
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2022

Validating Software Functionality Across Combinations of Validating Software Functionality Across Combinations of

Runtime Configurations Runtime Configurations

Matt Kenison

Justin Bagwell

Tylor Sampson

Mike Meade

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Kenison, Matt; Bagwell, Justin; Sampson, Tylor; and Meade, Mike, "Validating Software Functionality
Across Combinations of Runtime Configurations", Technical Disclosure Commons, (December 12, 2022)
https://www.tdcommons.org/dpubs_series/5568

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5568?utm_source=www.tdcommons.org%2Fdpubs_series%2F5568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Validating Software Functionality Across Combinations of Runtime Configurations

ABSTRACT

 As the number of configurable attributes of software under test grows and the cardinality

of those attributes increases, the efficiency of software verification rapidly declines. This

disclosure describes techniques to determine test coverage gaps in multidimensional

configuration spaces of substantial cardinality by enabling a software developer to define a set of

rules associated with a feature and by forming a Boolean algebra over a coverage matrix that

defines the required test coverage. Test coverage is tracked and presented on a dashboard.

Release can be blocked automatically if the test coverage gap is beyond a threshold. Based on

the coverage matrix, untested combinations of configurations can be detected and individual

compatibility tests to verify functionality can be designed. By dynamically maintaining the

allowed values of the configuration space, intelligent prioritization of coverage becomes

possible. Software testability is sustained in the face of exponential dimensional growth.

KEYWORDS

● Software testing

● Configurable attribute

● Dimensional cardinality

● Test coverage

● Coverage matrix

● Coverage tracking

● Release blocking

● Integration test

● Combinatorial testing

2

Kenison et al.: Validating Software Functionality Across Combinations of Runtime

Published by Technical Disclosure Commons, 2022

BACKGROUND

 Software developers often have difficulty verifying that product features have been

successfully tested across the combination of possible configurations under which the software is

expected to run. As the number of configurable attributes (dimensions) grows and the cardinality

of those combinations increases, the efficiency of software verification rapidly declines. There is

often no efficient way to verify that each required configuration has an associated test pass in

which those dimensions are present. It is not uncommon for commercial software to have

thousands of dimensions, each dimension assuming one of hundreds of possible values. Testing

the cartesian product of all values is computationally infeasible. For complex software developed

and maintained by multiple teams, teams are required to maintain their tests against all other

values even as the set of allowed values for each configuration changes.

 While certain test frameworks support parameterization of one or more inputs and can

generate a Cartesian matrix of combinations of configurations, the resulting parameters run tests

individually with the given combination and have to be defined before running the test. No

mechanism is provided for reducing the parameter space. Not only are the test parameters

created in advance, but they are also coupled to the actual test code. Further, current test

coverage tools do not track runtime configurations.

DESCRIPTION

This disclosure describes techniques to validate test coverage of software features under a

matrix of runtime configurations. The techniques shift the focus of a feature developer or tester

from keeping track of all production configuration variations to creating rules that describe the

dimensions and configurations under which tests need to pass. Integration tests are monitored

3

Defensive Publications Series, Art. 5568 [2022]

https://www.tdcommons.org/dpubs_series/5568

and validated such that the rules defined for the feature are successfully tested against the matrix

of feature combinations.

 The techniques enable early and comprehensive test coverage for all relevant

combinations across the matrix of features. Product teams can easily define use cases and feature

requirements. Developers or testers can specify the dimension values a product needs to be tested

against. They can track the status of testing against those dimensions for a given product version

before the feature rolls out to production. The combination of compatibility expectations is

automatically generated and integrated with test execution tooling to effect test coverage at the

appropriate environment level. Checks can be automated and qualification guardrails provided to

prevent untested features from reaching production.

The techniques can be implemented in the form of a test coverage tool, some features of

which include:

● Dimension specification, which enables the developer/tester to specify the attributes and

attribute values to be tested, the minimal subset needed to validate a feature, rules to

reduce the cross-combination cardinality, simplifications such as equivalency classes to

reduce the number of test runs, etc. Dimension values and test validation status are

automatically kept up to date.

● Automatic test monitoring, which is integrated with a test execution workflow such that

the values being tested, and pass/fail statuses are automatically recorded.

● Coverage tracking, which enables a developer/tester to quickly see the extent of test

coverage and the presence of coverage gaps for a feature. Status reports include

information such as how many dimensions have passed, how many are being tested but

failing, how many haven't been tested, etc. Coverage tracking can illustrate the difference

4

Kenison et al.: Validating Software Functionality Across Combinations of Runtime

Published by Technical Disclosure Commons, 2022

between actual test coverage and the space of possible combinations of attribute values.

Coverage gaps thus identified can be addressed by newly designed and targeted tests.

● Release blocking, a feature that can use the status report, including the presence or

absence of coverage gaps, to generate an automated go/no-go signal before a feature is

rolled out to production.

● Rules specification, which enables developers or testers to program configurable

coverage requirements or expectations without knowing individual values and

combinations. The requirements specified by the developer/tester are automatically

mapped to actual test coverage.

Fig. 1: Components of a tool to validate software functionality across combinations of

runtime configurations

Fig. 1 illustrates the components of a tool to validate software functionality across

combinations of runtime configurations. The tool is divided into two broad sections - a backend

5

Defensive Publications Series, Art. 5568 [2022]

https://www.tdcommons.org/dpubs_series/5568

(102) and a frontend (104). The backend comprises a data collection/ingestion service (106), a

database (108), and a processing module (110). The collection/ingestion service gathers data

such as the values of each attribute and historical test results from text execution workflows (or

tools). The collection/ingestion service feeds such data into the database. The database schema

supports adding new dimensions, dimension values changing over time, and correlating test

coverage to a specific test target.

The processing module includes a rules engine (110a), which is fed rules (110c) by a

rules loader (110b). Testing rules can be specified by the developer/tester. Rules can be specified

that define important feature sub-spaces, e.g., feature subspaces to test in great detail; feature

subspaces of relatively less importance; feature subspaces that can be ignored; etc. An example

pseudocode for a rule is shown in Fig. 2.

The rules engine accesses the database and ensures that features are tested in accordance

with the rules as specified by the developer/tester. The rules engine generates the attribute-value

combinations per the rules, maps the required coverage to the actual coverage, and generates the

coverage gap report. The rules loader can be fed equivalence classes by an equivalency engine

(110d) operating with data provided by equivalency providers (110e). An equivalence class is a

class of dimension values with no functional differences between class members, such that a pass

(or fail) on one class member can be considered as a pass (or fail) on other class members.

Equivalency classes can be used to reduce the cardinality of a test.

The frontend includes a presentation layer (112), which presents test coverage results in a

user interface (112a), e.g., a reporting dashboard; enables, via a command-line interface (112b),

user interaction with qualification procedures, coverage gap reports, and the data underlying the

coverage results; enables, via a pre-submit module (112c), developers/testers to block releases

6

Kenison et al.: Validating Software Functionality Across Combinations of Runtime

Published by Technical Disclosure Commons, 2022

with coverage gaps from reaching customers; etc. In this manner, test data, developer-specified

rules, and user requests are unified to enable a decision to be made on test coverage and to

execute a go/no-go decision on rollout.

ruleset = {

 name = "My Feature"

 rules = [{

 name = "full validation"

 dimensions = [{

 type = machine_type

 values = ‘linux’

 }, {

 type = image

 values = ‘freeLinux101’

 }]

 }

]

}

Fig. 2: An example pseudocode test coverage rule

Fig. 2 illustrates an example pseudocode test coverage rule that can be programmed by

the developer/tester, and which is used by the rules engine to determine gaps in test coverage.

Rules define Boolean logic to validate the test coverage for one or more dimensions along with

any required metadata. For rules incorporating a single dimension, coverage data is checked for

that specific dimension; for rules that incorporate multiple dimensions, the cartesian product of

the dimensions is checked.

As illustrated, a test coverage rule set can cover a number of features (‘My Feature’). A

feature can be covered by a number of rules. A rule is defined by a name (‘full validation’),

dimensions, values, etc. Values within a rule are similar to an allowlist. Each rule checks for

7

Defensive Publications Series, Art. 5568 [2022]

https://www.tdcommons.org/dpubs_series/5568

certain combinations of values across dimensions. Rules are managed independently of the tests

under execution.

In this manner, the described techniques can rapidly determine test coverage gaps in

multidimensional configuration spaces of substantial cardinality by:

1. enabling a developer/tester to define a software feature and its associated tests;

2. enabling a developer/tester to specify a record of configuration attributes (dimensions),

with discrete, finite values;

3. enabling a developer/tester to define a set of rules associated with a feature and by

forming a Boolean algebra over the coverage matrix that defines the required test

coverage;

4. automatically monitoring tests such that the values being tested, and pass/fail statuses are

automatically recorded;

5. reading zero or more values for each dimension from systems under test and adding them

to the coverage matrix that describes the presence or absence of each value;

6. tracking the coverage of tests; and

7. automatically blocking a release if the test coverage gap is beyond a threshold.

Advantages of the described techniques include:

● The set of rules for a feature defines its test plan. The rules are decoupled from actual

tests and can be maintained independently.

● The values for each dimension are decoupled from the same and can be maintained

independently. This enables the required coverage to be kept up to date without affecting

either the test plan or the test code.

8

Kenison et al.: Validating Software Functionality Across Combinations of Runtime

Published by Technical Disclosure Commons, 2022

● The rules enable irrelevant combinations to be ignored, both by defining a subset of

required values and by allowing one value to substitute for another.

● Heuristics and additional data can be incorporated to intelligently reduce the

combinations under validation.

The described techniques apply to any software that is to be tested against multiple

independently controllable configurations. By establishing a canonical matrix for proving

product functionality across configurations, untested combinations of configurations can be

detected. Given a set of features and expectations for a product, the canonical matrix can enable

the creation of individual compatibility tests needed to verify functionality under all

configurations the product is expected to support. By removing the need to manually define

configuration tests for a product and by enabling features to be developed independently of the

products that use them, the described techniques enable product testing at scale. By dynamically

maintaining the variations under test, intelligently prioritization of coverage becomes possible in

a number of ways such as taking into account actual product usage; prioritizing coverage for

new/risky features; developing equivalence classes to obtain coverage from related

configurations; etc. Software testability is sustained in the face of exponential dimensional

growth.

CONCLUSION

This disclosure describes techniques to determine test coverage gaps in multidimensional

configuration spaces of substantial cardinality by enabling a software developer to define a set of

rules associated with a feature and by forming a Boolean algebra over a coverage matrix that

defines the required test coverage. Test coverage is tracked and presented on a dashboard.

Release can be blocked automatically if the test coverage gap is beyond a threshold. Based on

9

Defensive Publications Series, Art. 5568 [2022]

https://www.tdcommons.org/dpubs_series/5568

the coverage matrix, untested combinations of configurations can be detected and individual

compatibility tests to verify functionality can be designed. By dynamically maintaining the

allowed values of the configuration space, intelligent prioritization of coverage becomes

possible. Software testability is sustained in the face of exponential dimensional growth.

10

Kenison et al.: Validating Software Functionality Across Combinations of Runtime

Published by Technical Disclosure Commons, 2022

	Validating Software Functionality Across Combinations of Runtime Configurations
	Recommended Citation

	tmp.1670481251.pdf.Fv7W0

