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Abstract 
The  Stochastic Frontier Analysis permits evaluating  the Technical Efficiency scores for one 
output variable   to obtain the corresponding Technical Efficiency  of n Decision-Making 
Units (DMU).  The objective of this work is a comparison between a Stochastic Frontier 
Analysis, with same input and different  output variables, and the Data Envelopment 
Analysis. You get k  Technical  Efficiency TE(yi) which are unified by a Principal Component 
Analysis and compared with the results of a DEA on the same data. 
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1. Introduction 
 

The evaluation of Technical Efficiency (TE) is a fundamental tool for seeing which 
determinants slow down the development of production. We have two distinct approaches to 
evaluating Technical Efficiency, namely a parametric approach which is Stochastic Frontier 
Analysis (SFA) and a non-parametric deterministic approach which is Data Envelopment 
Analysis (DEA). DEA is an approach which uses mathematical programming to identify the 
efficient frontier, and does not impose functional forms (Kumbhakar, Lovell, 2003; Ray, 
2004; Cooper, 2006). The main advantage of DEA is that it does not require any hypothesis 
about the analytical form of the production function. In DEA we have many inputs and many 
outputs jointly considered. DEA is based on the chosen inputs and outputs of entities that are 
named Decision-Making Units (DMUs). For example, all the schools (DMUs) are compared in 
relationship to the “best” performing schools.  DEA is a non-parametric linear programming 
method for assessing the efficiency of (DMUs).  

SFA requires strong distribution assumptions of both statistical random errors (i.e. 
normal distribution) and non-negative technical inefficiency random variables.  SFA 
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considers many input variables (x1, x2, ..., xk) but only one output variable (y). Our proposal is 
very interesting when we have more than one output variable and with SFA cannot be 
considered jointly as happens with DEA. Our goal is therefore to make more SFAs and unify 
TEs into a single list as for DEA. So, the main objective of this work is to obtain a single 
ranking of different SFAs.  

Section 2 introduces the Stochastic production frontier methodology and Section 3 
the Data Envelopment Analysis. Afterwards, in Section 4 we suggest how to organize the SFA 
with the same input and different outputs in order to obtain a synthetic indicator of efficiency 
instead of many outputs in accordance with the hypothesis of the stochastic model;  an 
application follows of the methodology on a real case (Secondary Schools) with  a brief  
discussion of the main findings. Finally, in Section 5, our comparison between DEA and SFA 
is presented. 

 

2. Stochastic Frontier Analysis   
 
The SFA is a parametric approach that hypothesizes a functional form and uses the data to 
econometrically estimate the parameters of this function. SFA requires functional forms on 
the production frontier, and assumes that units may deviate from the production frontier not 
only owing to technical inefficiency but also to measurement errors, statistical noise or to 
other non-systematic factors. In addition, the SFA requires strong distribution assumptions of 
both statistical random errors (i.e. normal distribution) and the non-negative technical 
inefficiency random variables (i.e. half-normal or truncated normal distribution) (Coelli et. 
al., 2005). The Stochastic Frontier Analysis searches for the production function, which 
represents the maximum output attainable given a certain quantity of inputs (Rao et al., 
2005).  
The first step of SFA consists in the specification and in the estimation of the stochastic 
frontier production function as well as in the estimation of technical inefficiency effects, 
assuming that these inefficiency effects are identically distributed. SFA methodology allows a 
functional form and the breakdown of the inefficiency error term. SFA is a parametric 
approach that hypothesizes a functional form and uses the data to econometrically estimate 
the parameters of this function. A production function f is defined as the schedule of the 
maximum amount of output that can be produced from a specified set of inputs, given the 
existing technology. The model of the Stochastic Frontier Analysis is (Rao et al., 2005):  

  
ln   (1) 

 
where yi  is the output of the n-th producer  (i.e. DMU), xi  is a vector of inputs,   ß is a vector 
of k+1 parameters to be estimated, 	 	 0,  is the noise or error term or the 
measure of effects independent  of the producer, vi  is homoskedastic; ui  is iid, ui is a non-
negative random variable measuring the technical inefficiency with  0, 	 half-normal  
either normal-truncated model  ,   or exponential or gamma); vi  and ui are 
distributed independently of each other and of the regressors. We can define the Technical 
Efficiency (TE) as the ratio of realised output to the stochastic frontier output:  
 

ln 		 	 ln ln 	 ∗ ln ∗⁄ 																													 0 1   (2). 
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The parameters of stochastic frontier function are estimated by the maximum 
likelihood method. An estimation of stochastic frontier is the use of the  (Battese and 
Corra,1977):   
 
              ⁄ .  
 

When  the parameter 	 0   the variance of the technical inefficiency effect is zero, 
if   is close to one  it indicates the deviations from the frontier are due mostly to technical 
inefficiency, and if γ 1  it indicates that one-sided error component dominates the 
symmetric error component.  

The main hypothesis of interest of the SFA is:  
  
           		H 	: β 	… β 0			q  . 

 
The omission of ui is equivalent to imposing the restriction specified in the null hypotheses 
i.e.   
 
           H 	: γ δ ⋯ δ 	 0.     

 
This indicates that the inefficiency effects in the frontier model are not present (no 

efficiency). Null hypotheses of interest are tested using the generalized likelihood ratio. The 
null hypothesis is H 	: γ 0 which specifies that technical inefficiency effects are not 
stochastic.  

We reject the null hypothesis of no technical inefficiency effects given the 
specifications of the stochastic frontier and inefficiency effect model. If the parameter γ 0 
we accept null hypothesis then the variance of the technical inefficiency effect is zero and so 
the model reduces to the traditional mean response function. Leaving a specification with 
parameters that can be consistently estimated using ordinary least squares.  

The second step of SFA involves the specification of a regression model for 
predicted technical inefficiency effects.  OLS is inappropriate and either the dependent 
variable must be transformed prior to estimation or a limited dependent variable estimation 
technique must be employed.  
 

3. Data Envelopment Analysis   
 

The parametric method involves the application of econometric techniques where 
efficiency is measured relative to a statistically estimated frontier production function. The 
non-parametric method revolves around mathematical programming techniques, the most 
commonly applied of which is generically referred to as DEA. In this case, the former body of 
method imposes a particular functional form, while the latter does not. Therefore, another 
linear programming method for assessing the efficiency and productivity units is the Data 
Envelopment Analysis. In particular, DEA is a non-parametric linear programming method 
for assessing the efficiency and productivity units called decision-making units (DMUs) 
because they enjoy a certain decision-making autonomy. DEA application areas have grown 
since it was first introduced as a managerial and performance measurement tool in the late 
1970s. The DEA approach was introduced by Charnes et al.  (1978)  who proposed the 
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efficiency measurement of the DMUs for constant returns to scale (CRS), where all DMUs are 
operating at their optimal scale. Later Banker et al. (1984) introduced the variable returns to 
scale (VRS) efficiency measurement model, allowing the breakdown of efficiency into 
technical and scale efficiencies in DEA.  

Over the last few decades, data envelopment analysis has gained considerable 
attention as a managerial tool for measuring the performance of organizations, and it has 
been used widely for assessing the efficiency of public and private sectors. This method leads 
to the System Selection of the optimal weights for the generic DMUs, and  to the solution of 
a mathematical programming model in which the decision variables are represented by the 
weights associated with each input and output unit.  DEA allows multiple inputs–outputs to 
be considered at the same time without any assumption on data distribution. In each case, 
the efficiency is measured in terms of a proportional change in inputs or outputs. A DEA 
model can be subdivided into an input oriented model, which minimizes inputs while 
satisfying at least the given output levels, and an output-oriented model, which maximizes 
outputs without requiring any more observed input values.  The most well-known is 
represented by the input oriented CRS efficiency (Charnes, et. al., 1978), where the 
formulation of the linear optimization	 problem, for the i-th DMU, is :                    

 , 		 ,																					subject to 

0
0,

0,
0,

  (3) 

where X is a matrix of kxn  input and Y is a matrix of mxn output, with n equal to the number 
of DMU, yi and xi are the outputs and inputs observed for the i-th DMU, f is a scalar 1
∞  and λ  is a constant  vector of  nx1.  The score of technical efficiency for the DMU is 

represented by the quantity 1 / f , and varies therefore, between 0 and 1 (f = 1 denotes a 
DMU that stands on the frontier of production and is therefore technically efficient).     

Another goal of the input-oriented DEA model is to minimize the virtual input, 
relative to a given virtual output, subject to the constraint that no DMU can operate beyond 
the production possibility set and the constraint relating to non-negative weights. In practice, 
most of the available DEA programs use the dual forms as expressed in (4), which lower the 
calculation burden and are virtually the same as (3): 

 

,	 ,																					  (4)  

 
where λ is a semipositive vector in Rk and θ is a real variable. 

In this paper we use the input-oriented CRS model to compare the results of the 
SFA; however, other variations are easily extendable and available in most DEA literature, 
including Coelli et al. (2005) and Cooper et al. (2006). 

 

4. SFA with same inputs and different outputs  
 

The Stochastic Frontier Analysis permits evaluating the technical efficiency scores  
for the input variables (x1, x2, ..., xk) with output  y1  and to obtain  a measure of  the 
Technical Efficiency (TE1 ) that can be called  TE (y1) i.e. a technical efficiency that is a function 
of  y1. We suggest performing multiple SFA with the same group of input variables (x1, x2, ..., 
xk) but with different output variables (yj) (j=2, …,k). For each i-th SFA we have the 
corresponding TE(yi) with continuous values in [0,1]. Each indicator of efficiency  TE(yi)   



 
Quantitative Methods Inquires 

 

 
5

obtained by each SFA, can be transformed into values on an ordinal scale. You obtain k 
rankings each due to a specific input variable used (yj). It becomes, therefore, a problem of 
ordering multivariate data of an ordinal type.  In a lot of applications we are interested in a 
unified ranking of the DMU rather than in  values of the single Technical Efficiency.  

In order to obtain a single graduation, you can use a Principal Component Analysis 
in considering the TE (yi) (j=1,2, …,k) as variables. You may grade the DMU according to the 
score on the first axis, but you obtain a ranking that is dependent on the first eigenvalue.  
The scores on the first principal component furnish an approximate indication of the 
probable ranking of the DMU. However, because the first principal component maximizes 
the weighted sum of squares of the correlation coefficients between the original variables 
and the first principal component, we will use this ranking that permits obtaining a unified 
ranking. 

We use the data gathered from an official survey performed by the school 
management of the Campania Region (Cometa project). The schools surveyed by the 
Regional School District will be at the end of the investigation, being more than a thousand.  
In this work were examined only thirty-three schools that had given coherent and validate 
data. The survey covers attributes regarding: environment, territorial context and economic 
resources.  We started with the model including all variables and interactions.  The choice of 
the model is based on the Box-Cox transformation (Box and Cox, 1964), while the choice of 
the functional form has been carried out under the hypothesis of a parsimonious model by 
likelihood ratio test and AIC criteria (Akaike,1977). After significance tests, only certain 
variables have been kept on the list of the potential determinants of technical efficiency, that 
represent characteristics of the school and of the management/production. We started with 
the model including all variables and interactions. The choice of  the functional form has 
been carried out under the hypothesis of  a parsimonious model.  The null hypothesis of 
absence of random technical inefficiency is rejected in the different specifications and thus 
the Stochastic Frontier Analysis seems appropriate for the data.  After verifying the 
hypothesis of asymmetry present in the residuals of the OLS and after trying several models 
with different dependent variables, the first model of SFA (SFA1) is: 

	 	 	 		 	 		 	 	   (5), 
where i refers to the i-th school, yi1 is the number of students who have passed the average 
score in the national test respect to the number of students, xi1 is the rate of number of 
teachers who have worked for more than ten years, xi2  is  the rate of use of laboratories with 
respect to the availability, xi3 is the rate of use gyms and sports equipment, xi4  rate of 
implementation of projects.  Variables vi and ui  are defined as described in  Section 2.1. In 
Table 1 are summarized the main results of model (5), based on data of 18 schools. The 
second (6) and the third model (7), SFA2 and SFA3 respectively, differ from (5) only for the 
output variable  (y2i, y3i) :    

		 	 	 		 	 		 	 		   (6), 
		 	 	 		 	 		 	 		   (7), 

where, in (6)  y2i  refers to the number of students who passed the secondary school-leaving 
examination with a score greater than 80/100 compared to the total number of examined 
students, while, in (7),  y3i  represents the number of regular students in the study with respect 
to the starting lever.  

The results (Table 1) of model (5) show that the production inputs as the rate of use 
of laboratories with respect to the availability and the rate of use of gyms and sports 
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equipment has a significant impact on the determination of the production frontier. Although 
positive, the presence is not significant of teachers with more than ten years’ teaching 
experience as well as the rate of realization of projects. For reasons of space we do not 
report further comments on the results of model (6) and other models because we are 
interested mainly in the graduation of technical efficiency with respect to the stochastic 
frontier.   
 

Table 1. Estimation results of Frontier Production with dependent variable being the number 
of students who have passed the average score in the national test with respect to 
the number of students 

Input 
variables/Parameters 

Coefficient Standard 
Error 

     z P>|z| 95% confidence interval 

Constant 2.2993660 .4785349 4.81 0.000 1.361455    3.2372770 
xi1 .0025374 .0026548 0.96 0.339 -.0026660     .0077408 
xi2 -.0084085 .0016368 -5.14 0.000 -.0116165    -.0052004 
xi3 -.0066347 .0037900 -1.75 0.080 -.0140631     .0007936 
xi4 .0068563 .0040808 1.68 0.093 -.0011420    .0148546 
σu    .0930487 .0540731  
σv    .3810259 .0921572          γ =0.94 
Log likelihood = .760369  Prob > χ2 = 0.0000 
Likelihood-ratio test of σu= 0 :            χ2(01) = 2.72                                  Prob ≥ χ2 =0.049   

 
Indeed, by means of the respective models (5), (6) and (7) were computed the 

Technical Efficiencies (Table 3) of individual schools  (DMU) suitably codified.  
We assume that the three Technical Efficiencies have been collected in a data 

matrix X, in which the rows are associated with the DMU and the columns with the three 
Technical Efficiencies as variables. The principal components of the three Technical 
Efficiencies are obtained from the PCA on X.  We can see (Table 2) that about 47% of the 
total variation is explained by the first principal component indicating that there is some 
conflict among the individual rankings.  

The first Principal Component is expected to approximate  to the common ranking 
quite well, therefore the scores, transformed into rank  (Table 3) could be used for 
comparison with the results from a Data Envelopment Analysis on the same data. Thus, by 
considering the Pearson’s correlation coefficients of X (Table 4), we note that a low positive 
correlation exists (0.2717, 0.2500, 0.0548) among the three Technical Efficiencies. That 
concordance of sign of correlation, even if low, will ensure the success of the methodology.  
Conversely, there is a very high correlation among the three technical efficiencies and the 
first principal component which reinforces the quality of the graduation carried out by the 
first component. Finally, the high Kendall’s rank-correlation coefficient (0.8265) between the 
two  rankings, Ist Principal Component and DEA, confirms the validity of the method shown. 
 

Table 2. The results of Principal Component Analysis on the Technical Efficiencies 

  Eigenvectors 
Variable 1st PC 2nd PC 3rd PC 

TE (y1) 0.6498 0.1374 0.7476 
TE (y2) 0.4785 -0.8381 -0.2619 
TE (y3) 0.5906 0.5279 -0.6104 

Eigenvalues 1.5053 0.8722 0.6225 
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Table 3. Scores of Technical Efficiencies on the first Principal Component  

and rankings by DEA  

SCHOOL CODE TE(y1) TE(y2) TE(y3) I.st PC 
Rank by 
I.st PC 

Rank by DEA 

S2 1.000 1.000 1.000 1.879973 1 1 
S7 1.000 1.000 1.000 1.879973 1 1 
S16 1.000 0.682 1.000 1.387817 3 1 
S13 0.845 0.909 0.916 1.019996 4 7 
S14 1.000 0.368 0.971 0.804637 5 5 
S17 0.908 0.462 0.960 0.653533 6 6 
S9 0.815 1.000 0.683 0.295076 7 8 
S11 0.825 1.000 0.642 0.185863 8 8 
S12 0.680 0.669 0.906 0.149252 9 11 
S6 0.390 1.000 0.980 0.090945 10 16 
S10 0.792 0.086 0.958 -0.262555 11 9 
S15 0.673 0.449 0.842 -0.425536 12 12 
S3 0.401 1.000 0.762 -0.608788 13 16 
S8 0.854 0.504 0.505 -0.959166 14 8 
S5 0.670 0.404 0.673 -1.070176 15 16 
S4 0.596 0.152 0.841 -1.105909 16 16 
S1 0.388 0.282 0.905 -1.277339 17 17 
S18 0.232 0.097 0.716 -2.637603 18 18 
 

Table 4. Pearson’s correlation coefficients (0.05 significance level with a star)  

Variable TE(y1) TE(y2) TE(y3) Ist Principal Component 
TE(y1)  1.0000    
TE(y2)  0.2717 1.0000   
TE(y3)  0.2500 0.0548 1.0000  
Ist  Principal Component  0.8045*    0.6315 *  0.5930* 1.0000 

 
5. Discussion and Conclusions 
 

The Data Envelopment Analysis (DEA) is a non-parametric deterministic approach   
that uses the mathematical programming to identify the efficient frontier, and does not 
impose functional forms.  The main advantage of DEA is that it does not require an a priori 
hypothesis about the analytical form of the production function. Indeed, DEA determines the 
production function by applying minimization techniques on the data. Differently from 
regression analysis, the DEA is based on extreme observations, and this leads to the main 
disadvantage of DEA, i.e., that the frontier is sensitive to the extreme observations. 
Furthermore, DEA postulates the absence of random errors and that all deviations from the 
frontier denote inefficiency of the DMUs. 

Vice versa, the SFA,  is a parametric approach that hypothesizes a functional form 
and uses the data to econometrically estimate the parameters of this function. The SFA 
requires functional forms on the production frontier, and assumes that units may deviate 
from the production frontier not only due to technical inefficiency but also to measurement 
errors, statistical noise or to other non-systematic factors. In addition, the SFA requires 
strong distribution assumptions of both statistical random errors (i.e., normal distribution) 
and the non-negative technical inefficiency random variables (i.e., half-normal or truncated 
normal distribution) (Coelli et. al., 2005).  

With SFA the determinants of efficiency are directly obtained by estimating the 
production function. With SFA you can use various models changing the response variable 
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every time and can eventually identify the model which has greater relevance in terms of 
acceptance. 

The method described in this work is suitable for the evaluation of  efficiency. 
Moreover, even our partial data, the method and the results achieved already provide a 
useful interpretation of the efficiency frontier for the evaluation of schools. Indeed, the 
efficiency estimates obtained have been utilized to rank the schools according to the 
common efficiency index.  

The comparison with the results obtained through the Stochastic Frontier Analysis   
with same input and different outputs correlates very well (0.8265) with the results of the 
DEA. This result confirms the quality of the alternative method proposed in this paper. The 
rankings obtained by the Stochastic Frontier, however, are more robust than those of the 
DEA for the very closely tested hypothesis. 
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