REVIEW

Lysophosphatidic acid LPA₁₋₃ receptors: signaling, regulation and *in silico* analysis of their putative phosphorylation sites

Aurelio Hernández-Méndez, Rocío Alcántara-Hernández, J. Adolfo García-Sáinz

Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, D. F. 04510 México

Correspondence: J. Adolfo García-Sáinz E-mail: agarcia@ifc.unam.mx Received: February 05, 2014 Published online: July 12, 2014

Lysophosphatidic acid (LPA) is a glycerophospholipid with a plethora of actions in the normal function of our organism as well as in the pathogenesis of many diseases. These actions are mainly exerted through a family of G protein-coupled receptors, which currently comprise six members; other receptors might participate in LPA actions including a nuclear receptor. In this work, we mainly focus on three of these receptors, i. e., LPA1.₃; those that were initially discovered which, have been more extensively studied and that are phylogenetically related among themselves, as well as with receptors for other bioactive phospholipids, such as those for spingosine 1-phosphate. The characteristics of these receptors, their patterns of tissue expression, and some of the actions in which they are involved are presented. Regulation of receptor function, including desensitization, internalization and phosphorylation has only been studied for the LPA1 subtype. However, *in silico* analysis of potential phosphorylation sites indicate that all of these three receptors are putatively regulated by agonist activation and heterologous stimuli. We think LPA1.₃ receptor regulation constitutes a niche of investigation that is potentially of great importance considering the physiological and pathophysiological actions in which they are involved.

Keywords: Lysophosphatidic acid; LPA; Lysophosphatidic acid receptors; receptor phosphorylation

To cite this article: Aurelio Hernández-Méndez, *et al.* Lysophosphatidic acid LPA₁₋₃ receptors: signaling, regulation and *in silico* analysis of their putative phosphorylation sites. Receptor Clin Invest 2014; 1: e193. doi: 10.14800/rci.193.

Copyright: © 2014 The Authors. Licensed under a *Creative Commons Attribution 4.0 International License* which allows users including authors of articles to copy and redistribute the material in any medium or format, in addition to remix, transform, and build upon the material for any purpose, even commercially, as long as the author and original source are properly cited or credited.

Introduction

Lysophosphatidic acid (LPA) is a not very abundant metabolite, which participates in the biosynthesis, catabolism and transport of phospholipids in the organism, and in the continuous turnover of membranous organelles, such as the plasma membrane, endoplasmic reticula or Golgi apparatus. Interestingly, LPA also plays another very important role as a mediator in cell communication in autocrine, paracrine and endocrine ways. Thus, LPA and other lipids are denominated "bioactive", meaning that they are extracellular messengers or local hormones.

The ability of LPA to increase smooth muscle contraction, blood pressure and platelet aggregation was discovered in the early 1980's ^[1]. It took almost ten years to frame the concept that LPA is an extracellular signal, contribution made in the early 1990's, by Wouter H.

Fig 1. Model for the cellular action of lysophosphatidic acid through LPA₁₋₃ **receptors.** In the upper panel the molecular structure of a lysophosphatidic acid is presented. Middle and lower panels show the general structure of a LPA receptor (exemplified by LPA₁) and its interaction with different G proteins.

Moolenaar and his group ^[2, 3]. A few years later, the first receptor for this lipid was identified as the product of the ventricular zone gene-1 (vgz-1) by Chun and coworkers ^[4]. LPA is now recognized as a potent local mediator that exerts a plethora of actions regulating the normal function of our organism and also participating in the pathogenesis of different diseases. The physiological actions of LPA are enormously diverse and include: regulation of cardiac and smooth muscle cell contractility [5, 6], intestinal epithelial homeostasis ^[7], bone reabsorption ^[8, 9]. LPA also appears to be involved in fibrosis ^[10-12], lymphocyte homing and inflammation^[13], cardiac hypertrophy^[14], and in different types of cancer ^[15-21], and other morbid entities. At the cellular level, LPA modulates cytoskeletal organization ^[22], cell shape ^[23-26], proliferation ^[27], chemotaxis ^[28], cell migration and invasion^[16], protection against or promotion of apoptosis (depending on cell type) ^[29-31], among other key processes. The amount of information on the actions of LPA is very abundant and continues growing at a very fast rate. However, there are important areas in which our knowledge is clearly insufficient. This paper is mainly focused on what is known and unknown about three LPA receptors, their signaling and regulation; *in silico* analysis of potential phosphorylation sites in these receptors is also presented. Many review papers are cited and readers are also directed to two special issues of Biochimica et Biophysica Acta^[32, 33] and to the database and publications of the International Union of Basic and Clinical Pharmacology^[34-38], which cover many aspects of LPA actions and receptors.

LPA represents an heterogeneous group of substances containing a free fatty acid joined through an ester bond to positions 1 or 2 of glycerol 3-phosphospate; the length of the fatty acid chain and its degree of saturation vary (Fig. 1). LPA can be generated both inside cells and

Fig 2. Schematic representation of the human LPA1 receptor. Potential phosphorylation sites are indicated in colors with the kinase involved as follows: PKC, red; GRK, light blue; PKC and GRK, dark blue; PKA, yellow; Akt/PKB, green, and Tyrosine kinases, orange. For isozymes putatively involved and sites potentially targeted by several kinases, please see Table I. "Y" indicates potential glycosylation sites; "Z", potential palmitoylation sites; blue lines indicate plasma membrane region.

extracellularly, via the sequential action of phospholipases A_1/A_2 and D^[39-41] and is degraded by several types of lipid phosphatases ^[41, 42]. LPA is present in tissues, in normal fluids such as blood, urine, saliva or cerebrospinal fluid, and also in pathological liquids, such as ascites ^[41, 43].

LPA can modulate transcription through nuclear receptors, such as the ligand-activated peroxisome proliferator-activated receptor γ (PPAR γ)^[44], an aspect that will not be addressed here. However, many of the major LPA actions are mediated through seventransmembrane domains/ G protein-coupled receptors (GPCRs). Currently six GPCRs constitute the LPA receptor family ^[37], and are denominated LPA₁₋₆ ^[34-36]. The orphan receptor GPR87, was recently shown to be activated by this lipid and was suggested as a new LPA receptor, i.e., LPA7 [45]. All of these receptors interact during signaling with one or more G proteins (G_q , $G_{12/13}$, G_i or G_s). Three of these, LPA₁₋₃, were the first to be identified, are related phylogenetically among themselves, sharing $\approx 50\%$ amino acid sequence identity^[34-36, 40, 41], and also with other phospholipid receptors; they are the subject of this work (Figs. 1-4). The remaining LPA receptors, LPA₄₋₇, are relatively distant phylogenetically from the others but are related with the purinergic receptor family ^[34-36, 40, 41, 45]. In the Figures we have indicated with colors the sites that are possible targets of different protein kinases. Preference was given to sites affected by PKC, GRK or both, due to the fact that they are known regulators of LPA1^[46-53]; when multiple kinases target a site, readers are referred to Tables I-III.

Despite the advances achieved in the field during the last 10 years, considerable gaps continue to persist in our knowledge. One of these is the lack of precise association of particular receptors with specific actions. Several reasons might explain this. An obvious one is that there is a great overlapping among the functions of these receptors ^[40]. This appears to be a general situation for many receptors and is likely the result of pressure selection during evolution, helping to assure species persistence. Lack of pharmacological tools has also contributed to the paucity of progress. Despite efforts made by many groups working in medicinal chemistry, the availability of potent and selective agonists and antagonists for these receptors is scarce, essentially limited to a few ligands with marginal

Table 1. 1 redicted human El Al receptor phosphorylation sites.				
Kinases	Number	S/T/Y	Sequence	Localization
PKA, PKC α, δ, η, CaMK 1	160	S	MQLHTRM <mark>S</mark> NRRVVVV	Intracellular loop 2
PDGFR, TYK 2, JAK, Abl	231	Y	LYAHIFG Y VRQRTMR	Intracellular loop 3
PKA, PKC α, β, δ, CaMK 1	236	Т	FGY VRQR T MRMSRHS	Intracellular loop 3
PKA, PKC α	240	S	RQRTMRM <mark>S</mark> RHSSGPR	Intracellular loop 3
PKA, PKC α, CaMK 2	243	S	TMRMSRHS <mark>S</mark> GPRRNR	Intracellular loop 3
PKA, PKC α, δ, η, CAMK 4,	244	S	MRMSRHS <mark>S</mark> GPRRNRD	Intracellular loop 3
AMPK				
PKA, PKC α, CaMK 2	252	Т	GPRRNRD T MMSLLKT	Intracellular loop 3
ΡΚС ζ	255	S	RNRDTMM <mark>S</mark> LLKTVVI	Intracellular loop 3
PKB, PKC β, δ, θ, η, CaMK 1	321	Т	RDKEMSA T FRQILCC	C-terminal
GRK 2	331	S	QILCCQR <mark>S</mark> ENPTGPT	C-terminal
PKC β, δ, θ, GRK 2, MAPK 13	341	S	PTGPTEG <mark>S</mark> DRSASSL	C-terminal
PKA, PKC δ, η, GRK3, CaMK 4,	346	S	EGSDRSA <mark>S</mark> SLNHTIL	C-terminal
AMPK				
GRK 3	347	S	GSDRSAS <mark>S</mark> LNHTILA	C-terminal
Akt/PKB	351	Т	SASSLNHTILAGVHS	C-terminal
GRK 2	358	S	TILAGVH <mark>S</mark> NDHSVV*	C-terminal
GRK 2	362	S	GVHSNDH <mark>S</mark> VV****	C-terminal

Table 1. Predicted human LPA₁ receptor phosphorylation sites.

The kinases that might target the site, amino acid number, amino acid, sequence and localization are indicated. Abbreviations used are: protein kinase C (PKC), G protein receptor kinase (GRK), protein kinase A (PKA), protein kinase B (Akt/PKB), mitogen-activated protein kinase (MAPK), calcium/calmodulin-dependent protein kinase (CaMK), AMP-dependent protein kinase (AMPK), PDGF receptor (PDGFR), tyrosine-protein kinase (TYK), Janus kinase (JAK), Abelson murine leukemia viral oncogene homolog (Abl).

selectivity ^[1, 40, 54-59]. Fortunately, information on the functions of these receptors has been gained through determination of messenger RNA expression in different tissues and the use of animals and cells in which the expression of one or more of these receptors has been blocked ^[60]. A very elegant proteomic analysis of LPA-induced protein phosphorylation has been reported, showing that this lysophospholipid induces marked changes in the phosphoproteome, with a change in $\approx 30\%$ of the 6,292 phosphosites studied, and the time-course of the events suggested a protein kinase orchestration of signaling ^[61]. Interestingly, the authors concluded that the function of most LPA-regulated phosphorylation sites has not been investigated, which opens a new research avenues in the field ^[61].

Succinct information on the structural characteristics of these receptors, their signaling, tissue distribution and major actions is presented in the following paragraphs.

LPA₁ receptor

The human *LPAR1* gene is present in chromosome 9 site 9q31.3 and encodes a protein of 364 amino acids (molecular mass \approx 41 kDa) ^[4, 37, 40, 62, 63] (Fig. 2). As indicated previously, this was the first receptor identified of this family ^[4], it has been considered prototypical for this receptor family and has been detected, in many human and mouse organs, such as brain, heart, intestine, ovaries, testis, prostate, thymus and pancreas, among others ^[40].

Signaling through this receptor appears to involve three G protein partners, $G\alpha_{i/o}$, which inhibit adenylyl cyclase, thus decreasing cyclic AMP levels; Gaq/11, which activate phospholipase C, increasing IP₃ and diacylglycerol formation and the concentration of intracellular calcium; or $G\alpha 12/13$, which modulate the Rho pathway ^[40, 46, 51]. Through these pathways a variety of cellular responses are triggered; these include: cell proliferation, survival, cell shape changes and cytoskeletal rearrangements, migration, rearrangements in cell-cell contacts, among many others [40, 46, 51]. The LPA1 third intracellular loop is critical for signaling [51] and a PDZ binding domain is present in the carboxyl terminus of LPA₁ receptors, which appears to participate in signaling ^[64, 65]. Not surprisingly, many of the known LPA effects are mediated through this subtype. These include actions that affect the central nervous system development and function, such as modulating embryonic Schwann cell migration, myelination and cell-to-axon segregation ^[66], astrocyte proliferation ^[67], formation of dendritic spine synapses ^[68] and also in neurite retraction ^[69], which can be involved in neuritogenesis. Consistent with these findings, LPA₁ receptor knockout mice exhibit synaptic dysfunction in the hyppocampus [70], reduced neurogenesis in the dentate gyrus ^[71] and defective cortical development ^[72]; these modifications are associated with altered suckling ^[73] and other behavioral abnormalities such as reduced wheel running and voluntary exercise [74], anxiety and spatial-memory impairments ^[75]. It has been suggested

Fig 3. Schematic representation of the human LPA₂ **receptor.** Potential phosphorylation sites are indicated in colors with the kinase involved as follows: PKC, red; GRK, light blue; PKC and GRK, dark blue; PKA, yellow; and Tyrosine kinases, orange. For isozymes putatively involved and sites potentially targeted by several kinases, please see Table II. "Y" indicates potential glycosylation sites; "Z", potential palmitoylation sites; blue lines indicate plasma membrane region.

that the neurochemical changes observed in LPA₁deficient mice could make them a possible model for psychiatric diseases, such as schizophrenia ^[76]. On the dark side, this receptor subtype participates in cerebral ischemia-induced neuropathic pain ^[77], hypoxia-induced stereotyped fetal brain disorganization ^[78], oxygeninduced retinal degeneration ^[79] and in the initiation of fetal hydrocephalus ^[80].

LPA₁ receptors play a role in osteoclast differentiation and bone reabsorption ^[8] and LPA₁ knockout mice show craniofacial dysmorfism ^[60] and abnormal bone development with decreased osseous tissue mass ^[9]. In zebrafish, this receptor subtypes appears to be essential for lymphatic vessel development ^[81], and in mice for angiogenesis ^[82]. LPA₁ appears to be involved in renal ^[10] and lung ^[11, 12] fibrosis, and in ovarian ^[18, 51], pancreatic ^[19, 20] and breast ^[15, 18] cancer, also increasing hepatocellular carcinoma cell-invasion ^[21]. LPA₁ receptor expression is increased while LPA₂ and LPA₃ are decreased, in ovarian cancer ^[51].

LPA₂ receptor

The LPA₂ receptor was discovered, taking advantage of its homology to LPA₁, through sequence search ^[83]. The human LPA₂ receptor gene, LPAR2, is located in chromosome 19 site 19p12 and encodes a protein of 351 amino acids (calculated molecular mass of ≈ 39 kDa) ^{[37,} ^{40]} (Fig. 3). Its expression is restricted, as compared with LPA₁, but it has been detected in testis, leukocytes, prostate, spleen, intestine and pancreas ^[40]. This receptor also couples with $G\alpha_{q/11}$, $G\alpha_{i/o}$ and $G\alpha_{12/13}$ employing similar effector pathways to those of LPA₁. Additionally, it interacts with TRIP6, a focal adhesion molecule, and with other proteins, through a PDZ-binding domain present in its carboxyl terminus tail ^[40]. Interestingly, this receptor has been associated with cell survival and migration, and is considered a potential factor in cancer metastasis [16, 17]. In this regard it has been observed thatLPA₂ receptor activation promotes migration in gastric and ovarian cancer cells [16, 84] and in human colon cancer cells induces mitogenic signals ^[17], its presence is

Kinases	Number	S/T/Y	Sequence	Localization
JAK 1, Blk	68	Y	RRFQPIYYLLGNLA	Intracelular loop 1
ΡΚΑ, ΡΚϹ δ, ΡΚϹ ζ	132	S	IAVERHR <mark>S</mark> VMAVQLH	Intracellular loop 2
VEGFR	232	Y	HVSCHPRYRETTLSL	Intracelular loop 3
PKA, GRK 4	236	Т	HPRYRET T LSLVKTV	Intracellular loop 3
PKC ζ, GRK 5	238	S	RYRETTL <mark>S</mark> LVKTVVI	Intracellular loop 3
ΡΚΑ, ΡΚΒ, ΡΚС α, β, δ, θ	305	Т	RDAEMRR T FRRLLCC	C-terminal
PKC α, β, θ, GRK 2	318	S	CCACLRQ <mark>S</mark> TRESVHY	C-terminal
PKA, PKC η, ζ, GRK 2	322	S	LQRSTRE <mark>S</mark> VHYTSSA	C-terminal
PDGFR, VEGFR, Yes	325	Y	STRESVH Y TSSAQGG	C-terminal
GRK 2, 3	327	S	RESVHYT <mark>S</mark> SAQGGAS	C-terminal
GRK 3	328	S	ESVHYTS <mark>S</mark> AQGGAST	C-terminal
PKC β, η, GRK 3	334	S	SSAQGGA <mark>S</mark> TRIMPLE	C-terminal
GRK 2	349	S	NGHPLMDSTL****	C-terminal
GRK 2,	350	Т	GHPLMDSTL******	C-terminal

Table 2. Predi	cted phosphor	ylation sites in	the human LPA	2 receptor.
----------------	---------------	------------------	---------------	-------------

Indications as in Table I. Additional abbreviations: B lymphocyte kinase (Blk), VEGF receptor (VEGFR), c-yes protooncogene (Yes), Insulin receptor (InsR).

associated with ovarian cancer tumorigenicity and aggressiveness ^[51, 85] and mediates endometrial cancer invasion ^[86]. In a model of colitis-associated cancer, absence of LPA₂ receptors attenuated tumor formation ^[87].

LPA₃ receptor

The LPA₃ receptor was an orphan GPCR ^[88, 89]. Human LPAR3 gene is located in chromosome locus 1p22.3-p31-1, it encodes a protein of 353 amino acids (estimated molecular mass of ≈ 40 kDa) ^[37, 40] (Fig. 4). Expression of this receptor subtype has been detected in brain, heart, pancreas, lung and in sex organs such as, testis, prostate, uterus (endometrium) and ovary [40, 51, 90]. LPA₃ receptors exert their actions through modulation of $G\alpha_{i/0}$ and $G\alpha_{a/11}$ function and consequently their activation inhibits adenylyl cyclase, decreasing cyclic AMP levels, it increases phospholipase C (phosphoinositidase) activity generating diacylglycerol, which increases protein kinase C (PKC) activity, and IP₃, which increases intracellular free calcium. Interestingly, this receptor subtype does not appears to couple with $G\alpha_{12/13}$, which modulates the Rho pathway^[40]. LPA₃ knockout female mice show alterations in embryo implantation and small litter size [40, 91]; this seems to be mediated by phospholipase A2 and cyclooxygenase activation, resulting in prostaglandin production and action in the endometrium ^[40, 90, 92]. There is little evidence for roles of LPA3 receptors in nervous system functioning; however, recent evidence indicates that activation of this receptor subtype induces neurite branch formation, in neuronal cell lines [93]. Breast cancer aggressiveness has been associated with increased expression of LPA3 and autotaxin [94].

Regulation of receptor function

GPCR function can be modulated by a very large number of processes with different mechanisms and timeframes. Changes in their steady state levels frequently involve modifications in their rates of synthesis and/ or degradation and represent long-term processes. However, changes in cell responsiveness to particular stimuli can be achieved rapidly within the range of minutes. Desensitization, defined operationally as diminished response to agonists, is a frequent adaptive response, that is induced by prolonged or repeated stimulation, but that can also be the result of brief receptor activation (homologous desensitization). Desensitization can also be induced rapidly by stimulation with agents unrelated with the receptor affected (heterologous desensitization). These desensitizations are frequently associated with covalent modification of receptors and/ or of other molecular entities involved in their signaling, and can also involve changes in the receptor's cellular localization (plasma membrane vs. intracellular vesicles) ^[95, 96]. It is currently accepted that receptor phosphorylation is an initial event in desensitization that subsequently leads to GPCR internalization ^[95, 97]. In addition, it is currently accepted that homologous desensitization-associated receptor phosphorylation is mainly catalyzed by G protein-coupled (GRKs) ^[98] whereas receptor receptor kinases phosphorylation caused by heterologous stimuli is catalyzed by second messenger-activated kinases, such as protein kinase A (PKA) [99, 100] and PKC [101-108], and also by other kinases of several different families, such as protein kinase B (Akt/ PKB) [109], calcium/ calmodulin kinase 2 (CaMK2)^[110], MAP kinases^[111], as well as by

Fig 4. Schematic representation of the human LPA₃ **receptor.** Potential phosphorylation sites are indicated in colors with the kinase involved as follows: PKC, red; GRK, light blue; PKC and GRK, dark blue; PKA, yellow; Akt/PKB, green, and Tyrosine kinases, orange. For isozymes putatively involved and sites potentially targeted by several kinases, please see Table III. "Y" indicates potential glycosylation sites; "Z", potential palmitoylation sites; blue lines indicate plasma membrane region.

non-receptor and receptor tyrosine kinases [112-116]. However, it is noteworthy to mention that desensitization can also take place in the absence of receptor phosphorylation because receptor interaction with different proteins might constitute a steric hindrance for efficient G protein coupling [117]. It is important to consider that, during desensitization a particular response is diminished but the process frequently represents a switch in signaling, initiating other cellular events [116, 118-122]. Not all GPCR phosphorylations are associated to desensitization; for example, it has been observed that Akt/PKB-catalyzed phosphorylation of sphingosine 1phosphate receptor 1 (S1P₁), at threonine 236, is required for its effect on endothelial migration, but not for other actions [123].

Current classic models for GPCR desensitization/ internalization suggest that receptor activation (homologous), induces a conformational change that is transmitted to G proteins ^[124], leading to GDP-GTP exchange and G protein subunit dissociation. This promotes GRK binding which facilitates receptor phosphorylation. These ATP-dependent phospho-transfer reactions take place mainly on serine and threonine (but can also include tyrosine) residues present in the third intracellular loop and carboxyl terminus. β-Arrestins bind phosphorylated receptor, initiating the the to internalization process and setting G protein-independent signaling into motion ^[99, 101-105]. In the case of heterologous desensitization, second messeger-activated and other kinases phosphorylate consensus sites in different unstimulated GPCRs. To date, it is far from clear to what extent such phosphorylations lead to β -arrestin binding and even less is known regarding G protein-independent signaling. What it is known, is that many GPCRs can be phosphorylated, desensitized, and internalized by both, agonist-stimulation and in a heterologous manner. The concepts of homologous and heterologous desensitizations are operationally correct and useful, but at the molecular level the events are more complex (see later).

In many cases where there is evidence of GPCR phosphorylation, the phosphorylation sites remain unknown. Site-directed mutagenesis and mass spectrometry of purified receptors are the major techniques employed. Very interesting data from Tobin

Kinases	Number	S/T/Y	Sequence	Localization
PKA, PKC α, δ, ζ	130	S	IAVERHM <mark>S</mark> IMRMRVH	Intracelular loop 2
ΡΚΑ, ΡΚΟ α, ζ	138	S	IMRMRVH <mark>S</mark> NLTKKRV	Intracelular loop 2
PKC a	141	Т	MRVHSNL T KKRVTLL	Intracelular loop 2
PKA	146	Т	NLTKKRV T LLILLVW	Intracelular loop 2
Pyk 2	210	Y	VVVYLRI Y VYVKRKT	Intracellular loop 3
Pyk 2, JAK	212	Y	VYLRIYV Y VKRKTNV	Intracellular loop 3
PKA, GRK 5	217	Т	YYYVKRK T NVLSPHT	Intracellular loop 3
GRK 4	225	S	NVLSPHT <mark>S</mark> GSISRRR	Intracellular loop 3
PKB, PKC α, ζ, GRK 4	227	S	LSPHTSG <mark>S</mark> ISRRRTP	Intracellular loop 3
PKC α , β , γ , δ , η	229	S	PHTSGSI <mark>S</mark> RRRTPMK	Intracellular loop 3
PKA, PKC α	233	Т	GSISRRR T PMKLMKT	Intracellular loop 3
Fgr, Fyn, Yes, Lyn, Lck, JAK 2,	301	Y	SYKDEDM Y GTMKKMI	C-terminal
VEGFR				
PKC θ, GRK 4, 5	303	Т	KDEDMYG T MKKMICC	C-terminal
PKA, PKC α, ζ, GRK 3	321	S	ENPERRP <mark>S</mark> RIPSTVL	C-terminal
PKA, PKC α, ε, GRK 3, 5	325	S	RRPSRIP <mark>S</mark> TVLSRSD	C-terminal
ΡΚС γ	326	Т	RPSRIPS T VLSRSDT	C-terminal
Akt/PKB	331	S	PSTVLSR <mark>S</mark> DTGSQYI	C-terminal
PKA	333	Т	TVLSRSD T GSQYIED	C-terminal
Fyn, Yes, VEGFR, PDGFR, InsR	337	Y	RSDTGSQ Y IEDSISQ	C-terminal
GRK 2	341	S	GSQYIED <mark>S</mark> ISQGAVC	C-terminal
GRK 2	343	S	QYIEDSISQGAVCNK	C-terminal
PKC γ, GRK 2, 3	351	S	QGAVCNKSTS*****	C-terminal
GRK 2	352	Т	GAVCNKSTS*****	C-terminal
PKC γ, δ, ζ, GRK 1, 2, 4, 5	353	S	AVCNKSTS******	C-terminal

Table 3. Predicted phosphorylation sites in the human LPA₃ receptor.

Indications as in Tables I and II. Additional abbreviations: VEGF receptor (VEGFR), proline-rich tyrosine kinase (Pyk), feline sarcoma viral oncogene homolog (Fgr), tyrosine protein kinases Fyn (Fyn), Lyn, (Lyn) and Lck (Lck).

and coworkers have shown that the M_3 muscarinic acetyl choline receptor phosphopeptide maps differ in cell context-dependent fashion ^[110, 125-127]. Using different experimental tools the authors were also able to define that the muscarinic receptor phosphorylation varied in the same cell depending on the stimulus ^[125]. The possibility that different phosphorylation "bar codes" might explain varied functional responses, has been advanced ^[110, 125-127].

Regulation of LPA₁₋₃ receptor function

To the best of our knowledge, the only LPA receptor known to be subjected to phosphorylation is LPA1 [46-49]. Agonist stimulation and activation of PKC induce LPA₁ receptor phosphorylation [46-50]. Conventional PKC isozymes α and β , seem to play major roles in LPA₁ phosphorylation and desensitization induced by phorbol esters [47, 50]. This family of protein kinases also participates in 17 β-estradiol-induced LPA1 desensitization and phosphorylation, in a signaling cascade that involves the estrogen receptor α and phosphoinositide 3-kinase (PI3K) activity ^[49]. Similarly, it has been observed that angiotensin II and EGF are also capable of inducing LPA₁ receptor phosphorylation and desensitization [47, 48]. Interestingly, LPA and angiotensin II induce plasma membrane HB-EGF shedding, which activates EGF receptors in autocrine/ paracrine fashion, and this contributes to LPA₁ phosphorylation and desensitization. Needless to say these findings indicate that homologous desensitization is not exclusively mediated through GRK. Similar obsevations have been made for the α_{1B} -adrenergic receptor [128-131]. Heterologous desensitization is also complex at the molecular level because there is an intense crosstalk between PKC and other signaling kinases (such as Src or the MAP kinases) and also GRKs [132-136]; therefore, it is possible that GRKs could participate in some "heterologous" desensitizations. The intense liason between the EGF receptors and LPA₁ also involves Akt/PKB; i.e., LPA induces Akt/PKB phosphorylation / activation (as reflected by threonine 308 phosphorylation) but this effect is mediated through the EGF receptor via HB-EGF membrane shedding ^[48]. This indicates that, on the one hand, some LPA-induced effects might involve EGF receptor stimulation but that, on the other hand, EGF activation leads to LPA₁ receptor desensitization.

Cell treatments with LPA or phorbol esters induce LPA₁ receptor internalization ^[51-53]. LPA-induced receptor internalization takes place via a β -arrestin, dynamin2- and Rab5-dependent pathway^[51-53] whereas the phorbol ester-induced effect requieres clathrin and the AP-2 complex, but not β -arrestin ^[53]. Using a series of truncation mutants it was observed that a serine-rich domain (amino acids 341-347, SDRSASS) was required for agonist-induced internalization, while a dileucine motif (amino acids 352-353, IL) was required for the phorbol ester-induced effect ^[53]. These data indicate that the structural requirements for LPA- and phorbol ester-induced LPA₁ receptor

Fig 5. Alignment of intracellular loops 2 (upper), 3 (middle), and carboxyl temini (lower) of LPA₁₋₃ **receptors.** Potential phosphorylation sites are indicated in colors with the kinase involved as follows: PKC, red; GRK, light blue; PKC and GRK, dark blue; PKA, yellow; Akt/PKB, green, and Tyrosine kinases, orange. For isozymes putatively involved and sites potentially targeted by several kinases, please see Tables I-III.

internalization are different ^[53]. The causal relationship among receptor phosphorylation, desensitization and internalization has not yet been firmly stablished. The small GTPase, Ral, and GRK2 regulate LPA₁ signaling ^[137]. Interestingly, the effect of GRK2 does not appear to requiere catalytic activity, because a dominant-negative mutant of this kinase also induces LPA₁ desensitization ^[137]. As previously mentioned LPA₁ contains a PDZbinding domain in its carboxyl tail and it is through this domain that it interacts with PDZ-containing GIPC (GTPase activating protein [RGS19]-interacting protein) ^[64]. This binding promotes LPA₁ vesicular trafficking into early endosomes and attenuates signaling ^[64]. PDZbinding domain-lacking LPA1 receptors are constitutively active, stimulate cell proliferation and lead to colony formation under serum-free conditions [65].

Much less is known about LPA₂ receptor regulation. This receptor subtype also harbors a PDZ-binding domain in its carboxyl tail. Expression of these receptors increases GIPC basal activity, but the agonist, LPA, was unable to intensify such activity ^[137]. Interestingly LPA₂ (but not LPA₁) associates with a PDZ domain-containing scafoldding protein, i. e. the Na⁺/H⁺ exchanger regulatory factor 2; this association appears to increase receptor signaling through phospholipase C ^[138] and channel function ^[139]. Another PDZ-containg protein, MAGI-3, also interacts with LPA₂ and, in this case, exerts a negative modulation of signaling ^[140]. In other words, LPA₂ signalling is modulated, in an opposing manner, by two PDZ-containing proteins. Other proteins also interact with the LPA₂ carboxyl tail ^[141].

Information on LPA₃ regulation is limited to the modulation of its genetic expression, during the menstrual cycle through the action of progesterone and estrogen ^[92, 142, 143].

Analysis of putative LPA₁₋₃ phosphorylation sites

Receptor sequences obtained from the UniProt database [144, 145] [LPA1 (Q92633, LPAR1_HUMAN), (Q9HBW0, LPAR2 HUMAN), and LPA₃ LPA_2 (O9UBY5, LPAR3 HUMAN)], were subjected to alignments and analysis of putative phosphorylation sites using the Group Based Prediction System (GPS algorithm 2.1 v) ^[146, 147] and the Swiss Institute of Bioinformatics, ExPASy-ClustalW^[148, 149], proteomic programs. The GPS algorithm is based on the hierarchical structure of protein kinases and the partition of the phosphorylation sites known into several groups. A phosphorylation site is predicted if it possesses significant sequence similarity to known phosphorylation sites in at least one group. The GPS program indicates the predicted phosphorylated peptide, the kinases most likely able to catalyze the phosphorylation, and a numerical score for each protein kinase ^[146]. It is noteworthy that there is redundancy, i. e., many possible phosphorylation sites are putative targets of more than one protein kinase; this is indicated in Tables I-III, in which predicted phosphorylation sites for LPA₁₋₃ receptors are presented. Sites were analyzed for the following protein kinases: PKC isoforms, PKA, GRKs, Akt/PKB, CaMK, AMP-dependent protein kinase protein (AMPK), mitogen-activated kinases (ERK/MAPK), and tyrosine kinases. The majority of the predicted phosphorylation sites of LPA₁₋₃ receptors are located in their third intracellular loops and carboxyl termini, although some sites were also predicted in the first and second intracellular loops (Tables I-III). In silico analysis evidenced marked differences in predicted phosphorylation sites among the three receptors (Tables I-III, see also Fig. 5).

Phosphorylation predictions indicate that LPA₁ could be a target of six PKC isozymes α , β , δ , ζ , η and θ), two GRK isozymes (GRK 2 and 3 [some sites were possible targets of GRK 1(rhodopsin kinase) in the receptors analyzed but this was omitted due to the GRK 1limited tissue expression ^[98]]), PKA, and Akt/PKB (Table I and Figs. 2 and 5). Interestingly, most PKC target sites are within the third intracellular loop whereas most GRKtarget sites are in the carboxyl terminus.

The abundance of putative phosphorylation sites in LPA₂ is only slightly less than that in LPA₁ and it is much higher in LPA₃ (Figs. 2-5 and Tables I-III). Potentially, LPA₂ could be phosphorylated by PKC α , β , δ , ζ , θ , and η , on sites in the second and third intracellular loops; similarly, GRK 2, 3, 4 and 5, could phosphorylate sites but these are present in the carboxyl terminus of this receptor. Some putative PKA phosphorylation sites are present in the third intracellular loop and carboxyl terminus of LPA₂ (Figs. 3 and 5, and Table II).

As already mentioned, the number of possible phosphorylation sites in LPA₃ is very high, i.e., 24 possible sites. Eight PKC isozymes (α , β , γ , δ , ε , ζ , θ and η) could potentially phosphorylate sites distributed in LPA3 second and third intracellular loops, and also in the carboxyl terminus (Table III and Figs. 4 and 5). Putative phosphorylation sites for GRK2, 3, 4 and 5 isozymes are present mainly in the carboxyl terminus and possible targets of PKA and Akt/PKB also exist in LPA₃ (Table III and Figs. 4, and 5). Putative phosphorylation sites for receptor and non-receptor tyrosine kinases were detected in different domains of the three receptors (Figs. 2-5 and Tables I-III). It is remarkable that many putative PKC sites are in the third intracellular loops whereas the majority of GRK sites are in the carboxyl termini of these receptors. Putative tyrosine phosphorylation sites also exist, for the three receptors (Tables I-III and Figs. 2-5).

Alignment of LPA₁₋₃ receptors analyzed with the Clustal-W program ^[148] showed that amino acid identity for the second intracellular loops was ≈ 23 %, for third intracellular loops $\approx 28\%$, and for the carboxyl termini, only 9% (Fig. 5).

Despite this low amino acid sequence identity, alignment showed that three potentially phosphorylatable residues are conserved in the carboxyl termini of the three receptor subtypes. These include the following: a) T321 (LPA₁), T305 (LPA₂) and T303 (LPA₃), targeted in common by PKC and individually other protein kinases; b) S341 (LPA₁), S328 (LPA₂) and S331(LPA₃), targeted by different protein kinases; and c) S362 (LPA₁), S349 (LPA₂) and S351(LPA₃), targeted in common by GRK 2 and the site in LPA₃ also by PKC. There are also some conserved sites in which the GPS programs predict phosphorylation of only two of these (indicated in the same order, non-predicted to be phosphorylation targets in brackets): a) Y231 (LPA₁), [Y214] (LPA₂) and Y212 (LPA₃); b) S244 (LPA₁), [S227] (LPA₂) and S225 (LPA₃); and c) T252 (LPA₁), [T235] (LPA₂) and T233 (LPA₃). A putative phosphorylation site was detected in which the targeted amino acid changed in one receptor: S347 (LPA1), S334 (LPA₂) and Y337 (LPA₃). The putative phosphorylations sites present in only two of these receptors include: a) S132 (LPA₂) and S130 (LPA₃); b) S255 (LPA₁) and S238 (LPA₂); and T350 (LPA₂) and T352 (LPA₃).

It was surprising to observe the presence of many putative PKA phosphorylations sites in the three LPA receptors studied; many of these were targets of different PKC isozymes.

It is clear that the *in silico* analysis presents a complex panorama, with many possible phosphorylable sites and redundant action of different kinases. It offers, as well, the

possibility of studying the role(s) of specific sites in receptor regulation by means of different conditions and stimuli. Obviously, this requires factual experimental demonstration. The use of mutants (truncated or sitedirected) and mass spectrometry appears to be required to address this. It should be borne in mind that these processes take place in four dimensions, where location (3D) and time play key roles. The redundancy observed might also suggests the possibility that a given kinase or isoform might act on the receptor's susceptible sites during an initial time-frame, and then other kinase(s) might participate. It is also important to consider that receptor phosphorylation and the resulting phosphorylation barcodes are likely very dynamic, resulting from the coordinate action of kinases and phosphatases, possibly reaching different short-lived signaling states. One can envision the study of these processes in cellulo through the use of microscopy, fluorescent probes and FRET and BRET techniques ^[150-152]. We are convinced that although the amount of information on LPA receptors is already very abundant, there are areas, such as receptor regulation, that offer niches of opportunity to many researchers and that are, in our opinion, relevant for understanding cell physiology and pathophysiology and promising for the development of better treatments of human and animal diseases.

Acknowledgements

Research in our laboratory is supported by Grants from CONACyT [177556 and 153278] and DGAPA-UNAM [200812]. AHM is a student of the Programa de Doctorado en Ciencias Bioquímicas-UNAM and the recipient of a fellowship from CONACyT. The authors thank Mrs. Margaret Brunner, MA, for style corrections.

References

- 1. Im DS. Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol Sin 2010; 31: 1213-1222.
- Jalink K, van Corven EJ, Moolenaar WH. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem 1990; 265: 12232-12239.
- Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003; 3: 582-591.
- Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 1996; 135: 1071-1083.
- Cremers B, Flesch M, Kostenis E, Maack C, Niedernberg A, Stoff A, *et al.* Modulation of myocardial contractility by lysophosphatidic acid (LPA). J Mol Cell Cardiol 2003; 35: 71-80.

- Toews ML, Ustinova EE, Schultz HD. Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J Appl Physiol 1997; 83: 1216-1222.
- Lee SJ, Leoni G, Neumann PA, Chun J, Nusrat A, Yun CC. Distinct phospholipase C-beta isozymes mediate lysophosphatidic acid receptor 1 effects on intestinal epithelial homeostasis and wound closure. Mol Cell Biol 2013; 33: 2016-2028.
- 8. David M, Machuca-Gayet I, Kikuta J, Ottewell P, Mima F, Leblanc R, *et al.* Lysophosphatidic acid receptor type 1 (LPA1) plays a functional role in osteoclast differentiation and bone resorption activity. J Biol Chem 2014; 289: 6551-6564.
- Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, Briand-Mesange F, Laurencin D, Rue J, *et al.* Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone 2011; 49: 395-403.
- Pradere JP, Gonzalez J, Klein J, Valet P, Gres S, Salant D, *et al*. Lysophosphatidic acid and renal fibrosis. Biochim Biophys Acta 2008; 1781: 582-587.
- 11. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, *et al.* The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature medicine 2008; 14: 45-54.
- Toews ML, Ediger TL, Romberger DJ, Rennard SI. Lysophosphatidic acid in airway function and disease. Biochim Biophys Acta 2002; 1582: 240-250.
- Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J Immunol 2014; 192: 851-857.
- 14. Yang J, Nie Y, Wang F, Hou J, Cong X, Hu S, *et al.* Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Biochim Biophys Acta 2013; 1831: 1386-1394.
- 15. Marshall JC, Collins JW, Nakayama J, Horak CE, Liewehr DJ, Steinberg SM, *et al.* Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 2012; 104: 1306-1319.
- 16. Yang D, Yang W, Zhang Q, Hu Y, Bao L, Damirin A. Migration of gastric cancer cells in response to lysophosphatidic acid is mediated by LPA receptor 2. Oncol Lett 2013; 5: 1048-1052.
- 17. Yun CC, Sun H, Wang D, Rusovici R, Castleberry A, Hall RA, *et al.* LPA2 receptor mediates mitogenic signals in human colon cancer cells. Am J Physiol Cell Physiol 2005; 289: C2-11.
- Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J 1995; 309 (Pt 3): 933-940.
- Liao Y, Mu G, Zhang L, Zhou W, Zhang J, Yu H. Lysophosphatidic acid stimulates activation of focal adhesion kinase and paxillin and promotes cell motility, via LPA1-3, in human pancreatic cancer. Dig Dis Sci 2013; 58: 3524-3533.
- 20. Kato K, Yoshikawa K, Tanabe E, Kitayoshi M, Fukui R, Fukushima N, *et al.* Opposite roles of LPA1 and LPA3 on cell motile and invasive activities of pancreatic cancer cells. Tumour Biol 2012; 33: 1739-1744.

- 21. Park SY, Jeong KJ, Panupinthu N, Yu S, Lee J, Han JW, *et al.* Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene 2011; 30: 1351-1359.
- Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J 2013; 27: 1830-1846.
- 23. Jalink K, Eichholtz T, Postma FR, van Corven EJ, Moolenaar WH. Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ 1993; 4: 247-255.
- Mori M, Tsushima H. Activation of Rho signaling contributes to lysophosphatidic acid-induced contraction of intact ileal smooth muscle of guinea-pig. Can J Physiol Pharmacol 2000; 78: 729-736.
- Tigyi G, Fischer DJ, Sebok A, Yang C, Dyer DL, Miledi R. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J Neurochem 1996; 66: 537-548.
- Manning TJ, Jr., Rosenfeld SS, Sontheimer H. Lysophosphatidic acid stimulates actomyosin contraction in astrocytes. J Neurosci Res 1998; 53: 343-352.
- Moolenaar WH. Mitogenic action of lysophosphatidic acid. Adv Cancer Res 1991; 57: 87-102.
- Gerrard JM, Clawson CC, White JG. Lysophosphatidic acids: III. Enhancement of neutrophil chemotaxis. Am J Pathol 1980; 100: 609-618.
- Ye X, Ishii I, Kingsbury MA, Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 2002; 1585: 108-113.
- Li Y, González MI, Meinkoth JL, Field J, Kazanietz MG, Tennekoon GI. Lysophosphatidic acid promotes survival and differentiation of rat Schwann cells. J Biol Chem 2003; 278: 9585-9591.
- Holtsberg FW, Steiner MR, Keller JN, Mark RJ, Mattson MP, Steiner SM. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. J Neurochem 1998; 70: 66-76.
- 32. Tigyi G. Special issue: Advances in Lysophospholipid Research. Biochim Biophys Acta 2013; 1831: 1-250.
- Tigyi G. Special issue: Lysophospholipids. Biochim Biophys Acta 2008; 1781: 423-600.
- Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, *et al.* International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 2002; 54: 265-269.
- Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 2010; 62: 579-587.
- Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, *et al.* International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 2013; 65: 967-986.

- Chun J, Hla T, Moolenaar WH, Spiegel S, Yung YC, Mpamhanga CP. IUPHAR Database, in, vol. 2014, IUPHAR, http://www.iuphardb.org/DATABASE/FamilyMenuForward?familyId=36, 2014.
- Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; n/a-n/a.
- Aoki J, Inoue A, Okudaira S. Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 2008; 1781: 513-518.
- Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010; 50: 157-186.
- 41. Yung YC, Stoddard NC, Chun J. LPA Receptor Signaling: Pharmacology, Physiology, and Pathophysiology. J Lipid Res 2014.
- 42. Brindley DN, Pilquil C. Lipid phosphate phosphatases and signaling. J Lipid Res 2009; 50 Suppl: S225-S230.
- 43. Sandmann G, Siess W, Essler M. Lysophosphatidic acid is the unique platelet-activating substance in human malignant ascites. Eur J Med Res 2003; 8: 397-404.
- 44. McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, *et al.* Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci U S A 2003; 100: 131-136.
- 45. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun 2007; 363: 861-866.
- Avenda-o-Vázquez SE, Cabrera-Wrooman A, Colín-Santana CC, García-Sáinz JA. Lysophosphatidic acid LPA1 receptor close-up. Signal Transduc 2007; 7: 351-363.
- Avenda-o-Vázquez SE, García-Caballero A, García-Sáinz JA. Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochem J 2005; 385: 677-684.
- Colín-Santana CC, Avenda-o-Vázquez SE, Alcántara-Hernández R, García-Sáinz JA. EGF and angiotensin II modulate lysophosphatidic acid LPA(1) receptor function and phosphorylation state. Biochim Biophys Acta 2011; 1810: 1170-1177.
- González-Arenas A, Avenda-o-Vázquez SE, Cabrera-Wrooman A, Tapia-Carrillo D, Larrea F, García-Becerra R, *et al*. Regulation of LPA receptor function by estrogens. Biochim Biophys Acta 2008; 1783: 253-262.
- Hernández-Méndez A, Alcántara-Hernández R, Acosta-Cervantes GC, Martínez-Ortiz J, Avendano-Vázquez SE, García-Sáinz JA. Conventional protein kinase C isoforms mediate phorbol ester-induced lysophosphatidic acid LPA1 receptor phosphorylation. Eur J Pharmacol 2014; 723: 124-130.
- Murph MM, Nguyen GH, Radhakrishna H, Mills GB. Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. Biochim Biophys Acta 2008; 1781: 547-557.
- 52. Murph MM, Scaccia LA, Volpicelli LA, Radhakrishna H. Agonist-induced endocytosis of lysophosphatidic acid-coupled

LPA1/EDG-2 receptors via a dynamin2- and Rab5-dependent pathway. J Cell Sci 2003; 116: 1969-1980.

- 53. Urs NM, Kowalczyk AP, Radhakrishna H. Different mechanisms regulate lysophosphatidic acid (LPA)-dependent versus phorbol ester-dependent internalization of the LPA1 receptor. J Biol Chem 2008; 283: 5249-5257.
- Mutoh T, Rivera R, Chun J. Insights into the pharmacological relevance of lysophospholipid receptors. Br J Pharmacol 2012; 165: 829-844.
- 55. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, *et al.* Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J Pharmacol Exp Ther 2011; 336: 693-700.
- East JE, Carter KM, Kennedy PC, Schulte NA, Toews ML, Lynch KR, *et al.* Development of a phosphatase-resistant, Ltyrosine derived LPA1/LPA3 dual antagonist. Med Chem Comm 2011; 2: 325-330.
- Lynch KR, Macdonald TL. Structure-activity relationships of lysophosphatidic acid analogs. Biochim Biophys Acta 2002; 1582: 289-294.
- 58. Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 2010; 161: 241-270.
- 59. Beck HP, Kohn T, Rubenstein S, Hedberg C, Schwandner R, Hasslinger K, *et al.* Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents. Bioorg Med Chem Lett 2008; 18: 1037-1041.
- Choi JW, Lee CW, Chun J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta 2008; 1781: 531-539.
- Mausbacher N, Schreiber TB, Machatti M, Schaab C, Daub H. Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling. Proteomics 2012; 12: 3485-3498.
- An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem 1998; 273: 7906-7910.
- 63. An S, Dickens MA, Bleu T, Hallmark OG, Goetzl EJ. Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem Biophys Res Commun 1997; 231: 619-622.
- 64. Varsano T, Taupin V, Guo L, Baterina OY, Jr., Farquhar MG. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA. PLoS One 2012; 7: e49227.
- 65. Shano S, Hatanaka K, Ninose S, Moriyama R, Tsujiuchi T, Fukushima N. A lysophosphatidic acid receptor lacking the PDZ-binding domain is constitutively active and stimulates cell proliferation. Biochim Biophys Acta 2008; 1783: 748-759.
- 66. Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, *et al.* Lysophosphatidic acid (LPA) and its receptor, LPA1, influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 2013; 61: 2009-2022.
- Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int 2008; 52: 216-220.

- Pilpel Y, Segal M. The role of LPA1 in formation of synapses among cultured hippocampal neurons. J Neurochem 2006; 97: 1379-1392.
- 69. Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH. GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell 2006; 17: 1834-1844.
- Musazzi L, Di Daniel E, Maycox P, Racagni G, Popoli M. Abnormalities in alpha/beta-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. Int J Neuropsychopharmacol 2011; 14: 941-953.
- Matas-Rico E, Garcia-Diaz B, Llebrez-Zayas P, Lopez-Barroso D, Santin L, Pedraza C, *et al.* Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2008; 39: 342-355.
- Estivill-Torrus G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, *et al.* Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 2008; 18: 938-950.
- Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A 2000; 97: 13384-13389.
- 74. Castilla-Ortega E, Rosell-Valle C, Blanco E, Pedraza C, Chun J, Rodriguez de Fonseca F, *et al.* Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies. Neurosci Res 2013; 77: 170-179.
- Castilla-Ortega E, Sanchez-Lopez J, Hoyo-Becerra C, Matas-Rico E, Zambrana-Infantes E, Chun J, *et al.* Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol Learn Mem 2010; 94: 73-82.
- Roberts C, Winter P, Shilliam CS, Hughes ZA, Langmead C, Maycox PR, *et al.* Neurochemical changes in LPA1 receptor deficient mice--a putative model of schizophrenia. Neurochem Res 2005; 30: 371-377.
- 77. Halder SK, Yano R, Chun J, Ueda H. Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 2013; 235: 10-15.
- Herr KJ, Herr DR, Lee CW, Noguchi K, Chun J. Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA1) signaling. Proc Natl Acad Sci U S A 2011; 108: 15444-15449.
- 79. Yang C, Lafleur J, Mwaikambo BR, Zhu T, Gagnon C, Chemtob S, *et al.* The role of lysophosphatidic acid receptor (LPA1) in the oxygen-induced retinal ganglion cell degeneration. Invest Ophthalmol Vis Sci 2009; 50: 1290-1298.
- Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 2011; 3: 99ra87.
- Lee SJ, Chan TH, Chen TC, Liao BK, Hwang PP, Lee H. LPA1 is essential for lymphatic vessel development in zebrafish. FASEB J 2008; 22: 3706-3715.
- 82. Jeon ES, Lee IH, Heo SC, Shin SH, Choi YJ, Park JH, et al. Mesenchymal stem cells stimulate angiogenesis in a murine xenograft model of A549 human adenocarcinoma through an

LPA1 receptor-dependent mechanism. Biochim Biophys Acta 2010; 1801: 1205-1213.

- 83. Contos JJ, Chun J. Genomic characterization of the lysophosphatidic acid receptor gene, lp(A2)/Edg4, and identification of a frameshift mutation in a previously characterized cDNA. Genomics 2000; 64: 155-169.
- 84. Jeong KJ, Park SY, Seo JH, Lee KB, Choi WS, Han JW, et al. Lysophosphatidic acid receptor 2 and Gi/Src pathway mediate cell motility through cyclooxygenase 2 expression in CAOV-3 ovarian cancer cells. Exp Mol Med 2008; 40: 607-616.
- Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, *et al.* Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008; 100: 1630-1642.
- Hope JM, Wang FQ, Whyte JS, Ariztia EV, Abdalla W, Long K, *et al.* LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol 2009; 112: 215-223.
- Lin S, Wang D, Iyer S, Ghaleb AM, Shim H, Yang VW, *et al.* The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 2009; 136: 1711-1720.
- Im DS, Heise CE, Harding MA, George SR, O'Dowd BF, Theodorescu D, *et al.* Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol 2000; 57: 753-759.
- Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, *et al.* Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 1999; 274: 27776-27785.
- Ye X, Herr DR, Diao H, Rivera R, Chun J. Unique uterine localization and regulation may differentiate LPA3 from other lysophospholipid receptors for its role in embryo implantation. Fertil Steril 2011; 95: 2107-2113, 2113 e2101-2104.
- 91. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, *et al*. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005; 435: 104-108.
- 92. Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R, *et al.* Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 2007; 77: 954-959.
- Furuta D, Yamane M, Tsujiuchi T, Moriyama R, Fukushima N. Lysophosphatidic acid induces neurite branch formation through LPA3. Mol Cell Neurosci 2012; 50: 21-34.
- Popnikolov NK, Dalwadi BH, Thomas JD, Johannes GJ, Imagawa WT. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol 2012; 33: 2237-2243.
- 95. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001; 53: 1-24.
- Lefkowitz RJ. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 1998; 273: 18677-18680.
- Rapacciuolo A, Suvarna S, Barki-Harrington L, Luttrell LM, Cong M, Lefkowitz RJ, *et al.* Protein kinase A and G proteincoupled receptor kinase phosphorylation mediates beta-1

adrenergic receptor endocytosis through different pathways. J Biol Chem 2003; 278: 35403-35411.

- Penn RB, Pronin AN, Benovic JL. Regulation of G proteincoupled receptor kinases. Trends Cardiovasc Med 2000; 10: 81-89.
- 99. AbdAlla S, Lother H, el Massiery A, Quitterer U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 2001; 7: 1003-1009.
- 100. Tran TM, Friedman J, Qunaibi E, Baameur F, Moore RH, Clark RB. Characterization of agonist stimulation of cAMPdependent protein kinase and G protein-coupled receptor kinase phosphorylation of the beta2-adrenergic receptor using phosphoserine-specific antibodies. Mol Pharmacol 2004; 65: 196-206.
- 101. Diviani D, Lattion AL, Cotecchia S. Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase- and protein kinase C-mediated desensitization of the alpha1B-adrenergic receptor. J Biol Chem 1997; 272: 28712-28719.
- 102. Lattion AL, Diviani D, Cotecchia S. Truncation of the receptor carboxyl terminus impairs agonist-dependent phosphorylation and desensitization of the alpha 1B-adrenergic receptor. J Biol Chem 1994; 269: 22887-22893.
- 103. García-Sáinz JA, Vázquez-Prado J, Medina LC. Alpha 1adrenoceptors: function and phosphorylation. Eur J Pharmacol 2000; 389: 1-12.
- 104. Vázquez-Prado J, Casas-González P, García-Sáinz JA. G protein-coupled receptor cross-talk: pivotal roles of protein phosphorylation and protein-protein interactions. Cell Signal 2003; 15: 549-557.
- 105. García-Sáinz JA, Vázquez-Cuevas FG, Romero-Ávila MT. Phosphorylation and desensitization of alphald-adrenergic receptors. Biochem J 2001; 353: 603-610.
- 106. Vázquez-Prado J, García-Sáinz JA. Effect of phorbol myristate acetate on alpha 1-adrenergic action in cells expressing recombinant alpha 1-adrenoceptor subtypes. Mol Pharmacol 1996; 50: 17-22.
- 107. Vázquez-Prado J, Medina LC, García-Sáinz JA. Activation of endothelin ETA receptors induces phosphorylation of alpha1badrenoreceptors in Rat-1 fibroblasts. J Biol Chem 1997; 272: 27330-27337.
- 108. Vázquez-Prado J, Medina LC, Romero-Ávila MT, González-Espinosa C, García-Sáinz JA. Norepinephrine- and phorbol ester-induced phosphorylation of alpha(1a)-adrenergic receptors. Functional aspects. J Biol Chem 2000; 275: 6553-6559.
- 109. Doronin S, Shumay E, Wang HY, Malbon CC. Akt mediates sequestration of the beta(2)-adrenergic receptor in response to insulin. J Biol Chem 2002; 277: 15124-15131.
- 110. Torrecilla I, Spragg EJ, Poulin B, McWilliams PJ, Mistry SC, Blaukat A, *et al.* Phosphorylation and regulation of a G proteincoupled receptor by protein kinase CK2. J Cell Biol 2007; 177: 127-137.
- 111. Schmidt H, Schulz S, Klutzny M, Koch T, Handel M, Hollt V. Involvement of mitogen-activated protein kinase in agonistinduced phosphorylation of the mu-opioid receptor in HEK 293 cells. J Neurochem 2000; 74: 414-422.

- 112. Baltensperger K, Karoor V, Paul H, Ruoho A, Czech MP, Malbon CC. The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 1996; 271: 1061-1064.
- 113. Doronin S, Wang Hy HY, Malbon CC. Insulin stimulates phosphorylation of the beta 2-adrenergic receptor by the insulin receptor, creating a potent feedback inhibitor of its tyrosine kinase. J Biol Chem 2002; 277: 10698-10703.
- 114. Gavi S, Shumay E, Wang HY, Malbon CC. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab 2006; 17: 48-54.
- 115. Fessart D, Simaan M, Laporte SA. c-Src regulates clathrin adapter protein 2 interaction with beta-arrestin and the angiotensin II type 1 receptor during clathrin- mediated internalization. Mol Endocrinol 2005; 19: 491-503.
- 116. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, *et al.* Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999; 283: 655-661.
- 117. Ferguson SS. Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol Sci 2007; 28: 173-179.
- 118. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membranespanning receptors regulates their G protein-coupling specificity. Mol Pharmacol 2002; 62: 971-974.
- 119. Luttrell LM. Activation and targeting of mitogen-activated protein kinases by G-protein-coupled receptors. Can J Physiol Pharmacol 2002; 80: 375-382.
- 120. Lefkowitz RJ. A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl 2013; 52: 6366-6378.
- 121. Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010; 9: 373-386.
- 122. Shenoy SK, Lefkowitz RJ. Seven-transmembrane receptor signaling through beta-arrestin. Science's STKE : signal transduction knowledge environment 2005; 2005: cm10.
- 123. Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, *et al.* Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 2001; 8: 693-704.
- 124. Kobilka B. The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Angew Chem Int Ed Engl 2013; 52: 6380-6388.
- 125. Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, *et al.* Differential G-protein-coupled Receptor Phosphorylation Provides Evidence for a Signaling Bar Code. J Biol Chem 2011; 286: 11506-11518.
- 126. Tobin AB. G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 2008; 153 Suppl 1: S167-S176.
- 127. Tobin AB, Butcher AJ, Kong KC. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 2008; 29: 413-420.

- 128. Casas-González P, García-Sáinz JA. Role of epidermal growth factor receptor transactivation in alpha1B-adrenoceptor phosphorylation. Eur J Pharmacol 2006; 542: 31-36.
- 129. Casas-González P, Ruiz-Martínez A, García-Sáinz JA. Lysophosphatidic acid induces alpha-1b-adrenergic receptor phosphorylation through G-beta-gamma, phosphoinositide 3kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochim Biophys Acta 2003; 1633: 75-83.
- 130. Castillo-Badillo JA, Molina-Munoz T, Romero-Avila MT, Vazquez-Macias A, Rivera R, Chun J, *et al.* Sphingosine 1phosphate-mediated alpha1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochim Biophys Acta 2012; 1823: 245-254.
- 131. García-Sáinz JA, Romero-Ávila MT, Alcántara-Hernández R. Mechanisms involved in alpha(1B)-adrenoceptor desensitization. IUBMB Life 2011; 63: 811-815.
- 132. Krasel C, Dammeier S, Winstel R, Brockmann J, Mischak H, Lohse MJ. Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J Biol Chem 2001; 276: 1911-1915.
- 133. Pronin AN, Benovic JL. Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J Biol Chem 1997; 272: 3806-3812.
- 134. Elorza A, Sarnago S, Mayor F, Jr. Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogenactivated protein kinases. Mol Pharmacol 2000; 57: 778-783.
- 135. Penela P, Ribas C, Mayor F, Jr. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 2003; 15: 973-981.
- 136. Sarnago S, Elorza A, Mayor F, Jr. Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem 1999; 274: 34411-34416.
- 137. Aziziyeh AI, Li TT, Pape C, Pampillo M, Chidiac P, Possmayer F, *et al.* Dual regulation of lysophosphatidic acid (LPA1) receptor signalling by Ral and GRK. Cell Signal 2009; 21: 1207-1217.
- 138. Oh YS, Jo NW, Choi JW, Kim HS, Seo SW, Kang KO, *et al.* NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation. Mol Cell Biol 2004; 24: 5069-5079.
- 139. Holcomb J, Jiang Y, Lu G, Trescott L, Brunzelle J, Sirinupong N, et al. Structural insights into PDZ-mediated interaction of NHERF2 and LPA2, a cellular event implicated in CFTR channel regulation. Biochem Biophys Res Commun 2014; 446: 399-403.
- 140. Lee SJ, Ritter SL, Zhang H, Shim H, Hall RA, Yun CC. MAGI-3 competes with NHERF-2 to negatively regulate LPA2 receptor signaling in colon cancer cells. Gastroenterology 2011; 140: 924-934.
- 141. Lin FT, Lai YJ. Regulation of the LPA2 receptor signaling through the carboxyl-terminal tail-mediated protein-protein interactions. Biochim Biophys Acta 2008; 1781: 558-562.
- 142. Guo H, Gong F, Luo KL, Lu GX. Cyclic regulation of LPA3 in human endometrium. Arch Gynecol Obstet 2013; 287: 131-138.

- 143. Hama K, Aoki J, Bandoh K, Inoue A, Endo T, Amano T, *et al.* Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sci 2006; 79: 1736-1740.
- 144. UniProt C. The UniProt Consortium, in, http://www.uniprot.org/, 2014.
- 145. UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 2014; 42: D191-198.
- 146. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008; 7: 1598-1608.
- 147. GPS. Group-based Prediction System, in, http://gps.biocuckoo.org/index.php, 2014.
- 148. SIB. ExPASy, in, Swiss Institute of Bioinformatics, http://www.expasy.org/; http://embnet.vitalit.ch/software/ClustalW.html, 2014.

- 149. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, *et al.* ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 2012; 40: W597-603.
- 150. Castillo-Badillo JA, Cabrera-Wrooman A, García-Sáinz JA. Visualizing G Protein-coupled Receptors in Action through Confocal Microscopy Techniques. Arch Med Res 2014. http://dx.doi.org/10.1016/j.arcmed.2014.03.009
- 151. Boute N, Jockers R, Issad T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 2002; 23: 351-354.
- 152. Salahpour A, Espinoza S, Masri B, Lam V, Barak LS, Gainetdinov RR. BRET biosensors to study GPCR biology, pharmacology, and signal transduction. Front Endocrinol (Lausanne) 2012; 3: 105.