
Receptors & Clinical Investigation 2015; 2: e463. doi: 10.14800/rci.463; © 2015 by Cuevas E, et al. 

http://www.smartscitech.com/index.php/rci 
 

Page 1 of 7 
 

 

 

 

Farnesoid X receptor and reproduction 
 

Cuevas Estela 1, Martínez-Gómez Margarita 1, 2, Castelán Francisco 1 

 
1Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México 
2Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México 

(UNAM), México DF, México 

 

Correspondence: Estela Cuevas 

E-mail: ecuevas@uatx.mx 

Received: December 02, 2014 

Published online: January 19, 2015 

 

 

Farnesoid X alpha receptors (FXRα or NR1H4) are expressed in male and female reproductive tissues. Though 

the relevance of the FXRα on reproduction is unknown, endogenous ligands like farnesol, chenodeoxycholic acid 

(CDCA), and cholate acid (CA) have been involved in cell proliferation, apoptosis, cell differentiation, and 

steroidogenesis in reproductive tissues. FXRα modulates estrogen and androgen actions in these tissues. Since 

FXRα is structurally and functionally related to other nuclear receptors that are also expressed in reproductive 

tissues, such as the liver X receptors (LXR), peroxisome proliferation-activated receptor (PPAR), liver receptors 

homolog-1 (LRH-1), small heterodimer partner (SHP), and dosage-sensitive sex reversal (DAX1), the actions of 

FXRα on reproduction might be directly or indirectly mediated by its interaction with these nuclear receptors. 

The aim of the present review is to describe those actions of the most relevant ligands of FXRα and the 

interaction of this receptor with other nuclear receptors for understanding the possible role of FXRα in 

reproductive events. 
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Introduction 

Reproductive events highly depend on lipid and 

carbohydrate metabolism. Diverse nuclear receptors such as 

the liver X receptor (LXR), liver receptor homolog-1 (LRH-1 

or Nr5a2), oxysterol-activated nuclear receptor, and 

peroxisome proliferation-activated receptor (PPAR) have 

been involved in proliferation, differentiation, 

steroidogenesis, and apoptosis of reproductive tissues [1-5]. 

Although less studied, the farnesoid X receptor alpha (FXRα 

or NR1H4) is also expressed in these tissues [6-10] in where 

seems to have a relevant participation, even directly or 

indirectly, in both male and female reproduction. In the 

present review, we expose the possibility to understand the 

role of FXRα on reproductive tissues analyzing the actions of 

most representative ligands and their possible relationship 

with other nuclear receptors. For this purpose, an extensive 

literature revision considering data from crustaceans to 

mammals was evaluated. 

FXR overview 

The farnesoid X receptor is member of the nuclear 

receptor superfamily of ligand-dependent transcription 

factors. FXRα forms heterodimers with the 9-cis-retinoic 

acid receptor (RXRα), and binds to FXR-response elements 

(FXREs) [11]. It also can bind with steroidogenic factor 1 

(SF-1; NR5A1) response element [8]. Human and mouse 

genes of FXRα encode four isoforms: FXRα1 (RIP14-2), 

FXRα2, FXRα3, and FXRα4 (RIP14-1) [12-13], which are 

expressed in a tissue-specific manner and activate different 

FXREs [14-15]. Some co-activators of FXRα are the vitamin 
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D-interacting protein 205 (DRIP205), the 

Leu-Xaa-Xaa-Leu-Leu (LXXLL) motif, the 

co-integrator-associated protein (CBP or p300), the 

co-activator transformation/transcription domain-associated 

protein (TRRAP), and the protein arginine 

methyl-transferase type I (PRMT1) [16-20]. Meanwhile the 

dosage-sensitive sex reversal (DSS; DAX1; NR0B1) acts as 

a co-repressor [21].  

In general FXRα is expressed in stomach, intestine, 

tongue, esophagus, hepatocytes, gall bladder epithelium, 

bladder, pancreas, skeletal muscle, heart, lung, adrenocortical 

cells, blood vessels, and white fat tissue [9, 13, 22-25]. Leydig 

cells, corpora cavernosa, epididymis, vas deferens, prostate, 

urethra, and spermatogonia [6-9]; as well as breast, ovary, 

oviduct, vagina, neurons of the paravaginal ganglia, and cells 

of the inguinal glands also express FXRα [10, 26].  

The name of FXR was given by its binding to farnesol 

(trans, trans-3, 7, 11-trimethyl-2, 6, 10-dodecatrien-1-ol), an 

intermediate product of the mevalonate pathway [26]. Bile 

acids such as chenodeoxycholic acid (CDCA), deoxycholate 

(DCA), cholate (CA), and ursodeoxycholate (UDCA) are 

also endogen ligands for FXRα [27]. Intermediate metabolites 

in the synthesis of bile acids and steroid hormones like the 

5beta-A/B cis-bile alcohols (5beta-cyprinol and bufol) [28] 

and oxysterols [22(R)-hydroxycholesterol] [29] act as ligands 

for FXRα. Other steroids as the epiallopregnanolone sulfate 

(3β-sulfated progesterone) [30], 

5alpha-androstan-3alpha-ol-17-one (androsterone), 

5beta-androstan-3alpha-ol-17-one (etiocholanolone), and 

forskolin are considered FXR agonists [7, 31-32]. Moreover, 

metabolites like triterpenes (alisol M 23-acetate and alisol A 

23-acetate), tetrahydroflavanones (cryptochinones A-D), and 

cafestol, all obtained from plants, show agonistic activity on 

FXRα [33-35]. Additionally, some FXRα agonists like the 

6α-ethyl-chenodeoxycholic acid (6-ECDCA, INT-747), 

(E)-3-(2-chloro-4-((3-(2,6-dichlorophenyl)-5-isopropylisoxaz

ol-4-yl)methoxy)styryl)benzoic acid (GW4064), and N-oxide 

pyridine analog have been synthesized [7,9, 36-37]. In contrast, 

thiazolidinediones (Troglitazone, an agonist of PPAR) [38]; 

the 15-deoxy-Δ (12,14)-PGJ2 (15d-PGJ2), a metabolite from 

prostaglandin D2 in arachidonic acid metabolic pathway [39]; 

guggulipids (guggulsterone) [40]; sesquiterpenoids 

(atractylenolide II and III) [41], theonellasterol, a 

4-methylene-24-ethylsteroid isolated from the marine sponge 

Theonella swinhoei [42]; and stigmasterol, a phytosterol 

compound of soy-derived lipids [43], are antagonists of FXRα.  

In metabolic organs, FXRα regulates the bile salt 

synthesis, the fat metabolism, and the glucose homeostasis 
[15, 24, 29, 44-45]. However, new target genes involved in 

proliferation, apoptosis, drug transporter, autophagy, 

differentiation, hypoxia, inflammation, glucocorticoid 

synthesis, DNA-repair, RNA processing, xenobiotic 

detoxification, innate immunity, and modulation of 

transcriptional regulators have been linked to metabolism 

and non-metabolic tissues [7-8, 26, 46-55]. The diversity of 

functions attributed to the FXRα is related to its capacity to 

regulate the transcription of other nuclear receptors or 

transcription factors such as the pregnane X receptor (PXR) 
[56], fibroblast growth factor 19 (FGF19) [57], PPARs α and γ, 

PPAR coactivator-1α (PGC-1α) [58-59], and small heterodimer 

partner (SHP) [18, 27, 32]. In turn, the expression of FXR is 

regulated by Toll like receptors (TLRs) [54] and vitamin D 

receptors (VDR) [60], as well as by transcription factors as the 

sterol regulatory element-binding protein-2 (SREBP-2) [61]. 

The regulation of gene expression exerted by FXRα can be 

accompanied by the activation of LRH-1 [62] and PPAR [63]. 

FXR and male reproduction 

As mentioned before, FXRα is found in cells from male 

reproductive tissues such as Leydig cells, corpora cavernosa, 

epididymis, vas deferens, prostate, urethra, and 

spermatogonia in humans and other mammals [6-9]. A 

possible role of FXRα in reproductive events of males could 

be inferred through some actions triggered by their ligands. 

It has been proposed that the bile acids are important for 

the testicular function. The FXRα activation by CDCA 

affects the sex steroid production in Leydig cells [64]. 

Furthermore, the FXR activation by INT-747 avoids the 

reduction of smooth musculature in the corpora cavernous 

and the erectile dysfunction promoted by a high fat diet in 

animal models [9]. A similar effect has been observed in the 

bladder smooth musculature of rats fed with a high-fat diet, 

in which the damage of the muscle induced by the diet is 

partially blunted by testosterone, but almost completely 

reverted by INT-747 [25]. In testis, FXRα regulates the 

presence of organic anion-transporting polypeptides (oatp1, 

oatp2, oatp3, and octn1) [65]. These transporters participate in 

the transmembrane pass of endogenous molecules (bile acids, 

steroid hormone conjugates, prostaglandins, testosterone, and 

thyroid hormones) and xenobiotics [66], and have been 

associated with cancer [67]. Mice fed a diet supplemented with 

CA have a reduced fertility as consequence of testicular 

defects such as apoptosis of spermatids, a decreased protein 

accumulation of connexin-43 and N-cadherin, and a high 

intra-testicular bile acid concentration [68]. In addition, a 

possible role of FXRα in reproductive tissues of males might 

be assumed considering the actions that bile acids have in 

cancer tissues. The activation of FXR by CDCA or GW4064 

negatively interferes with the formation of inactive 

metabolites of androgens in malign cells of prostate [7]. The 

FXR activation also reduces proliferation on tumoral Leydig  
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Table 1. FXRα in reproductive tissues and structures in agreement with actions attributed to bile acids (CA and CDCA), 

farnesol, and some agonists (INT-747 or GW4064) in vertebrates and invertebrates. 

 Reproductive tissues in which FXRα ligands have actions 

Expression of FXRα Normal tissues Malign tissues 

Male: Leydig cells, corpora cavernous, epididymis, 

vas deferens, prostate, urethra, and spermatogonia 
[6-9] 

Testis [64, 68-70], corpora cavernous [9], and 

prostate [72-73] 

 

Prostate [7] and tumor Leydig cells [8] 

Female: Breast, ovary, oviduct, vagina, neurons of 

the paravaginal ganglia, and cells of inguinal glands 
[10, 26]. Less inmunolocalization in uterus [10] 

Granulose cells, oocytes [74-76, 79-82], and 

uterus [76] 

Breast [26, 46-48, 77-78, 83] 

 

cells [8], increases the p53 expression in testis cancer cells 

inducing apoptosis [8], and reduces the aromatase expression 

in tumor Leydig cells [8]. In this way, FXR activation seems 

to control the tumor growth in testis (Table 1).  

For its part, the possible activation of FXR by farnesol 

could be also important to control reproductive functions in 

males. The farnesyl pyrophosphate synthetase, which 

catalyzes the formation of farnesyl diphosphate, is found in 

testis [69], where its synthesis is decreased by 

hypophysectomy and is increased by the treatment with 

gonadotropins [70]. Additionally, the role of farnesol in 

tumors from male reproductive tissues has been reported. 

The administration of farnesol decreases significantly the 

volume of prostatic tumors by inducing apoptosis [71]. 

Farnesyl derivatives such as the 

farnesyl-O-acetylhydroquinone suppress the proliferation of 

human prostatic cancer cells [72]. Farnesol also protects 

against the prostatic oxidative damage induced by cigarette 

smoke extract, decreasing the xanthine oxidase activity and 

lipoperoxidation, as well as increasing activities of 

antioxidant enzymes [73]. Thus, farnesol may play a 

protective role in the development of cancer and oxidative 

stress in male reproductive tissues (Table1). 

FXR and female reproduction 

Breast, ovary, oviduct, vagina, neurons of the paravaginal 

ganglia, and cells of the inguinal glands have FXRα [10, 26]. A 

scarce immunolabeling for FXR is found in uterus of virgin 

female rabbits [10]. Similarly to males, a possible role of FXRα 

might be considered to analyze the actions of their ligands. 

The synthesis of bile acids is also carried out in female 

reproductive tissues. Granulose cells and oocytes express 

crucial enzymes involved in the acid bile synthesis such as 

cholesterol 7-α hydroxylase (CYP7A1), sterol 27 

hydroxylase (CYP27A1), oxysterol 7-α hydroxylase 

(CYP7B1), and sterol 12-α hydroxylase (CYP8B1) [74]. The 

concentration of bile acids in the follicular fluid and the 

presence of the bile acid transporter (SLC10A2) in the 

dominant follicle is higher in lactating cows than in heifers 

[75], suggesting a possible role of bile acids in the follicle 

maturation and ovulation. Bile acids seem to be relevant to 

uterus contractions. Women with cholestasis require less 

oxytocin to elicit uterine contractions, and CA increases 

oxytocin sensitivity promoting the oxytocin-receptor 

expression in the uterus [76]. The presence of FXRα in cancer 

of reproductive tissues in women has been also reported. 

FXRα is highly expressed in breast tumors [26, 46], particularly 

in postmenopausal patients [47], and their expression is 

significantly correlated with the expression of estrogen 

receptors (ERs) [47]. Postmenopausal women newly 

diagnosed with breast cancer show high plasma levels of 

DCA [77]. The administration CDCA or GW4064 inhibits the 

growth of breast carcinoma cells [46, 78]; even in those tumors 

with estrogen resistance, blocking HER2/MAPK signaling 
[48]. These data suggest that the action of bile acid on cancer 

of reproductive tissues could be mediated by FXRα. 

For its part, the farnesyl pyrophosphate synthase is found 

in ovary, where is up-regulated by the human chorionic 

gonadotropin (LH/hCG) [79]. Farnesol homologs have been 

involved in the oocytes maturation. The administration of 

methyl farnesoate stimulates and enhances ovarian 

maturation in crayfishes [80-81]. This effect can be suppressed 

by 17 alpha-hydroxyprogesterone [82]. The action of farnesol 

on malign cells from female reproductive tissues has been 

also described. Farnesol increases the expression of 

progesterone receptors and reduces the expression of ERs in 

breast cancer cells [26]. The administration of tamoxifen 

avoids the effect of farnesol [26], suggesting an action 

mediated by ER. Furthermore, farnesol induces the 

expression of thyroid hormone receptor (TRs) beta1 in 

human breast cancer cells but diminishes its signaling, 

possibly this could be related to the anti-mitotic action of 

farnesol [83] (Table1). 

FXRα interaction with other nuclear receptors 

FXRα ligands (bile acids, farnesol, and oxysterols) are 

also able to bind to other receptors such as PPARs [84-85], 

LXR [29], and LRH-1 [5] located in reproductive tissues [1-5]. 
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Indeed, a closely relationship between actions of these 

nuclear receptors with FXRα [58-59, 63] has been previously 

described. In this way, actions of the ligands before 

mentioned on reproductive tissues could be mediated by 

FXRα in collaboration with these nuclear receptors. 

The interaction of FXRα and gonadal hormones has been 

scarcely studied, in spite of the few information suggests that 

actions of these hormones might be modulated by FXRα and 

vice versa. Thus, FXRα reduces the androgen 

glucuronidation in prostatic cells [7], and regulates the 

aromatase expression in Leydig cells competing with the 

orphan receptor SF-1 [8]. For its part, the FXRα expression in 

breast cancer cells is correlated with ER expression [26]. 

Although, the regulation of the activation of the orphan 

receptor SF-1 and the androgen glucuronidation have not yet 

analyzed in female reproductive tissues, both processes are 

important to the ovarian follicles development and the 

ovarian function [86-87].  

In addition, FXRα also regulates the transcription of SHP 

in reproductive and non-reproductive tissues [18, 27, 32]. The 

expression of SHP is modulated by estrogens or testosterone 
[88-89], and SHP can interact with ERs and androgen receptors 
[90-91]. Another orphan nuclear receptor, DAX1, which acts as 

a co-repressor of FXRα [21], is involved in proliferation, 

apoptosis and steroidogenesis of reproductive tissues [92]. In 

this way, the participation of FXRα in reproductive events 

could be direct or indirect involving these other nuclear 

receptors. 

Conclusions 

FXRαs have an extensive presence in both male and 

female reproductive tissues suggesting a possible role of this 

receptor in reproductive events. Understanding the 

participation of FXRα in reproduction requires considering 

the interaction between FXRα, their ligands, and other 

nuclear receptors.  
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