
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2022

REAL-TIME COMPRESSION OF SOFTWARE TRACES REAL-TIME COMPRESSION OF SOFTWARE TRACES

Clinton Grant

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Grant, Clinton, "REAL-TIME COMPRESSION OF SOFTWARE TRACES", Technical Disclosure Commons,
(December 02, 2022)
https://www.tdcommons.org/dpubs_series/5545

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5545?utm_source=www.tdcommons.org%2Fdpubs_series%2F5545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6815

REAL-TIME COMPRESSION OF SOFTWARE TRACES

AUTHOR:
Clinton Grant

ABSTRACT

Techniques are presented herein that support the compression of software-

generated traces as a stream, in real time, with reduced central processing unit (CPU)

overhead. Such an approach may reduce cloud hosting bandwidth charges and is

relevant when moving troubleshooting information from a device into the cloud for

analysis. Additionally, such an approach eliminates the bursty nature of file-based

compression that is typically achieved using legacy compression utilities. As a result,

the presented techniques are more amenable to small CPU footprints such as, for

example, a cloud-based router having just a single CPU. Aspects of the presented

techniques have a broad scope and may be applied to any software system that generates

traces, which is typically all modern software systems. Further aspects of the presented

techniques may potentially be applied to industry technologies (such as OpenTelemetry)

that support the distributed tracing of cloud hosted applications.

DETAILED DESCRIPTION

Techniques are presented herein that support the real-time compression of

software traces in a distributed software system with a focus on the compression of such

traces in a streaming manner. For simplicity of exposition the presented techniques will

be described and illustrated in the following narrative in connection with networking

devices. However, it is important to note that the approach of the presented techniques

applies broadly to all software systems, such as cloud-hosted software, and not

specifically just to networking devices.

Within networking devices, device vendors aim to support a high rate of tracing

to capture very granular troubleshooting information, frequently in excess of one

million traces per second. With that perspective, the primary focus is on performance

in the compute tradeoff with higher compression ratios. The techniques presented

herein may be applied to traces that are written to persistent storage or that are being

streamed over a network. Additionally, the presented techniques can achieve a trace

compression ratio of two to four times, yielding 1/2 to 1/4 the size of the original data.

The ability to stream traces off of a network device becomes important in retaining a

2

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 2 6815

larger troubleshooting history. Since the export of traces is a real-time stream, the

compression must also operate in a streaming manner. Many of the existing

compression libraries and utilities cannot support streaming since they operate on large

windows of data that are typically presented as files.

An additional problem that is addressed by the presented techniques is the

reduction in bandwidth that is achieved for cloud hosting. It is well known that cloud

providers enforce egress bandwidth charges. As vendors look to host more cloud

software, and even looking to the decomposition of existing systems for hosting in the

cloud, bandwidth preservation will be important. In particular, exporting traces to cloud

hosted analysis engines will confront this challenge. An analogy would be to the reason

Internet Protocol (IP) header compression (IPHC) exists, where in this case tracing-

specific compression may be employed to exploit the unique knowledge that is had

regarding the format and the nature of the metadata that is to be captured along with the

trace point code specific information.

Recent network equipment vendor operating system (OS) releases have

introduced unified tracing (UT) as an improvement over the existing binary tracing

(Btrace) distributed tracing architecture. UT provides a trace streaming model where

all of the traces that are generated at the different processes (running on all of the field-

replaceable units (FRUs)) are streamed and temporally ordered at a main route

processor card. Additionally, such an aggregate streaming model enables the export of

the UT messages (UTMs) off of a network device and on to an external collector.

Currently, file-based compression, employing zlib in default compression mode,

is employed to compress a UT file (UTF) tracelog file once the file is filled to the

nominal 20 megabyte (MB) limit. The compression overhead is incurred in a Btrace

Manager (BTMAN) daemon (as will be described and illustrated below in connection

with Figure 2). A thread is spawned for that workload, and approximately a factor of

10 compression is achieved. However, there is no concept of stream compression.

There are a number of reasons to pursue the application-specific compression

of UTM traces, several of which are described below.

A first reason encompasses stream compression. Since all of the UTMs that are

exported from a device will be streamed, there is no file-by-file transfer where existing

compression utilities such as zlib may be used. A collection facility may be designed to

receive a stream of UTMs from multiple connected devices. Application-specific

3

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 3 6815

stream compression can significantly reduce the ingress bandwidth at the collection

facility, which for a cloud hosted collection facility may translate into dollar savings.

A second reason encompasses compression CPU overhead. Typically, the

network device hardware platforms are constrained by CPU resources when compared

with, for example, disk resources. At the high end, certain wireless hardware is

equipped with 240 gigabytes (GB) of disk of which only approximately 10GB is used

for tracelogs. Adding in the extra processing that is required from UTM and UTF is a

challenge at wireless scale, so evolving to an application-specific compression scheme

frees up CPU resources at the system level.

A third reason encompasses faster decompression. A trace-specific

decompression integrates natively into the Btrace decoder with minimal overhead,

whereas the current gzip file-based decompression consumes up to 30% of the decoder

before the traces can be filtered and rendered.

The benefits of application-specific compression stem from the fact that the

most expensive part of any compression algorithm is the need to find the redundancy

in some window in the realm of a Lempel-Ziv (LZ) style compressor. The efficiency of

this search differs and represents a tradeoff between how hard to look for redundancy,

which results in better compression ratios, versus the computing that is required to

perform the more extensive searching.

Application-specific compression is the technique that lies behind Joint

Photographic Experts Group (JPEG) image and Moving Picture Experts Group (MPEG)

video compression where domain-specific knowledge yields results that are better than

that which are possible with a non-domain specific generic compressor.

A key to the techniques presented herein (as introduced above and as will be

described and illustrated below) is the exploitation of redundancy in the trace

generation that occurs at the execution context using a delta encoding strategy. There

is a great deal of redundancy which only increases with the density of tracing.

Expanding on the analogy of IP header compression (as described above), UTMs that

are produced by an OS may be treated as 'packets' with the header format that is

presented in Table 1, below.

Table 1: Header Format

UTM Header Trace Header Trace Payload

4

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 4 6815

An entire UTM may be up to eight kilobytes (kBs) in length.

A UTM header may carry different common parameters such as, for example,

a timestamp, a length, etc.

A trace header may describe the various message types, including:

 A binary encoded message header. This type captures software trace point

information and the trace payload field holds the arguments that were

supplied to printf() such as format specifiers (e.g., %s, %d %u, etc.).

 A packet capture (PCAP) message header. This type enables the trace

payload to carry a network packet, which may be interleaved with the traces.

An OS-based trace decoder may include a packet dissection engine.

 A structured data header. This type allows software objects to be captured

as the trace payload using an interface definition language (IDL) after

serialization.

For purposes of illustration, a portion of an exemplary trace from a network

switch is provided below:

2022/08/21 11:31:41.352784018 {fed_F0-0}{1}: [xcvr] [13228:29670]: UUID: 0, ra: 0

(debug): xcvr poll:Able to get Active PHY device lpn

2022/08/21 11:31:41.352785838 {fed_F0-0}{1}: [devobj] [13228:29670]: UUID: 0, ra: 0

(debug): DOM: READ_EPHY_REG COPPER_MII_STATUS

2022/08/21 11:31:41.352786143 {fed_F0-0}{1}: [devobj] [13228:29670]: UUID: 0, ra: 0

(debug): 54182:Rd-Mode:0, Page:0, Reg:1

2022/08/21 11:31:41.352786687 {fed_F0-0}{1}: [xcvr] [13228:29670]: UUID: 0, ra: 0

(debug): Read ephy hw reg: Entered

Modern tracing systems often capture a range of information. A first type of

such information encompasses trace header particulars and may consist of, for example

a timestamp; a trace length (in bytes); a trace identifier; metadata for a source file and

line number that is producing the trace; a process name (e.g., in the above exemplary

trace - "fed"); a process ID; a thread ID (e.g., in the above exemplary trace –

“PID:ThreadID = 13228:29670”); a location such as an FRU, slot, bay, and chassis

number (e.g., in the above exemplary trace - the FRU is F0, slot is 0, bay is 0, and

chassis number is 1); a software module name or identifier (e.g., in the above exemplary

trace the modules include 'xcvr' and 'devobj'); and a trace level such as ERROR, WARN,

INFO, and DEBUG (e.g., in the above exemplary trace the level is DEBUG).

5

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 5 6815

It is important to note that the above-described density is typically defined by

the level that is set by some configuration. As the level of trace verbosity increases,

such as in a DEBUG mode, the volume of traces increases dramatically and, as has been

observed, so too does the redundancy across the traces. As expected, each process,

software module, and even function will emit more traces.

A second type of information often captured by modern tracing systems

encompasses a trace message’s payload and may include a trace point specific message.

This is typically string data and/or numeric data such as integers and floats for binary

encoded messages.

As background, the binary tracing architecture that has been implemented in

some OSs captures the arguments that were supplied to printf() like format specifiers

(such as %s, %d %u, etc.) along with proprietary specifiers for media access control

(MAC) and IP addresses. The integer arguments are limited in size, though not in

number. Hence it can be expected that strings that are captured using %s arguments will

be present in larger traces.

The UTM compression strategy that is supported by the techniques presented

herein encompasses a multistage approach. A first stage, employing a delta-encoding

strategy, focuses on the compression of the fixed UTM header and the fixed headers

for trace encoded messages and application context messages. For the trace encoded

messages, a second stage may be applied to the payload or the trace arguments of the

binary form, considering strategies that check for duplicate arguments, or applying

Huffman or Lempel-Ziv-Welch (LZW) encoding to achieve further compression. To

emphasize, in the tradeoff between CPU consumption versus compression ratio the

intention is to favor CPU performance.

To help illustrate the issue of ingress bandwidth, Figure 1, below, presents

elements of an arrangement under which a collection facility is collecting traces from

multiple devices.

6

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 6 6815

Figure 1: Devices Connected to Collection Facility

As depicted in Figure 1, above, the accumulated bandwidth at the collection

facility grows rapidly. For example, if 50 devices are exporting traces each having a

size of 200 bytes, an estimate of the aggregate bandwidth at the collection facility is

shown in the fourth column of Table 2, below.

Table 2: Aggregate Bandwidth at Collection Facility for Various Device Trace

Rates

Device Trace
Rate
(traces/sec)

Device Egress
Bandwidth
(Mbits/sec)

Aggregate Rate @
Collection Facility
(traces/sec) for 50
devices

Aggregate
Bandwidth @
Collection
Facility

History @ 24hrs
(Tbytes)

1k 1.6 50k 81.9 Mbits/sec 0.885
10k 16 500k 819 Mbits/sec 8.85
100k 160 5M 8.19 Gbits/sec 88.5

To help illustrate an architecture that is possible according to the techniques

presented herein, Figure 2, below, presents elements of one exemplary arrangement.

7

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 7 6815

Figure 2. UT System Architecture with Compression Blocks

As depicted in Figure 2, above, UTM compression (according to aspects of the

techniques presented herein) may be in placed within a UT architecture, in relation to a

BTMAN temporal ordering and coalescing (TOC) module. In the context of the UTM

stream consumers, UTM compression may be applied by a UTF library, when writing

the traces to files, and it may be applied by an export UTM consumer that sends the

UTM stream off-box to a collection facility.

In the case of compressing UTMs for streaming export off of a device,

periodically an uncompressed UTM may be emitted as a beacon into the stream to

improve reliability, with the expectation that the underlying transport is Transmission

Control Protocol (TCP). Of course, when writing compressed UTMs to UTF files the

first message that is written to each file must be uncompressed to bootstrap the delta

decoding.

The narrative that follows explores a UTM trace compression algorithm and

examines the compression ratio versus the performance trade-offs that may be achieved

through the use of aspects of the techniques presented herein. Among other things,

tabulated results will be presented from several data sets covering routing and wireless

8

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 8 6815

use cases. The wireless data sets include active and standby devices. Within the below

results, a compression ratio is defined as:

Compression ratio = raw bytes / compressed bytes

for all UTM message types and for trace header and payload data.

Table 3, below, presents the results of UTM header compression (not including

LZW payload compression which will be covered in more detail in Table9, below).

Table 3: Exemplary Compression Results

No. of Traces / No. of Files Compression Ratio
34,919,910 / 173 4.2 (0.238)
26,668,163 / 173 2.48 (0.403)
24,880,771 / 166 2.51 (0.398)
1,251,315 / 12 1.88 (0.532)
17,072,083 / 173 1.81 (0.553)
29,899,842 / 173 2.53 (0.396)

The next section of the instant narrative examines the BTMAN thread level

performance. The involved UT implementation employs three threads – a ‘main’ thread

(the main thread of the evLoop), a ‘demux’ thread (the TOC thread), and a ‘utf’ thread

(the UTF thread that currently performs gzip compression and UTF quota management).

The involved test case includes the installation of 20 thousand (K) Open

Shortest Path First (OSPF) routes on a switch from a peer router. The peer interface is

shut and then not shut four times, with a 30 second (s) delay after the shut action and a

60s delay after the not shut action. The switch has the following debug elements

enabled – OSPF, express forwarding, and all binary level traces set to DEBUG. For

example:

debug ip ospf spf
debug ip ospf rib
debug ip ospf flood

debug cef all

set platform software trace all debug

Before UTM stream compression is enabled, Figure 3, below, demonstrates

distinct spikes in the UTF thread as the zlib compression processing is performed.

9

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 9 6815

Figure 3. BTMAN Thread Utilization Using gzip Compression

Figure 3, above, illustrates the impact of the gzip compression when generating

traces at scale. The orange line for the UTF thread shows the impact, here it peaks above

70% of CPU of a single core but it can get closer to 100% as more traces are offered

When zlib compression is replaced with native UTM stream compression,

Figure 4, below, illustrates that the overhead of the UTF thread is vastly reduced and

the total overhead of BTMAN is reduced.

Figure 4. BTMAN Thread Utilization Using Native UTM Compression

As depicted in Figure 4, above, running the same test as above (in connection

with Figure 3), but this time with UTM stream compression enabled including LZW

payload compression, it can be seen that the overhead of the UTF thread is significantly

reduced and the bursty nature of the compression is all but eliminated.

10

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 10 6815

Figure 5, below, depicts a situation consisting of duplicate trace argument and

LZW compression enabled on the trace payload data.

Figure 5: UTM Stream Compression with LZW

As indicated in Figure 5, above, the utilization of the demux thread increased

slightly, compared with Figure 4, above, in order to achieve a better compression ratio.

A key method that is employed by the techniques presented herein is delta

encoding, where a current message is compared with the global delta state that is

maintained, field-by-field, for the UTM header. The premise is that a significant portion

of the adjacent traces repeat common fields. For example, a burst of traces for a given

process will have the same process name, the same process trace key fields, the same

process identifier (PID), and for single-threaded OS daemons the same thread identifier

(TID). This pattern is leveraged in the first stage of the compression that operates on

the headers, collapsing repeated fields to a single bit in the UTM compressed header.

The bitmap maintains a bit for each of the header fields, and whether it may be

duplicated from the previous message.

Figure 6, below, depicts elements of the approach that was described above.

11

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 11 6815

Figure 6: Delta Encoding of Fixed Headers

The delta across each of the header fields may be calculated using a variety of

strategies. For all of the header fields, typically the compression strategy involves a

direct comparison with the corresponding field of the previous trace. This is a given for

all of the fields that are a single byte. When a delta between the fields is detected, there

may be further scoping to see if the delta can be compressed. Every byte that is saved

in a UTM compression header (as described below) for frequently changing fields can

improve the compression ratio.

Aspects of the techniques presented herein introduce a UTM compression

header. Such a header is six bytes in length, with the goal of keeping the length as short

as possible so as not to rob from the compression ratio. Table 4, below, presents the

fields of a UTM compression header.

Table 4: UTM Compression Header

id 0 1 2
length (bytes) 1 2 3
field Magic/ver Flags/length bitmap

As indicated in Table 4, above, a one-byte version (ver) field is of the same type

as the UTM version/magic field. The UTM version/magic value is currently 0xA2,

where the UTM header version is 2. For the compressed header, it may be set to 0xB2

where the magic increments to 0xB for the header version 2.

12

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 12 6815

As further indicated in Table 4, above, a two-byte flags/length field may

encompass (1) a three bit flag value (e.g., FLAG_DUP_ARG,

FLAG_ARG_HUFFMAN, and FLAG_ARG_LZW) and (2) a 13 bit length value

(supporting a maximum size of 8K). The size of the length value may be reduced to 12

bits if a 4K compressed message size can be achieved.

A three-byte bitmap field, as indicated in Table 4, above, records the UTM

header fields which have a delta relative to the previous message, where the bit

corresponds to the field identifier. If the bit is 0, then the field in the current message is

identical to the previous message so it can be reconstructed by copying the previous

message value. If the bit is 1, then it means that the field value is different and only the

delta has been recorded. To reconstruct the value, the delta may be applied to the

previous UTM message field.

According to the techniques presented herein, different encoding strategies may

be employed for each UTM field based on a field’s characteristics. Several possible

strategies are described below.

Under a pure delta strategy, the delta for UTM field F is the difference between

the current value and the value in the previous UTM message. That is, the delta is

F(current) – F(previous). This strategy only works for monotonically increasing fields

such as a timestamp. Otherwise, if the delta is a negative value no bytes will be saved.

A zigzag encoding strategy allows for the encoding of negative delta values, in

a positive integer, yet still reduces the underlying number of bytes that are required to

store the information. Without such a scheme, a negative delta of a 64-bit quantity

would result in a negative 64-bit value with the sign extension to the upper most bits,

achieving no byte savings. Zigzag encoding may be applied to a message length to

reduce such a value from two bytes to one byte of storage. Such an approach may also

be applied to a four byte PID field, reducing it to two bytes.

A comparison strategy takes into account the fact that there are many fields

which cannot be compressed using delta encoding. Under such an approach, if a

difference is detected between the current value and a previous UTM value then

compression may be abandoned and the new value may be retained and allowed to flow

into the stream. Similarly, this strategy may be applied to most of the remaining fields

which are already one byte in size. This strategy is possible since a trace-by-trace

compression scheme is employed where compressed and uncompressed traces may be

interleaved. For example, if the delta between adjacent trace timestamps exceeds four

13

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 13 6815

bytes in resolution then the compression may be abandoned and the original trace may

pass into the stream. Compression is an optimization game, and it is not worth

sacrificing bytes in the compression header or common fields to capture a compression

of 100% of traces.

Aspects of the above discussion may be further explicated with reference to an

example encompassing a delta compression of a timestamp value. Under the example,

it may be expected that an 8-byte timestamp field will be monotonically increasing. The

compression algorithm should maintain the delta state for the last field recorded, so for

the timestamp field it is only necessary to encode the delta since the last timestamp.

This provides the possibility of reducing the timestamp information that is recorded to

just four bytes per message. It is important to note that there is the possibility that the

delta may be more than four bytes. In such a case the original eight byte field of the

timestamp may be preserved.

In the following snippet that is taken from a switch:

2022/05/02 03:09:58.821845210 {cmand_R0-0}{1}: [poe] [6127:16561]: UUID: 0, ra: 0
(ERR): tdl handle is null in add port health record
2022/05/02 03:09:58.841494934 {cmand_R0-0}{1}: [poe] [6127:16561]: UUID: 0, ra: 0
(ERR): tdl handle is null in add port health record
2022/05/02 03:09:58.861132409 {cmand_R0-0}{1}: [poe] [6127:16561]: UUID: 0, ra: 0
(ERR): tdl handle is null in add port health record

repeated logs from the cmand process are seen which are identical and differ only in

their timestamp value. In the above, a first UTM timestamp (e.g., UTM(i)) encompasses

0x da 18 30 53 07 2b eb 16 (or u64 0x16eb2b07533018da) and a second UTM

timestamp (e.g., UTM(i+1)) encompasses 0x 96 ed 5b 54 07 2b eb 16 (or u64

0x16eb2b07545bed96),

yielding a delta value of 0x12BD4BC.

Such a delta value may be encoded as a UTM compressed (UTMc) message of

nine bytes in size:

0xb2 0x09 0x10 0x00 0xbc 0xd4 0x2b 0x01

In the instant example, if the message was a repeat, with the only difference being in

the timestamp, the compression reduces the original message of 114 bytes down to nine

bytes. Since the compression is message-by-message, the compression is indicated by

changing the first nibble (‘magic’) of the message from A to B, retaining the version

nibble (which is currently version 2). This is an example of best-case compression.

14

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 14 6815

As may be expected, delta decompression is an inverse operation, based on the

previous message. Continuing with the above example, all of the fields may be copied

over from the previous message based on the bit field. Every message would need its

timestamp adjusted. After the message copy, the timestamp delta may be applied by

adding 0x12BD4BC as an unsigned 64-bit (u64) operation.

When attempting to store a delta field in the compression field, there is a chance

that it may overflow the predetermined compressed size. In the case of timestamp delta

compression, this can occur if the 32-bit size is exceeded. It may also occur with a PID

value and a message length. As long as the proportion of messages that are affected is

very small (i.e., less than one percent), then the original UTM trace with a

magic/version byte of 0xA2 may be written in uncompressed form. A UTM

decompressor may handle both compressed and uncompressed UTMs, behaving as

something of a reset.

Currently, UTM traces carry a process name in clear text consuming a

maximum of 16 bytes. With the delta compression technique (as described above), it is

possible to compress repeated names to a single bit. In a case where it is not possible to

reuse the process name from a previous UTM, there are a number of options. First, all

16 bytes of the new process name may be captured. Second, a null terminated process

name may be captured as a variable length field in a compressed message (which may

benefit from the fact that process names tend to be short – dbm, sman, wncd, etc.).

Third, a captured name may be compressed using Huffman encoding and preserved as

a variable length field in a compressed message.

Based on sample data from an exemplary network, it is possible to see the

proportion of traces where process name changes are small, in this case approximately

eight percent of the traces:

field 10 (locn_luid_proc_name), strategy (compare), delta_count: 1343278,
proportion: 0.078

When the average trace size is approximately 212 bytes, if it were possible to save eight

bytes on this proportion the impact on the compression ratio would be minimal.

After handling the compression of a UTM and any encoded message (as

described above), the next frontier is a compression of the trace arguments that are

associated with the encoded message format strings. In the first example:

15

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 15 6815

" Failed to open directory: %s err: %s"

" New active fru: %d, slot: %d bay: %d chassis: %d"

the two string specifiers used in the format string will be concatenated in the trace

arguments, while the second will have the four integers concatenated. The trace

arguments will comprise a concatenation of numbers of various sizes (8, 16, 32, and 64

bits and strings) and structure argument types for MAC and IP addresses. There are a

number of strategies that may be investigated for the compression of the such UTM

traces arguments and several candidate strategies will be described below.

A first strategy encompasses Huffman encoding. Such an approach is effective

when there are frequently used characters. For example, it works well for English text.

A message may be thought of as a sequence of symbols, with each symbol drawn

independently from some known distribution.

A second strategy encompasses Run Length Encoding (RLE). Like Huffman

encoding, RLE mostly take advantages of frequent or repeated single characters. Elias

gamma codes are an example.

A third strategy encompasses LZW. LZ comprises a family of adaptive

compression algorithms where repeated parts of the input are stored by reference. Each

code word may refer to a single character in the input or to a substring. The algorithm

does not assume any a priori knowledge of the symbol probabilities. For historical

context, LZ77 and LZ78 are original versions (based on the concept of a sliding window

providing the DEFLATE derivative) and are used in gzip, (pk)zip, and Portable

Network Graphics (PNG) files while LZW derivatives are used in the Unix compress

utility and graphics interchange format (GIF) image encoding.

A fourth strategy encompasses transforms. These can help organize the data in

a way that improves the compression. Two that have been considered include Move-

to-Front (MTF) and Burrows-Wheeler-Transform (BWT), the latter being utilized to

great effect in bzip2 compression.

The next section of the instant narrative summarizes different run analyses that

were completed in connection with validating aspects of the techniques presented

herein.

A first run analysis considered runs of zeros and was based on a suspicion that

the arguments contain many zero bytes. The traces and bug information that were

generated from the OS emit all integers as uint64_t data, regardless of the original

16

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 16 6815

precision. For runs of zero length, data from an example wireless network, listed in

Table 5, below, show that most of the runs are less than eight bytes, although the largest

run of zeros that was detected was 48 bytes.

Table 5: Exemplary Run Lengths

Run Length (bytes) Proportion
1-7 97.8%
8-15 1.8%
16-31 0.3%

A second run analysis considered American Standard Code for Information

Interchange (ASCII) printable characters. The premise in looking for runs of printable

characters in the argument strings was to see if Huffman encoding could be applied to

reduce the size of these arguments. The letter frequency of ASCII printable characters

may be used to construct a Huffman encoding dictionary. Huffman compression might

then yield a 60% to 70% compression for just those runs.

Searching for the largest run-length of printable characters is an O(n) operation,

though not particularly general. It would also require new headers to be embedded in

the argument payload that is captured in the UTM compressed message form to mark

the start and length of the compressed runs. That is, it would need be managed within

the space of all of the arguments that are being traced, and any additional headers would

reduce the compression efficiency.

An observation is that OS-only bug information and debug artifacts are very

string dependent. This can be seen in the argument lengths of printable characters. It is

a common pattern in an OS to use snprintf() before tracing or logging data. Consider

an additional debug dataset:

 Processed 1251315 messages!
…
 Printable Arg Max Run Length Histogram:
 bin[0-7] : 517348, proportion: 0.413443
 bin[8-15] : 596005, proportion: 0.476303
 bin[16-31] : 81402, proportion: 0.065053
 bin[32-47] : 21275, proportion: 0.017002
 bin[48-63] : 733, proportion: 0.000586
 bin[64-79] : 104, proportion: 0.000083
 bin[80-95] : 20, proportion: 0.000016
 bin[96-111] : 7, proportion: 0.000006
 bin[112-127] : 34143, proportion: 0.027286
 bin[128-159] : 0, proportion: 0.000000
 bin[160-191] : 36, proportion: 0.000029
 bin[192-223] : 2, proportion: 0.000002
 bin[224-255] : 4, proportion: 0.000003
 bin[256+] : 0, proportion: 0.000000

17

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 17 6815

Looking at the maximum run length of trace arguments for encoded messages where

there are printable characters (i.e., the trace logging a string via a %s format specifier)

it can be seen that approximately 47% of the runs are in the range of 8 to 15 characters.

Regarding Huffman encoding (the first strategy that was noted above), various

Huffman dictionaries have been tried, including those constructed from the New York

Times (NYT) corpus giving plain letter frequencies, though it must be recognized that

the strings being logged are not NYT English. Other Huffman dictionaries were

specifically built from the data sets of trace arguments being compressed.

In summary, the results were not so promising. A general purpose Huffman

dictionary that was constructed form the NYT corpus yielded low compression

efficiency. A Huffman dictionary that was built for all of the trace arguments having a

maximum run length of printable ASCII characters greater than or equal to 16 yielded

negligible results for four data sets

In summary, the strength of Huffman encoding arises when it is combined with

other strategies. It can achieve a 60% compression on plain English text, but in practice

it is rarely used directly.

Regarding RLE (the second strategy that was noted above), it is simple and fast.

It can compress N bits to O(log N) in a best case. No compression takes place until a

run length is greater than six, and expansion is possible for a run of length two or six.

Such an approach may be bad for text, but is good on long runs (e.g., pictures).

Regarding LZW (the third strategy that was noted above), Huffman encoding

and RLE take advantage of frequent or repeated single characters. In contrast, LZ refers

to a family of adaptive compression algorithms. The premise is that certain substrings

are more frequent than others, so the approach is to store repeated parts by reference.

Variants of LZ compression are employed in LZ77 (an original version) and DEFLATE

is used in, for example, (pk)zip, gzip, and PNG.

LZW offers relatively fast encoding and decoding, and importantly can work in

a streaming model. Compared with Huffman encoding it requires no prior information

about the input data stream, meaning it can compress the input stream in one single

pass. In the case of trace argument compression, it needs to work with a small input set

since it is applied to one message at a time. If an average message is 212 bytes, then the

arguments are on average 100 bytes.

The LZW dictionary size needs to be considered – typically this can be 12-bit

entries, prefilled for the first 256 byte values. However, this may be excessive for UTM

18

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 18 6815

argument values. Consideration is therefore given to 8-bit or 9-bit entries, with the

dictionary preloaded with 7-bit values prefilled from 0x0 to 0x7F. In theory this

provides for 0x00 – 0x7f covering all of the printable ASCII characters, 0x80 – 0xff

covering ASCII substrings,

An 8-bit entry allows for 127 substrings or unseen bytes. A 9-bit entry allows

for 256 such substrings, but runs the risk of failing to compress well, if at all. To guide

this strategy, the byte distribution in the UTM encoded arguments may be examined.

For a number of sample images, Table 6, below, demonstrates that the majority of the

byte values are less than 128.

Table 6: Byte Distribution for UTM Encoded Message Payload

Byte range (inclusive) Proportion
0..63 0.388356
0..127 0.989477
128..256 0.010523

The distribution that was indicated in Table 6, above, may be attributed to

several different factors, including the larger argument entries existing as ASCII strings,

compared with the 64/32/16-bit arguments. Additionally, the values typically traced do

not use the full precision of the integer type. Further, the OS bi-endian interface treats

all integers as 64 bits, so there can be some degree of 0x00 padding.

It is compelling to think that 7-bit code words may be used due to the special

nature of the input data. It is important to note that LZW also needs to encode substrings.

If the input stream raw values are reserved to the range [0..127], then the control values

and substring codes may exist from [128..255] and still fit within a byte. Typical LZW

implementations choose code word sizes of 9-12 bits. Since tracing data has short

argument lengths, averaging around 100 bytes if the average UTM is 212 bytes, the

compression ratio would be impacted. Also, LZW dictionaries cannot grow unbounded

and are reset or cleared as they grow to a limit. If 8-bit code words are maintained then

data and argument bytes must be dealt with having a bit 7 set.

There are a number of options for the above, two of which will be described

below.

Under a first option, as the arguments are scanned the encoding may be

abandoned if a byte is encountered with bit 7 set. However, this might be one or two

19

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 19 6815

bytes per argument payload which would defeat too much of the compression. Analysis

may be performed to see how many argument payloads are free of such bytes.

A second option introduces control words to delimit such argument bytes with

a bit 7 set. A value is needed to indicate that the dictionary is reset. An End-of-Data

(EOD) code and a Reset-Dictionary (RES) code may be employed, as follows:

Code, code, EOD, 0xFF, 0xFF…, RES, code..

It is conceivable that the output code words can be further Huffman encoded if

there is some knowledge of the frequency distribution of the code words.

Transforms (the fourth strategy that was noted above) may help organize the

data in a way that improves compression. Two approaches that have been considered

include Move-to-Front (MTF), and Burrows-Wheeler-Transform (BWT), the latter

being utilized to great effect in bzip2 compression. Given the performance requirements

of the UTM compression, it is unlikely a transform can be employed since it will add

another pass over the data and thus does not support streaming. BWT followed by MTF,

RLE, and Huffman encoding is the algorithm that is used by the bzip2 program which

achieves the best compression on English text.

Concerning a LZW design, performance is critical for any UTM argument

compression. Since the compression must run for each UTM message, the

implementation must avoid system(), malloc(), and free() calls. Further, it needs to run

close to the BTMAN TOC offered rates. Classical implementations favor a trie

approach with an LZW encoder determining the longest-prefix-match within the stream

of bytes. A challenge with the trie approach is the memory management and cleanup

that are required at each UTM. Other alternatives look to hash table implementations,

which if implemented using a probing technique (linear or quadratic) may avoid the

memory management overhead but there still remains the issue of cleanup and resetting

the dictionary which is a necessity for LZW.

Considerations regarding the above include an array-based symbol table to

avoid malloc() calls and the implementation of a longest prefix match with an array

symbol table (where a hash table based on probing may employ quadratic probing

(since linear probing is not optimal due to the primary clustering) and a trie may be

employed to get the longest prefix match).

Given the points that were made above, the favored approach is a two-

dimensional (2D) lookup table at the LZW encoder. The lookup key comes from the

20

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 20 6815

symbols that are taken from the offered alphabet with the generated code values

representing prefixes. Naturally, each value from the alphabet is also a prefix.

The 2D table size is determined by the code word size. An initial

implementation may start with the alphabet of 7-bit values (0-127) and 8-bit code words.

Eventually it will be extended to the typical offering of 8-bit alphabet values and

support for 9-,10-, and 11-bit code words, etc. With 8-bit code words, new prefix codes

may be allocated from the range 128-255 making allowances for special codes to

indicate DICTIONARY RESET and END of DATA/NULL values.

The above approach should be adequate given that the average UTM message

size is approximately 212 bytes, putting the average argument payload around 100 bytes.

Since the LZW algorithm is adaptive, the encoding dictionary can grow unbounded, so

when no more code words can be allocated it is necessary to RESET, or flush, the

dictionary. This action needs to be signaled to the LZW decoder so that it can maintain

synchronization.

It is important to note that it is not necessary to maintain each longest matching

prefix string, or byte, sequence. Each prefix only needs to record the last character (or

byte) that was appended to form the new prefix.

Aspects of the techniques presented herein, as described and illustrated in the

above narrative, may be further explicated through an encoding example. For the input

string “YO!_YOU!_YOUR_YOYO!” Figure 7, below presents elements of an

exemplary 2D encoding table.

Figure 7: Exemplary 2D Encoding Table

The above allows the code table that is presented in Table 7, below, to be

constructed.

21

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 21 6815

Table 7: Exemplary Encoding Table

Code
(ASCII)

Character Code (Generated) Substring

32 _ 130 YO
33 ! 131 O!
79 O 132 !_
82 R 133 _Y
85 U 134 YOU
89 Y 135 !_Y

Using the code words that are presented in Table 7, above, the compressed string

becomes 89 79 33 32 130 85 132 134 82 133 79 130 33.

Similar to the LZW encoding step (as described above), a decoder must build

the dictionary in the same fashion, but in this case, it is a single dimension table that is

indexed by the code word values. There is a corner case where the decoder is expected

to decode a code word that is not present in the dictionary but which is in the process

of being constructed since the decoder is one step behind. This case is well documented

in the literature, and the solution is to take the first alphabet value of the previous code

word in the stream and treat it as the next alphabet value to be appended to the previous

code word to form the new code word.

For example, for the input string “ABABABA” and the code sequence 65 66

130 132, the decoder dictionary may construct a table as shown in Table 8, below.

Table 8: Exemplary Encoding Table

Code (key) Substring (value)
65 (ASCII) A
66 (ASCII) B
..
130 AB
131 BA
132 ABA

As depicted in Table 8, above, a dictionary lookup for the code 132 fails. To

build the entry for code 132, the first value of code 130 is appended to the substring for

130 to form “ABA,” the new substring.

The other function that is required of the decoder is to flush the dictionary when

it receives in the stream a reset code word.

22

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 22 6815

The LZW design that was described above can achieve a fast reset of the

encoding dictionary by having a shadow bit array, or bitmap, to represent the cells in

the 2D table. A single bit may be used to mark a table entry that is in use, indicating

that the code word is valid. This allows memset() calls to be avoided by clearing u64

datatypes to represent the dictionary entries.

Extending the compression results that were presented in Table 3, above, tests

were run on a platform:

processor : 39
vendor_id : GenuineIntel
cpu family : 6
model : 62
model name : Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz
stepping : 4
microcode : 0x42e
cpu MHz : 3340.771
cache size : 25600 KB
physical id : 1
siblings : 20
core id : 12
cpu cores : 10
apicid : 57
initial apicid : 57
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes

to identify the new compression ratio that is possible with LZW enabled on the encode

message argument payloads greater than or equal to 16 bytes. The results of those tests

are presented in the third column of Table 9, below.

Table 9: Exemplary LZW Compression Results

No. of Traces Compression Ratio Compression Ratio w/ LZW Performance
34,919,910 4.43

4.58

214.1Mbytes/sec

26,668,163 2.50

2.59

137.6 Mbytes/sec

24,880,771 2.49

2.62

127.2 Mbyte/sec

1,251,315 1.90

2.00

95.0 Mbyte/sec

17,072,083 1.81 1.96

80.0 Mbytes/sec
96.1 Mbytes/sec
– after lzw 9b tuneup
105.6 Mbyes/sec
– after moving DEBUG traces-to-
NOISE

29,899,842 2.53

2.56

199 Mbytes/sec
(18.22 s)

Note that for Table 9, above, duplicate argument checking was enabled for all

of the test cases and run before LZW payload compression in priority.

23

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 23 6815

A key observation from all of the above is that all of the code words have a fixed

width, in the instant case eight bits. A knowledge of the alphabet that is to be

compressed can allow for a second stage of compression where the LZW encoding is

followed by a Huffman-based compression stage that maps the generated codes to

Huffman codes in order to gain better bitwise efficiency.

Based on a frequency analysis of the bytes that are to be compressed, the

probability distribution is similar to the plot that is presented in Figure 8, below, for the

UTM encoded message payloads (arguments).

Figure 8: Probability Distribution Function for UTM Argument Code Generation

The premise is that the more frequent alphabet values (e.g., 0 through 127) may

be Huffman encoded for fewer bits. That is, low number values are frequent (especially

0); printable ASCII characters from decimal 32 to 126 are more frequent, and within

that set particularly SPACE (32) and the number 0 (48), and lower case ‘a-z’ characters

are more frequent than upper case ‘A-Z’ characters; and the codewords from 128+ are

generated in sequential order, meaning that a higher weight may be applied to those

closer to 128 (i.e., the generated codewords represent the substrings already seen and

hence likely to be used again).

Supporting a larger LZW dictionary of 512 entries and the generation of 9-bit

codes brings the challenge of packing the 9-bit code values efficiently when compared

with the 8-bit code generation.

128

24

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

 24 6815

For x86_64 platforms it is possible to leverage the Intel and AMD intrinsic

instruction sets to perform the integer packing operations into the encoded stream buffer

for greater performance. For example, the Advanced Vector Extensions 2 (AVX2)

support 256 and 128 vector widths, in principle allowing operations on up to 16 x int16

LZW codes. To keep the single instruction, multiple data (SIMD) output to the encoded

buffer stream simple, it is possible to look to common multiples of 9-bit codes that end

on a byte boundary such as 72-bits (8 codes) for 128-bit operations or 144-bits (16

codes) for 256-bit operations.

As described and illustrated in the above narrative, the techniques presented

herein encompass all aspects of UTM stream compression. A key point of novelty in

the presented techniques is the delta encoding of trace header information. Part of the

solution employs LZW and Huffman compression, which are well known components

of many compression solutions.

Use of the techniques presented herein offers a number of advantages. First,

compression is applied at the unit of a single trace, across the trace headers and separate

from the trace payload, with different strategies and algorithms applied to the trace

headers versus the trace payload. Additionally, compressed traces may be interleaved

with non-compressed traces. Second, trace compression is stream based. As equipment

vendors look to cloud hosting of their software, bandwidth charges that are applied by

the different cloud hosting providers can be egregious. Stream compression, as

supported by the techniques presented herein, reduces the tracing bandwidth between

nodes.

Third, general purpose compression utilities (such as gzip, zlib, bzip, etc.),

which are computationally expensive compared with trace specific compression, may

be avoided. Those utilities are expensive since they must make multiple passes through

the data in a given window (e.g., 32kB) to transform and then search for redundancy.

By contrast, the techniques presented herein make only a single pass over the tracing

data. Fourth, faster decompression performance is achieved compared with general

purpose tools.

In summary, techniques have been presented herein that support the

compression of software-generated traces as a stream, in real time, with reduced CPU

overhead. Such an approach may reduce cloud hosting bandwidth charges and is

relevant when moving troubleshooting information from a device into the cloud for

analysis. Additionally, such an approach eliminates the bursty nature of file-based

25

Defensive Publications Series, Art. 5545 [2022]

https://www.tdcommons.org/dpubs_series/5545

 25 6815

compression that is typically achieved using legacy compression utilities. As a result,

the presented techniques are more amenable to small CPU footprints such as, for

example, a cloud-based router having just a single CPU. Aspects of the presented

techniques have a broad scope and may be applied to any software system that generates

traces, which is typically all modern software systems. Further aspects of the presented

techniques may potentially be applied to industry technologies (such as OpenTelemetry)

that support the distributed tracing of cloud hosted applications.

26

Grant: REAL-TIME COMPRESSION OF SOFTWARE TRACES

Published by Technical Disclosure Commons, 2022

	REAL-TIME COMPRESSION OF SOFTWARE TRACES
	Recommended Citation

	Microsoft Word - Publication Document for CPOL 1038282-US.01 (Final) 4858-7295-9040 v.1.docx

