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Semantic Parsing of Java I/O in Novice Programs for an Online Grading System

Abstract

1

Beginning programming students have access to sophisticated development tools 

that enable them to write syntactically correct code in a straightforward manner. 

However, code that compiles and runs can still execute poorly, or with unintended 

results. We present a tool, based on an open-source parser-generation product written in 

Java, that performs semantic analysis of novice Java code. Specifically, the present 

investigation concerns the semantics of Java output methods, particularly when they are 

enclosed within iterative structures in the language. The effort will be to guard against 

threats that such methods pose to system integrity and performance, intercepting them 

prior to runtime. The approach used here closely models the analysis a human reviewer 

would perform, given a printed copy of the code. The tool is an open-source product, 

like the parser generator, and is also written in Java. As such, it is written to be 

extensible. The tool will be integrated into a larger research project underway at 

Montclair State University which involves the development of an online grading system 

for students in beginning computer programming courses.
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Chapter 1: Introduction

1.1: Overview

The study of languages is the province of linguistics. One of the notable 

researchers in the field, still active as of this writing, is Noam Chomsky, whose work has 

influenced not only the general field of linguistics itself, but has found fundamental 

application in computer science as well. His early description of a hierarchy of language 

grammars [4] has provided the basis for describing and formalizing most computer 

languages in use today. Most computer languages are described as implementations of 

context-free grammars (Type 2 in Chomsky’s now-famous hierarchy). A widely-used 

tool for notating context-free grammars is Backus-Naur Form (BNF), developed in the 

late 1950s, immediately after Chomsky’s seminal work. John Backus, who had already 

invented FORTRAN, the first widely-used high-level computer language, initially 

created what came to be known as BNF while working on the development of ALGOL, 

itself a very influential language. Peter Naur also contributed significantly to the 

development of BNF.

Inherent in the study of computer languages are notions such as grammar, syntax, 

and semantics. Loosely, grammar refers to the formal set of rules that results in the 

production of language elements and how they may relate to one another. Syntax refers 

to the sequencing of language elements to form language expressions. Semantics refers 

to the meaning of a language expression. Current development environments for 

computer languages provide complete implementations of the grammar of the language, a 

full set of tools for suggesting grammatical and syntactic elements to programmers, and 

fairly sophisticated tools for debugging grammatical and syntactic errors in programs
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during the development process. All development environments also provide feedback to 

programmers during the compilation process, particularly with regard to syntactical 

errors. Thus programmers can fairly easily develop programs that compile successfully -  

that is, are grammatically and syntactically correct. However, the semantic structures 

they have created (that is, the meaning or intended purpose of the program) may still be 

found wanting. Most development environments provide only rudimentary feedback for 

runtime errors, and it is often the case that the error reported is not the error that caused 

the problem. This is often misleading to novice programmers who can spend a 

frustrating amount of time trying to apply the wrong corrections to a problem. Run-time 

errors are often the result of faults in the programmer’s logic, or in the programmer’s 

assumptions about possible run-time behaviors while developing the program.

A more sophisticated semantic analysis of source code begins with the ability to 

resolve code down to individual syntactic elements. Tools commonly used for this 

purpose are known as lexical analyzers (lexers for short, known more generally as 

language recognizers) and parsers. A lexer reads a stream of characters (source code in 

this case) and, acting as a finite state accepter, produces a set of lexemes, or acceptable 

strings of characters. These strings are then evaluated to produce a set of lexical tokens 

that can then be processed by a parser. Parsers are programs that, given a particular 

formal grammar (most often notated in BNF), analyze a stream of tokens and build a data 

structure, usually a tree or a graph that represents the grammatical relationships among 

the syntactic elements. This structure can become the basis for a semantic analysis of the

code.
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In practice, parsers are usually the result of parser generation programs. This is 

because a particular formal grammar is an arbitrary construct and often subject to change 

and elaboration. Each time the grammar changes, a new parser must be generated. Most 

so-called parsers today are actually parser generators and are dependent on accurate, 

current grammars. In the case of Java, which is still a relatively young language, the 

grammar is in a state of flux.

There are two basic approaches to parsing code: top-down and bottom-up [24]. 

Bottom-up parsers are typically used in the compilation process. They are- characterized 

as LR parsers, meaning that source code is read from left to right and that syntactic 

elements are constructed or derived from the right-hand end of a particular input string. 

LR parsers are “Left-to-right, Right-hand derivation” parsers. Yacc, a common parser 

found on UNIX systems, is one example of an LR parser. Top-down (or LL) parsers also 

read input from left to right, but use left-hand derivation. The distinction is important 

because the two approaches produce syntactic elements in a different order from one 

another. This also has implications for parser performance and for the kinds of grammars 

for which the particular approach is suitable.

A particular type of LL parser is the LL(k) recursive descent parser. Such a parser 

“looks ahead” k tokens to make parsing decisions. The ability to examine tokens before 

processing them is necessary in practice because modem programming languages, such 

as Java, are not purely context-free. Recursive descent parsing is particularly suitable for 

the production of Abstract Syntax Trees, which are explained more fully below (section 

3.2). The particular parser used in this investigation, antlr, is an LL(k) recursive descent

parser.
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1.2: Overall Project Description

This research is part of a larger project already underway at Montclair State 

University. An online system is being developed that will provide feedback to students 

in two introductory undergraduate programming courses, regarding their Java coding 

exercises. The purpose of this larger project is to create an expert system that analyzes 

the semantics of Java code and provides useful feedback to students as they develop their 

coding skills. The larger research effort is being directed by Dr. John Je'nq, Computer 

Science Department, Montclair State University.

In developing expert systems, concerns arise regarding threats posed to system 

integrity by I/O operations, particularly as a result of poorly-written or even malicious 

code. For example, the author wrote a simple program that wrote “Hello, World” to the 

hard drive on a 2.4 GHz/Pentium 4 computer with 512 MB of RAM (a very typical 

student machine at the time of this writing). The only unusual feature of the program was 

that the write to disk occurred inside an infinite loop. In 6 seconds of execution the 

program created a 400 MB text file. The operating system attempted to buffer the file in 

memory; however, there was not enough available primary memory and it began using 

virtual memory. The result was so deleterious to performance that it was quicker to 

reboot the machine than to wait for it to stabilize itself.

1.3: Research Topic and Rationale

The present investigation concerns the semantics of Java output methods, 

particularly when they are enclosed within iterative structures in the language. The effort 

will be to guard against threats that such methods pose to system .integrity and
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performance, intercepting them prior to runtime, specifically to avoid scenarios such as 

the one described above.

An underlying assumption is that the code to be examined (referred to as novice 

code) has already been compiled and that the development environment has reported no 

compilation errors, that is, the code is assumed to be syntactically correct. Today, most 

programming students have access to sophisticated development environments that do a 

lot of the syntax-checking as the program is being written and, in fact, provide drop-down 

lists of suggested keywords, classes, methods and arguments as the student types out the 

code. For this reason, it is becoming a relatively straightforward process for novices to 

be able to produce syntactically correct code. However, much in the same way that 

correct spelling of all the words in an English sentence does not ensure a grammatically 

correct sentence and, in turn, a grammatically correct sentence does not ensure semantic 

correctness (an intended meaning), so too with source code. A novice can write correct 

code that will execute, but it may execute poorly or with unintended results. A semantic 

analysis of the code can yield important feedback to both students and instructors prior to 

run-time and forestall errors or potentially harmful run-time behaviors.
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Chapter 2: Literature Review

2.1: Background and Related Work

The author identified four areas of related research in the literature: semantic 

analysis of Java, handling malicious code, intelligent tutoring systems, and common 

errors in novice code.

The broadest of these research areas, semantic analysis, finds wide application: 

compiler generation, software testing, software quality assurance, program analysis and 

verification, exception handling, class analysis, software engineering tool development, 

code optimization, and constraint-based program analysis, to name a few. Much of the 

research in semantic analysis focuses on the technique of performing static analysis of 

code, that is, analyzing the semantic structure of source code without executing it. That 

is the approach used here.

2.2: Literature Review

The literature regarding semantic analysis revealed several alternative approaches 

to the development of automated grading systems that may be useful for the development 

of the overall project. A number of projects describe visualization tools that help novices 

to more easily discern structural and semantic relationships within their code [2] [3] [14]; 

however, these do not provide specific feedback mechanisms concerning specific 

semantic issues in code. Huynh [10], Fabry [7] employ variations of a pattern-matching 

approach; that is, source code is compared to a predefined ‘template’ program to identify 

syntactic and/or semantic differences. This may be a very worthwhile approach, 

especially with first-semester programming projects. The approach used in this
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investigation is more open-ended and does not rely on modeling ideal code solutions. A 

particularly interesting approach [17] [19], is to use the structured data capabilities of 

XML in the semantic parsing process. One reason for this is to be able to take advantage 

of the rich array of tools available for XML that provide powerful ways to analyze 

semantic structures.

Much of the interest in identifying and handling malicious code is'fueled by the 

vigorous interest in security issues these days, although there is an offshoot of this 

research that deals specifically with the phenomenon of run-time termination on mobile 

devices. This research often describes particular tools and or techniques. Rabek [20] 

describes a tool that performs a static semantic analysis of code, identifying Win32 API 

system calls. The tool then monitors the system calls made at runtime, verifying that they 

conform to the calls determined by the semantic analysis. The first half of this approach 

(the semantic analysis) is similar in principle to the approach used here, though it is not 

language specific and it is expressly designed to work only on Windows platforms. The 

approach used here also does not do any runtime monitoring -  all analysis and feedback 

is provided during the static analysis.

Research in intelligent tutoring systems or agents (the term de jour) extends back 

at least into the 1960s, with a host of approaches and techniques that have evolved and 

changed as technology has grown and access to computers and the internet has grown to 

near ubiquity, at least in industrialized countries. A spin-off of this research has delved 

into the teaching and learning of programming languages, particularly regarding 

automated tools that can help teachers evaluate code written by novice programmers. Six 

specifically address the teaching of Java [23] [22] [5] [6] [15] [8].
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Sykes [22] describes a prototype for a system that will involve a small subset of 

the Java language. This may be an approach worth investigating, again, especially for 

first-semester student programming projects. It remains to be seen, once the prototype is 

expanded to include the whole language how closely it will resemble the author’s own 

efforts. The present investigation seeks to include the whole language from'the outset.

DePasquale [5] also employs an approach that works with a subset of the full 

language; it is interesting to note that he does not find significant differences in 

performance between students who begin by learning subsets of the language in 

simplified development environments compared to students who learn from the outset 

using the full language in complete development environments. He does note that 

students using the simplified environments were more satisfied with their experience than 

students in the traditional environment.

Truong [23] begins by identifying a number of common semantic errors made by 

novice programmers (this was done through his own extensive literature review and then 

confirmed empirically on his own campus). He employs software metrics and structural 

metrics to analyze and evaluate code semantics, based on a comparison of semantic parse 

trees of student code with model code. The code assignments are “fill-the-gap” in nature, 

i.e., a skeleton structure is supplied and the student must complete what are called “well- 

formed gaps” in the code so the result will compile correctly. This approach seems 

particularly well-suited for first semester students and might be worthy of investigation 

for use within the larger research project at the University.

Truong employs metrics that quantitatively measure how far a novice’s code 

departs from predefined stylistic guidelines or from samples of model solution code. An
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interesting side note here is that Badros [1] provides a very nice set of examples that 

implement these kinds of metrics using XML-wrapped java source code.

The approach that Truong and Badros employ, providing a ‘template’ to which 

the novice’s efforts are compared, are more recent implementations of what appears to be 

a ‘pattern-matching’ approach that has been used most often historically. A number of 

earlier efforts were investigated, more to understand the evolution of the tools, than to 

gain insight into particular approaches. An approach used by Jackson [11] seems 

representative: a tool that uses yacc and lex to compare student code to a ‘correct’ 

solution. Huynh and Fabry, noted earlier, seem also to have refined and elaborated on 

this historical approach.

Kumar [15] has created a number of tutors for use with either Java or C++ that 

address specific topics in beginning programming (the specific reference given here deals 

with expression evaluation). The tutor produces snippets of code that students must then 

evaluate. In more extended cases, the evaluation is done interactively in a step-wise 

fashion, essentially, tracing the execution logic of the code.

Hristova [8] has developed a tool, named Expresso, that specifically concerns 

itself with providing pre-runtime feedback for a set of common Java programming errors. 

Part of her research, like Truong, produced a list of common syntax, semantic and logic 

errors in Java. It appears that most, if not all, of the errors listed are actually caught by 

most current compilers. Part of the reason for the development of her tool was to help 

students interpret often cryptic compiler error message that can often actually be 

misleading in terms of the necessary corrections.
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Etheridge [6] provides a very interesting tool called CMeRun that pre-processes 

source code, providing a snap-shot of the condition of variables and various kinds of 

output as each line of code executes. It provides something akin to the step-through 

execution that most debuggers produce within current IDEs. It allows students to step 

through loops providing the opportunity to break out at each iteration.

There are also other tools that provide visualization tools and various other 

techniques for helping novice programmers better understand what they are doing. 

Kumar already provides a concise summary of these approaches, including Hristova and 

Etheridge in his summary.

Like Hristova and Etheridge, and in contrast to Kumar, Truong and Sykes, the 

author’s approach is designed to work with non-prescribed projects. The present 

approach works with any Java code and does not expect the code to match any pre

existing or closed solutions. This approach seeks to determine runtime results prior to 

runtime and prevent syntactically correct but troublesome code from executing. In this 

regard, the concerns in the present investigation are somewhat closer to Reiss [21] 

although his interest is in developing CASE tools for large-scale enterprise projects. 

Reiss describes a process whereby semantic parsing is largely employed to maintain a 

symbol table and in which the symbol table is continuously updated during incremental 

parsing, effectively generating a model of runtime behavior. This will become an 

important feature in future extensions of the current investigation. Lapierre [16] also 

describes a commercial tool developed at Bell Labs Canada, designed for large-scale 

projects, that builds an Abstract Semantics Graph as its central tool for analyzing source 

code. Since it is proprietary, details regarding its implementation are not available.
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Finally, there is a significant body of research that identifies common novice 

errors in syntax and logic. Truong and Hristova both investigated a number of common 

programming issues specifically related to Java, drawing upon their own experiences and 

generating surveys of their peers, as well as reviewing the literature. Their work will be 

very useful in determining future directions for this research. As far as the author knows, 

at this writing, there have not been any investigations into the semantic issues involved in 

generating I/O from within iterative structures in Java.

Moreover, the author’s approach appears somewhat unique in that it attempts to 

model the behavior of a human reviewer. A human reviewer could, for instance, read the 

following code: for (x=0; x<10; x *=1); and can model its runtime behavior without 

actually compiling and running the code. After performing the virtual run, the human 

reviewer can predict runtime performance and provide feedback to the novice 

programmer, pointing out, in the example used here, that while the loop will compile and 

execute, it is infinite. That is essentially the approach used here. The author has 

previously reported preliminary findings at an earlier stage in this research [18].
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Chapter 3: Methodology and Implementation

3.1: Methodology

There are a host of open-source tools and resources readily available that provide 

a foundation for doing semantic analysis of Java code. The present effort seeks to build 

an open-source tool, based on existing tools and resources, that can anticipate runtime 

errors, saving both students and instructors time and effort, and helping to maintain 

system integrity.

Complete semantic analysis in any language is extremely difficult and, ultimately, 

open to much interpretation and debate. Therefore, a number of important assumptions 

and constraints were imposed in the present case in order to define a meaningful scope 

for this research and to provide an extensible basis for future research:

(1) The tools described in this investigation work with Sun Microsystems' official 

Java 1.3.1 specification.

(2) The tools are designed to examine Java source code produced by students in 

beginning computer science courses. Such code will hereinafter be referred to as 

'novice code' or 'novice programs'.

(3) It is assumed that the novice code under examination has first been successfully 

compiled, that is to say, the code is syntactically correct.

(4) For the purposes of this investigation, the tools perform a semantic analysis of 

novice code with the following constraints:

a. All current Java (1.4.2) output classes and methods are included in the 

investigation. Input classes and methods are not part of the present 

investigation.
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b. The tools perform semantic analysis of output classes and methods only 

when they occur within iterative structures (specifically, for, while and do 

loops). Invocations of output classes and methods that execute singly in

line are not investigated.

c. Only numeric loops are considered. That is, initial conditions for entrance 

into a loop, exit conditions from the loop and the loop iterator are assumed 

to be numeric expressions or assignments. Loop controls using other 

means (boolean expressions, character or string expressions, pointers and 

so on) may be the subject of future investigations.

d. Only loop control identifiers that have no dependencies are considered in 

the present investigation. Typically, it is assumed that loop control 

identifiers are declared and initial values assigned early in the code with 

no further modification before their use in the loop. More complex or 

subtle manipulation of loop control identifiers is not within the scope of 

the present investigation.

e. Only simple 'in-line' iterative structures are considered. Nested loops, 

embedded method calls, recursive structures, and so on, may be the 

subject of future investigations.

3.2: Implementation

This research began with an investigation of the Java language specification itself. 

A BNF grammar for version 1.3.1 was chosen because it was the most recent available 

for the language at the time the core of this research was conducted. As of March, 2005 

there is now a BNF grammar available for the most recent version of the language
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(version 1.4.2). It is anticipated that, at most, only minor changes will be needed to 

enable the author's tools to work with the newer grammar. In fact the author has used the 

1.3.1 grammar with the complete set of 1.4.2 output classes and methods with no ill 

effect.

An examination of the official language specification on Sun Microsystems' web 

site [12] revealed that Java 1.4.2 contains 149 output classes. Because of polymorphism, 

these classes share 57 output methods. Java I/O classes are listed in Appendix A. Java 

output methods are listed in Appendix B. Appendix C lists all Java output classes, 

together with their associated methods.

Next, a language parsing engine was needed. A number of open-source products 

are available for this purpose: antlr, yacc, Bison, Semantic, lex, and flex among others. 

See Appendix G for links to more information concerning a number of these alternatives. 

There are also commercial products available that the author did not choose to 

investigate.

Antlr (ANother Tool for Language Recognition) [9] was chosen for the present 

investigation. It is the only parser that has a complete open-source implementation in 

Java. This was important since the author's own tools are also built using Java. It is also 

an extremely fully-featured product and is constantly growing and developing thanks to 

its large community of users and developers (approximately 45,000). It has also been 

ported to UNIX, Linux and Windows platforms. The antlr web site provides complete 

BNF grammars to a number of languages besides Java including C++, C, Ada, HTML, 

Python, Oracle SQL, and C#. The source code for antlr is currently written in Java, but

there is a C++ version as well.
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Antlr contains a parser generator; that is, it is implemented by first supplying a 

grammar in BNF notation. It is straightforward one-time process to build the actual 

parsing tools. Once this is done for any arbitrary language, antlr can parse source code in 

that language and produce a data structure known as an Abstract Syntax Tree (AST), to 

represent the source code. Antlr also contains a rich set of classes and methods for 

working with ASTs, token streams, tokens and lexemes.

The reader may wish to refer to Figure 1 for the discussion in the next four 

paragraphs. It shows a simple Java program and the AST that it produces.

An Abstract Syntax Tree is a recursive tree structure and is the result of recursive 

descent LL(k) parsing. LL(k) parsing is particularly suitable for Java grammar which is 

not purely context-free. Recursive descent parsing is helpful because the resulting 

structure closely resembles the structure of the code that produced the AST.
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Figure 1: An antlr- 
produced Abstract Syntax 
Tree (AST) and the source 
code that produced the tree.
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An AST for a standalone complete Java program is structured as follows: The 

AST root has a FirstChild: the CLASS DEF node. The CLASS-DEF node is composed 

of a FirstChild and four siblings: an internal MODIFIERS node, three leaf nodes (the 

Class name, an EXTENDS clause and an IMPLEMENTS clause) and an internal 

OBJBLOCK node. The last of these, the OBJBLOCK, contains at least one internal 

METHOD_DEF node (main) and could contain Class-level declarations and other 

METHOD_DEF nodes as well. The METHOD DEF node contains four internal nodes: 

MODIFIERS, TYPE, PARAMETERS, and SLIST. The last of these, SLIST, finally 

contains the code body.

Any internal node has a FirstChild node at least. There may be other child nodes; 

however, since antlr is a recursive descent parser (described below) these are only 

accessible in a serial fashion as getNextSibling methods relative to the FirstChild node 

and are not directly accessible from the parent node. Many, but not all, internal nodes are 

binary; that is, they have a FirstChild and a NextSibling, or in more standard parlance, a 

LeftChild and a RightChild. However, there are a number of internal nodes (chiefly 

SLIST and ELIST nodes) that may have any number of child nodes (or, more precisely, a 

FirstChild node and several NextSibling nodes). A leaf node, by definition, has no child 

nodes, but may have NextSibling nodes. These NextSiblings may be either internal 

nodes or leaf nodes. There are no methods built into antlr that permit backtracking 

(except as the inevitable result of ascending out of a recursion), so the concept of a parent 

node is absent.

Antlr implements recursive descent parsing, which means, among other things, 

that 'walking' an AST involves traveling forward-only through source code in a recursive
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depth-first manner. The algorithm uses a getFirstChild method to locate FirstChild nodes 

first. Then, if there are no more depth-first children, it uses a getNextSibling method to 

identify any sibling nodes, ascending out of the recursion along the way.

The general pseudocode for a recursive descent is shown in Figure 2.

1 boolean searchSubtree(AST tree, String searchltem) {
2 AST thisNode, child
3 boolean itemFound = false
4 thisNode = tree
5 while thisNode is not null {
6 child = thisNode.getFirstChild
7 if child is not null
8 itemFound = searchSubtree(child, searchltem)
9 if thisNode contains searchltem
10 itemFound = true
11 thisNode = thisNode.getNextSibling
12 }
13 return itemFound;
14 }

Figure 2

Line 8 contains the recursive statement and lines 6-8, contained in the while loop, 

illustrate the depth-first nature of the recursion. Line 11, also contained in the while loop, 

illustrates the serial nature of the 'walk' among sibling nodes. To process the last of 

several siblings, each of the previous siblings must first be processed in order before 

moving to the last sibling.

EXPR nodes are of particular importance. As simple as the code behind the 

example shown in Figure 1 is, its AST contains 5 EXPR nodes, used variously to parse a 

simple assignment statement, to express the exit condition for a while loop, to hold a 

println method call, to hold a literal string, and to contain the iterator expression. 

Because EXPR nodes have such varied uses, their internal structure (and nesting)



19

requires careful attention. One phase of this research addressed the development of Java 

code to evaluate EXPR nodes.

The basic technique in this investigation was to develop a software tool, called 

IOScan, that calls antlr methods to build an AST, walks the tree searching for iterative 

structures such as for, while and do, and then locates any Java output methods possibly 

executing within those structures. Any loops containing output methods are examined to 

see whether or not they are well-formed. In this context, an expression such as: for (x=l; 

x<=10; x++), is well-formed, whereas: for (x=l; x<=10; x—), is mal-formed. For a 

complete list of iterative structures (both well-formed and mal-formed) tested in this 

investigation see Appendix E. The complete source listing for IOScan.java is available 

in Appendix F.

For performance reasons, the search for output methods is conducted by 

comparing nodes to a hashed list of Java's 57 output methods. Iterative keywords for, 

while and do were also hashed, though it is doubtful such an effort was really necessary, 

at least in regard to performance. (At one point the author had hypothesized the need for 

a larger list of keywords, but the scope of this research effort is restricted to just for, 

while and do).

The IOScan logic addresses conditions where loop-control identifiers are numeric 

and have no dependencies. In this case, for loops in novice code are generally very 

tractable. The parenthetical expression following the keyword for defines entry, exit and 

iterator expressions for the loop-control identifier and these are easily located in a 

recursive descent search. While and do loops are not so straightforward. The only 

structure immediately tied to the keywords while or do is the exit condition of the loop-



20

control identifier and, even then, the identifier's type is not known. It is necessary, 

because of the recursive descent nature of the parser, to do separate 'walks' through the 

AST to locate the declaration and initial condition of the loop control identifier, and the 

iterator expression.

A further problem to be solved involves the evaluation of loop-control identifier 

expressions. A great deal of time was spent investigating the development of a Runtime 

Identifier Model (RIM). The purpose of the RIM is twofold. It will provide:

(1) a symbol table which stores identifier names, along with their addresses, types and 

values (or expression addresses), and

(2) an expression evaluator which determines, through a modeling of run-time 

behavior, whether a particular identifier can be evaluated (especially if it is a 

loop-control identifier) and, if so, what it's value is at any given point in the code. 

The author was able to develop symbol table structures easily enough, but

developing an extensible expression evaluator proved to be very time consuming and 

needs to be the subject of future research. There are 163 possible tokenizable syntactic 

structures (including keywords, operators and symbols) that make up Java 1.4.2 (see 

Appendix D). A great many of these can find their way into EXPR nodes. An 

expression evaluator would need code for each token, to be able to evaluate it in context, 

essentially requiring something of the complexity of an interpreter for the entire 

language.

The development of a RIM, with a workable expression evaluator, is an important 

next step because such a tool could accommodate more subtle, complex and real-world 

uses of loop-control identifiers, particularly as novice programmers become more skilled.
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Currently, IOScan examines the following kinds of expressions (in the examples 

supplied below n can be any valid numeric value, depending on identifier type). 

Loop-control identifier initial condition:

Declarations of loop-control identifiers without assignment: int x;

Declarations of loop-control identifiers with assignment: int x = n;

Simple assignment statements following earlier declarations: x = n;

Loop-control identifier exit condition:

Standard boolean comparisons: x < n; x > n; x — — n; x <= n; x > = n; x !— n; 

Loop-control iterator. Expressions in any of the following forms:

x++; x—; x += n; x -= n; x *= n; x /= n; x = x + n; x = x -  n; x = x * n; x = x / n;
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Chapter 4: Results and Conclusions

4.1: Results

In its present state of development, IOScan can evaluate simple in-line (un

nested) for, while and do loops using numeric loop-control identifiers that have no 

dependencies. Despite its rudimentary scope, there are still quite a number of unusual 

(but entirely possible) novice programs that can be written, which will compile and run, 

but which are still mal-formed and will perform either unpredictably, poorly, not at all, or 

will loop indefinitely.

Given the restrictions on expressions noted above, the following kinds of loop 

behaviors are possible (all examples are illustrated using for-loops for brevity, but while 

and do loops can be written that will behave identically).

(1) Well-formed loops. These are loops where the relationships among the initial 

condition, the exit condition and the iterator are such that the loop will execute a 

finite and predictable number of times. Example: for (x=l; x<10; x++)

(2) Infinite loops. Examples: for (x=l; x<10; x += 0) and for (x= -10; x<l; x /= 2)

(3) Loops where the iterator heads in the wrong direction. The following example is 

actually an infinite loop because, in Sun's implementation of Java, int-types are 

2s-complement values and, instead of going out of range, will increment or 

decrement 'around to the other side' of their permissible range. Example: for 

(x—1; x<10; x—)

(4) Loops where the exit condition is the inverse of what it should be. This occurs 

when the novice programmer confuses > and < symbols. Example: for (x=l; 

x>10; x++)
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(5) Loops where the iterator converges to 0 from either side (positive or negative). 

This may be intentional in some cases. Examples: for (x—1; x<10; x *=0.5) 

probably not intentional; for (x— -10; x< -1; x *= 0.5) perhaps intentional.

(6) Loops where the iterator converges to 0 alternating between positive and 

negative values. This is likely not done intentionally. Example: for (x=l; 

x<10; x *=-0.5)

(7) Loops where the iterator alternately diverges toward negative and positive 

infinity with each iteration. This is likely unintended. Example: for (x=l; 

x<10; x /= -0.5)

(8) Loops that converge to 0 in 1 iteration. This is a special case and likely not an 

intentional effort. Example: for (x=l; x<10; x *= 0)

(9) Loops that produce an undefined condition. This is also a special case and likely 

not an intentional effort. Example: for (x=l; x<10; x /= 0)

(10) Loops that use != as the boolean operator in an exit condition. This may be 

intentional or otherwise. Example: for (x—1; x != 10; x = x + 2)

(11) Loops where initial and exit conditions are the same. This is not likely an 

intentional effort. Example: for (x=l; x <= 1; x++)

(12) Loops that iterate between the same negative and positive values. Not likely an 

intentional effort. Example: for (x=l; x<10; x /= -1)

(13) Loops that iterate excessively. This might be intentional or otherwise. Currently 

lOScan reports any loop governed by an arithmetically increasing or decreasing 

iterator that executes more than 1 million times. This is an arbitrary choice and 

can easily be made adjustable. Example: for (x= -1; x > -10000000; x -= 2)
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IOScan distinguishes among all the behaviors listed above. There can, of course, 

be ambiguous scenarios. For instance, it is quite possible in example (3) above that the 

novice programmer meant to write for (x=l; x >- 10; x—), so that the error is not in the 

iterator expression, but in the exit condition expression. IOScan only seeks to distinguish 

between loops that execute in a well-behaved fashion (a finite, predictable number of 

times for numeric loop-control identifiers), and those that do not, or those that behave in 

very unconventional ways.

Sample runs for several novice programs are presented below (Figures 3 -  8). 

For a complete listing of feedback provided by IOScan, see the feedback() method in the 

source code listing in Appendix F.

1 public class SimpleFor {
Z 0  public static void main(String[] args) 

int x ;

for (x = 0; x <= 100000; x++) {
System.out.printIn("Hello");

}
}

>
Hashing of 57 Java output methods complete. 
Hashing of for, while, do complete.
Hashing of 163 Java tokens complete.
AST tree building done 
Found: for
Output node in loop: printIn 
Basic structure of loop is okay 

main complete.

{

Figure 3: Properly formed for loop with println output method embedded
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public class SimpieFor {
public static void, main ( String [ ] args) 

int x ;

for (x = 0; x <= 10000000; x--) {
System.out.println("Hello");

}
}

}

{

Hashing of 57 Java output methods complete.
Hashing of for, while, do complete.
Hashing of 163 Java tokens complete.
AST tree building done 
Found: for
Output node in loop: printIn
Loop iterator headed in wrong direction!
This output will execute more than 1 million times! 

main c omp1et e .

Figure 4: Mal-formed loop; println embedded; iterator should be ++; excessive iterations

l
z n
3
4
5
6
7
8
9 - 

10

public class SimpleUhile {
public static void m a i n (String[] 

int x ;
x = 1 ;
while (x <= 100000) {

System.out.print("Hello") 
x *= -1.5;

>

args) {

Hashing of 57 Java output methods complete.
Hashing of for, while, do complete.
Hashing of 163 Java tokens complete.
AST tree building done 
Found: while
Output node in loop: print
Iterator alternates between negative and positive values as it increases 
in absolute value. Be sure the relation between initial and exit conditions 
is appropriate for this situation, or choose a simpler way to iterate from the 
start to the finish of the loop, 

main c omp1et e .

Figure 5: Mal-formed while loop; print method embedded; unusual iterator behavior
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public class S imp 1 eUhi 1 e { 
n  public static void m a i n (String[] args)

double x;
x = 1;
while (x <= 100000) {

System.out.print("Hello"); 
x = x / 1. S ;

}
L >

>

{

Hashing of £7 Java output methods complete.
Hashing of for, while, do complete.
Hashing of 163 Java tokens complete.
AST tree building done 
Found: while
Output node in loop: print
This iterator converges toward 0 from either the positive direction or the 
negative direction. Make sure the relation of the initial and exit 
conditions of the loop are appropriate for this situation, 

main c omp1et e .

Figure 6: Mal-formed while loop; print method embedded; unusual iterator behavior

1 public class SimpleFJhile {
2 H  public static void m a i n (String[] args)
3
4 
£
6
7
8
9 - 

10 >

double x ;
x = 1;
while (x <= 100) {

System.out.println("Hello"); 
x = x - -1.£ ;

{

Hashing of £7 Java output methods complete. 
Hashing of for, while, do complete.
Hashing of 163 Java tokens complete.
AST tree building done 
Found: while
Output node in loop: println 
Basic structure of loop is okay 

main complete.

Figure 7: An unusual iterator that actually works
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1 public class SimpleWhile {
2 E3 public sialic void main (String [ ] args) {
3
4
5
6
7
8
9 - 

10 }

double x ;
x = 1;
while (x >= 100) {

System.out.printIn("Hello“); 
x = x - -1.5;

H a sh in g  o f  £7 J a v a  output- m eth od s c o m p le te .
H a sh in g  o f  f o r ,  w h i l e ,  do c o m p le te .
H a sh in g  o f  163 J a v a  t o k e n s  c o m p le te .
AST t r e e  b u i l d i n g  done  
Found: w h i le

O utput n od e  i n  lo o p :  p r i n t l n
E x it  c o n d i t i o n  o p e r a to r  s h o u ld  b e  i n v e r s e  -  c a u s e d  lo o p  t e r m in a t io n  w it h o u t  e x e c u t io n  o f  lo o p  b od y  

m ain  c o m p le te .

Figure 8: same as Figure 5 except exit condition is inverted

4.2: Conclusions

The particular concern of this investigation was to be able to produce a tool that 

can examine novice code and detect possible semantic issues resulting in the execution of 

code that could compromise host system integrity. The particular issue was the detection 

of I/O methods executing within iterative structures in Java. IOScan is able to do that, at 

least for iterative structures in which the loop control identifier has no dependencies, is 

initially declared and/or defined with simple assignment statements, the exit condition is 

a simple single Boolean comparison, and where the iterator is a simple single increment, 

decrement, multiplier or divisor statement. The program carries out an automated 

semantic analysis of Java programs and is built to be extensible. Its modus operandus is 

to emulate the behavior of a human reviewer, carrying out the same kind of pre-run-time 

analysis and predictive modeling of run-time behavior that a human reviewer carries out. 

Writing code that can automatically evaluate a wide range of novice programs and
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provide useful feedback for a range of semantic issues in novice code is a large task. The 

present effort represents a rudimentary first effort in that direction.
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Chapter 5: Future Work

Development of a successful runtime identifier model would be an important next 

step in extending the capability of IOScan. An important feature of such a model would 

be for it to be able to evaluate EXPR nodes (expressions) in an AST. The model 

suggested by Reiss (mentioned earlier [21]) could provide a useful starting point for 

development in this direction. An important issue to address is to be able to recognize 

identifier scoping and external dependencies such as method calls or user input at 

runtime. A next logical step would be to extend the runtime identifier model so that 

expressions involving non-numeric loop-control identifiers could be evaluated. Other 

directions could include the evaluation of nested loops and recursive structures.

There are also other semantic issues in novice code apart from the dangers of 

iterative output. Truong [23:319] mentions a number of these: improperly structured 

switch blocks, hard-coding of literals, poor scoping of identifiers, and unused identifiers. 

These could also be fruitful avenues for exploration and extension of the current research. 

Hristova [8] also describes a number of specific syntactic, semantic and logical errors 

throughout her article.

For the larger project of which this investigation is a part, it remains to be seen 

how the present research can be integrated into the system as it evolves. In addition to 

the approach described in this investigation, some of the approaches outlined in the 

literature review are worthy of investigation, particularly for first-semester students. Two 

approaches especially seem appropriate in this regard: starting novices with a simpler 

subset of the language making use of a relatively simple and uncluttered development 

environment, and providing projects of a “fill-the-gap-with-well-formed-code” nature.
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There is no reason that either of these approaches could not be integrated with the 

author’s own approach as the system is refined and developed.

A number of more recent approaches to the problem of providing intelligent 

tutoring systems rely on web-based delivery and XML-based parsing tools that have been 

developed. These approaches represent quite a different approach to providing novice 

programmers with useful feedback than what has been considered here and should be 

examined. Finally, more recent approaches are incorporating visualization tools for 

providing intuitive feedback to novices, taking advantage of the great strides that have 

been made in multimedia development in recent years. These too would be worthy of

investigation.
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Appendix A: Java 1.4.2 Input/Output Classes

In the electronic version of this document all the keywords below are hyperlinked 

to the documentation for Java Version 1.4.2 on Sun’s web site. Italicized entries are

interfaces; regular type entries are classes.

Input Classes/Interfaces

AudioFileReader
AudioInputStream
BufferedlnputStream
BufferedReader
ByteArraylnputStream
CharArravReader
CipherlnputStream
DatalnputStream
DatalnputStream
DigestlnputStream
FileCachelmagelnputStream
FilelmagelnputStream
FilelnputStream
FileReader
FilterlnputStream
FilterReader
ImaselnputStream
ImagelnputStreamlmpl
ImagelnputStreamSpi
ImageReader
ImageReaderSpi
ImageReaderWriterSpi
ImageReadParam
InputStream
InputStream
InputStream
InputStreamReader
JarlnputStream
MemorvCachelmagelnputStream
MidiFileReader
Objectlnput
Obi ectlnputStream
ObiectlnputStream.GetField
Objectlnput Validation
PipedlnputStream
PipedReader

Reader
StringBufferlnputStream
StringReader
Write AbortedException
ZipInputStream

Output Classes/Interfaces

AudioFileWriter
BufferedOutputStream
BufferedWriter
ByteArravOutputStream
Char Array W riter
CipherOutputStream
DataOutput
DataOutputStream
DataOutputStream
DigestOutputStream
FileCachelmageOutputStream
FilelmageOutputStream
FileOutputStream
FileWriter
FilterOutputStream
FilterWriter
ImaseOutputStream
ImageOutputStreamlmpl
ImageOutputStreamSpi
ImageWriteParam -no output
ImageWriter
ImageWriterSpi
J arOutputStream
MemoryCachelmageOutputStream
MidiFile Writer
ObiectOutput
Obi ectOutputStream
Obi ectOutputStream.PutF ield
OutputStream
OutputStream Writer
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PipedOutputStream 
PipedWriter 
PrintStream 
Print Writer 
String Writer 
Writer
ZipOutputStream

Other I/O-related Classes/Interfaces

EOFException
File
FileChannel
FileChannel.MapMode
FileChooserUI
FileDescriptor
FileDialog
FileFilter
FileHandler
FileFilter
FileLock
FileLocklnterruptionException
FilenameFilter
FileNameMay
FileNotFoundException
FilePermission
FileS vstemView
FileView
IIOByteBuffer
IIOException
IIQImage
IIOInvalidT reeException
IIOMetadata
IIOMetadataController
IIOMetadataFormat
IIOMetadataF ormatlmpl
IIOMetadataNode
IIQParam
IIQParam Controller
IIORegistry
IIQServiceProvider
IIOReadProsressListener
IIOReadUvdateListener
IIOReadWarninsListener

IIP WriteProsressListener 
IIP Write WarninsListener 
ImagelO 
InputMap
InputMapUIResource
InputContext
InputEvent
InvutMethod
InvutMethodContext
InvutMethodDescriytor
InputMethodEvent
InputMethodHighlight
IrwutMethodListener
InvutMethodReauests
InputSource
InputSubset
InputVerifier
IOException
JarFile
Obi ectStreamClass
ObiectStream Constants
Obi ectStreamException
ObjectStreamField
ReadOnlyBufferException
StreamCorruptedException
StreamHandler
StreamPrintService
StreamPrintServiceFactory
StreamResult
StreamS ource
StreamT okenizer
StringBuffer
StringTokenizer
WritableByteChannel
WritableRaster
WritableRenderedlmase
ZipFile
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Appendix B: List of Java 1.4.2 Output Methods

Below is a listing of all output methods associated with output classes in Java 

1.4.2. Many methods are polymorphous, often associated with many or most Java output 

classes.

checkError
connect
createOutputStreamlnstance
createWriterlnstance
flush
flushBefore
flushBits
newLine
preparelnsertEmpty
prepareReplacePixels
prepareWriteEmpty
prepareWriteSequence
print
println
processImageProgress
processImageStarted
processThumbnailComplete
processThumbnailProgress
processThumbnailStarted
put
putField
putNextEntry
replacelmageMetadata
replaceObject
replacePixels
replacePixels
replaceStreamMetadata
reset
seek

setOutput
write
writeBit
writeBits
writeBoolean
writeByte
writeBytes
writeChar
writeChars
writeClassDescriptor
writeDouble
writeDoubles
writeFields
writeFloat
writeFloats
writelnt
writelnts
writelnsert
writeLong
writeLongs
writeObj ectOverride
writeShort
writeShorts
writeStreamHeader
writeToSequence
writeTo
writeUnshared
writeUTF
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Appendix C: Java 1.4.2 Output Classes and Associated Output Methods

AudioFileWriter()
write(AudioInputStream stream, AudioFileFormat.Type fileType, File out) 
write(AudioInputStream stream, AudioFileFormat.Type fileType, OutputStream out)

BufferedOutputStream(OutputStream out)
BufferedOutputStream(OutputStream out, int size) 
flush()
write(byte[] b, int off, int len) 
write(int b)

BufferedWriter(Writer out)
BufferedWriter(Writer out, int sz)
flush()
newLine()
write(char[] cbuf, int off, int len) 
write(int c)
write(String s, int off, int len)

ByteArrayOutputStream()
ByteArrayOutputStream(int size) 
reset()
write(byte[] b, int off, int len) 
write(int b)
writeTo(OutputStream out)

Char ArrayWriter()
Char ArrayWriterf int initialSize)
flushQ
reset()
write(char[] c, int off, int len) 
write(int c) 
writeTo(Writer out)

CipherOutputStream(OutputStream os)
CipherOutputStream(OutputStream os, Cipher c) 
flush()
write(byte[] b)
write(byte[] b, int off, int len) 
write(int b)

DataOutputStream(OutputStream out) 
flush()
write(byte[] b, int off, int len) 
write(int b)
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writeBoolean(boolean v) 
writeByte(int v) 
writeBytes(String s) 
writeChar(int v) 
writeChars(String s) 
writeDouble(double v 
writeFloat(float v) 
writelnt(int v) 
writeLong(long v) 
writeShort(int v) 
writeUTF(String str)

DigestOutputStream(OutputStream stream, MessageDigest digest) 
write(byte[] b, int off, int len) 
write(int b)

FileCacheImageOutputStream(OutputStream stream, File cacheDir) 
flushBefore(long pos) 
seek(long pos)
write(byte[] b, int off, int len) 
write(int b)

FileImageOutputStream(File f) 
FileImageOutputStream(RandomAccessFile raf) 
seek(long pos)
write(byte[] b, int off, int len) 
write(int b)

FileOutputStream(File file)
FileOutputStream(File file, boolean append) 
FileOutputStream(FileDescriptor fdObj)

FileOutputStream(String name)
FileOutputStream(String name, boolean append) 
write(byte[] b)
write(byte[] b, int off, int len) 
write(int b)

FileWriter(File file)
FileWriter(File file, boolean append)
FileWriter(FileDescriptor fd)
FileWriter(String fileName)
FileWriter(String fileName, boolean append)
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FilterOutputStream(OutputStream out) 
flush()
write(byte[] b)
write(byte[] b, int off, int ten) 
write(int b)

FilterWriter(Writer out) 
flush()
write(char[] cbuf, int off, int len) 
write(int c)
write(String str, int off, int len)

ImageOutputStreamImpl() 
flushBits() 
write(byte[] b)
write(byte[] b, int off, int len) 
write(int b) 
writeBit(int bit)
writeBits(long bits, int numBits) 
writeBoolean(boolean v) 
writeByte(int v) 
writeBytes(String s) 
writeChar(int v)
writeChars(char[] c, int off, int len) 
writeChars(String s) 
writeDouble(double v) 
writeDoubles(double[] d, int off, int len) 
writeFloat(float v) 
writeFloats(float[] f, int off, int len) 
writelnt(int v)
writelnts(int[] i, int off, int len) 
writeLong(long v) 
writeLongs(long[] 1, int off, int len) 
writeShort(int v)
writeShorts(short[] s, int off, int len) 
writeUTF(String s)

ImageOutputStreamSpi()
ImageOutputStreamSpi(String vendorName, String version, Class outputClass) 
createOutputStreamInstance(Obj ect output)
createOutputStreamInstance(Object output, boolean useCache, File cacheDir) 

ImageWriter(ImageWriterSpi originatingProvider)
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prepareInsertEmpty(int imagelndex, ImageTypeSpecifier imageType, int width, int 
height, IIOMetadata imageMetadata, List thumbnails, ImageWriteParam param) 
prepareReplacePixels(int imagelndex, Rectangle region)
prepareWriteEmpty(IIOMetadata streamMetadata, ImageTypeSpecifier imageType, int 
width, int height, IIOMetadata imageMetadata, List thumbnails, ImageWriteParam 
param)
prep are Write S equenc e(II OMetadata streamMetadata) 
processImageProgress(float percentageDone) 
processImageStarted(int imagelndex) 
processThumbnailComplete() 
processThumbnailProgress(float percentageDone) 
processThumbnailStarted(int imagelndex, int thumbnaillndex) 
replaceImageMetadata(int imagelndex, IIOMetadata imageMetadata) 
replacePixels(Raster raster, ImageWriteParam param) 
replacePixels(RenderedImage image, ImageWriteParam param) 
replaceStreamMetadata(IIOMetadata streamMetadata) 
setOutput(Object output) 
write(IIOImage image)
write(IIOMetadata streamMetadata, IlOImage image, ImageWriteParam param) 
write(RenderedImage image)
writelnsert(int imagelndex, IlOImage image, ImageWriteParam param) 
writeToSequence(IIOImage image, ImageWriteParam param)

ImageWriterSpi()
ImageWriterSpi(String vendorName, String version, String[] names, String[] suffixes, 
String[] MIMETypes, String writerClassName, Class[] outputTypes, String[] 
readerSpiNames, boolean supportsStandardStreamMetadataFormat, String 
nativeStreamMetadataFormatName, String nativeStreamMetadataFormatClassName, 
String[] extraStreamMetadataFormatNames, String[] 
extraStreamMetadataFormatClassNames, boolean
supportsStandardlmageMetadataFormat, String nativelmageMetadataFormatName, 
String nativelmageMetadataFormatClassName, String[]
extralmageMetadataFormatNames, String[] extralmageMetadataFormatClassNames)
createWriterInstance()
createWriterInstance(Obj ect extension)

JarOutputStream(OutputStream out)
JarOutputStream(OutputStream out, Manifest man) 
putNextEntry(Zip Entry ze)

MemoryCacheImageOutputStream(OutputStream stream) 
flushBefore(long pos) 
write(byte[] b, int off, int len) 
write(int b)
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MidiFileWriter()
write(Sequence in, int fileType, File out) 
write(Sequence in, int fileType, OutputStream out)

Obj ectOutputStream()
Obj ectOutputStream(OutputStream out)
flush()
putFields()
replaceObject(Object obj) 
write(byte[] buf) 
write(byte[] buf, int off, int len) 
write(int val)
writeBoolean(boolean val) 
writeByte(int val) 
writeBytes(String str) 
writeChar(int val) 
writeChars(String str)
writeClassDescriptor(Obj ectStreamClass desc)
writeDouble(double val)
writeFields()
writeFloat(float val)
writelnt(int val)
writeLong(long val)
writeObject(Object obj)
writeObj ectOverride(Obj ect obj)
writeShort(int val)
writeStreamHeader()
writeUnshared(Object obj)
writeUTF(String str)

Obj ectOutputStream.PutField() 
put(String name, boolean val) 
put(String name, byte val) 
put( String name, char val) 
put(String name, double val) 
put(String name, float val) 
put(String name, int val) 
put(String name, long val) 
put(String name, Object val) 
put(String name, short val) 
write(ObjectOutput out)

OutputStream()
flush()
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write(byte[] b)
write(byte[] b, int off, int len) 
write(int b)

OutputStreamWriter(OutputStream out) 
OutputStreamWriter(OutputStream out, Charset cs) 
OutputStreamWriter(OutputStream out, CharsetEncoder enc) 
OutputStreamWriter(OutputStream out, String charsetName) 
flush()
write(char[] cbuf, int off, int len) 
write(int c)
write(String str, int off, int len)

PipedOutputStream()
PipedOutputStream(PipedInputStream snk)
connect(PipedInputStream snk)
flush()
write(byte[] b, int off, int len) 
write(int b)

PipedWriter()
PipedWriter(PipedReader snk) 
connect(PipedReader snk) 
flush()
write(char[] cbuf, int off, int len) 
write(int c)

PrintStream(OutputStream out)
PrintStream(OutputStream out, boolean autoFlush) 
PrintStream(OutputStream out, boolean autoFlush, String encoding) 
checkError() 
flush()
print(boolean b) 
print(char c) 
print(char[] s) 
print(double d) 
print(float f) 
print(int i) 
print(long 1) 
print(Object obj) 
print(String s) 
println()
println(boolean x) 
println(char x)
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println(char[] x) 
println(double x) 
println(float x) 
println(int x) 
println(long x) 
println( Object x) 
println(String x) 
write(byte[] buf, int off, int len) 
write(int b)

PrintWriter(OutputStream out) 
PrintWriter(OutputStream out, boolean autoFlush) 
PrintWriter(Writer out)
PrintWriter(Writer out, boolean autoFlush)
checkError()
flush()
print(boolean b) 
print(char c) 
print(char[] s) 
print(double d) 
print(float f) 
print(int i) 
print(long 1) 
print(Object obj) 
print(String s) 
println()
println(boolean x) 
println(char x) 
println(char[] x) 
println(double x) 
println(float x) 
println(int x) 
println(long x) 
println(Object x) 
println(String x) 
write(char[] buf) 
write(char[] buf, int off, int len) 
write(int c) 
write(String s)
write(String s, int off, int len)

StringWriter()
StringWriter(int initialSize) 
flush()
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write(char[] buf, int off, int len) 
write(int c) 
write(String s)
write(String s, int off, int len) 

WriterO
Writer(Object lock) 
flush()
write(char[] buf) 
write(char[] buf, int off, int len) 
write(int c) 
write(String s)
write(String s, int off, int len)

ZipOutputStream(OutputStream out) 
putNextEntry(ZipEntry e) 
write(byte[] b, int off, int len)



Appendix D: List of Java 1.4.2 tokens

1. ABSTRACT
2. ARRAYDECLARATOR
3. ARRAYINIT
4. ASSIGN
5. BAND
6. BANDASSIGN
7. BLOCK
8. BNOT
9. BOR
10. BORASSIGN
11. BSR
12. BSRASSIGN
13. BXOR
14. BXORASSIGN
15. CASEGROUP
16. CHARLITERAL
17. CLASSDEF
18. COLON
19. COMMA
20. CTOR CALL
21. CTORDEF
22. DEC
23. DIV
24. DIVASSIGN
25. DOT
26. ELIST
27. EMPTYSTAT
28. EQUAL
29. ESC
30. EXPONENT
31. EXPR
32. EXTEND SCLAUSE
33. FINAL
34. FLOATSUFFIX
35. FORCONDITION
36. FORINIT
37. F ORITERAT OR
38. GE '
39. GT
40. HEXDIGIT
41. IDENT
42. IMPLEMENTS CLAUSE

43. IMPORT
44. INC
45. INDEXOP
46. INSTANCEINIT
47. INTERFACEDEF
48. LABELEDSTAT
49. LAND
50. LBRACK
51. LCURLY
52. LE
53. LNOT
54. LOR
55. LPAREN
56. LT
57. METHODCALL
58. METHODDEF
59. MINUS
60. MINUSASSIGN
61. MLCOMMENT
62. MOD
63. MODASSIGN
64. MODIFIERS
65. NOTEQUAL
66. NUMDOUBLE •
67. NUMFLOAT
68. NUM_INT
69. NUMLONG
70. OBJBLOCK
71. PACKAGEDEF
72. PARAMETERDEF
73. PARAMETERS
74. PLUS
75. PLUSASSIGN
76. POSTDEC
77. POSTINC
78. QUESTION
79. RBRACK
80. RCURLY
81. RPAREN
82. SEMI
83. SL
84. SL ASSIGN
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85. SL COMMENT 125. instanceof
86. SLIST 126. int
87. SR 127. interface
88. SR ASSIGN 128. long
89. STAR 129. native
90. STAR ASSIGN 130. new,
91. STATIC INIT 131. null
92. STRICTFP 132. package
93. STRING LITERAL 133. private
94. SUPER CTOR CALL 134. protected
95. TYPE 135. public
96. TYPECAST 136. return
97. UNARY MINUS 137. short
98. UNARY PLUS 138. static
99. VARIABLE DEF 139. strictfp
100. VOCAB 140. super
101. w s 141. switch
102. abstract 142. synchronized
103. assert 143. this
104. boolean 144. threadsafe
105. break 145. throw
106. byte 146. throws
107. case 147. transient
108. catch 148. true
109. char 149. try
110. class 150. void
111. continue 151. volatile
112. default 152. while
113. do 153. byvalue
114. double 154. cast
115. else 155. const
116. extends 156. future
117. false 157. generic
118. final 158. goto
119. finally 159. inner
120. float 160. operator
121. for 161. outer
122. if 162. rest
123. implements 163. var
124. import



Appendix E: f o r , w h ile  and do  structures tested with IO S ca n

1. v a r t y p e x;

for (x = n; x b o p  n; iter) { ... }

2. for (v a r t y p e x = n; x b o p  n; i t e r) { ... }

3. v a r t y p e x; 

x = n;

while (x b o p  n) { ... i t e r  ... }

4. v a r t y p e x = n;

while (x b o p  n ) { ... i t e r ...}

5. v a r t y p e x; 

x = n;

do { ... i t e r  ... } while (x b o p  n)

6. v a r t y p e x = n;

do { ... i t e r  ... } while (x b o p  n )

Explanation: 
i  t e r

op

bop

v a r ty p e
n

can take any of the following forms:
x++ | x-- | ++x | --x | x op= n | x = x op

are standard arithmetic operators:
+ -  * /

are standard Boolean operators:
<, >, = =, <=, >=, ! = 

can be any legal Java primitive numeric type 
can be any permissible numeric value, depending on v a r ty p e  
represents additional in-line code



49

Appendix F: Source Code listing for IO S ca n .ja va

0
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20  
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Copyright ® 2005, Open-source GPL license, Bill Madden (bmadden@bergen.edu)
import java.io.*;
import java.util.Hashtable;
import antlr.collections.AST;
import antlr.collections.ASTEnumeration;
import antlr.collections.impl.*;
import antlr.debug.misc.*;
import ant1r .*;
import j ava.awt.event.*;
import java.lang.M a t h ;

public class IOScan {

//Class-level declaration 
static boolean showTree = false; 
static Hashtable outHT = new Hashtable(); 
static Hashtable blockHT = new Hashtable(); 
static Hashtable tokensHT = new Hashtable(); 
static AST fullTree = null;

//show tree in frame or not 
//hash Java output methods 
//hash: while, for, do. 
//hash: all AST tokens 
//full AST tree

//main method - dispatches methods for building hashtables, main AST
// tree and locating iterated Java output methods
public static void main(String[] args) throws Exception {

//declarations/initialization 
AST t = null;
Vector roots = new Vector(lO);
ASTEnumeration e = null;

//build hash tables 
hashOutputMethods(); 
hashJavaLoops(); 
hashTokens();

//build AST tree and walk it, looking for loops 
t = buildAST(args); 
fullTree = t ; 
if (t != null) {

e = findLoops(roots, t); //builds an enum of AST
}//if
System.out.println("main complete.");

}//main method

//recursive method - depth-first search through tree looking' for loops 
public static ASTEnumeration findLoops(Vector v, AST t) {

//declarations and initialization 
AST thisNode, child; 
thisNode = t;

while (thisNode ! = null) {
child = thisNode.getFirstChild(); 
if (child != null) {

findLoops(v, child); //recursion occurs here
}//if
v.appendElement(thisNode);
checkLoops(thisNode, t); //if thisNode starts loop, look for I/O 
thisNode = thisNode.getNextSibling();

mailto:bmadden@bergen.edu
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100 
101 
102
103
104
105
106
107
108
109
110 
111 
112
113
114
115
116

}//while

return new ASTEnumerator(v);

}//findLoops

//check to see if thisNode starts a loop (for, while, do) 
public static void checkLoops(AST node, AST t) {

//declarations and initialization
AST child = null, sibling = null, varType = null;
AST ident = null, assign = null, expr = null;
AST subtree = null;
ASTEnumeration st = null; 
boolean foundVarDef = false;
String nodeText = node.getText();

//if node is start of a loop structure, look for output methods 
if (blockHT.contains(nodeText)) {

System.out.println("Found: " + nodeText);

//check subtree for output methods
subtree = node.getFirstChild(); //must go inside of structure
st = findOutputNodes(subtree);
//if no output methods found, move on 
if (!st.hasMoreNodes()) {

System.out.println(" No output nodes found");
} else { //show output nodes, branch to process for, while & do 

while (st.hasMoreNodes()) {
System.out.println(" Output node in loop: " +

st.nextNode());
}//while

//if output method found, branch: process for-while-do loops 
if (nodeText.equals("for")) {

processFor(node);
//} else if (nodeText.equals("while")) {
// processWhileDo(node, t); //logic very similar for both 
} else {

processWhileDo(node, t);
//System.out.println("Error: for-while-do ONLY coded"); 

}//if node was for, while or do 
}//if there are output nodes inside this current loop 

}//if the current node is a loop structure

}//checkLoops

//Process for loops: captures init, exit and iter conditions that define
// the execution of the for loop
public static void processFor(AST loopNode) {

//presently, we assume that for_loop init, exit (cond) and iterator 
// have no dependencies.

//declarations and initialization 
AST init, cond, iter;
AST elist, expr;
AST initoper, condOper, iterOper;
AST initIdent, initVal, tmp, condldent, condVal, iterldent, 

arithOper, iterVal;
arithOper = null;117
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118
119
120 
121 
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160 
161 
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

iterVal = null;
String strCond = //represents exit condition operator

//parse nodes in F0R_INIT, FOR_CONDITION and FOR_ITERATOR subtrees
//walking default structure of 
//for-loop with no dependencies and 
//simple assignment and boolean 
//expressions for init/cond/iter

init = loopNode.getFirstChild() 
cond = init.getNextSibling(); 
iter = cond.getNextSibling(); 
tmp = init.getFirstChild(); 
if (tmp.getText().equals("ELIST")) {

expr = tmp.getFirstChild(); 
initOper = expr.getFirstChild(); 
initldent = initOper.getFirstChild(); 
initVal = initldent.getNextSibling();

} else { //VAR_DEF is occurring inside for definition
tmp = tmp.getFirstChild(); 
tmp = tmp.getNextSibling(); 
initldent = tmp.getNextSibling(); 
initOper = initldent.getNextSibling() 
tmp = initOper.getFirstChild();

//Modifiers
//Type
//Ident name 
//init operator 
//EXPR node

initVal = tmp.getFirstChildO; //init val of loop-control ident

expr = cond.getFirstChildO; //keep walking to locate
condOper = expr.getFirstChild(); //iter node
condldent = condOper.getFirstChild();
condVal = condldent.getNextSibling();
elist = iter.getFirstChild();
expr = elist.getFirstChild();
iterOper = expr.getFirstChildO;
iterldent = iterOper.getFirstChild();

//declarations for determining loop direction and behavior 
int itDir = 0; //+int moves right (on number line); -int moves left 
double dbllnit, dblCond, dbllter; //converts AST nodes to numerics 
dbllnit = dblCond = dbllter = 0.0;

//convert value nodes to numerics - doubles are least restrictive 
// next 7 lines convert the cond (exit_condition) node to a double 
if (condVal.getText().equals("-")) { //in case of unary minus

tmp = condVal.getFirstChild();
dblCond = - (Double.parseDouble(tmp.getText()));

} else if (condVal.getText().equals("+")) { //rare case: unary plus
tmp = condVal.getFirstChild(); 
dblCond = Double.parseDouble(tmp.getText());

} else dblCond = Double.parseDouble(condVal.getText());

//next 7 lines convert init_condition to a double 
if (initVal.getText().equals("-")) { //in case of unary minus

tmp = initVal.getFirstChild();
dbllnit = - (Double.parseDouble(tmp.getText()));

} else if (initVal.getText().equals("+")) { //rare case: unary plus
tmp = initVal.getFirstChild(); 
dbllnit = Double.parseDouble(tmp.getText());

} else dbllnit = Double.parseDouble(initVal.getText());

//evaluate iter expression, result will be a double
String strOper = iterOper.getText(); //if iterOper=null report Error

if (strOper.equals("=")) { //assumes expression form: x =
//process x = x + 1 
iterVal = iterOper.getFirstChild();

x op n
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178
179
180 
181 
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200 
201 
202
203
204
205
206
207
208
209
210 
211 
212
213
214
215
216
217
218
219
2 2 0  
221 
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

arithOper 
iterVal = 
iterVal = 
dbllter = 

} else {
dbllter =

} / / i f

= iterVal.getNextSibling(); //this can be: 
arithOper.getFirstChild(); 
iterVal.getNextSibling();
Double.parseDouble(iterVal.getText());

getlter(iterOper);

+, *, /

if (arithOper != null) {
strOper = arithOper.getText() + " = ";

}
//There are 9 possible outcomes for a direction of the iterator: 
//see comments in iterDirect method signature (line 470 approx) 
itDir = iterDirect(strOper, dbllter, dbllnit); 
strCond = condOper.getText();

//We now have all the values needed for analysis of for loops:
// dbllnit = initial starting value of loop control identifier 
// dbllter and strOper = iterator value and operation 
// dblCond = exit value of loop control identifier 
//Logic is similar to that in the while/do loop analysis.

//display feedback analysis (line 530 approx) 
feedBack(dbllnit, dbllter, dblCond, itDir, strCond);

}//processFor

//Process while and do loops
public static void processWhileDo(AST loopNode, AST t) {

//presently we assume a while or do loop employing a loop control 
//variable that has no dependencies on its exit_condition.

//declarations and initialization 
int condType;
//ASTEnumeration e;
AST init, cond, iter;
AST sList, expr;
AST initOper, condOper, iterOper, arithOper;
AST initldent, initVal, tmp, condldent, condVal, iterldent, iterVal; 
iterVal = null; 
arithOper = null;
String strCond; //represents of exit condition operator

//the following will be used to convert AST nodes to numerics so we 
// can evaluate loop direction and behavior 
int itDir = 0;
double dbllnit, dblCond, dbllter; 
dbllnit =dblCond = dbllter = 0.0;

//There are two major nodes inside while/do loops: EXPR and SLIST 
// EXPR contains the exit condition for the loop 
// SLIST contains the body of the loop, including the iterator 
if (loopNode.getText().equals("while")) {

expr = loopNode.getFirstChild() //while loop 
sList = expr.getNextSibling();

} else {
sList = loopNode.getFirstChild(); //order of two major nodes is
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237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260 
261 
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280 
281 
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

expr = sList.getNextSibling(); //reversed in do-loop
}
//walk the EXPR node: parenthetical exit condition following while/do 
l i e . -  evalTree (expr) ; - eventually we will have a general EXPRession 
// evaluator
condOper = expr.getFirstChild(); 
condldent - condOper.getFirstChild(); 
condVal = condldent.getNextSibling();

//Convert cond (exit_condition) to double, testing for unary 
// minus and unary plus along the way
if (condVal.getText().e q u a l s ) { //in case of unary minus

tmp = condVal.getFirstChild();
dblCond = - (Double.parseDouble(tmp.getText()));

} else if (condVal.getText().equals("+")) { //rare case: unary plus
tmp = condVal.getFirstChild(); 
dblCond = Double.parseDouble(tmp.getText());

} else dblCond = Double.parseDouble(condVal.getText());

condType = condVal.getType(); //138=int/141=float/142=long/
//143=double, but compiler does 
//implicit casting when it sets actual 
//coded val into loopCtrlldent

//if (exitVal.getText().equals("EXPR")) then the expression is more 
// complex and we will need a more general EXPRession evaluator 
// Now we have the loop control variable (AST loopCtrlldent),
// its exit value (AST exitVal) and type (int loopCtrlType) - though
// this last is implicitly cast by compiler into loopCtrlldent's 
// actual declared type.

//Next we search SLIST locating the EXPR that contains the iterator.
//Look for three forms of iterator: P0ST_INC, ASSIGN and PLUS_ASSIGN.
//Convert iter node to double
AST sListChild = sList.getFirstChild(); //drop into SLIST first 
iterOper = findlterOper(sListChild, condldent);
String strOper = iterOper.getText();
if (strOper.equals("=")) { //assumes expression form: x = x op n

iterVal = iterOper.getFirstChild();
arithOper = iterVal.getNextSibling(); //this could be: +, *, /
iterVal = arithOper.getFirstChild(); 
iterVal = iterVal.getNextSibling();
//check for a unary minus 
if (iterVal.getText().equals("-")) {

tmp = iterVal.getFirstChild();
dbllter = - (Double.parseDouble(tmp.getText()));

} else if (iterVal.getText().equals("+")) {//rare: unary plus 
tmp = iterVal.getFirstChild(); 
dbllter = Double.parseDouble(tmp.getText());

} else dbllter = Double.parseDouble(iterVal.getText());
} else {

dbllter = getlter(iterOper);
}//if
if (arithOper !=null) {

strOper = arithOper.getText() +
}//if
//Next we locate the VARIABLE_DEF and/or EXPR that defines init 
//condition. findlnitVal locates only declarations/expressions of



54

Appendix F (continued)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

//the form: int x = n;
//int x; x = n;
//int x; x += n; (or * = , /=, -=) 
initVal = null;
initVal = findlnitVal(fullTree, condldent, loopNode, initVal); 
if (initVal.getText().e q u a l s ) {

tmp = initVal.getFirstChild();
dbllnit = - (Double.parseDouble(tmp.getText()));

} else if (initVal.getText().equals("+")) {//rare: unary plus 
tmp = initVal.getFirstChild(); 
dbllnit = Double.parseDouble(tmp.getText());

} else dbllnit = Double.parseDouble(initVal.getText());

//There are 9 possible outcomes for a direction of the iterator:
//see comments in iterDirect method signature (line 470 approx.) 
itDir = iterDirect(strOper, dbllter, dbllnit);

strCond = condOper.getText();

//We now have all the values needed for analysis of while/do loops:
// dbllnit = initial starting value of loop control identifier 
// dbllter and strOper = iterator value and operation 
// dblCond = exit value of loop control identifier 
//Logic is similar to that in the for loop analysis.

//display feedback analysis (line 530 approx) 
feedBack(dbllnit, dbllter, dblCond, itDir, strCond);

}//processWhileDo

//recursive method that starts walking entire AST tree finding first the 
// VARIABLE_DEF of condldent (the exit_condition of a while/do loop),
// examining it for an initial value of condldent, then continuing to 
// walk forward through AST t looking for any EXPRessions involving a re- 
// valuation of condldent. It stops looking when it encounters loopNode 
// (the current while/do loop that spawned this search). 
public static AST findlnitVal(AST t, AST condldent, AST loopNode, AST 

result) {

//Declarations and initialization 
AST thisNode, child; //needed for recursion 
String nodeText; 
thisNode = t;
nodeText = thisNode.getText();

if (nodeText.equals("VARIABLE_DEF")) {
AST tmp;
tmp = thisNode.getFirstChild(); //gets MODIFIERS node 
tmp = tmp.getNextSibling(); //gets TYPE node
tmp = tmp.getNextSibling(); //gets IDENT (check against condldent 
if (tmp.getText().equals(condldent.getText())) {

tmp = tmp.getNextSibling();
if (tmp != null) { //gets ASSIGN node

tmp = tmp.getFirstChild(); //gets EXPR node 
result = tmp.getFirstChildO; //gets initial initVal 

} // (assuming NUM_type)
thisNode = thisNode.getNextSibling(); 
nodeText = thisNode.getText();

}//if 
}//if
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//walk forward from VARIABLE_DEF looking for EXPRessions that might 
// re-valuate the initVal identified in VARIABLE_DEF 
if (nodeText.equals("EXPR")) {

AST tmp; //subnodes
String snText; //subnode text 
tmp = thisNode.getFirstChild(); 
snText = tmp.getText(); 
if (snText.equals("++")

| snText.equals(" + =") || snText.equals("=")
j snText.e q u a l s ) || snText.e q u a l s )
| snText.equals("*=") j j  snText.equals("/=")) {

tmp = tmp.getFirstChild();
if (tmp.getText().equals(condldent.getText())) {

result = tmp.getNextSibling(); //get initVal 
}//if // (assuming NUM_type)

}//if
thisNode - thisNode.getNextSibling();

}//if
//recursive loop
while (thisNode != null) {

if (thisNode.equalsTree(loopNode)) { //if loopNode, end search
return result;

} else {
child = thisNode.getFirstChild();
if (child != null) { //recursive call is on-next line

result = findlnitVal(child, condldent, loopNode,
result);

}//if
thisNode = thisNode.getNextSibling();

}//if 
}//while

return result;

}//findlnitVal

//Recursive method that walks portion of tree finding an iterator node 
// within a while/do loop (P0ST_INC, ASSIGN or PLUS_ASSIGN); initially, 
// condldent is the iterator Identifier.
//Note: Java 1.3.1 grammar makes no distinction between PRE_INC, PRE_DEC 
// and P0ST_INC, POST_DEC in AST trees, so PRE- and POST- are handled 
// identically in this code.
public static AST findlterOper(AST sList, AST condldent) {

//declarations and initialization 
AST thisNode, child, result;
String nodeText;
result = null;
thisNode = sList;
nodeText = thisNode.getText();

//possible iterator expressions 
if (nodeText.equals("++")

| nodeText.equals(" + =") || nodeText.equals("=")
j nodeText.equals("--") jj nodeText.equals("-=") 
j nodeText.equals("*=") || nodeText.equals("/=")) {

child = thisNode.getFirstChild();
if (child.getText().equals(condldent.getText())) {
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415 result = thisNode;
416 return result;
417 }//if
418 } // if
419
420 //recursive loop
421 while (thisNode != null) {
422 child = thisNode.getFirstChild();
423 if (child != null) {
424 result = findlterOper(child, condldent); //recursive icall
425 }//if
426 thisNode = thisNode.getNextSibling();
427 }//while
428
429 return result;
430
431 }//findlterOper
432
433 //For simple iterator expressions of the form:
434 // x++, x--, ++x, —  x , x+=n, x-=n, x*=n, x/=n
435 // this finds n. Expressions of the form x = x op n are processed in-
436 // line before this call. ++x and --x are structurally identical to x++
437 // and x —  in the AST tree and are processed in this code identically
438 public static double getIter(AST i) {
439
440 //Declarations
441 AST tmp = null;
442 double result = 0.0;
443 String s = i.getText();
444
445 if (s .equals("++")) {
446 //process x++
447 result = 1.0;
448 } else if (s .equals("+=") || s .equals("-=")
449 s .equals("*=") || s .equals("/=")) {
450 //process x '+-*/'= n. Watch out: in odd cases this could
451 //be an expression like: x *= -1;
452 tmp = i .getFirstChild();
453 tmp = tmp.getNextSibling();
454 if (tmp.getText().equals("-")) { //in case of unary minus
455 tmp = tmp.getFirstChild();
456 result = - (Double.parseDouble(tmp.getText())) ;
457 } else if (tmp.getText().equals("+")) { //rare case: unary plus
458 tmp = tmp.getFirstChild();
459 result = Double.parseDouble(tmp.getText());
460 } else result = Double.parseDouble(tmp.getText()) ; //iter found
461 } else { //process x--
462 result = -1.0;
463 }//if
464
465 return result;
466
467 }//getIter
468
469 //defines 9 possible conditions plus one error condition for direction <
470 //iterator - see comments below
471 public static int iterDirect(String o, double n, double i){
472
473 int result = 0;
474
475 //x++ or x += n or x-= -n; also covers x = x + n and x = x - (-n)
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if ((o.equals("++"))
|| (o.equals("+=") && n > 0)

(o.e q u a l s ) && n < 0))
result = 1; //iterator moves additively toward +inf 

//with initVal > 0: x*=n (n>l) or x/=n (0<n<l);
// also covers x=x op n equivalents 
else if (((o.equals("*=") && n > 1)

|| (o.equals("/=") && (n > 0 && n < 1))) && i > 0) 
result = 1; //iterator moves multiplicatively toward +inf 

//x-- or x+= -n or x-=n; also covers x=x+(-n) and x=x-n 
else if (( o . e q u a l s )

|| (o.equals("+=") && n < 0) || (o.equals("-=") && n > 0))
result = 2; //iterator moves additively toward -inf 

//with initVal < 0: x*=n (n>l) or x/=n (0<n<l);
// also covers x=x op n equivalents 
else if (((o.equals("*=") && n > 1)

|| (o.equals("/=") && (n > 0 && n < 1)))
&& i < 0)
result = 2; //iterator moves multiplicatively to -inf 

//with initVal = 0: x*=n or x/=n;
// also covers x=x op n equivalents - result is 0 
else if ((o.equals("*=")

|| o .equals("/=")) && i == 0) 
result = 7; //iterator never leaves 0 

//x*=n (0<n<l) or x/=n (n>l); also covers x=x op n equivalents 
else if (((o.equals("*=")) && (n >0 && n < 1))

|| (o .equals("/=") && n > 1) )
result = 3; //iterator converges toward 0 from + or from - 

//x*=n (-l<n<0) or x/=n (n<-l); also covers x=x op n equivalents 
else if ((o.equals("*=") && (n > -1 && n < 0))

|| (o .equals("/=") && n < -1))
result = 4; //iterator converges toward 0 from both sides 

//x*=n (n<-l) or x/=n (-l<n<0); also cover x=x op n equivalents 
else if ((o.equals("*=") && n < -1)

(o.equals("/=") && ( n > - l & & n < 0 ) ) )  
result = 5; //iterator alternates growing toward -inf and +inf 

//x*=-l or x/=-l;
// also covers x=x op n equivalents - causes iteration from x to -x 
else if ((o.equals("* = ")

|| o .equals("/=")) && n == -1)
result = 6; //iter oscillates: -initVal and +initVal (infinite) 

//x+=0 or x-=0 or x* = l or x/=l;
// also covers x=x op n equivalents - result is always x 
else if (((o.equals("+=") || o .equals("-=")) && n == 0)

|| ((o.equals("*=") || o .equals("/=")) && n == 1))
result = 7; //iterator is stuck at initVal (infinite)

//special case: x*=0 - becomes 0 in 1 iteration 
else if (o.equals("*=") && n == 0) 

result = 8;
//special case: x/=0; iterator becomes undefined 
else if (o.equals("/=") && n == 0) 

result = 9;
//undefined error 
else result = -1;
return result;

} //iterDirect
//For a loop control identifier, given an initial value, iterator value, 
// exit value and a direction for the iterator, provide feedback
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public static void feedBack (double n, double t, double c, int d, String
o )  {

//logic which decides if for loop is properly formed 
//check basic structure of loop

//Warnings:
//Use of '! = ' operator in an loop exit condition 
if (o.equals("!=")) {

System.out.printIn(" Warning: using '!=' as the operator for the 
exit condition from a loop");

System.out.println(" can cause problems if the loop control 
variable doesn't land right on the");

System.out.println(" exit value. Usually, '<=' or '>=' are 
preferred.");

}//if
//Iterators involving *= or /= that converge toward 0 
if (d == 3) {

System.out.println(" This iterator converges toward 0 from either 
the positive direction or the");

System.out.println(" negative direction. Make sure the relation 
of the initial and exit");

System.out.println(" conditions of the loop are appropriate for 
this situation.");

} else if (d -= 4) {
System.out.println(" This iterator converges toward zero, 

alternating between negative and positive");
System.out.println(" values on each iteration. Make sure the 

relation of the initial and exit");
System.out.println(" conditions of the loop are appropriate for 

this situation, or choose a simpler");
System.out.println(" method of iterating from the start to the 

finish of the loop.");
}//if
//Properly formed loop
if ((n < c && (o.equals("<") || o .equals("<=") ) && d == 1}

|| (n > c && (o.equals(">") || o .equals(">=")) && d == 2)) { 
System.out.println(" Basic structure of loop is okay");

//Exit condition boolean operator is the inverse of what it should be 
} else if ((n < c && (o.equals(">") || o .equals(">=")

o.equals("==")))
(n > c && (o.equals("<") || o .equals("<=") ||

o .equals("==")))) {
System.out.println(" Exit condition operator should be inverse - 

caused loop termination without execution of loop body");
//Iterator is headed in the wrong direction 
} else if (n < c && d == 2 || n > c && d == 1) {

System.out.println(" Loop iterator headed in wrong direction!");
}//if
//Drop through and test if entrance and exit conditions are equal 
if (n == c) {

System.out.println(" Loop init and exit are same values!");
}//if
//Values of d below result from unusual iterator expressions and are 
// most likely semantic errors in the source being examined

if (d == 5) {
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System.out.println(" Iterator alternates between negative and 
positive values as it increases");

System.out.println(" in absolute value. Be sure the'relation 
between initial and exit conditions");

System.out.println(" is appropriate for this situation, or 
choose a simpler way to iterate from the");

System.out.println(" start to the finish of the loop.");
} else if (d == 6) {

System.out.println(" Iterator alternates between same neg/pos 
values - infinite loop");

} else if (d == 7) {
System.out.println(" Iterator is not changing - infinite loop");

} else if (d == 8) {
System.out.println(" Iterator is of the form 'x *= O' which goes 

to 0 after one iteration");
} else if (d == 9) {

System.out.println(" Iterator is of the form 'x / = O' which is 
undefined");

}//if
//Drop through and test to see if there is excessive looping,
// at least for +/- loops; arbitrarily set at >1000000 loops 
if ((d == 1 || d == 2) && Math.abs(c - n) > Math.abs(t) * 1000000) { 

System.out.println(" This output will execute more than 1 million
times!");

}
//Other loop tests can be coded here 

}//feedback

//builds enumeration from walk through AST
public static ASTEnumeration findOutputNodes(AST t) {

Vector roots = new Vector(lO); 
if (t == null) return null; 
searchSubtrees(roots, t); 
return new ASTEnumerator(roots);

}//findOutputNodes

//recursive method called by findOutputNodes()
private static boolean searchSubtrees(Vector v, AST t) {

AST thisNode, child;
//AST varDefChild, varDefNextSibling, identSibling; 
boolean itemFound = false; 
thisNode = t;

//recursive loop
while (thisNode != null) {

child = thisNode.getFirstChild(); 
if (child != null) {

itemFound = searchSubtrees(v, child); //recursive call
} / / if
if (outHT.contains(thisNode.getText())) {

itemFound = true; 
v.appendElement(thisNode);

}//if
thisNode = thisNode.getNextSibling();

}//while

return itemFound;
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637
638 }//searchSubtrees
639
640 //read Java source file(s) and attempt to build AST tree
641 public static AST buildAST(String[] args) throws Exception {
642
643 //declarations and initialization
644 String f;
645 AST t = null; //AST is an antlr class that defines structure of an
646 // Abstract Syntax Tree
647
648 //testfile is hardcoded for testing purposes - in actual use, test
649 //file is a command line argument and -showtree is a switch to turn
650 //on Java frames which display the AST
651 f = "c:/antlr/SimpleLoop.java"; //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
652 //showTree = true;//<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
653 t = parseFile(f, new BufferedReader(new FileReader(f))); //<<<<<<<
654 /* //this sectioned commented out for testing purposes - see note above
655 try {
656 if (args.length > 0 ) { //if we have at least 1 command-line

argument
657
658
659
660 
661 
662 
663

System.err.println("Parsing..."); 
for(int i = 0; i < args.length; i++) {

if (args[i].equals("-showtree")) {
showTree = true;

} else {
f = args [i] ;
t = parseFile(f, new BufferedReader(new

FileReader(f)));
664
665
6 6 6
667
668
669
670
671
672
673 */
674
675
676
677
678
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681 
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685
6 8 6
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694

}//if
}//for 

} else
System.err.println("Usage : java IOScan [-showtree] " + 

"<directory or file name>");
} catch (Exception e) {

System.err.println("exception: "+e);
e.printStackTrace(System.err); // so we can get stack trace

}//try

return t ;

}//readSource

//parse Java source file into AST tree
public static AST parseFile(String f, Reader r) throws Exception {

//initialization 
AST t = null;

try {
//JavaLexer: antlr class for items to be lexed and tokenized 
JavaLexer lexer = new JavaLexer(r); 
lexer.setFilename(f);
lexer.setTokenObjectClass("TokenWithlndex");
//TokenStreamTracker: antlr class, used here to recognize and 
// discard whitespace (WS) tokens
TokenStreamTracker tracker = new TokenStreamTracker(lexer); 
tracker.discard(JavaLexer.WS); //ignore WS (whitespace)
//JavaRecognizer: antlr class for building AST trees 
JavaRecognizer parser = new JavaRecognizer(tracker);
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parser.setFilename(f); 
parser.compilâtionUnit();
t = parser.getAST(); //builds AST tree for source file
//call method to build visual representation of tree 
doTreeAction(f, parser.getAST(), parser.getTokenNames());

} catch (Exception e) {
System.err.println("parser exception: "+e); 
e .printStackTrace(); // so we can get stack trace

}//try

System.out.println("AST tree building done"); 

return t ;

}//parseFile

//build a visual representation of the AST tree in a frame 
public static void doTreeAction(String f, AST t, String[] tokenNames) { 

if (t==null) return; 
if (showTree) {

((CommonAST)t).setVerboseStringConversion(true, tokenNames); 
ASTFactory factory = new ASTFactory();
//TreeParser tp = new TreeParser();
AST r = factory.create(0,"AST ROOT"); 
r .setFirstChild(t);
final ASTFrame frame = new ASTFrame("Java AST", r) ; 
frame.setvisible(true); 
frame.addWindowListener( 

new WindowAdapter() {
public void windowclosing (WindowEvent e) {

frame.setvisible(false); // hide the Frame 
frame.dispose();
System.exit(0);

}//windowclosing 
}//WindowAdapter 

);//addWindowListener 
}//if (showTree)

JavaTreeParser tparse = new JavaTreeParser(); 
try {

tparse.compilationUnit(t);
} catch (RecognitionException e) {

System.err.println(e.getMessage()); 
e .printStackTrace();

}//try
}//doTreeAction

//hash java output methods (57 of them in Java 1.3.1) 
public static void hashOutputMethods() throws Exception {

String oNode = ""; //holds each currently'read method
Integer hVal; //used to generate hash code

BufferedReader inf = new BufferedReader(new 
FileReader("c:/antlr/outputMethods.txt")); 

while (inf.ready()) {
oNode = inf.readLine();
hVal = new Integer(oNode.hashCode());
outHT.put(hVal, oNode);}

inf.close();
System.out.println("Hashing of 57 Java output methods complete.");
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755 }//hashOutputMethods
756
757 //hash Java loop keywords (for, while, do)
758 public static void hashJavaLoops() throws Exception {
759 String block = //holds each currently read command
760 Integer hVal; //used to generate hash code
761
762 BufferedReader inf = new BufferedReader(new 

FileReader("c:/antlr/blocks.txt") ) ;
763 while (inf.ready()) {
764 block = inf.readLine();
765 hVal = new Integer(block.hashcode());
766 blockHT.put(hVal, block);
767 }
768 inf.close () ;
769 System.out.println("Hashing of for, while, do complete.");
770 }//hashJavaLoops
771
772 //hash Java language tokens (163 of them)
773 public static void hashTokens() throws Exception {
774 String token = //holds each currently read token
775 Integer hVal; //used for hashcode
776 int hV = 0;
777
778 BufferedReader inf = new BufferedReader(new 

FileReader("c:/antlr/tokens.txt"));
779 while (inf.ready()) {
780 token = inf.readLine();
781 hVal = new Integer(Integer.toString(hV));
782 tokensHT.put(token, hVal);
783 hV++;
784 }
785 inf.close();
786 System.out.println("Hashing of 163 Java tokens complete.");
787 }//hashTokens
788
789 }//class IOScan
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Appendix G: Resources for Information on Semantic Parsing

[1] antlr home page: http://www.antlr.org/

[2] Tutorials on getting started with antlr: http://www.anth.org/doc/getting- 

started .html

[3] Sun articles on Java parsers (series) -  1997. Sun’s general introduction to antlr 

and yacc as tools for parsing Java source code:

http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPtl/

http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPt2/

http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPt3/

[4] Clark, Chris (1999): Build a Tree -  Save a Parse. ACMSIGPLANNotices, 34(4): 

19-24. A periodic column on various practical issues concerning parsing.

[5] http://www.netaxs.com/people/nerp/automata/svllabus.html. Outline and content 

for a complete course on language grammars, BNF notation, including 

information on semantic parsing and various kinds of parsers.

[6] http://en.wikipedia.org/wiki/Main Page. The following search terms provide a 

series of articles on topics related to semantic parsing: “semantic analysis”, 

“parser”, “lexer”, “top-down parsing”, “bottom-up parsing”, “context-free 

grammar”, “Chomsky”, “LL parser”, “LR parser”, “Backhus-Naur form”

[7] https://iavacc.dev.iava.net. The home page for javacc, Sun’s own parser generator 

for Java.

[8] https://iavacc.dev.iava.net/servlets/ProiectDocumentList?folderID=l 10. 

Download site for a variety of grammars that work with javacc (27 languages 

including C, Java and Visual Basic, Python and Oberon).

http://www.antlr.org/
http://www.anth.org/doc/getting-started_.html
http://www.anth.org/doc/getting-started_.html
http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPtl/
http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPt2/
http://developer.iava.sun.com/developer/technicalArticles/Parser/SeriesPt3/
http://www.netaxs.com/people/nerp/automata/svllabus.html
http://en.wikipedia.org/wiki/Main_Page
https://iavacc.dev.iava.net
https://iavacc.dev.iava.net/servlets/ProiectDocumentList?folderID=l_10
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[9] http://home.earthlink.net/~slkpg. Home page for SLK, which claims to be “the 

only true LL(k) parser” and “the only known near-solution to this NP-complete 

problem”.

[10] http://www.gnu.org/software/bison/bison.html. GNU home page for Bison, a 

parser generator that has been available for UNIX and Linux systems for many 

years.

[11] http://dinosaur.compilertools.net. An introduction to, and tutorial for, standard 

UNIX tools, lex and yacc, as well as an introduction with links to a variety of 

other related tools.

[12] http://cedet.sourceforge.net/info/semantic.html. Semantic: technically a 

‘bovinator’ which is a partial lexer. This is a long article that describes 

‘bovination’, BNF grammars and how to work with the Semantic product.

http://home.earthlink.net/~slkpg
http://www.gnu.org/software/bison/bison.html
http://dinosaur.compilertools.net
http://cedet.sourceforge.net/info/semantic.html
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