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Abstract 

Optimal placement of wireless structural health monitoring (SHM) sensors has to consider modal identification accuracy 

and power efficiency. In this study, two-tier wireless sensor network (WSN)-based SHM systems with clusters of sensors 

are investigated to overcome this difficulty. Each cluster contains a number of sensor nodes and a cluster head (CH). The 

lower tier is composed of sensors communicating with their associated CHs, and the upper tier is composed of the network 

of CHs. The first step is the optimal placement of sensors in the lower tier via the effective independence method by 

considering the modal identification accuracy. The second step is the optimal placement of CHs in the upper tier by 

considering power efficiency. The sensors in the lower tier are partitioned into clusters before determining the optimal 

locations of CHs in the upper tier. Two approaches, a constrained K-means clustering approach and a genetic algorithm 

(GA)-based clustering approach, are proposed in this study to cluster sensors in the lower tier by considering two 

constraints: (1) the maximum data transmission distance of each sensor; (2) the maximum number of sensors in each 

cluster. Given that each CH can only manage a limited number of sensors, these constraints should be considered in practice 

to avoid overload of CHs. The CHs in the upper tier are located at the centers of the clusters determined after clustering 

sensors in the lower tier. The two proposed approaches aim to construct a balanced size of clusters by minimizing the 

number of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH under the 

two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the network lifetime 

is extended. A numerical example is studied to demonstrate the feasibility of using the two proposed clustering approaches 

for sensor clustering in WSN-based SHM systems. In this example, the performances of the two proposed clustering 

approaches and the K-means clustering method are also compared. The two proposed clustering approaches outperform 

the K-means clustering method in terms of constructing balanced size of clusters for a small number of clusters. 

Keywords: Structural Health Monitoring; Wireless Sensing Network; K-Means Clustering Method; Effective Independence Method. 

 

1. Introduction 

Considering that measurements of large structures are usually incomplete, detecting structural damage in large 

complex structures is a challenging task. Therefore, structural health monitoring (SHM) using a limited number of 

sensors is a critical problem. Optimal sensor placement (OSP) of wired SHM systems detecting changes in modal 

parameters uses information measured from sensors with satisfactory sensitivity [1]. One of the widely used OSP 

methods is the effective independence (EI) method [2]. The EI method uses the Fisher information associated with 

candidate sensor locations to solve the OSP problem. 
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Wireless SHM systems have the advantages of low manufacturing costs, low-power requirements, small size, and 

simplicity of deployment (lack of cables) compared with traditional wired SHM systems [3-5]. Hence, increasing interest 

has been paid to applying wireless sensor networks (WSNs) to SHM in the last decade. However, power is at a premium 

in a WSN because the remote sensors are powered by batteries [6]. Thus, power efficiency is another important issue 

for the OSP of wireless SHM systems, in addition to information effectiveness [7]. There are several techniques to solve 

this problem, such as data reduction, sleep/wakeup approaches, and power-efficient routing [8, 9]. This study focuses 

on the investigation of cluster-based, power-efficient routing. 

Hussain et al. [10] indicated that cluster-based approaches are suitable for monitoring applications. Several clustering 

techniques for WSNs are available in the literature, including the hierarchical approach, the K-means algorithm, and the 

genetic algorithm (GA). Heinzelman et al. [11] proposed the low-energy adaptive clustering hierarchy (LEACH) 

protocol. To uniformly scatter the energy load on each sensor, the cluster heads (CHs) in LEACH are rotated randomly. 

Each sensor transmits data to its CH, and then the CH routes the data to the base station (BS). Inspired by the LEACH 

and Bluetooth protocols, Kottapalli et al. [6] proposed a two-tier, lower and upper tiers, wireless network architecture 

for SHM. The lower tier is composed of clusters of sensors. The upper tier is composed of CHs. The lower and upper 

tiers operate on battery power and regular wall power supply with a battery backup, respectively. Similar to LEACH, 

each sensor transmits its data to the associated CH, and then the result is transmitted to the BS. 

K-means clustering is one of the popular unsupervised machine learning algorithms. It separates a dataset into K 

clusters and searches for the best representative point in each cluster in a certain mathematical sense. In the study of 

Sasikumar & Khara [12], centralized and distributed K-means clustering algorithms were employed as network 

simulators. Results indicate that distributed clustering is more efficient than centralized clustering. To mend the choice 

procedure for the initial centroid in the K-means method, Ray & De [13] proposed the energy efficient clustering 

protocol based on K-means (EECPK-means) method using the midpoint algorithm for WSNs. Periyasamy et al. [14] 

developed a modified K-means clustering algorithm. Each cluster includes three CHs (simultaneously chosen). These 

CHs are rotated as the active CH by using a load-sharing mechanism to conserve the residual energy of sensors and 

extend the network lifetime. 

A GA is an optimization method guided by the principles of evolution [15, 16]. Unlike traditional optimization 

methods, a GA searches for a global optimal solution without calculating the gradient of the objective function [17]. 

Some research has applied GAs to sensor clustering of WSNs. For instance, Jin et al. [18] decided the number and 

location of CHs by using a GA that minimizes the communication distance in a WSN. Each sensor connects to its nearest 

CH after CHs are selected. Ferentinos & Tsiligiridis [19] presented a multiobjective GA-based optimization 

methodology for WSN design and energy management, in which each sensor node also connects to its nearest CH. 

Peiravi et al. [20] used a two-nested GA for sensor clustering of WSNs to optimize the network lifetime. Nayak & 

Vathasavai [21] developed a clustering algorithm based on GA to optimize the WSN lifetime by considering distance 

and energy as parameters of the fitness function. Pal et al. [22] proposed a GA-based clustering method, namely energy 

efficient weighted clustering (EEWC) method. The fitness function is based on cluster separation, cluster compactness, 

and number of CHs. Simulation result indicates that EEWC is more effective in improving the network performance 

than other methods. Bhola et al. [23] proposed an optimized LEACH (O-LEACH) protocol based on the GA. The O-

LEACH protocol balances the total number of CHs via fitness function based on residual and threshold energy to select 

CHs. The O-LEACH outperforms the LEACH in terms of improving energy consumption. Khoshraftar & Heidari [24] 

used the GA to improve the clustering process of wireless sensor nodes and find an optimum route. The fitness function 

is a function of energy, the total number of nodes and CHs, and sum of distance of all sensor nodes to the associated CH 

and BS. The network lifetime and reliability are improved by reducing energy consumption, using fewer number of 

CHs, and decreasing transmission distance. 

The above studies developed different clustering approaches to reduce energy consumption and prolong the network 

lifetime. However, none of these studies analyzed the performance of clustering approaches in terms of constructing a 

balanced size of clusters which is a benefit of extending the network lifetime. To solve this problem, Hassan et al. [25] 

proposed three indices, standard deviation of mean square error, variation for clusters size, and clusters size range, to 

evaluate performance of clustering approaches for constructing a balanced size of clusters. In their study, the 

performances of K-means and fuzzy C-means algorithms were investigated. It is noteworthy that K-means and fuzzy C-

means algorithms without using any constraint, the maximum data transmission distance of each sensor for example. 

Hence, practical applications of the two algorithms are not easy. 

This study investigates the OSP of wireless SHM systems by using the two-tire network architecture proposed by 

Kottapalli et al. [6]. The first step is the optimal placement of sensors in the lower tier via the effective independence 

(EI) method by considering modal identification accuracy. The second step is the optimal placement of CHs in the upper 

tier by considering power efficiency. The sensors in the lower tier are partitioned into clusters before determining the 

optimal locations of CHs in the upper tier. Two approaches, a constrained K-means clustering approach and a genetic 

algorithm (GA)-based clustering approach, are proposed in this study to cluster sensors in the lower tier by considering 
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two constraints: (1) the maximum data transmission distance of each sensor; (2) the maximum number of sensors in 

each cluster. Given that each CH can only manage a limited number of sensors, these constraints should be considered 

in practice to avoid overload of CHs. The CHs in the upper tier are located at the centers of the clusters determined after 

clustering the sensors in the lower tier. The two proposed approaches aim to construct a balanced size of clusters by 

minimize the number of clusters (or CHs) and the total sum of the squared distance between each sensor and its 

associated CH under the two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, 

and the network lifetime is extended. To demonstrate the feasibility of using the two proposed clustering approaches for 

sensor clustering of WSN-based SHM systems, a numerical example is studied. The performances of the two proposed 

clustering approaches and K-means clustering method for constructing a balanced size of clusters are compared in this 

example by using the three indices proposed by Hassan et al. [25]. 

2. WSN Architecture 

In this study, a two-tier WSN architecture proposed by Kottapalli et al. [6] is adopted. The sensors of a WSN are 

divided into several clusters. There is a CH in each cluster. The lower tier is composed of sensors communicating with 

their associated CHs, and the upper tier is composed of the network of CHs. Sensors transmit their data to their individual 

CHs, and then the CHs route the data to the BS. This study assumes that the CHs themselves do not measure data. The 

optimal placement of sensors (including the sensors in the lower tier and the CHs in the upper tier) considers modal 

identification accuracy and power efficiency. The steps are shown in Figure 1. The first step is the optimal placement 

of sensors in the lower tier by considering modal identification accuracy. In this study, the optimal locations of sensors 

in the lower tier are determined through EI method to estimate the structural modal parameters accurately by using the 

minimum number of sensors. The second step is the optimal placement of CHs in the upper tier by considering power 

efficiency. The sensors in the lower tier are clustered in advance to determine the optimal locations of CHs in the upper 

tier. Two approaches, a constrained K-means clustering approach and a GA-based clustering approach, are proposed in 

this study to cluster sensors in the lower tier. The CHs in the upper tier are located at the centers of the clusters determined 

after clustering the sensors in the lower tier. These steps are detailed in later sections. 

 

Figure 1. Schematic diagram of the OSP for wireless SHM systems 

3. OSP Using the EI Method 

The OSP problem for wired SHM systems aims to estimate structural modal parameters accurately by using the 

minimum number of sensors. In this study, the EI method [2], a widely used OSP technique, is adopted to locate the 

sensors in the lower tier optimally. The EI method is introduced in the following. 

3.1. EI Method 

Assuming there are n candidate sensor locations and m target modes, the structural response, y, is estimated as 

follows: 
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y = Φ𝑞 + 𝑤  (1) 

where Φ ∈ 𝑅𝑛×𝑚 is the target mode shape matrix, q is the modal coordinate, and w is the zero mean white Gaussian 

noise vector. 

The covariance of the error between q and its unbiased estimator �̂�, J (defined in Equation 2), is minimized to obtain 

the best sensor location. 

J=E[(q-�̂�)(q-�̂�)𝑇] = (
1

𝜎2 ΦTΦ)−1 = F−1  (2) 

where 𝜎2 is the variance of w, the unbiased estimator �̂� = (ΦTΦ)−1ΦT, and F is the Fisher information matrix [26]. 

Considering that J is equal to the inverse of F, maximizing F will minimize J and achieve the best estimate of q. 

The EI method employs the EI distribution vector ED (defined in Equation 3) to assess the contributions to the 

independence of the target modes by the candidate sensor locations. 

ED=[Φ ][Φ ]−1  (3) 

where  and  are the eigenvalue and eigenvector of the Fisher information matrix F, respectively,  is an m1 vector 

and each element is equal to one, and the symbol  is the Hadamard product. 

Each element of ED denotes the contribution to the independence of the target modes by the associated sensor 

location. If the required number of sensors is not reached, the sensor location corresponding to the smallest ED element 

is deleted and this process is repeated. 

4. Constrained K-Means Clustering Approach 

The K-means clustering method is a well-known data-clustering method [27, 28]. Assuming 𝑋 = {𝑥1 𝑥2 … 𝑥𝑛} 

is a set of n points to be separated into K clusters, the K-means clustering method finds the cluster centers by minimizing 

the sum of the squared distance between each point and the associated cluster center 𝐽(𝐶). 

𝐽(𝐶) = ∑ 𝐽(𝑐𝑘)𝐾
𝑘=1 = ∑ ∑ ‖𝑥𝑖 − 𝑢𝑘‖2

𝑥𝑖∈𝑐𝑘
𝐾
𝑘=1   (4) 

where 𝑢𝑘 is the mean of cluster 𝑐𝑘, and 𝐽(𝑐𝑘) is the sum of the squared distance between each point of cluster 𝑐𝑘 and 

the cluster center 𝑢𝑘. K-means starts with K initial cluster centers at random positions. Each point belongs to the cluster 

that has the closest center to it. The K cluster centers need to be recalculated after all points are assigned to their clusters. 

This process is repeated until all cluster centers no longer move. 

In this study, two constraints are considered for the power efficiency problem of WSNs. The first one is the maximum 

data transmission distance of each sensor (the maximum distance between each sensor and its associated CH). The 

second one is the maximum number of sensors in each cluster. Given that each CH only manages a limited number of 

sensors, these constraints should be considered in practice to avoid overload of CHs. Figure 2 presents the flowchart of 

the constrained K–means clustering approach. Two decisions are made after using the K-means clustering method: the 

first one is a decision on the limitation of the maximum data transmission distance of each sensor, and the second one 

is a decision on the limitation of the maximum number of sensors in each cluster. If the two constraints are conformed 

to, then the clustering process is done; else, one cluster is added, and re-clustering is performed. The process of the 

proposed constrained K-means clustering approach is detailed below (Figure 2): 

Step 1: The cluster number (K), the maximum number of sensors in each cluster (Nmax), and the maximum data 

transmission distance of each sensor (dmax) are set. 

Step 2: The sensors are separated into K clusters by taking K cluster centers initially at random positions. 

Step 3: The distances between each sensor and all cluster centers are calculated. Then, each sensor is assigned to the 

cluster with the closest center to it to form K initial clusters. 

Step 4: The positions of cluster centers are recalculated and checked if any cluster center is changed. 

Step 5: If any cluster center is changed, then Steps 3 to 5 are repeated; else, Step 6 is performed. 

Step 6: If there is any data transmission distance of sensors larger than dmax, then one cluster is added (K=K+1), and 

Steps 2 to 6 are repeated; else, Step 7 is performed. 

Step 7: If the number of sensors in any cluster is larger than Nmax, then one cluster is added (K=K+1), and Steps 2 to 7 

are repeated; else, the clustering process is done. 
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Figure 2. Flowchart of the constrained K-means clustering approach 

5. GA-based Clustering Approach 

A GA is an optimization method guided by the principles of evolution [15, 16]. Unlike traditional optimization 

methods, a GA searches for a global optimal solution without calculating the gradient of the objective function. 

5.1. Steps of the GA-based Clustering Approach 

Herein, a clustering approach using GA for sensor clustering of WSNs is proposed, and Figure 3 displays the 

flowchart. The process of this approach is detailed in the following: 

Step 1: The maximum number of sensors in each cluster (Nmax), the maximum data transmission distance of each sensor 

(dmax), the maximum number of generations, the mutation rate, and the population size are set. The cluster 

number (K) is equal to N/Nmax if the total number of sensors (N) is divisible by Nmax; otherwise, K is equal to 

N/Nmax +1. Assuming that N has to be divisible by Nmax in the GA-based clustering approach, some pseudo-

sensors are added to N if N is not divisible by Nmax. The pseudo-sensors are removed after the clustering process 

is done. 

Step 2: Individuals (chromosomes) of the first generation are randomly generated. 

Step 3: The fitness value of each chromosome is assessed. 
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Step 4: Selection: parents for crossover are selected. 

Step 5: Crossover: attributes of the parents are mixed to generate better offspring. 

Step 6: Mutation: the genetic information is disturbed randomly to have the possibility of leading to a better 

chromosome. 

Step 7: Elite: the elite (the better chromosomes in the current generation and offspring) automatically survives to the 

next generation. 

Step 8: If there is any data transmission distance of sensors larger than dmax, then Steps 4 to 8 are repeated; else, Step 9 

is performed. 

Step 9: Steps 3 to 9 are repeated until the maximum number of generations is reached. 

 

Figure 3. Flowchart of the GA-based clustering approach 

5.2. Fundamental Parts of the GA-based Clustering Approach 

The fundamental parts of this method are explained in the following. 

5.2.1. Population Initialization 

In a simple GA [15, 16], a chromosome (or string) is composed of substrings coded by k-bit binary integers, and 

each substring represents the value of a parameter. However, this is very difficult for sensor clustering of WSNs. Herein, 

an integer-coded string is designed. All sensors are regarded as a sample string, and the integers in the genes of a string 

represent the numbering of sensors; that is, the integers in the genes of a string are not duplicated. Figure 4 shows an 

example of a string representation scheme in the GA-based clustering approach with 10 sensors separated into 5 clusters 

(each cluster has 2 sensors). The population of the first generation is produced randomly and evolved in an iterative 

way. 
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Figure 4. Example of a string representation scheme in the GA-based clustering approach 

5.2.2. Fitness Value 

The objective function of the proposed GA-based clustering approach is 𝐽(𝐶), as defined in Equation 4. The energy 

dissipation of a sensor to transmit a message, e, can be estimated as follows [11, 29, 30]: 

𝑒 = 𝑘𝑑𝑐  (5) 

where d is the distance between a receiver and a sensor, and k and c are constants (usually 2 < c < 4). For simplicity, 

k=1 and c=2 are considered in this study. Thus the objective function of a string represents its qualification based on 

energy consumption minimization. Considering that the optimization of the GA maximizes the fitness function and 

minimizes the objective function, the fitness function of the GA can be defined as a constant minus the objective 

function. 

5.2.3. Selection 

Selection is an operator to select parents from the strings in the current generation for crossover based on fitness 

during each successive generation. There are several selection methods commonly used in GAs, and the roulette-wheel 

strategy is chosen in this study. The roulette-wheel strategy randomly selects a string from the current generation in 

accordance with the following probability: 

𝑃(𝑠𝑖) =
𝐹(𝑠𝑖)

∑ 𝐹(𝑠𝑗)𝑁𝑃
𝑗=1

  (6) 

where 𝐹(𝑠𝑖) is the fitness of the string 𝑠𝑖, and NP is the size of the population (NP is an even integer in this study). 

5.2.4. Crossover 

Crossover is an operator to mix attributes of the parents to generate better offspring. There are several crossover 

methods commonly used in GAs, such as one-point crossover, two point crossover, and uniform crossover. A portion 

of genes of the parents is exchanged with each other to create better offspring and to continue the inheritance of superior 

parents. However, the above crossover operator will generate some offspring with duplicated genes, and this problem is 

difficult to solve. Accordingly, this study utilizes a crossover method, as shown in Figure 5. First, the first gene of one 

of the parents is exchanged for that of the other. Second, the duplicated gene is changed to the original first gene of the 

parent. This study assumes that the parents have produced a total of NP offspring by mating; that is, the crossover rate 

is assumed to be one. 

 

Figure 5. Example of the crossover scheme in the GA-based clustering approach 
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5.2.5. Mutation 

Mutation is an operator to disturb genetic information randomly with a fixed probability 𝑝𝑚  to lead to a better 

individual. For binary integer-coded strings, a gene is mutated by inverting its value (one becomes zero and zero 

becomes one). In this study, we use the following mutation for integer representation. A string is divided into two parts 

with an equal number of genes. The mutation probability, pm, represents the probability to exchange the genes in each 

position of the two parts. The mutation scheme in the GA-based clustering approach is shown in Figure 6. 

 

Figure 6. Example of the mutation scheme in the GA-based clustering approach 

5.2.6. Elite 

After the mutations take place, the elite (the better individuals in the current generation and offspring) automatically 

survives to the next generation. A better individual is defined as the individual with a smaller sum of the first 80% 

shortest cluster-based distances in this study. The cluster-based distance is 𝐽(𝑐𝑘) in Equation 4. The reason for using the 

sum of the first 80% shortest cluster-based distances instead of the sum of all cluster-based distances is that although 

the individual with a smaller sum of the first 80% shortest cluster-based distances may not be better, some genes of an 

individual associated with certain cluster-based distances may be the best. Therefore, using an elite based on a smaller 

sum of the first 80% shortest cluster-based distances may lead to faster convergence. 

5.2.7. Locations of CHs 

After clustering of sensors, the mean of cluster 𝑐𝑘, 𝑢𝑘, is computed. The locations of sensors and CHs are restricted 

to nodes with horizontal and vertical integer coordinates in this study. The CH of cluster 𝑐𝑘 is located at 𝑢𝑘 if 𝑢𝑘 is a 

node with horizontal and vertical integer coordinates, and there is no sensor located at 𝑢𝑘; otherwise, the node with 

horizontal and vertical integer coordinates closest to 𝑢𝑘 is chosen as the location of the CH for cluster 𝑐𝑘. 

6. Numerical Example 

To confirm the feasibility of the proposed constrained K-means and GA-based clustering approaches, a numerical 

example is studied. SAP2000 is adopted for structural analysis in this example. 

6.1. Description of the Structural Model 

A simply supported deck is selected to illustrate the feasibility of the proposed constrained K-means and GA-based 

clustering approaches. The deck has dimensions of 15 m in length, 3.5 m in width, and 0.25m in thickness. The elastic 

modulus E=24.86 GPa, and the shear modulus G=10.35 GPa. Figure 7 shows the finite element 3D model and joint 

numbering of the deck. Figures 8 and 9 show the first five 2D and 3D mode shapes of the deck, respectively. 

 
(a) 
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(b) 

Figure 7. The deck model (a) finite element 3D model (b) joint numbering 

 

(a) 

  

(b) 

 

(c) 

  

(d) 
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(e) 

Figure 8. The first five 2D mode shapes of the deck (a) the 1st mode shape (b) the 2nd mode shape (c) the 3rd mode shape (d) 

the 4th mode shape (e) the 5th mode shape 

         

(a) 

 

(b) 

      

(c) 

         

(d) 
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(e) 

Figure 9. The first five 3D mode shapes of the deck (a) the 1st mode shape (b) the 2nd mode shape (c) the 3rd mode shape (d) 

the 4th mode shape (e) the 5th mode shape 

6.2. Results and Discussion 

6.2.1. Main Findings of the Present Study 

6.2.1.1. Sensor Location Using the EI Method 

The first five modal properties analyzed by SAP2000 are used for searching the optimal locations of sensors in the 

lower tier in this study. The optimal locations of 10, 15, and 30 vertical wireless sensors in the lower tier are determined 

using the EI method, and Figure 10 shows the results. Figures 8 and 9 show that along the x direction of the deck, the 

deformations of both sides are larger than that of the middle part for the five mode shapes. The sensor location with 

larger modal deformation contributes more to the independence of the target modes. Figure 10 shows that the locations 

of fewer sensors are within those of more sensors. That is, the locations of more sensors spread from those of fewer 

sensors to the two simply supported ends of the deck. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Optimum sensor locations of the deck with (a) 10 sensors (b) 15 sensors (c) 30 sensors 
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6.2.1.2. Clustering Sensors Using the Constrained K-Means and GA-based Clustering Approaches 

Herein, the result of 30 sensors (Figure 10-c) is implemented by the proposed constrained K-means clustering 

approach. The maximum number of sensors in each cluster (Nmax) is assumed to be 5, and the maximum data 

transmission distance of each sensor (dmax) is 8 m. The implementation results are shown in Figure 11. The 30 sensors 

are separated into 11 clusters. The number of sensors in each cluster changes from 2 to 5. Owing to the large variation 

in the number of sensors in each cluster, constructing a balanced size of clusters by using the constrained K-means 

clustering approach is not easy. 

 

Figure 11. Clustering 30 sensors (deployed by EI method) implemented by using the constrained K-means clustering 

approach with Nmax=5 

Figure 10-c shows that the optimum locations of the 30 sensors solved using the EI method are uniformly distributed 

on both sides along the x direction. To compare the performances of the two proposed approaches, the 30 sensors are 

deployed randomly, then the randomly placed 30 sensors are clustered using the two proposed approaches. The 

maximum data transmission distance of each sensor (dmax) is set to 8 m. Figures 12-a, 12-b, and 12-c present the 

clustering results using the constrained K-means clustering approach for Nmax equal to 3, 4, and 5, respectively. The 

number of clusters is 14, 13, and 9 for Nmax equal to 3, 4, and 5, respectively. The number of sensors for each cluster 

changes from 1 to 3, 1 to 4, and 2 to 5 for Nmax equal to 3, 4, and 5, respectively. After clustering sensors, the locations 

of CHs are determined and shown in Figure 12. 

 
(a) 

 
(b) 
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Figure 12. Clustering the randomly placed 30 sensors and deploying cluster heads implemented by using the constrained K-

means clustering approach with (a) Nmax=3 (b) Nmax=4 (c) Nmax=5 

Next, the GA-based clustering approach is conducted with the following parameters: the population size NP and 

mutation probability 𝑝𝑚 are set to 300 and 0.05, respectively. Figures 13-a, 13-b, and 13-c display the clustering results 

using the GA-based clustering approach for Nmax equal to 3, 4, and 5, respectively. The number of clusters is 10, 8, and 

6 for Nmax equal to 3, 4, and 5, respectively. The number of sensors in all clusters is the same for Nmax equivalent to 3 

and 5. The number of sensors in each cluster changes from 2 to 4 for Nmax equivalent to 4. In fact, the total number of 

sensors (30) is not divisible by Nmax (4) for this case. Seven clusters have four sensors, and only one cluster has two 

sensors 

 

 

 

Figure 13. Clustering the randomly placed 30 sensors and deploying cluster heads implemented by using the GA-based 

clustering approach with (a) Nmax=3 (b) Nmax=4 (c) Nmax=5 

(c) 

(b) 

(c) 

(a) 



Civil Engineering Journal         Vol. 8, No. 12, December, 2022 

2688 

 

Three indices proposed by Hassan et al. [25] are used herein to evaluate the performance of the constrained K-means 

and GA-based clustering approaches in the formation of a balanced size of clusters. The three indices are the standard 

deviation of mean squared error (STD (MSE)), the variation in cluster size (V), and the cluster size range (CSR), which 

are introduced as follows: 

 Standard deviation of mean squared error STD(MSE): STD(MSE), as shown in Equation 7, measures the difference 

in homogeneity of the average of intra-distance for each cluster. 

𝑆𝑇𝐷(𝑀𝑆𝐸) = √∑ |𝑀𝑆𝐸𝑗−𝜇𝑀𝑆𝐸|
2𝐾

𝑗=1

𝐾

2

  (7) 

𝑀𝑆𝐸𝑗 =
1

𝑁𝑗
∑ (𝑥𝑖𝑗 − 𝑢𝑗)

2𝑁𝑗

𝑖=1
  (8) 

𝜇𝑀𝑆𝐸 =
∑ 𝑀𝑆𝐸𝑗

𝐾
𝑗=1

𝐾
  (9) 

where 𝑀𝑆𝐸𝑗 is the averaged square intra-distances of sensor nodes to the cluster’s center for the jth cluster; 𝜇𝑀𝑆𝐸 

is the averaged mean squared error for distances; K is the number of clusters; 𝑁𝑗 is the number of sensor nodes in 

the jth cluster; 𝑥𝑖𝑗  and 𝑢𝑗  are the sensor node i and cluster center for the jth cluster, respectively. A smaller 

STD(MSE) means a higher uniformity of the intra-distances for clusters. 

 Variation in cluster size V: V, as shown in Equation 10, measures the dissimilarity of the density of the sensor 

nodes in the clusters (number of sensor nodes in each cluster). 

𝑉 =
∑ |𝑆𝑗−𝜇𝑆𝑗

|𝐾
𝑗=1

𝐾
  (10) 

𝜇𝑆𝑗
=

∑ 𝑆𝑗
𝐾
𝑗=1

𝐾
  (11) 

where S𝑗 and 𝜇𝑆𝑗
 refer to the cluster size and the mean of cluster size for the jth cluster, respectively. A smaller 

V means a higher balance in cluster size. 

 Cluster size range CSR: CSR, as shown in Equation 12, measures the ratio of the minimum cluster size to the 

maximum cluster size. 

𝐶𝑆𝑅 =
𝐶𝑆𝑚𝑖𝑛

𝐶𝑆𝑚𝑎𝑥
  (12) 

where 𝐶𝑆𝑚𝑖𝑛 and 𝐶𝑆𝑚𝑎𝑥 are the minimum and maximum cluster sizes in the network, respectively. CSR takes a 

value between 0 and 1. A narrower range (CSR close to 1) means a smaller difference in size between the 

minimum and maximum cluster sizes, and it is better. 

Table 1 lists the three indices of the constrained K-means and GA-based clustering approaches for Nmax equal to 3, 

4, and 5. The values of STD(MSE) of the constrained K-means clustering approach are smaller than those of the GA-

based clustering approach for Nmax equal to 3, 4, and 5. Nevertheless, this finding does not imply that the constrained K-

means clustering approach outperforms the GA-based clustering approach because STD(MSE) is meaningful for 

comparing different approaches only when the number of clusters is the same. The reason why the value of STD(MSE) 

of the constrained K-means clustering approach is smaller than that of the GA-based clustering approach is that the 

number of clusters of the former is larger than that of the latter under the same dmax and Nmax constraints. A smaller 

number of clusters implies a smaller number of CHs. Given that CHs consume more power than other sensors, the power 

consumption implemented by the GA-based clustering approach seems smaller than that by the constrained K-means 

clustering approach. The values of V of the constrained K-means clustering approach are larger than those of the GA-

based clustering approach for Nmax equal to 3, 4, and 5. Meanwhile, the values of CSR of the constrained K-means 

clustering approach are smaller than those of the GA-based clustering approach for Nmax equal to 3, 4, and 5. Based on 

the results of V and CSR, the GA-based clustering approach is better than the constrained K-means clustering approach 

for constructing a balanced cluster size. After clustering sensors, the locations of CHs are determined and shown in 

Figure 13. 

6.2.2. Comparison the Constrained K-Means and GA-Based Clustering Approaches with the K-Means Clustering 

Method 

In fact, there is no clustering approach proposed in other studies considering the two constraints, the maximum data 
transmission distance of each sensor (dmax) and the maximum number of sensors in each cluster (Nmax). Therefore, it is 
difficult to compare the performances of the constrained K-means and GA-based clustering approaches with other 
clustering approach. Nevertheless, the performances of the two proposed clustering approaches are still compared with 
that of the K-means clustering method herein. Table 1 also lists the three indices of the K-means clustering method for 
the number of clusters equal to 6, 8, 9, 10, 13, and 14. 
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Table 1. STD(MSE), V, and CSR of the constrained K-means Clustering approach, the GA-based clustering approach, and 

the K-means Clustering method 

Approach dmax Nmax Number of clusters STD(MSE) V CSR 

Constrained K-means clustering approach 

8 m 3 14 0.566 0.209 0.333 

8 m 4 13 0.592 0.521 0.250 

8 m 5 9 1.394 0.988 0.400 

GA-based clustering approach 

8 m 3 10 3.245 0 1 

8 m 4 8 4.029 0.438 0.5 

8 m 5 6 4.429 0 1 

K-means clustering method 

/ / 6 5.661 7 0.2 

/ / 8 1.579 1.438 0.333 

/ / 9 1.635 1.333 0.333 

/ / 10 0.696 1.8 0.2 

/ / 13 0.592 0.521 0.25 

/ / 14 0.490 1.265 0.2 

Note: “/”: no data available 

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=3 (the number of clusters is equal 

to 14) with the K-means clustering method for the number of clusters equal to 14, the K-means clustering method 

conforms to the constraint of dmax=8 m, but does not conform to the constraint of Nmax=3 (the largest cluster has 5 sensor). 

According to STD(MSE), the K-means clustering method outperforms the constrained K-means clustering approach (the 

value of STD(MSE) of the K-means clustering method is smaller than that of the constrained K-means clustering 

approach). However, the constrained K-means clustering approach outperforms the K-means clustering method 

according to V and CSR (the value of V of the constrained K-means clustering approach is smaller than that of the K-

means clustering method, and the value of CSR of the constrained K-means clustering approach is larger than that of the 

K-means clustering method). 

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=4 (the number of clusters is equal 

to 13) with the K-means clustering method for the number of clusters equal to 13. The K-means clustering method 

conforms to the constraints of dmax=8 m and Nmax=4 (the largest cluster has 4 sensor). The constrained K-means clustering 

approach and the K-means clustering method have nine identical clusters and only two different clusters. The values of 

STD(MSE), V, and CSR of the K-means clustering method are all the same with those of the constrained K-means 

clustering approach; that is the performances of the K-means clustering method and the constrained K-means clustering 

approach are the same. 

Comparing the constrained K-means clustering approach for dmax=8 m and Nmax=5 (the number of clusters is equal 

to 9) with the K-means clustering method for the number of clusters equal to 9, the K-means clustering method conforms 

to the constraint of dmax=8 m, but does not conform to the constraint of Nmax=5 (the largest cluster has 6 sensor). The 

constrained K-means clustering approach outperforms the K-means clustering method according to STD(MSE), V, and 

CSR (the values of STD(MSE) and V of the constrained K-means clustering approach are smaller than those of the K-

means clustering method, and the value of CSR of the constrained K-means clustering approach is larger than that of the 

K-means clustering method). 

Comparing the GA-based clustering approach for dmax=8 m and Nmax=3 (the number of clusters is equal to 10) with 

the K-means clustering method for the number of clusters equal to 10, the K-means clustering method conforms to the 

constraint of dmax=8 m, but does not conform to the constraint of Nmax=3 (the largest cluster has 5 sensor). According to 

STD(MSE), the K-means clustering method outperforms the GA-based clustering approach (the value of STD(MSE) of 

the K-means clustering method is smaller than that of the GA-based clustering approach). However, the GA-based 

clustering approach outperforms the K-means clustering method according to V and CSR (the value of V of the GA-

based clustering approach is smaller than that of the K-means clustering method, and the value of CSR of the GA-based 

clustering approach is larger than that of the K-means clustering method). 

Comparing the GA-based clustering approach for dmax=8 m and Nmax=4 (the number of clusters is equal to 8) with 

the K-means clustering method for the number of clusters equal to 8, the K-means clustering method conforms to the 

constraint of dmax=8 m, but does not conform to the constraint of Nmax=4 (the largest cluster has 6 sensor). According to 

STD(MSE), the K-means clustering method outperforms the GA-based clustering approach (the value of STD(MSE) of 

the K-means clustering method is smaller than that of the GA-based clustering approach). However, the GA-based 

clustering approach outperforms the K-means clustering method according to V and CSR (the value of V of the GA-

based clustering approach is smaller than that of the K-means clustering method, and the value of CSR of the GA-based 

clustering approach is larger than that of the K-means clustering method). 
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Comparing the GA-based clustering approach for dmax=8 m and Nmax=5 (the number of clusters is equal to 6) with 

the K-means clustering method for the number of clusters equal to 6, the K-means clustering method conforms to the 

constraint of dmax=8 m, but does not conform to the constraint of Nmax=5 (the largest cluster has 10 sensor). The GA-

based clustering approach outperforms the K-means clustering method according to STD(MSE), V, and CSR (the values 

of STD(MSE) and V of the GA-based clustering approach are smaller than those of the K-means clustering method, and 

the value of CSR of the GA-based clustering approach is larger than that of the K-means clustering method). 

6.2.3. Implication and Explanation of Findings 

The constrained K-means and GA-based clustering approaches construct a balanced size of clusters by minimizing 

the number of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH 

under the two constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the 

network lifetime is extended. 

The GA-based clustering approach is better than the constrained K-means clustering approach for constructing a 

balanced cluster size based on the results of V and CSR. Hence, the consumption of energy in each cluster implemented 

by the GA-based clustering approach is more balanced than that by the constrained K-means clustering approach. A 

balanced consumption of energy in clusters will prolong the network lifetime. Nevertheless, the GA-based clustering 

approach is slow in execution compared with the constrained K-means clustering approach. Although the constrained 

K-means clustering approach may not have the best solution, it is still acceptable for clustering numerous sensors. 

Generally speaking, the K-means clustering method without any constraints, and its result is not easy to conform 

to practical constraints. In terms of constructing a balanced cluster size, the constrained K-means clustering approach 

and the GA-based clustering approach outperform the K-means clustering method for a small number of clusters based 

on STD(MSE), V, and CSR (the number of clusters equal to 9 and 6, for example). The fewer clusters, the fewer CHs. 

Since CHs consume more energy than other sensors, using fewer CHs will save more energy and extend the network 

lifetime. 

7. Conclusions 

This study investigates the OSP of two-tier WSN-based SHM systems with clusters of sensors. The lower tier is 

composed of sensors communicating with their associated CHs, and the upper tier is composed of the network of CHs. 

The first step is the optimal placement of sensors in the lower tier via the EI method by considering modal identification 

accuracy. The second step is the optimal placement of CHs in the upper tier by considering power efficiency. The sensors 

in the lower tier are clustered before determining the optimal locations of CHs in the upper tier. Two approaches, a 

constrained K-means clustering approach and a GA-based clustering approach, are proposed to cluster sensors in the 

lower tier. The CHs in the upper tier are located at the centers of the clusters determined after clustering the sensors in 

the lower tier. The two proposed clustering approaches construct a balanced size of clusters by minimizing the number 

of clusters (or CHs) and the total sum of the squared distance between each sensor and its associated CH under the two 

constraints. Accordingly, the energy consumption in each cluster is decreased and balanced, and the network lifetime is 

extended. To illustrate the feasibility of the two proposed approaches, a numerical example is studied. In this example, 

the performances of these clustering approaches are also compared. Important conclusions are summarized in the 

following: 

 The optimal locations of different numbers of sensors solved by using the EI method have an inheritable 

characteristic; that is, the locations of fewer sensors are within those of more sensors. 

 The performance for the constrained K-means and the GA-based clustering approaches in the formation of a 

balanced size of clusters cannot be evaluated by STD(MSE) because STD(MSE) is meaningful for comparing 

different approaches only when the number of clusters are the same. 

 The number of clusters implemented by the constrained K-means clustering approach is larger than that by the 

GA-based clustering approach under the same dmax and Nmax constraints. A larger number of clusters implies a 

larger number of CHs. Given that CHs consume more power than other sensors, the power consumption 

implemented by the GA-based clustering approach seems smaller than that by the constrained K-means clustering 

approach. 

 According to V and CSR, the GA-based clustering approach is better than the constrained K-means clustering 

approach for constructing a balanced cluster size. In other words, the consumption of energy in each cluster 

implemented by the GA-based clustering approach is more balanced than that by the constrained K-means 

clustering approach. A balanced consumption of energy in clusters will extend the network lifetime. 

 The GA-based clustering approach is slow in execution compared with the constrained K-means clustering 

approach. Although the constrained K-means clustering approach may not have the best solution, it is still 

acceptable for clustering numerous sensors. 
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 Since the K-means clustering method without any constraint, its results is not easy to conform to practical 

constraints. In terms of constructing balanced cluster size, the constrained K-means and the GA-based clustering 

approaches outperform the K-means clustering method for a small number of clusters based on STD(MSE), V, and 

CSR. The fewer clusters, the fewer CHs. Since CHs consume more energy than other sensors, using fewer CHs 

will save more energy. 

 How to apply the proposed approaches to complicated real structures would be explored on the basis of this 

research in the future. 
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