www.energy.gov/science/high-performance-computing
https://www.top500.org/lists/top500/
https://www.iso.org/iso-50001-energy-management.htm
https://www.iso.org/iso-50001-energy-management.htm

iv BIBLIOGRAPHY

[10] Jesus Carrettero, salvatore Distefano, diana petcu, daniel pop, thomas rauber,
gudula Rünger, and David E. Singh. Energy-efficient algorithms for ultrascale
systems. Supercomputing Frontiers and Innovations, 2(2), 2015.

[11] Filippo Ciampolini. Un metodo di soluzione dei circuiti lineari,”. In
L’Elettrotecnica, vol. L, no. 10, 1963, 1063.

[12] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3B. Intel Corporation, August 2007.

[13] Pawel Czarnul, Jerzy Proficz, and Adam Krzywaniak. Energy-aware high-
performance computing: Survey of state-of-the-art tools, techniques, and en-
vironments. Scientific Programming, 2019:1–19, 2019.

[14] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
Proceeding of the 38th annual international symposium on Computer archi-
tecture - ISCA ’11, 2011.

[15] Muhammad Fahad, Arsalan Shahid, Ravi Reddy Manumachu, and Alexey
Lastovetsky. A comparative study of methods for measurement of energy of
computing. Energies, 12(11), 2019.

[16] Joseph F. Grcar. How ordinary elimination became gaussian elimination.
Historia Mathematica, 38(2):163–218, 2011.

[17] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Measuring
energy consumption for short code paths using rapl. ACM SIGMETRICS
Performance Evaluation Review, 40(3):13–17, 2012.

[18] Azzam Haidar, Heike Jagode, Phil Vaccaro, Asim YarKhan, Stanimire To-
mov, and Jack Dongarra. Investigating power capping toward energy-efficient
scientific applications. Concurrency and Computation: Practice and Experi-
ence, 31(6), 2018.

[19] Joel Hruska. The death of cpu scaling: From one core to many - and why
we’re still stuck - page 3 of 3. https://www.extremetech.com/computing/

116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/

3, Jun 2012.

[20] Connor Imes and Alex Shpilkin. Power capping framework. https://www.

kernel.org/doc/html/latest/power/powercap/powercap.html, 2017.

https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
https://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck/3
 https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
 https://www.kernel.org/doc/html/latest/power/powercap/powercap.html

BIBLIOGRAPHY v

[21] Connor Imes and Alex Shpilkin. Powercap/powercap: C bindings to the
linux power capping framework in sysfs. https://github.com/powercap/

powercap, 2017.

[22] Heike Jagode, Asim YarKhan, Anthony Danalis, and Jack Dongarra. Power
management and event verification in papi. Tools for High Performance Com-
puting 2015, page 41–51, 2016.

[23] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and
Zhonghong Ou. Rapl in action. ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems, 3(2):1–26, 2018.

[24] M. McFadden, K. Shoga, and B. Rountree. Llnl/msr-safe: Allows safer access
to model specific registers (msrs). https://github.com/LLNL/msr-safe,
2015.

[25] Carl Dean Meyer. Matrix analysis and applied linear algebra. SIAM, 2000.

[26] Phil Mucci, Daniel Barry, Guiseppe Congiu, Anthony Danalis, Jack Dongarra,
Heike Jagode, and Anustuv Pal. High level api. https://bitbucket.org/

icl/papi/wiki/PAPI-HL, 2018.

[27] Phil Mucci, Daniel Barry, Guiseppe Congiu, Anthony Danalis, Jack Dongarra,
Heike Jagode, and Anustuv Pal. Low level api. https://bitbucket.org/

icl/papi/wiki/PAPI-LL, 2018.

[28] Phil Mucci, Daniel Barry, Guiseppe Congiu, Anthony Danalis, Jack Dongarra,
Heike Jagode, and Anustuv Pal. Powercap component. https://bitbucket.
org/icl/papi/src/master/src/components/powercap/, 2018.

[29] Phil Mucci, Daniel Barry, Guiseppe Congiu, Anthony Danalis, Jack Dongarra,
Heike Jagode, and Anustuv Pal. Rapl component. https://bitbucket.org/
icl/papi/src/master/src/components/rapl/, 2018.

[30] Phil Mucci, Daniel Barry, Guiseppe Congiu, Anthony Danalis, Jack Don-
garra, Heike Jagode, and Anustuv Pal. Papi parallel programs. https:

//bitbucket.org/icl/papi/wiki/PAPI-Parallel-Programs, Feb 2020.

[31] Anne-Cecile Orgerie, Marcos Dias Assuncao, and Laurent Lefevre. A survey
on techniques for improving the energy efficiency of large-scale distributed
systems. ACM Computing Surveys, 46(4):1–31, 2014.

[32] J.S. Plank, Kai Li, and M.A. Puening. Diskless checkpointing. IEEE Trans-
actions on Parallel and Distributed Systems, 9(10):972–986, 1998.

 https://github.com/powercap/powercap
 https://github.com/powercap/powercap
https://github.com/LLNL/msr-safe
https://bitbucket.org/icl/papi/wiki/PAPI-HL
https://bitbucket.org/icl/papi/wiki/PAPI-HL
https://bitbucket.org/icl/papi/wiki/PAPI-LL
https://bitbucket.org/icl/papi/wiki/PAPI-LL
https://bitbucket.org/icl/papi/src/master/src/components/powercap/
https://bitbucket.org/icl/papi/src/master/src/components/powercap/
https://bitbucket.org/icl/papi/src/master/src/components/rapl/
https://bitbucket.org/icl/papi/src/master/src/components/rapl/
https://bitbucket.org/icl/papi/wiki/PAPI-Parallel-Programs
https://bitbucket.org/icl/papi/wiki/PAPI-Parallel-Programs

vi BIBLIOGRAPHY

[33] Elda Rossi. Ug3.1: Marconi userguide. https://wiki.u-gov.it/

confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide, 2016.

[34] Mário Santos, João Saraiva, Zoltán Porkoláb, and Dániel Krupp. Energy con-
sumption measurement of c/c++ programs using clang tooling. In SQAMIA,
2017.

[35] Maxim Shafirov, Roman Elizarov, Grace Kloba, Jeffrey van Gogh, and
Werner Dietl. Get started with kotlin/native in intellij idea: Kotlin. https:
//kotlinlang.org/docs/home.html, 2012.

[36] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting
performance data with papi-c. Tools for High Performance Computing 2009,
page 157–173, 2010.

[37] S. Walker, K. Shoga, B. Rountree, and L Morita. Llnl/libmsr: Wrapper library
for model-specific registers. apis cover rapl, performance counters, clocks and
turbo. https://github.com/LLNL/libmsr, 2015.

[38] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars.
HaPPy: Hyperthread-aware power profiling dynamically. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages 211–217, Philadel-
phia, PA, June 2014. USENIX Association.

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://github.com/LLNL/libmsr

Appendix A

Results in detail

All the energy values showed in this section were subtracted from the mean base-
line energy consumption in order to have more truthful and accurate values. Fur-
thermore, the IMe structure is affected from an unbalanced time of computation
between the different ranks and nodes. In fact, the node which contains the ranks
with the higher code finishes the computation after time× totalnodes–nodenumber

totalnodes
of the

total time spent for the computation. Therefore, after the computation this node
remains idle. Since the release of the node at the end of the computation is still
not implemented it can be estimated the real energy consumption by subtracting
the energy consumption that corresponds to the idle time of the node.

A.1 Results for matrix 8640 x 8640

A.1.1 Deployed ranks: 144

This section refers to tables A.1 and A.2.

Phases of the algorithm As far as IMe and ScaLAPACK algorithms are con-
cerned, there are small differences in terms of power between the measurements
of the whole execution and just the algorithm part. The fact that the allocation
is almost irrelevant can be inferred from the power values which are very similar.
As matter of facts, in some cases, maybe due to the different processor that runs
them, the power value for the execution of the algorithm is even higher than the
general execution. The only relevant difference can be seen in the execution that
involves 6 nodes with 24 ranks each and 1 socket, in that case ScaLAPACK the
power consumption of the execution is 1,1% higher than the general monitoring.

vii

viii APPENDIX A. RESULTS IN DETAIL

matrix 8640 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 4999,427 9708,715 10031
energy DRAM0 389,4627 742,0743 748,3722
energy PKG1 4967,996 4458,927 4493,697
energy DRAM1 408,5181 428,9076 458,9856
power PKG0 452,8225 871,7673 882,1338
power DRAM0 35,2835 66,6388 65,8813
power PKG1 449,9865 400,6329 396,0141
power DRAM1 37,011 38,5121 40,3418

MAX duration (s) 11,4154 11,4808 12,7119
MED duration (s) 10,94445 11,13138 11,08338

General

energy PKG0 5072,6 9966,221 7908,229
energy DRAM0 395,556 749,7272 618,2003
energy PKG1 5043,2 4232,807 5154,447
energy DRAM1 392,8134 427,3212 466,6834
power PKG0 454,7698 893,2041 782,3499
power DRAM0 35,468 67,2326 61,1516
power PKG1 452,0943 379,6779 509,6863
power DRAM1 35,222 38,2925 46,1396

MAX duration (s) 11,645 11,895 10,4303
MED duration (s) 11,0619 11,08118 10,06055

ScaLAPACK

Execution

energy PKG0 2689,834 4705,798 5008,216
energy DRAM0 109,3605 256,7688 254,8007
energy PKG1 2668,829 3085,045 2779,599
energy DRAM1 143,2606 285,4054 254,336
power PKG0 382,975 666,3411 703,6859
power DRAM0 15,5703 36,3529 35,7981
power PKG1 379,9833 436,6563 390,4813
power DRAM1 20,3967 40,4055 35,7321

MAX duration (s) 7,1422 7,2459 7,2593
MED duration (s) 7,0129 7,03035 7,106325

General

energy PKG0 2738,564 5284,993 5323,561
energy DRAM0 145,0118 256,849 252,6403
energy PKG1 2615,088 2492,14 2492,003
energy DRAM1 146,6082 250,9515 269,0657
power PKG0 389,3057 743,3531 750,305
power DRAM0 20,6145 36,1283 35,6079
power PKG1 371,7512 350,6072 351,2693
power DRAM1 20,8413 35,2981 37,9221

MAX duration (s) 7,1374 7,2292 7,2045
MED duration (s) 7,0182 7,08415 7,083425

Table A.1: table for 8640x8640 matrix with 144 ranks partial results

matrix 8640 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 10765,40 15338,62 15732,05
total power 975,1035 1377,551 1384,371

MED duration (s) 10,94445 11,13138 11,08338

general
total energy 10904,17 15376,08 14147,56
total power 977,55 1378,41 1399,33

MED duration (s) 11,0619 11,08118 10,06055

ScaLAPACK

execution
total energy 5611,28 8333,02 8296,95
total power 798,9253 1179,756 1165,697

MED duration (s) 7,0129 7,03035 7,106325

general
total energy 5645,27 8284,93 8337,27
total power 802,51 1165,39 1175,10

MED duration (s) 7,0182 7,08415 7,083425

Table A.2: table for 8640x8640 matrix with 144 ranks total results

A.1. RESULTS FOR MATRIX 8640 X 8640 ix

Cores deployed per processor The cores deployed per processor evidently
impact the power consumption. The deployment of 48 cores per processor above
3 nodes, is the best solution in terms of energy saving, because for both the algo-
rithms it has always the lowest power consumption, if compared with the 6 nodes
deployment. The gap between the two is around 30% depending on the monitored
phases and on the algorithm. In particular, ScaLAPACK is the algorithm which
best highlights this difference. From data It seems that there is also a slight differ-
ence between the deployment of 24 cores on two sockets or just on one socket. In
general, the deployments above two sockets are more energy consuming. The en-
ergy consumption of the DRAM doubles with the employment of 6 nodes instead
of 3 nodes. As matter of fact, the energy consumption of the DRAM decreases
with the number of nodes, this is not impressive since having more nodes means
also to have a more distributed data and more I/O instructions.

IMe versus ScaLAPACK The performances of ScaLAPACK are better than
IMe in whatever test, however in some cases there are only slight differences. In
all the executions the energy consumption of the DRAM 0 is almost the same and
the maximum difference between IMe and ScaLAPACK of the total power con-
sumption is 18%. In particular, the executions on 3 nodes show a sharp difference
between the two linear system algorithms. As far as the duration of the execution
is concerned, both the versions amount to a constant value, which is around 11
seconds for IMe and 7 seconds for ScaLAPACK.

A.1.2 Deployed ranks: 576

The deployment on 12 nodes and 24 nodes is approximately 4 times more power
consuming if compared to the deployment on 3 and 6 nodes, this data confirms a
linear trend of power consumption that follows the number of processors involved.
This section refers to tables A.3 and A.4.

Phases of the algorithm Also, in this case the measurements of the two phases
of the algorithms are not meaningful, there is always a slight difference between
the two, and in some cases the values of the general monitoring are less than the
algorithm execution itself.

Cores deployed per processor Also, this test confirms that the cores deployed
per processor evidently impact the power consumption. The deployment of 24
cores per processor above 24 nodes has always the highest power consumption if
compared with the 12 nodes deployment. The gap between the two reaches the
30% depending on the monitored phases and on the algorithm. ScaLAPACK is

x APPENDIX A. RESULTS IN DETAIL

matrix 8640 576 rank 12 nodes 48 ranks 24 nodes 24 ranks 1 socket 24 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 3207,029 5946,363 6259,775
energy DRAM0 122,4757 232,7866 244,8755
energy PKG1 3143,572 2679,299 2751,949
energy DRAM1 137,7732 256,9251 276,6214
power PKG0 1883,844 3527,825 3514,735
power DRAM0 71,9439 138,1064 137,4853
power PKG1 1846,552 1591,76 1545,722
power DRAM1 80,9198 152,4047 155,3

MAX duration (s) 1,9391 2,0164 2,0729
MED duration (s) 1,667325 1,6456 1,757325

General

energy PKG0 3213,42 5879,71 6299,929
energy DRAM0 121,4517 237,5042 239,1561
energy PKG1 3145,057 2981,004 2510,66
energy DRAM1 134,2734 268,0601 272,8937
power PKG0 1874,108 3404,153 3592,123
power DRAM0 70,8315 137,4215 136,3663
power PKG1 1834,249 1724,495 1432,076
power DRAM1 78,301 155,0784 155,5826

MAX duration (s) 1,9547 2,0737 2,0564
MED duration (s) 1,6924 1,69445 1,693175

ScaLAPACK

Execution

energy PKG0 18393,38 8546,071 8528,592
energy DRAM0 686,686 368,8279 365,3599
energy PKG1 18256,88 3914,146 3743,026
energy DRAM1 844,6595 427,8914 423,2024
power PKG0 1707,253 3080,171 3103,439
power DRAM0 65,9069 132,929 132,9535
power PKG1 1689,281 1411,027 1362,339
power DRAM1 80,866 154,2167 154,0021

MAX duration (s) 17,2139 2,9877 2,9357
MED duration (s) 14,51673 2,75375 2,726625

General

energy PKG0 4345,022 8288,457 8288,12
energy DRAM0 185,5889 358,2907 362,9113
energy PKG1 4242,234 3666,391 3835,852
energy DRAM1 213,919 415,2588 420,8571
power PKG0 1565,626 3062,866 3021,974
power DRAM0 66,9042 132,4091 132,3233
power PKG1 1528,589 1355,301 1398,641
power DRAM1 77,1122 153,4636 153,4433

MAX duration (s) 3,5348 2,9142 2,9732
MED duration (s) 2,691775 2,68415 2,7277

Table A.3: table for 8640x8640 matrix with 576 ranks partial results

matrix 8640 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 6610,85 9115,374 9533,22
total power 3883,26 5410,096 5353,242

MED duration (s) 1,667325 1,6456 1,757325

general
total energy 6614,202 9366,278 9322,64
total power 3857,49 5421,147 5316,15

MED duration (s) 1,6924 1,69445 1,693175

ScaLAPACK

execution
total energy 38181,6 13256,94 13060,18
total power 3543,307 4778,343 4752,733

MED duration (s) 14,51673 2,75375 2,726625

general
total energy 8986,763 12728,4 12907,74
total power 3238,232 4704,039 4706,38

MED duration (s) 2,691775 2,68415 2,7277

Table A.4: table for 8640x8640 matrix with 576 ranks total results

A.2. RESULTS FOR MATRIX 17280 X 17280 xi

the algorithm which best highlights this difference. It seems from data that there
is also a slight difference between the deployment of 24 cores on two sockets or just
on one socket for IMe. In this case, the deployments above two sockets are more
energy consuming then the other one. The course of the energy consumption of
the DRAM is confirmed with respect to the previous case. As matter of fact, the
energy consumption of the DRAM decreases with the number of nodes and the
values are very similar for ScaLAPACK and for IMe.

IMe versus ScaLAPACK Whilst this configuration confirms that ScaLA-
PACK is always less energy consuming than IMe. The unexpected result con-
cerns the duration of the execution: IMe is always at least 1 second faster than
ScaLAPACK. The difference in terms of energy consumption involves especially
the CPUs, meaning the power plane 0, the values of the DRAM are indeed almost
respectively the same for any test.

A.1.3 Deployed ranks: 1296

Due to limitations on the number of nodes available per account on CINECA, it
was possible only to test the 27 nodes deployment, not the 54 one. The gap between
the power consumption of IMe and ScaLAPACK in this case is only of 12%. The
energy values doubles if compared to the 576 ranks deployments. Moreover, also
in this case IMe results to be faster than ScaLAPACK. This section refers to tables
A.5 and A.6.

A.2 Results for matrix 17280 x 17280

With respect to the previous matrix dimension the power values remains almost
the same. In fact, if the correspondent tests are compared, the differences are
slights and the links are respected.

A.2.1 Deployed ranks: 144

This section refers to tables A.7 and A.8.

Phases of the algorithm As far as IMe and ScaLAPACK algorithms are con-
cerned, there are mild differences in terms of power between the measurements
of the whole execution and just the algorithm part. The fact that the allocation
is almost irrelevant can be inferred from the power values which are very similar.
However, the execution phase is always less consuming than the general monitor-
ing, there is only one exception for IMe.

xii APPENDIX A. RESULTS IN DETAIL

matrix 8640 1296 rank 27 nodes 48 ranks

IMe

Execution

energy PKG0 5967,502
energy DRAM0 228,2905
energy PKG1 5912,082
energy DRAM1 249,3755
power PKG0 4108,317
power DRAM0 157,3874
power PKG1 4069,473
power DRAM1 171,5181

MAX duration (s) 2,3103
MED duration (s) 1,281

General

energy PKG0 6361,986
energy DRAM0 242,67
energy PKG1 6295,61
energy DRAM1 266,93
power PKG0 4101,50
power DRAM0 156,57
power PKG1 4058,075
power DRAM1 172,0135

MAX duration (s) 1,9503
MED duration (s) 1,5673

ScaLAPACK

Execution

energy PKG0 6716,84
energy DRAM0 281,29
energy PKG1 6632,11
energy DRAM1 321,97
power PKG0 3610,72
power DRAM0 151,20
power PKG1 3565,20
power DRAM1 173,06

MAX duration (s) 2,24
MED duration (s) 1,82

General

energy PKG0 6714,22
energy DRAM0 281,64
energy PKG1 6633,49
energy DRAM1 323,12
power PKG0 3597,03
power DRAM0 150,87
power PKG1 3553,754
power DRAM1 173,073

MAX duration (s) 2,2215
MED duration (s) 1,8303

Table A.5: table for 8640x8640 matrix with 1296 ranks partial results

A.2. RESULTS FOR MATRIX 17280 X 17280 xiii

matrix 8640 1296 rank 27 nodes 48 ranks

IMe

execution
total energy 12357,25
total power 8506,696

MED duration (s) 1,281

general
total energy 13167,19
total power 8488,15

MED duration (s) 1,5673

ScaLAPACK

execution
total energy 13952,20
total power 7500,178

MED duration (s) 1,82

general
total energy 13167,19
total power 7474,73

MED duration (s) 1,8303

Table A.6: table for 8640x8640 matrix with 1296 ranks total results

Cores deployed per processor The cores deployed per processor heavily im-
pact the power consumption. The deployment of 48 cores per processor above 3
nodes is not considerably power consuming if compared to the 6 nodes deploy-
ments, because is always a 30% less than the 24-cores executions. Moreover, there
is not any difference between the deployment of 24 cores on two sockets or just on
one socket. The trend of the energy consumption of the DRAM is constant. This
difference of the DRAM values is quite evident between ScaLAPACK and IMe.
An interesting aspect is the difference between the measurements of package 0 and
package 1, and DRAM 0 and DRAM 1. The energy consumption of zone 0 is two
times higher than zone 1. This happens for both configurations of the sockets:
the values of the measurements are very similar. Moreover, packages consume on
average ten times the power with respect to the DRAMs

IMe versus ScaLAPACK The performances of ScaLAPACK are better than
IMe in whatever test. The executions on 6 nodes show a sharp difference between
the linear system algorithms, whereas the variations between the 3 nodes deploy-
ments are minor. As far as the duration of the execution is concerned, both the
versions have a quite constant value for the 6 nodes deployments and for the 3
nodes deployments. IMe spends more time for the execution on 6 nodes than 3
nodes, whilst on the opposite ScaLAPACK spends half the time for the execution
on 6 nodes with respect to the 3 nodes deployment.

xiv APPENDIX A. RESULTS IN DETAIL

matrix 17280 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 54903,92 101031,6 102929,39
energy DRAM0 4598,123 8155,317 8180,53
energy PKG1 54843,11 48154,96 51043,48
energy DRAM1 4859,935 4504,646 5675,11
power PKG0 449,1165 871,9561 857,10
power DRAM0 37,6141 70,4119 68,15
power PKG1 448,6228 417,0288 426,15
power DRAM1 39,7552 38,9786 47,33

MAX duration (s) 123,5368 125,6231 128,99
MED duration (s) 122,3288 113,5992 118,9049

General

energy PKG0 54379,12 98356,57 96777,58
energy DRAM0 4586,099 7695,85 7744,77
energy PKG1 54472,84 49993,09 48293,51
energy DRAM1 4709,852 5018,98 4821,40
power PKG0 447,8926 859,52 864,48
power DRAM0 37,7733 67,27 69,23
power PKG1 448,6635 437,2808 431,6138
power DRAM1 38,7929 43,8829 43,0517

MAX duration (s) 122,5814 120,4826 128,1133
MED duration (s) 121,254 114,2972 110,2472

ScaLAPACK

Execution

energy PKG0 19162,28 34495,82 35471,22
energy DRAM0 865,8354 1828,60 1886,603
energy PKG1 18534,21 19936,20 19570,77
energy DRAM1 1060,988 1777,42 1844,942
power PKG0 387,7472 697,49 720,4668
power DRAM0 17,5197 36,97 38,3193
power PKG1 375,0445 403,09 397,5198
power DRAM1 21,4693 35,94 37,4732

MAX duration (s) 50,6403 49,76 49,4122
MED duration (s) 49,10255 49,42 49,2116

General

energy PKG0 18753,80 33989,14 32760,75
energy DRAM0 1047,94 1697,693 1712,787
energy PKG1 18827,15 20175,84 18817,44
energy DRAM1 1143,65 1908,967 1928,499
power PKG0 378,46 690,1759 663,6771
power DRAM0 21,15 34,4717 34,6979
power PKG1 379,9527 409,645 381,1956
power DRAM1 23,08 38,7612 39,067

MAX duration (s) 51,3401 49,8565 49,6934
MED duration (s) 49,1212 49,1835 49,27575

Table A.7: table for 17280x17280 matrix with 144 ranks partial results

matrix 17280 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 119205,09 161846,52 167828,50
total power 975,1086 1398,375 1398,729

MED duration (s) 122,3288 113,5992 118,9049

general
total energy 118147,92 161064,49 157637,26
total power 973,12 1407,95 1408,37

MED duration (s) 121,254 114,2972 110,2472

ScaLAPACK

execution
total energy 39623,31 58038,04 58773,54
total power 801,7807 1173,486 1193,779

MED duration (s) 49,10255 49,42 49,2116

general
total energy 39772,54 57771,64 55219,47
total power 802,64 1173,05 1118,64

MED duration (s) 49,1212 49,1835 49,27575

Table A.8: table for 17280x17280 matrix with 144 ranks total results

A.2. RESULTS FOR MATRIX 17280 X 17280 xv

matrix 17280 576 rank 12 nodes 48 ranks 24 nodes 24 ranks 1 socket 24 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 49482,12 86007,12 86544,24
energy DRAM0 3622,842 6139,787 6035,649
energy PKG1 49330,7 41648,91 45491,48
energy DRAM1 3942,547 3949,276 4149,74
power PKG0 1797,669 3447,344 3378,925
power DRAM0 131,6889 246,0722 235,7915
power PKG1 1792,161 1674,499 1777,012
power DRAM1 143,2991 158,3182 161,8245

MAX duration (s) 29,6658 28,2047 28,4955
MED duration (s) 27,32055 24,61065 24,83208

General

energy PKG0 49285,13 85748,01 82765,45
energy DRAM0 3595,216 6063,196 5869,871
energy PKG1 48936,76 43639,99 42090,15
energy DRAM1 3821,68 4182,517 3949,895
power PKG0 1788,731 3383,13 3417,073
power DRAM0 130,5987 239,3024 242,4499
power PKG1 1776,116 1724,401 1742,015
power DRAM1 138,8075 164,7462 163,0539

MAX duration (s) 30,4778 28,6241 28,1265
MED duration (s) 27,17293 24,83848 23,59005

ScaLAPACK

Execution

energy PKG0 24642,8 45273,48 47194,52
energy DRAM0 1113,182 2192,012 2205,975
energy PKG1 23913,96 24153,2 22086,73
energy DRAM1 1309,285 2353,932 2343,279
power PKG0 1593,295 2915,233 3039,053
power DRAM0 71,9745 141,1358 142,0545
power PKG1 1546,17 1555,184 1422,608
power DRAM1 84,65 151,5575 150,8945

MAX duration (s) 16,05 16,4685 16,2308
MED duration (s) 15,39 15,40835 15,4701

General

energy PKG0 33763,73 46093,75 44890,02
energy DRAM0 1451,25 2244,756 2222,605
energy PKG1 33074,90 23169,23 24299,69
energy DRAM1 1634,50 2438,138 2427,721
power PKG0 1577,45 2924,036 2867,402
power DRAM0 70,92 142,4083 141,9639
power PKG1 1539,426 1470,024 1552,109
power DRAM1 79,6845 154,6685 155,0635

MAX duration (s) 67,7754 16,2433 16,121
MED duration (s) 15,4731 15,67765 15,63225

Table A.9: table for 17280x17280 matrix with 576 ranks partial results

A.2.2 Deployed ranks: 576

Also for this matrix, the deployment on 12 nodes and 24 nodes is approximately
4 times more power consuming compared to the deployment on 3 and 6 nodes,
this data confirms a linear trend of energy consumption that follows the number
of processors involved. The energy consumption is constant and varies in a range
between 2188 and 5564 Watts, however most of the values are fluctuates in a 1500-
1600 Watt range. With respect to the deployment of 144 ranks the duration for the
execution decreases of 4 times as expected since the number of ranks quadruples.
This section refers to tables A.9 and A.10.

xvi APPENDIX A. RESULTS IN DETAIL

matrix 17280 576 rank 12 nodes 48 ranks 24 nodes 24 ranks 1 socket 24 nodes 24 ranks 2 socket

IMe

execution
total energy 106378,2 137745,1 142221,1
total power 3864,818 5526,23 5553,553

MED duration (s) 27,32055 24,61065 24,83208

general
total energy 105638,79 139633,7 134675,36
total power 3834,25 5511,58 5564,59

MED duration (s) 27,17293 24,83848 23,59005

ScaLAPACK

execution
total energy 50979,23 73972,62 73830,51
total power 3296,096 4763,11 4754,609

MED duration (s) 15,39 15,40835 15,4701

general
total energy 69924,38 142221,11 73840,04
total power 3267,48 5553,55 4716,54

MED duration (s) 15,4731 15,67765 15,63225

Table A.10: table for 17280x17280 matrix with 576 ranks total results

Phases of the algorithm Also, in this case the measurements of the of the dif-
ferent phases of the algorithm are not meaningful, there is always a slight difference
between the two and in some cases for IMe the values of the general monitoring
are less than execution of the algorithm itself.

Cores deployed per processor The cores deployed per processor weakly im-
pact the power consumption. The deployment of 48 cores per processor above 12
nodes is considerably less energy consuming if compared to the 24 nodes deploy-
ments. The gap between the power consumption of the 12 nodes deployment and
the 24 nodes reaches the 60%. Moreover, there is not any difference between the
deployment of 24 cores on two sockets or just on one, there is only a 1% deviation.
The course of the energy consumption of the DRAM decreases with the number
of nodes. This difference is quite evident both for ScaLAPACK and for IMe.

IMe versus ScaLAPACK The performances of ScaLAPACK and IMe are
similar, from a total power consumption point of view in some cases there are only
slight differences. In the executions that involves 12 nodes for the energy consump-
tion of the DRAM, there are marked variations between IMe and ScaLAPACK.
The energy consumption of the DRAM varies a lot between IMe and ScaLAPACK,
the second one consumes way less power. As far as the duration of the execution
is concerned, both the versions amount to a constant value, which is around 29
seconds for IMe and 16 seconds for ScaLAPACK.

A.2.3 Deployed ranks: 1296

Due to limitations on the number of nodes available per account on CINECA, it
was possible only to test the 27 nodes deployment. The gap between the power
consumption of IMe and ScaLAPACK in this case is only 12%. The energy values
doubles if compared to the 576 ranks deployments. Moreover, also in this case

A.3. RESULTS FOR MATRIX 25920 X 25920 xvii

IMe results to be faster than ScaLAPACK. This section refers to tables A.11 and
A.12.

A.3 Results for matrix 25920 x 25920

The energy values for this matrix are 3,5 times the energy values for the ma-
trix dimension 8640. This does not correspond to a linear trend of the energy
consumption.

A.3.1 Deployed ranks: 144

As stated before, the duration of the tests on 144 ranks with ten repetitions takes
too much, and the scheduling of the job is delayed by SLURM of days. Therefore,
for this deployment the number of repetitions is reduced to five. This section refers
to tables A.13 and A.14.

Phases of the algorithm Also, in this case the measurements of the of the
different phases of the algorithms are not meaningful, there is always a slight
difference between the two and in some cases for IMe the values of the general
monitoring are less than jets the algorithm itself.

Cores deployed per processor The deployment of 48 cores per processor
above 3 nodes is considerably more energy consuming if compared to the 6 nodes
deployments. As matter of fact, the difference is higher between the energy values
of the 24 cores and 48 cores deployments of package 0. In this case it reaches the
50% for ScaLAPACK, whilst for package 1 the values are similar. Moreover, there
is not any difference between the deployment of 24 cores on two sockets or just
on one. The course of the energy consumption of the DRAM goes in a reverse
direction. As matter of fact, the energy consumption of the DRAM decreases with
the number of nodes. This difference is quite evident both for ScaLAPACK and
for IMe.

IMe versus ScaLAPACK The performances of ScaLAPACK and IMe are not
comparable, for the 144 ranks deployment IMe is always more energy consuming
than ScaLAPACK. Also the differences between IMe and ScaLAPACK for the
energy consumption of the DRAM are marked. As far as the duration of the
execution is concerned, both the versions amount to a constant value, which is
around 980 seconds for IMe and 770 seconds for ScaLAPACK.

xviii APPENDIX A. RESULTS IN DETAIL

matrix 17280 1296 rank 27 nodes 48 ranks

IMe

Execution

energy PKG0 31561,14
energy DRAM0 1379,125
energy PKG1 31511,08
energy DRAM1 1525,586
power PKG0 4047,462
power DRAM0 179,0256
power PKG1 4045,192
power DRAM1 197,3295

MAX duration (s) 12,239
MED duration (s) 6,888

General

energy PKG0 31561,14
energy DRAM0 1379,125
energy PKG1 31511,08
energy DRAM1 1525,586
power PKG0 4047,462
power DRAM0 179,0256
power PKG1 4045,192
power DRAM1 197,3295

MAX duration (s) 12,239
MED duration (s) 6,888

ScaLAPACK

Execution

energy PKG0 33468,1
energy DRAM0 1408,903
energy PKG1 33109,29
energy DRAM1 1622,742
power PKG0 3589,996
power DRAM0 151,125
power PKG1 3551,509
power DRAM1 174,0567

MAX duration (s) 9,8544
MED duration (s) 9,16675

General

energy PKG0 33490,26
energy DRAM0 1394,37
energy PKG1 33012,75
energy DRAM1 1605,95
power PKG0 3634,82
power DRAM0 151,33
power PKG1 3582,997
power DRAM1 174,2952

MAX duration (s) 9,5698
MED duration (s) 9,18645

Table A.11: table for 17280x17280 matrix with 1296 ranks partial results

A.3. RESULTS FOR MATRIX 25920 X 25920 xix

matrix 17280 1296 rank 27 nodes 48 ranks

IMe

execution
total energy 65976,94
total power 8469,009

MED duration (s) 6,888

general
total energy 65976,94
total power 8469,01

MED duration (s) 6,888

ScaLAPACK

execution
total energy 69609,04
total power 7466,687

MED duration (s) 9,16675

general
total energy 69503,33
total power 7543,45

MED duration (s) 9,18645

Table A.12: table for 17280x17280 matrix with 1296 ranks total results

A.3.2 Deployed ranks: 576

This section refers to tables A.15 and A.16.

Phases of the algorithm Also, in this case the measurements of the of the
different phases of the algorithms are not meaningful, there is always a slight
difference between the two.

Cores deployed per processor The deployment of 48 cores per processor
above 12 nodes is 20-30% more energy consuming, if compared to the 24 nodes
deployments. As matter of fact, the difference is higher between the energy values
of the 24 cores and 48 cores deployments of package 0. In this case it reaches the
50% for ScaLAPACK, whilst for package 1 the values are similar. Moreover, there
is not any difference between the deployment of 24 cores on two sockets or just
on one. The course of the energy consumption of the DRAM goes in a reverse
direction. As matter of fact, the energy consumption of the DRAM decreases with
the number of nodes. This difference is quite evident both for ScaLAPACK and
for IMe.

IMe versus ScaLAPACK The performances of ScaLAPACK and IMe are
not comparable, for the 576 ranks deployment IMe is always 3 times more energy
consuming than ScaLAPACK. Also the differences between IMe and ScaLAPACK
for the energy consumption of the DRAM are marked. As far as the duration of
the execution is concerned, both the versions amount to a constant value, which

xx APPENDIX A. RESULTS IN DETAIL

matrix 25920 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 191195,5142 357745,6808 319650,3682
energy DRAM0 15909,2 29528,07 27878,58
energy PKG1 188880,6 177043,2 175463,9
energy DRAM1 16610,84 18743,99 17584,86
power PKG0 443,8648 865,4678 802,322
power DRAM0 36,9338 71,4384 69,9054
power PKG1 438,4906 429,1044 441,5614
power DRAM1 38,562 45,4228 44,3904

MAX duration (s) 433,5214 429,7922 451,0632
MED duration (s) 430,3192 419,211 390,5878

General

energy PKG0 199353,8 328690,8 342691,66
energy DRAM0 17533,74 29061,53 29671,26
energy PKG1 199133,4 175766,7 174071,68
energy DRAM1 17595,42 17532,77 17899,59
power PKG0 448,8448 812,485 818,30
power DRAM0 39,5026 71,8698 70,85
power PKG1 448,3536 435,3782 415,8016
power DRAM1 39,6434 43,4324 42,7686

MAX duration (s) 467,9868 428,6868 435,9664
MED duration (s) 449,4491 399,4946 423,0895

ScaLAPACK

Execution

energy PKG0 58597,66 114940,3 107775,5
energy DRAM0 3275,586 5697,277 5796,984
energy PKG1 54811,21 63242,1 56759,84
energy DRAM1 3307,908 6635,145 6510,911
power PKG0 364,3882 718,0768 674,8168
power DRAM0 20,3692 35,593 36,2968
power PKG1 340,8404 395,1026 355,3898
power DRAM1 20,571 41,4524 40,7668

MAX duration (s) 163,5846 160,3337 160,1347
MED duration (s) 160,0423 160,1732 159,5494

General

energy PKG0 57655 114751,9 105456,7
energy DRAM0 3187,135 6292,817 5740,042
energy PKG1 59425,3 62833,55 59303,91
energy DRAM1 3408,921 6888,643 6537,494
power PKG0 359,0748 716,951 660,5124
power DRAM0 19,8498 39,3166 35,9518
power PKG1 370,1004 392,5632 371,4348
power DRAM1 21,2312 43,0388 40,9466

MAX duration (s) 162,5537 160,836 160,5558
MED duration (s) 160,1248 160,0033 159,459

Table A.13: table for 25920x25920 matrix with 144 ranks partial results

matrix 25920 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 412596,15 583060,90 540577,66
total power 957,8512 1411,433 1358,179

MED duration (s) 430,3192 419,211 390,5878

general
total energy 433616,39 551051,86 564334,18
total power 976,34 1363,17 1347,72

MED duration (s) 449,4491 399,4946 423,0895

ScaLAPACK

execution
total energy 119992,37 190514,78 176843,25
total power 746,1688 1190,225 1107,27

MED duration (s) 160,0423 160,1732 159,5494

general
total energy 123676,36 190766,86 177038,11
total power 770,26 1191,87 1108,85

MED duration (s) 160,1248 160,0033 159,459

Table A.14: table for 25920x25920 matrix with 144 ranks total results

A.3. RESULTS FOR MATRIX 25920 X 25920 xxi

matrix 25920 576 rank 12 nodes 48 ranks 24 nodes 24 ranks 1 socket 24 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 208847,5349 358821,7704 359344,1331
energy DRAM0 15984,93 26694,67 27388,76
energy PKG1 207011,3 181073,8 179371,4
energy DRAM1 16837,19 16689,21 16664,68
power PKG0 1796,458 3482,34 3447,04
power DRAM0 137,5333 259,2662 262,7388
power PKG1 1780,706 1760,177 1724,26
power DRAM1 144,8611 162,0359 160,0084

MAX duration (s) 120,3205 116,9724 119,0979
MED duration (s) 115,8465 102,7518 102,0824

General

energy PKG0 207781,9 336650,7 337481,78
energy DRAM0 15973,95 26516,09 26110,81
energy PKG1 205339,8 171629,8 181178,44
energy DRAM1 16918,6 16700,23 16953,59
power PKG0 1795,155 3351,504 3337,58
power DRAM0 138,0157 264,2312 258,36
power PKG1 1774,039 1715,06 1794,276
power DRAM1 146,1777 166,524 167,7485

MAX duration (s) 118,084 115,5302 115,3469
MED duration (s) 115,8295 99,25725 99,38948

ScaLAPACK

Execution

energy PKG0 76837,71 136377,35 135750,68
energy DRAM0 3514,224 6968,44 6999,59
energy PKG1 73689,71 72128,64 72961,32
energy DRAM1 3997,07 6966,22 6988,81
power PKG0 1601,437 2927,75 2895,18
power DRAM0 73,2928 149,60 149,29
power PKG1 1535,866 1548,68 1556,23
power DRAM1 83,3574 149,56 149,06

MAX duration (s) 53,3455 46,85 47,17
MED duration (s) 47,03168 46,55 46,84735

General

energy PKG0 75670,32 130745,94 136357,34
energy DRAM0 3538,339 7028,25 6942,21
energy PKG1 72808,74 72890,15 70976,49
energy DRAM1 4001,644 7091,87 7048,32
power PKG0 1584,944 2802,40 2924,60
power DRAM0 74,1484 150,65 148,90
power PKG1 1525,066 1562,441 1522,513
power DRAM1 83,8588 152,0088 151,1801

MAX duration (s) 51,9586 47,6863 47,061
MED duration (s) 46,85898 46,5483 46,56905

Table A.15: table for 25920x25920 matrix with 576 ranks partial results

xxii APPENDIX A. RESULTS IN DETAIL

matrix 25920 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket

IMe

execution
total energy 448680,93 583279,47
total power 3859,558 5663,82

MED duration (s) 115,8465 102,7518

general
total energy 446014,28 551496,81
total power 3853,39 5497,32

MED duration (s) 115,8295 99,25725

ScaLAPACK

execution
total energy 158038,72 222440,66
total power 3293,953 4775,592

MED duration (s) 47,03168 46,55

general
total energy 156019,04 217756,22
total power 3268,02 4667,50

MED duration (s) 46,85898 46,5483

Table A.16: table for 25920x25920 matrix with 576 ranks total results

is around 110 seconds for IMe and 45 seconds for ScaLAPACK, thus ScaLAPACK
takes half the the time of IMe for computation.

A.3.3 Deployed ranks: 1296

Due to limitations on the number of nodes available per account on CINECA, it
was possible only to test the 27 nodes deployment. The gap between the power
consumption of IMe and ScaLAPACK in this case is only 15%. The energy values
doubles if compared to the 576 ranks deployments. Moreover, also in this case
ScaLAPACK results to be faster than IMe. This section refers to tables A.17 and
A.18.

A.4 Results for matrix 34560 x 34560

A.4.1 Deployed ranks: 144

As stated before, the duration of the tests on 144 ranks with ten repetitions takes
too much, and the scheduling of the job is delayed by SLURM of days. Therefore,
for this deployment the number of repetitions is reduced to five. This section refers
to tables A.19 and A.20.

Phases of the algorithm Also, in this case the measurements of the of the
different phases of the algorithms are not meaningful, there is always a slight
difference between the two and in some cases for ScaLAPACK the values of the
general monitoring are less than jets the algorithm itself.

A.4. RESULTS FOR MATRIX 34560 X 34560 xxiii

matrix 25920 1296 rank 27 nodes 48 ranks

IMe

Execution

energy PKG0 177985
energy DRAM0 13304,89
energy PKG1 178245
energy DRAM1 13451,14
power PKG0 4013,356
power DRAM0 300,1592
power PKG1 4019,219
power DRAM1 303,4483

MAX duration (s) 46,9033
MED duration (s) 43,965

General

energy PKG0 180278,5
energy DRAM0 12984,03
energy PKG1 180229,7
energy DRAM1 13639,54
power PKG0 4047,401
power DRAM0 291,5735
power PKG1 4046,33
power DRAM1 306,2935

MAX duration (s) 46,0328
MED duration (s) 44,32525

ScaLAPACK

Execution

energy PKG0 90395,86
energy DRAM0 4388,992
energy PKG1 89281,4
energy DRAM1 4527,122
power PKG0 3556,354
power DRAM0 172,6761
power PKG1 3512,508
power DRAM1 178,1101

MAX duration (s) 26,1144
MED duration (s) 25,24645

General

energy PKG0 97586,91
energy DRAM0 4679,521
energy PKG1 96606,8
energy DRAM1 4833,37
power PKG0 3578,371
power DRAM0 171,8051
power PKG1 3542,213
power DRAM1 177,4468

MAX duration (s) 30,9493
MED duration (s) 26,48155

Table A.17: table for 25920x25920 matrix with 1296 ranks partial results

xxiv APPENDIX A. RESULTS IN DETAIL

matrix 25920 1296 rank 27 nodes 48 ranks

IMe

execution
total energy 382986,1
total power 8636,183

MED duration (s) 43,965

general
total energy 387131,8
total power 8691,598

MED duration (s) 44,32525

ScaLAPACK

execution
total energy 188593,4
total power 7419,648

MED duration (s) 25,24645

general
total energy 203706,6
total power 7469,836

MED duration (s) 26,48155

Table A.18: table for 25920x25920 matrix with 1296 ranks total results

Cores deployed per processor The deployment of 48 cores per processor
above 3 nodes is 27% more energy consuming if compared to the 6 nodes de-
ployments. Moreover, there is not any difference between the deployment of 24
cores on two sockets or just on one. The course of the energy consumption of the
DRAM goes in a reverse direction. As matter of fact, the energy consumption of
the DRAM decreases with the number of nodes. This difference is quite evident
both for ScaLAPACK and for IMe. In this case probably due to the jamming of
the different ranks on the same resources on the DRAM the access time increase.
Thus, the duration of the execution for the 48 cores deployment is 6-10

IMe versus ScaLAPACK The performances of ScaLAPACK and IMe are
not comparable, for the 144 ranks deployment IMe is always 3 times more energy
consuming than ScaLAPACK. This is due both to a longer execution and to a
substantial difference between the two algorithms. Also the differences between
IMe and ScaLAPACK for the energy consumption of the DRAM are marked.
As far as the duration of the execution is concerned, both the versions amount
to a constant value, which is around 110 seconds for IMe and 45 seconds for
ScaLAPACK, thus ScaLAPACK takes half the the time of IMe for computation.

A.4. RESULTS FOR MATRIX 34560 X 34560 xxv

matrix 34560 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 461136,046 836827,34 813532,01
energy DRAM0 38068,11 72436,05 65918,17
energy PKG1 461080,144 429360,43 415796,33
energy DRAM1 41655,0818 45333,78 45113,37
power PKG0 448,7516 855,14 841,87
power DRAM0 37,0456 74,04 68,22
power PKG1 448,6974 439,92 430,21
power DRAM1 40,5364 46,45 46,69

MAX duration (s) 1029,677 1067,05 985,56
MED duration (s) 1026,834 944,91 973,893

General

energy PKG0 456235,8 782158,82 801347,15
energy DRAM0 37694,42 64126,56 67135,18
energy PKG1 455378,99 436351,98 430227,52
energy DRAM1 39479,10 42526,53 44291,39
power PKG0 448,75 835,75 832,62
power DRAM0 37,08 68,52 69,78
power PKG1 447,9036 466,7264 447,7482
power DRAM1 38,831 45,5328 46,1138

MAX duration (s) 1017,528 1011,078 1030,68
MED duration (s) 1016,551 919,0793 954,5491

ScaLAPACK

Execution

energy PKG0 134559 241362,00 267323,3
energy DRAM0 7680,157 15547,64 13843,78
energy PKG1 139743,6 143240,21 143874,9
energy DRAM1 8297,612 13017,73 14015,06
power PKG0 361,5992 653,53 725,089
power DRAM0 20,639 42,10 37,5498
power PKG1 375,5316 387,87 390,2464
power DRAM1 22,2982 35,25 38,0144

MAX duration (s) 373,528 369,93 368,7529
MED duration (s) 373,4933 369,08 368,6901

General

energy PKG0 138348,43 260640,1 260719,01
energy DRAM0 7689,90 15685,62 13614,48
energy PKG1 136933,10 152477,4 154891,06
energy DRAM1 8844,43 15101,04 15201,50
power PKG0 372,51 706,2264 706,29
power DRAM0 20,71 42,5018 36,88
power PKG1 368,701 413,1608 419,6048
power DRAM1 23,8142 40,9186 41,1808

MAX duration (s) 373,1166 369,4935 370,0708
MED duration (s) 372,1874 369,0296 369,088

Table A.19: table for 34560x34560 matrix with 1296 ranks partial results

matrix 34560 144 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 1001939,39 1383957,60 1340359,88
total power 975,031 1415,554 1386,976

MED duration (s) 1026,8337 944,91 973,893

general
total energy 988788,34 1325163,89 1343001,25
total power 972,56 1416,53 1396,26

MED duration (s) 1016,551 919,0793 954,5491

ScaLAPACK

execution
total energy 290280,39 413167,58 439057,01
total power 780,068 1118,75 1190,9

MED duration (s) 373,4933 369,08 368,6901

general
total energy 291815,87 443904,14 444426,06
total power 785,73 1202,81 1203,96

MED duration (s) 372,1874 369,0296 369,088

Table A.20: table for 34560x34560 matrix with 1296 ranks total results

xxvi APPENDIX A. RESULTS IN DETAIL

matrix 34560 576 rank 12 nodes 48 ranks 24 nodes 24 ranks 1 socket 24 nodes 24 ranks 2 socket

IMe

Execution

energy PKG0 510493,9082 880501,14 849788,43
energy DRAM0 39572,94 68877,53 66797,88
energy PKG1 508007,7 456169,51 457088,37
energy DRAM1 41836,2428 43565,59 43887,70
power PKG0 1771,733 3369,39 3362,02
power DRAM0 137,3519 263,81 264,26
power PKG1 1763,113 1748,76 1809,24
power DRAM1 145,2071 167,01 173,87

MAX duration (s) 296,8525 286,30 290,93
MED duration (s) 287,8548 257,70 250,6986

General

energy PKG0 524387 859299,82 857608,41
energy DRAM0 40380,12 66459,05 67478,22
energy PKG1 522758,9 450153,62 468519,80
energy DRAM1 41519,68 44184,52 44055,44
power PKG0 1795,2 3406,55 3325,76
power DRAM0 138,2584 263,61 261,92
power PKG1 1789,624 1787,531 1822,084
power DRAM1 142,1573 175,3595 171,3208

MAX duration (s) 305,0388 281,7142 302,1371
MED duration (s) 291,1813 250,3271 256,0835

ScaLAPACK

Execution

energy PKG0 161005,14 297188,54 294171,97
energy DRAM0 8841,89 15271,77 15577,96
energy PKG1 161798,64 167234,88 166632,50
energy DRAM1 8933,12 15874,35 15848,79
power PKG0 1523,35 2847,43 2829,45
power DRAM0 83,67 146,33 149,84
power PKG1 1530,86 1602,68 1602,93
power DRAM1 84,53 152,11 152,45

MAX duration (s) 109,66 105,04 104,82
MED duration (s) 104,96 104,27 103,8036

General

energy PKG0 180918,44 289555,3 295034,61
energy DRAM0 8372,76 15725,33 15558,36
energy PKG1 175922,78 167713,3 165732,25
energy DRAM1 9470,66 15417,73 15853,52
power PKG0 1589,10 2772,524 2839,03
power DRAM0 74,13 150,5733 149,72
power PKG1 1544,224 1605,89 1594,958
power DRAM1 83,8184 147,6282 152,5584

MAX duration (s) 184,9414 105,3941 104,6439
MED duration (s) 104,0461 104,2888 103,8479

Table A.21: table for 34560x34560 matrix with 1296 ranks partial results

A.4.2 Deployed ranks: 576

The energy consumption of the 144 ranks and 576 ranks are similar, probably
because the duration of the execution is one quarter of the mean duration of 144
ranks. Thus, also power consumption quadruplicates for both IMe and ScaLA-
PACK with respect to the previous deployment. This section refers to tables A.21
and A.22.

Phases of the algorithm Also, in this case the measurements of the of the
different phases of the algorithms are not meaningful, there is always a slight
difference between the two and in some cases for ScaLAPACK the values of the

A.4. RESULTS FOR MATRIX 34560 X 34560 xxvii

matrix 34560 576 rank 3 nodes 48 ranks 6 nodes 24 ranks 1 socket 6 nodes 24 ranks 2 socket

IMe

execution
total energy 1099910,79 1449113,77 1417562,40
total power 3817,405 5548,962 5609,391

MED duration (s) 287,8548 257,70 250,6986

general
total energy 1129045,67 1420097,01 1437661,87
total power 3865,24 5633,05 5581,09

MED duration (s) 291,1813 250,3271 256,0835

ScaLAPACK

execution
total energy 340578,79 495569,54 492231,22
total power 3222,401 4748,553 4734,67

MED duration (s) 104,96 104,27 103,8036

general
total energy 374684,64 488411,68 492178,73
total power 3291,27 4676,61 4736,26

MED duration (s) 104,0461 104,2888 103,8479

Table A.22: table for 34560x34560 matrix with 1296 ranks total results

general monitoring are less than jets the algorithm itself.

Cores deployed per processor The deployment of 48 cores per processor
above 12 nodes is 23% more energy consuming if compared to the 14 nodes de-
ployments. Moreover, there is not any difference between the deployment of 24
cores on two sockets or just on one. The course of the energy consumption of the
DRAM goes in a reverse direction. As matter of fact, the energy consumption of
the DRAM decreases with the number of nodes. This difference is quite evident
both for ScaLAPACK and for IMe. In this case probably due to the jamming of
the different ranks on the same resources on the DRAM the access time increase.
Thus, the duration of the execution for the 48 cores deployment is 9% higher than
the 24 core deployments for IMe. This is more evident for IMe.

IMe versus ScaLAPACK The performances of ScaLAPACK and IMe are
not comparable. For the 576 ranks deployment IMe is always 3 times more energy
consuming than ScaLAPACK. This is due both to a longer execution and to a sub-
stantial difference between the two algorithms. Also the differences between IMe
and ScaLAPACK for the power consumption of the DRAM are marked. As far as
the duration of the execution is concerned, both the versions amount to a constant
value, which is around 270 seconds for IMe and 103 seconds for ScaLAPACK, thus
ScaLAPACK takes more half the the time of IMe for computation.

A.4.3 Deployed ranks: 1296

Due to limitations on the number of nodes available per account on CINECA, it
was possible only to test the 27 nodes deployment. The gap between the power
consumption of IMe and ScaLAPACK in this case is 55%, and it descreases with
respect to the 576 ranks deployment. The energy values doubles if compared to

xxviii APPENDIX A. RESULTS IN DETAIL

the 576 ranks deployments. Moreover, also in this case ScaLAPACK results to be
faster than IMe. This section refers to tables A.23 and A.24.

A.4. RESULTS FOR MATRIX 34560 X 34560 xxix

matrix 34560 1296 rank 27 nodes 48 ranks

IMe

Execution

energy PKG0 503146,46
energy DRAM0 38130,97
energy PKG1 504039,2
energy DRAM1 38668,785
power PKG0 4009,361
power DRAM0 304,0412
power PKG1 4016,486
power DRAM1 308,3043

MAX duration (s) 133,3568
MED duration (s) 124,549

General

energy PKG0 491899,8
energy DRAM0 37902,06
energy PKG1 492714,31
energy DRAM1 38496,20
power PKG0 4000,48
power DRAM0 308,28
power PKG1 4007,116
power DRAM1 313,1089

MAX duration (s) 126,2068
MED duration (s) 122,9609

ScaLAPACK

Execution

energy PKG0 202783,35
energy DRAM0 9189,63
energy PKG1 199788,61
energy DRAM1 10190,79
power PKG0 3654,92
power DRAM0 165,71
power PKG1 3601,14
power DRAM1 183,76

MAX duration (s) 59,22
MED duration (s) 54,75

General

energy PKG0 205628,84
energy DRAM0 9222,70
energy PKG1 201621,13
energy DRAM1 10217,90
power PKG0 3704,47
power DRAM0 166,20
power PKG1 3632,303
power DRAM1 184,1304

MAX duration (s) 59,5932
MED duration (s) 54,24235

Table A.23: table for 34560x34560 matrix with 1296 ranks partial results

xxx APPENDIX A. RESULTS IN DETAIL

matrix 34560 1296 rank 27 nodes 48 ranks

IMe

execution
total energy 1083985,45
total power 8638,193

MED duration (s) 124,549

general
total energy 1061012,39
total power 8628,98

MED duration (s) 122,9609

ScaLAPACK

execution
total energy 421952,39
total power 7605,535

MED duration (s) 54,75

general
total energy 426690,56
total power 7687,10

MED duration (s) 54,24235

Table A.24: table for 34560x34560 matrix with 1296 ranks total results

	Abstract
	Introduction
	State of the Art
	High Performance Computing
	Parallelization
	Parallel programming

	Cineca Architecture
	Energy saving
	Energy metrics
	Energy efficient algorithms

	RAPL
	Advantages in using RAPL
	Disadvantages in using RAPL

	Powercap
	Relation between frequency, power and performances
	Powercap framework

	PAPI
	Events
	Low-level API
	High-level API
	Multiplexing
	Handlers
	Thread support
	Tools
	PAPI and RAPL
	PAPI and Powercap
	PAPI and MPI

	Fault Tolerance
	Linear systems solver algorithms
	Gauss Elimination Method
	Inhibition method
	Parallelization of IMe
	Scalable LAPACK

	Design and implementation
	Requirements
	Naive solution
	Implementation

	Common node solution
	Implementation

	Tester: command line interface
	Tester.c
	Test routines
	Algorithms versions

	Configuration and Execution
	Configuration
	Machine configuration
	Building LAPACK and BLAS
	Building IMe and ScaLAPACK

	Execution
	Launch tests on MARCONI

	Monitoring IMe and ScaLAPACK
	Parameters of the tests
	Monitored phases: allocation and execution
	Nodes, ranks, sockets

	Data collection
	Directories hierarchy
	Launching the tests and collecting the results
	Composition of multiple CSV files
	Data aggregation from Comma-Separated Files to Excel

	Significant charts
	Concluding remarks
	General observations
	Summary comparison between IMe and ScaLAPACK

	Conclusions
	Future developments

	Results in detail
	Results for matrix 8640 x 8640
	Deployed ranks: 144
	Deployed ranks: 576
	Deployed ranks: 1296

	Results for matrix 17280 x 17280
	Deployed ranks: 144
	Deployed ranks: 576
	Deployed ranks: 1296

	Results for matrix 25920 x 25920
	Deployed ranks: 144
	Deployed ranks: 576
	Deployed ranks: 1296

	Results for matrix 34560 x 34560
	Deployed ranks: 144
	Deployed ranks: 576
	Deployed ranks: 1296

