
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2022

Identification of Faulty Software Binaries from End-to-End Tests Identification of Faulty Software Binaries from End-to-End Tests

Shubham Sharma

Varun Puri

Babu Prasad Elumalai

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Sharma, Shubham; Puri, Varun; and Elumalai, Babu Prasad, "Identification of Faulty Software Binaries from
End-to-End Tests", Technical Disclosure Commons, (December 12, 2022)
https://www.tdcommons.org/dpubs_series/5547

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5547?utm_source=www.tdcommons.org%2Fdpubs_series%2F5547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Identification of Faulty Software Binaries from End-to-End Tests

ABSTRACT

Software products are built from a number of interacting binaries that are rolled out

asynchronously, at differing schedules and paces. When there is a problem with a software

product such as a failure or sub-par performance, identifying the binaries that are the source of a

product failure or sub-par performance is difficult with end-to-end tests. Additionally, an

apparently failing test can be a false positive that does require any code changes to fix, yet that

demands human attention. This disclosure describes techniques to automatically determine, from

end-to-end tests of a software product, code binaries that are at the root of product failure or sub-

par performance. For each failure signal, a history is maintained of post-triage manual feedback.

The history is used to generate a confidence metric, referred to as a cube score, of a new failure

being a true positive. Probable false positive test failures can be filtered out, reducing developer

effort to address the apparent test failure.

KEYWORDS

● Software testing

● Code binary

● Canary testing

● Performance testing

● Software rollout

● Cube score

● Triage

● Machine learning

2

Sharma et al.: Identification of Faulty Software Binaries from End-to-End Tests

Published by Technical Disclosure Commons, 2022

BACKGROUND

Software products are built from a number of interacting binaries that are rolled out

asynchronously, at differing schedules and paces. When there is a problem with a software

product such as a failure or sub-par performance, identifying the binaries (out of the constituent

binaries) that are the source of a product failure or sub-par performance is difficult with end-to-

end tests.

Currently, an end-to-end test failure is investigated by human developers to triage the

failure and to identify the faulty binary. Such an approach is expensive, labor-intensive, and

unscalable, especially when a product comprises hundreds or thousands of binaries. Developers

usually have in-depth knowledge of binaries that are personally developed or maintained by

them; however, it is rare to have developers that have a horizontal understanding across the large

number binaries that together comprise a software product. Additionally, in some instances, an

apparently failing test can merely be a false positive that does not require code changes to fix, yet

that demands human attention. Typically, no history of false positives generated by a given test

is maintained.

DESCRIPTION

 This disclosure describes techniques that utilize end-to-end tests of a software product to

automatically identify the binaries (from a group of constituent binaries) at the root of product

failure or sub-par performance. Additionally, the techniques maintain, for each failure signal, a

history of manual feedback on post-triage false positivity. The history is used to generate a

confidence metric, referred to as a cube score, of a new failure being a true positive. Test failures

with a high likelihood of being false positives are filtered out using this metric to reduce

3

Defensive Publications Series, Art. 5547 [2022]

https://www.tdcommons.org/dpubs_series/5547

developer effort corresponding to the apparent test failure. The cube score can also be used to

more accurately triage test failures.

 The techniques use the timestamps of rollout when it is active for the test and the

timestamps of test failure to correlate test failure to rollout using event recency, e.g., by building

an event chronology. A rollout is active on a certain test when sections of the software newly

incorporated into the rollout are visible to the test. Human intervention for triaging and

determining the faulty binary is reduced or eliminated.

Fig. 1: Accurate identification of faulty software binaries from end-to-end tests

 Fig. 1 illustrates techniques for accurate identification of faulty software releases from

end-to-end tests, specifically, the identification of one or more binaries from constituent binaries

of a software product alongside the confidence metric (cube score) that a failing binary is a true

positive. The environment illustrated in Fig. 1 can be situated in a canary-testing region of

4

Sharma et al.: Identification of Faulty Software Binaries from End-to-End Tests

Published by Technical Disclosure Commons, 2022

software development, e.g., a region where customer-representative, end-to-end tests can be run

continuously and new versions released to an initial, relatively small, set of customers.

A test repository (102) includes test suites; test metadata, e.g., histories and captured

metrics of past tests; etc. The tests are registered alongside information such as the rollouts that

the tests are sensitive to. A signal analyzer (104) analyzes failure signals, e.g., signals relating to

test failures; underperformance; unexpected spikes in the load on processor, memory, or other

resources; functional deviations; feature defects; etc. The signal analyzer identifies binaries that

are potentially faulty and also assigns a confidence to that determination. The signal analyzer is

described in greater detail below.

Depending on the severity of the test failure, e.g., confidence in true positivity as

determined by the signal analyzer, the software rollout to customers can be paused/ blocked

(106a) and/or a bug report created (106b). The test failure is triaged manually and resolved

(108). The resolution of the test failure is fed back (110) to the signal analyzer, enabling it to

assign a more accurate true positivity confidence metric to a similar pattern of test failures that

occur in the future.

Signal analyzer

The signal analyzer identifies binaries that are potentially faulty and also assigns a

confidence metric. The sensitivity of end-to-end tests to a group of rollouts is set. Bad rollouts

are determined using rollout timestamps from each binary rollout, test-failure timestamps from

each end-to-end test, chronology-based heuristics, etc. For example, if an end-to-end test passed

for a version built at a time T0 but failed at a version built at a time T1>T0, then one or more

binaries introduced between times T0 and T1 can potentially be defective and are marked as

5

Defensive Publications Series, Art. 5547 [2022]

https://www.tdcommons.org/dpubs_series/5547

such. However, as explained before, a mere test failure need not mean a defective binary; rather,

the test failure can be a false positive.

The signal analyzer assigns a confidence, referred to as a cube score, to a determination

that a particular test failure is a true positive. The cube score for a given test signal is

dynamically computed based on statistical and historical analysis of the test signal. For example,

the feedback provided by the human who triages or resolves an issue, in the form of a false

positive or true positive report, is utilized when computing the true positive rating of the test

signal. The cube score can be utilized prior to sending a pause or block-rollout signal to improve

the accuracy of pausing or blocking a rollout.

For the ith data point, the weights[i] will be computed as:

weights[i] = (1/weeksDelta[i])

wherein weeksDelta[i] is the difference in weeks of that run with the current run

rounded to the next largest integer (ceil function)

The weighted average will then be computed as:

weightedAverage = Sum(weights[i] * FalsePositivity[i]) / Sum(weights[i])

wherein FalsePositivity[i] will be 1 if (FalsePositive == True) else 0.

CubeScore for the current test run = (1 - false positivity ratio)

Fig. 2: Example pseudo code to compute the cube score

 Fig. 2 illustrates an example pseudo code to compute the cube score. As illustrated, past

test runs, e.g., over the last n months, can be used to compute the cube score. The false positivity

ratio is a weighted average that gives relatively more importance to recent false positives than

older ones.

6

Sharma et al.: Identification of Faulty Software Binaries from End-to-End Tests

Published by Technical Disclosure Commons, 2022

Fig. 3: A generalized cube score

 As illustrated in Fig. 3, instead of using a statistical average of historical runs, the cube

score can be computed using a machine learning algorithm. Signal history (302) is fed to a

machine learning (ML) model (304) that is trained to determine the confidence that a given

generic signal (306) is a true positive. If the output generalized cube score from the ML mode

exceeds a threshold (308), the rollout is paused or blocked (310), and a gated version of the

generic signal is passed on to a human actor (312), who acts on the signal and reports if the

signal was indeed a true positive.

If the generalized cube score doesn’t exceed a threshold, a bug report is created and

passed on to the human actor (312), who acts on the bug report and reports if the signal was

indeed a false positive. The report created by the human actor is provided as feedback (314) to be

made part of signal history, which in turn can improve the performance of the ML model. In this

manner, the cube score can be generalized and used to improve the accuracy of any generic

signal that is linked to an increase in manual intervention. Additionally, the knowledge of code

paths changed in a rollout can also be fed to the machine learning model to improve the accuracy

with which the faulty binary is identified.

7

Defensive Publications Series, Art. 5547 [2022]

https://www.tdcommons.org/dpubs_series/5547

 The described techniques are applicable generally to software products that are built from

multiple interacting binaries. The techniques enable testing and certification of complex software

deployments. End-to-end tests can be performed in environments and workloads that closely

resemble those of the end customer and can reduce the number of defects that are released into

customer environments.

CONCLUSION

This disclosure describes techniques to automatically determine, from end-to-end tests of

a software product, code binaries that are at the root of product failure or sub-par performance.

For each failure signal, a history is maintained of post-triage manual feedback. The history is

used to generate a confidence metric, referred to as a cube score, of a new failure being a true

positive. Probable false positive test failures can be filtered out, reducing developer effort to

address the apparent test failure.

8

Sharma et al.: Identification of Faulty Software Binaries from End-to-End Tests

Published by Technical Disclosure Commons, 2022

	Identification of Faulty Software Binaries from End-to-End Tests
	Recommended Citation

	tmp.1670241681.pdf.mCzG6

