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Abstract

Affective state is an integral component of the way animals, including humans, per-
ceive and interact with their environment. Animals can be biased by their affective
state in the way they act to receive rewards or avoid punishments.

The Judgement Bias Task (JBT) is a decision-making task aimed at measuring bi-
ases in the interpretation of ambiguous information. In chapter 2, I initially ran
replication studies (N=15 male rats) of past findings involving pharmacological ma-
nipulations of clinical importance, such as ketamine and amphetamine. After failed
attempts to replicate published ketamine results, I designed a novel JBT variant to
address shortcomings of the original task around the ambiguity of the test stimulus
and the frequency of negative feedback and trial presentations. Pilot studies on this
variant (N=16 male rats) revealed a different type of perceptual bias in the animals’
responses. I discuss how this bias confounded the interpretation of results and how
it relates to the original task design.

By collating data from past JBT studies, I conducted a large-scale analysis, which
revealed that factors relating to past trials were important in determining animals’
actions. Therefore, I designed statistical models that were able to account for these
factors and any other biases in the animals’ behaviour. Inference by model param-
eters, instead of summary statistics of actions, grants a more detailed view into
the animal’s decision-making process and reveals differences between the effects of
ketamine and amphetamine.

Subsequently, I designed a novel foraging task, where animals were free to acquire
reward or flee to avoid an imminent threat. Different versions of the task were tested
in a pilot study (N=16 male rats). A statistical model reveals individual differences
that become apparent when the threat was least predictable, as signaled by the
constant presence of an odor in the operant chamber.

Finally, I present a theoretical model, based on reinforcement learning (RL) the-
ory, which incorporates biases due to affective state. Simulated environments with
naturalistic elements were also proposed. The model was compared to classical RL
models within these environments to assess the benefits of affective biases. Overall,
this thesis offers approaches to improve on how inference of affective state is per-
formed, in addition to a hypothesis about why affective state is important for the
survival of an animal.
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Chapter 1

General introduction

Emotions are an integral part of any human experience. Cognition and emotions

are often thought of as two components of a reciprocal relationship (Damasio 2006,

chapter 7), even though there are unresolved arguments around primacy; could

emotions arise without a prior cognitive process (Zajonc 1984) or are they always

the outcome of some cognitive appraisal (Lazarus 1982)? Affective state is a more

general term for an internal state that includes some emotional component.

I have assumed in the present thesis that there exist emotional primitives that can

be modelled across species (Anderson et al. 2014). For instance, the valence of an

affective state, either positive or negative, and the level of arousal that characterises

it are two common dimensions, along which human emotions, such as anger and

happiness, could be mapped (Russell 2003). The current assumption then is that

non-human animals can find themselves in the same states of valence and arousal,

which would alter their behaviour accordingly, without necessarily labelling these

states with the respective human emotions. These emotional primitives that underlie

the affective state of both human and non-human animals could also be thought of

as evolutionary conserved states that maximise the chances of survival (Bach et al.

2017). In this sense, affective state could drive pre-programmed behavioural motifs

in situations when it is critical to act quickly and effectively without gathering more

sensory evidence or considering every possible course of action.

Adding to its already broad definition, there are multiple somatic markers that are

indicative of distinct affective states, for example changes in heart rate, respiratory

patterns and skin conductance (Bechara et al. 2005). These changes in bodily states

are thought to be modulated by the brain, in order to prepare the body to act in
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accordance with its current affective state (Barrett 2017). Affective state can bias

the process of deciding on an action at different points during the interaction of an

individual with their environment; this could be as part of the background internal

state influencing how incoming sensory stimuli are interpreted, prioritising which

ones are attended to or which memories are recalled, or as specific emotions relating

to the execution of an action, or as predicted emotions of the outcomes of an action

(Dunning et al. 2017).

Biases due to affective state do not hold an explicitly negative connotation. The

value of affective state as an adaptive modulator of actions has been corroborated

in theoretical and empirical work (Hirsch et al. 2000; Haselton et al. 2006; Trim-

mer et al. 2013). However, biases exhibited through various forms of actions, when

responding to affectively valenced stimuli, have been linked with vulnerability to

mood disorders, such as anxiety and depression (Mathews et al. 2005). Such actions

do not necessarily preclude the conscious awareness of being in an specific affective

state (Winkielman et al. 2004; Winkielman et al. 2005). This statement has two

important implications; it supports the argument that affective state could be stud-

ied in non-human animals, where subjective feelings are inaccessible (Mendl et al.

2020), and it highlights the value of using actions to infer affective state in humans,

as opposed to self-reported questionnaires, which might not faithfully represent the

individual’s state. Thus, inferring affective state with high precision could aid in nu-

merous steps towards the treatment of mood disorders; from diagnosis and prognosis

to identification of novel treatment targets (see Slaney et al. 2018a for a discussion

of the benefits of action biases as biomarkers for depression).

The present chapter introduces the various ways in which affective state can lead to

biased actions in both humans and non-human animals. It follows a methodological

categorisation, where each section presents a different way of inferring affective state

given observations of actions. Firstly, there is inference by task design, where sum-

mary statistical measures of the observed actions were directly related to affective

state by a verbal theory. Secondly, inference by statistical models will be addressed,

which could account for multiple latent factors and sources of variability that might

constitute an affective state given the observed actions, thus offering a more detailed

look into the internal process that generates actions. The final section is concerned

with inference by computational models, motivated by theories about the role of

affective state in learning and decision-making processes.

This categorisation gradually presents more capable inference tools, which offer more

2



detailed ways of investigating how affective state could drive behaviour. The follow-

ing chapters of this thesis will employ approaches based on these three categories in

order to infer the affective state of rats in different tasks solely by observing their

actions.

1.1 Inference by task design

This category constitutes the basis of any attempt to infer affective state. It in-

volves the design and execution of behavioural tasks, according to a verbal theory,

as opposed to one utilising mathematical tools (but see van Rooij et al. 2020 for an

intergrated view of both), about the influence of affective state on actions. Affective

state has been shown to bias multiple functions across the continuum between re-

ceiving sensory input and executing an action. The tasks that measure such biases

have further motivated non-human animal experiments, in an effort to produce more

realistic animal models of mood disorders (Slaney et al. 2018b) and to offer reliable

means of measuring affective state for animal welfare research (Mendl et al. 2009).

1.1.1 Interpretation bias

The interpretation of ambiguous information has been shown to be biased by af-

fective state. Healthy humans assigned probabilities to the occurrence of uncertain

future events that were influenced by their underlying affective state (Wright et al.

1992). Either a positive or a negative mood was induced to each participant, by a

suggestion to focus on happy or sad personal experiences under hypnosis. Conse-

quently, participants made judgements about the likelihood of occurrence of either

personal or nonpersonal future events. They assigned lower probabilities to positive

events, irrespective of the context, after a negative mood manipulation, compared

to control subjects, and conversely after a positive mood was induced. In another

study, healthy participants were more likely to categorise a face of ambiguous emo-

tional expression as happy rather than sad, after the administration of a selective

serotonin reuptake inhibitor (SSRI) drug, a conventional antidepressant (Harmer

et al. 2003).

Following the same experimental paradigm in a later study, depressed participants

more readily interpreted ambiguous faces as expressing negative emotions, while this

3



bias was mitigated by an acute treatment with a noradrenaline reuptake inhibitor

(NRI), another conventional antidepressant drug (Harmer et al. 2009). Importantly,

in this study, the change in judgement bias preceded a change in self-reported mood

by several days, thus indicating the prognostic value of measuring biases. Addition-

ally, judgement biases in interpreting ambiguous faces were correlated with the risk

of relapse in depressed individuals (Bouhuys et al. 1999). In a categorisation task,

patients with moderate to severe depression were less accurate and slower in recog-

nising a face as neutral, while frequently misclassifying it as sad (Leppänen et al.

2004). This recognition bias was apparent even after symptom remission, as eval-

uated by a clinical psychiatrist, however no longitudinal monitoring was performed

to assess the probability of relapse.

Inspired by the observed interpretation biases in humans that were discussed above,

a rat model was designed, using auditory stimuli, rewards and punishments, instead

of emotional faces (Harding et al. 2004). Animals were trained to press a lever

to gain reward when one reference tone was presented and withhold this action

during presentations of a second reference tone in order to avoid a white noise

punishment. Consequently, three tones of intermediate frequencies were presented

during test sessions, corresponding to the ambiguous stimuli. Rats were subjected

to an unpredictable housing condition, that involved various changes to their home

cages over nine days. This manipulation induced a negative affective state, which

led to the animals interpreting the ambiguous cues as ones predicting the punishing

outcome and thus withholding their responses more often than pressing the lever

that was associated with reward. This effect was more pronounced for ambiguous

tones of frequencies closer to the frequency of the reference tone predicting the loud

noise.

Multiple variants of this task followed in a large range of species, either as animal

models of the affectively driven interpretation bias in mood disorders or for animal

welfare research (see Roelofs et al. 2016 for a review of both types of studies). The

central premise of the task was based on generalisation of the cue-action-outcome

contingencies of reference cues, learned during training, to actions as a response

to ambiguous cues, which were newly presented during testing. There were always

two possible actions, each one reflecting an interpretation of an ambiguous cue, as

one predicting a positive or a negative outcome. Actions with a learned positive

outcome were inferred to be optimistic, whereas the alternative action was deemed

pessimistic. The term Judgement Bias Task (JBT) will be used in the present thesis

to refer to the family of tasks that implement variants of this design, although the
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Ambiguous Cue Interpretation (ACI) task is another common name.

A version of the task, where both reference tones required a correct action, either

to acquire a reward or avoid a punishment, revealed a negative bias in helpless rats,

a rodent model of depression. These rats acted in order to avoid the shock more

frequently during the ambiguous trials (Enkel et al. 2010). Utilising the same task

design, a later study found that chronic social defeat also biased the interpretation

of an ambiguous tone towards acting to avoid the punishment (Papciak et al. 2013).

Moreoever, rats exhibited a negative shift in their bias after an acute pharmacolog-

ical treatment with reboxetine, an NRI with antidepressant properties (Anderson

et al. 2013). However, daily treatments with fluoxetine, an SSRI antidepressant

drug, across one week, led to a small positive shift of the bias. More recently, a new

version of the reward-punishment JBT was designed, involving more naturalistic

actions and less aversive outcomes (Jones et al. 2018). According to this design,

rats had to keep their heads inside a food trough in order to get rewarded or move

away from it to avoid an air puff.

A version of JBT with only reward outcomes was also developed to minimise the

exposure of animals to aversive experiences (Hales et al. 2016). In this task, the

two alternative outcomes were a large and a small reward amount. Responding on

the lever that was known to result in a large reward was considered the optimistic

choice, while pressing the lever that led to the small reward constituted a pessimistic

action. The acute induction of a negative affective state, via a treatment with an

anxiogenic drug, resulted in a negative shift in the action bias. A second study

using the same variant showed that positive manipulations of affective state by

amphetamine, a psychostimulant drug that both releases and inhibits the reuptake

of dopamine and noredrenaline, and ketamine, an NMDA receptor antagonist, were

capable of a positive shift in bias (Hales et al. 2017).

A meta-analysis of pharmacological studies on JBT has revealed an agreement be-

tween the hypothesised change in affective state under the drug treatment and the

shift in the animals’ action bias as they interpret the ambiguous cues (Neville et al.

2020a). This work further supports the claim that affective state can be inferred

directly from the animals’ actions.

There are variants of the JBT that were not mentioned here, including other sensory

modalities such as visual or tactile cues, compound stimuli of multiple modalities or

spatial locations as the reference and ambiguous cues (see Nguyen et al. 2020 for a

systematic review). The present thesis will involve the auditory variant of the task
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that was presented above.

1.1.2 Memory bias

The modulation of memory recall processes by affective state has been observed in

both healthy people and depression patients. Even though memory recall is not an

explicit action, through which an individual interacts with their environment, it is

an integral part of planning how to act (Buzsáki et al. 2014). In this regard affective

state could set the context upon which congruent memories would be recalled, which

in turn would lead to biases in action planning and execution. After an emotional

face recognition test akin to the one presented above, depression patients managed

to recall fewer happy faces than controls, yet they were more accurate in recognising

previously seen sad faces (Ridout et al. 2003). Word lists are another common

stimulus with multiple studies having measured a propensity to recall affectively

valenced words that were congruent with an individual’s affective state at the time

of recall, in both patients and healthy controls (Blaney 1986 for a review). The recall

of personal experiences from both the short-term and distant past was similarly

influenced by affective state, where the valence of an affective manipulation prior to

recall tended to be the same as the valence of the recalled memories (Bower 1981).

Both the autobiographical and stimulus recall studies involved an explicit recall

stage. However memory biases in depressed people have been observed implicitly.

Patients that were exposed to words with an affective connotation via simplified

scenarios of social interactions, depicted in drawings, were less likely than healthy

controls to fill in a studied positive word in a later semantic task, where a definition

was given for the missing word (Watkins 2002).

Results of memory bias studies on patients with general anxiety disorder have not

been as consistent as those on depression patients (MacLeod et al. 2004 for a review).

It was suggested that anxious people encode affective information more reliably,

particularly in unpredictable environmental conditions (Pury et al. 2001). Such

conditions could be emulated in the lab by the order that the test stimuli are being

presented. In any case, it is evident that a direct association of the valence of

recalled words or faces with affective state does not hold for anxiety. Thus, more

nuanced explanations are required, potentially including a view of the disorder as a

multidimensional construct with valence of the affective state being only a part of

it. This view will be explored further in the section with inference by computational

models.
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Besides its effect on memory recall of congruent stimuli, affective state has also been

shown to modulate the remembered association between learned action-outcomes

contingencies. While learning the potential outcome of actions, animals’ affective

state has been shown to augment the learned outcome. The Affective Bias Test

(ABT) was introduced as a behavioural assay in rats for testing whether they have

differential preference between two actions, when both actions result in the same

learned reward, but one of them had been previously paired with a manipulation

on affective state (Stuart et al. 2013). During days 1 and 3 of training, rats were

presented with two digging substrates A and C, with A hiding a single reward

pellet and C containing no reward. On the same days rats were treated with a

drug or a physical manipulation, such as social isolation, that was purported to

change their affective state. During days 2 and 4 another substrate B that contains

the same reward magnitude as A was presented along with the same substrate C.

After training for four days on the associations between digging in a substrate and

acquiring reward, rats were tested on day 5 by having to choose between A and B,

the two previously rewarded substrates. Animals were shown to prefer substrate B,

when A was paired with an affective manipulation of negative valence and conversely

for positive-valenced ones. Manipulations of either valence were equally effective in

causing a bias when they were administered before or after the learning sessions

during days 1 and 3.

A recent ABT study compared the effect that social play had on the rats’ bias, when

they had been previously treated with an anxiogenic compound (Hinchcliffe et al.

2022). Social play between cage mate rats was associated with a positive affective

state, as measured through its correlation with elevated 50 kHZ ultrasonic vocalisa-

tions. The positive affective state, induced by social play, managed to mitigate the

negative effect of an anxiogenic drug injection prior to a training session on days 1

and 3, even when social play occurred several hours after the session.

The ABT has been validated as a preclinical model of affective state manipulations

as it has exhibited predictive efficacy in capturing the effect of conventional an-

tidepressants and making predictions for novel, rapid-acting ones such as ketamine

(Stuart et al. 2015b). The case of ketamine is particularly compelling, as it was

shown to mitigate a negative bias that was acquired previously, without any reex-

posuse to the task context prior to testing. Additionally, venlafaxine, a serotonin

and noradrenaline reuptake inhibitor (SNRI), but not ketamine, when administered

during training, caused a preference towards the rewarded substrate that was expe-

rienced on the same days.
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The ABT utilises a type of retrospective inference across days. Observations of

action preferences during the test day are being used to infer the animals’ affective

state during a past learning session, when they first encountered the substrate that

was paired with the affective manipulation. Thus, the memory of the learned action-

outcome associations is always implicated. One potential target for the affective

state’s influence is the learning process itself, in cases of the manipulation preceding

a learning session. An example of such an effect was found in a modified version

of the ABT that was specifically designed to measure learning deficits by raising

the amount of reward for one of the substrates (Stuart et al. 2019). Rats that were

subjected to maternal separation as a model for early life adversity did not show

a preference towards the more richly rewarded substrate, as opposed to untreated

healthy rats. However, another possible and complementary explanation is that

animals conflate the experienced rewards with their affective state during the same

training day, which in turn leads to action biases during the subsequent test day.

1.1.3 Attention bias

Affective state has been shown to affect the way people direct their attention. At-

tention biases can be manifested in a valence-congruent manner, akin to memory

biases examined above, with evidence suggesting an interaction between biases in

working memory and attention in depression (Raedt et al. 2010). For example, being

in a negative affective state would prioritise attention towards negatively valenced

stimuli and the retention of similar information in working memory. A similar effect

of congruence was observed in a study with faces comprised of two characteristics,

sex and expressed emotions (Gilboa-Schechtman et al. 2004). Participants belonging

to a high depression-index group, as judged by Beck’s Depression Inventory, were

influenced by the emotional component of the faces, even when explicitly asked to

ignore it and make judgements about the sex of the depicted person.

Acute induction of a negative affective state, by instructing participants to recall sad

personal memories while listening to “sad” music, also increased the participants’

vigilance towards depression-related, over anxiety-related or neutral words (Bradley

et al. 1997). This effect was measured by presenting a pair of words, one emotional

and one neutral, for a short duration and after a short delay presenting a probe word

in the same location as one of the words in the pair. The participants then responded

to the location of the probe word and were faster when they were in a negative

mood and the probe word appeared in the same position as the depression-related
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word of the pair. In a second experiment, highly anxious individuals exhibited

greater sensitivity to threatening words and for smaller exposure times to the word

pair compared to the participants with acute negative mood changes in the first

experiment. These results were in agreement with earlier experiments showing that

depressed patients had an attention bias only when the words were clearly presented

without masking and the presentation duration was long (Mathews et al. 1996).

A meta-analysis of attention bias studies in highly anxious individuals, both clini-

cally diagnosed and self-reported, indicated consistent results, across age groups and

stimuli used, which typically consist of emotional faces or words with a threatening

or neutral meaning (Bar-Haim et al. 2007). Although mood-induced biases poten-

tially interact with the baseline capacity of a person to control their attention, as

shown by a study involving a self-reported index of attention control prior to the

experiment (Derryberry et al. 2002). Most of the studies around attention biases in

anxiety included people with high levels of trait anxiety. The results of acute changes

in affective state of healthy or anxious individuals were conflicting, after either ex-

perimental manipulations (in the form of newspaper photographs, Richards et al.

1992) or naturally occurring stressful events (testing several days prior to the start

of an exam period, MacLeod et al. 1992). In healthy individuals though, biases in

attention have been associated with resilience to stress (Thoern et al. 2016). Among

participants that showed an attentional bias to emotional over neutral faces, those

with a higher bias towards happy over angry faces scored higher on a self-reported

stress resilience index.

The studies on attention biases discussed thus far describe an elevated attention

towards and difficulty to disengage from threatening stimuli, particularly under an

anxious affective state. However, biases on the opposite direction have been mea-

sured, when humans shift their attention away from threatening stimuli (Cisler et al.

2010 for a review of findings of all types of attention bias in anxiety). The choice of

the location to attend to has been shown to vary with the timing of the presented

threat in various studies discussed within the review. For instance, self-reported

arachnophobes were fixating on a spider stimulus, while it was first presented, while

shifting their gaze to a neutral location briefly afterwards (Pflugshaupt et al. 2005).

This behaviour is thought to be a result of an individual’s effort to regulate their af-

fective state; initially fixating on a potential threat and then suppressing the stressful

state by avoiding the same stimulus (Eippert et al. 2007).
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1.1.4 Bias in effort exertion & vigor of movement

Moving away from the cognitive processes of interpretation, recall and attention,

that might precede an action, there exists evidence for the effect of affective state

on the execution of actions. The vigor of executed actions is particularly intertwined

with affective state; “why do we run towards people we love and only walk towards

others?” (Shadmehr et al. 2020). Shadmehr and Ahmed offer examples about this

relationship, along with a theory about how the subjective value of potential actions

affects the intensity at which they are executed and how a system that controls both

motivation and valuation might have evolved.

Similar ideas gave rise to behavioural tasks, which aimed at measuring the relation-

ship between anhedonia and the willingness to exert effort for reward. Anhedonia

is defined as the reduced motivation in acting to acquire reward, or reward wanting

(not to be confused with the enjoyment of already available reward, or reward liking,

see Berridge et al. 1998; Gygax 2017). It has been shown to be a distinctive symp-

tom of depression, thus closely associated with a negative affective state (Brown

et al. 1998). There are multiple studies relating anhedonia with a negative affective

state in depression and schizophrenia, although the importance of factors that are

irrelevant to affective state, such as behavioural activation and the ability to pre-

dict future events in order to act with appropriate vigor, can not be understated

(Salamone et al. 2016a).

An example of a task that measured anhedonia through action vigor was the effort

expenditure for reward task (Treadway et al. 2009). Participants were required to

press a button multiple times in order to gradually fill a bar on a computer screen.

The number of required button presses varied between a hard, effortful condition

and an easy one. Self-reported measures of high state and trait anhedonia through

questionnaires were reversely proportional to the effort that participants were will-

ing to exert. Moreover, patients diagnosed with major depressive disorder applied

the least amount of effort in the same task, followed by people with subsyndro-

mal depression, patients with remitted symptoms and healthy controls (Yang et al.

2014). These results were in agreement with an earlier task, where participants

exerted effort by flexing their wrist to rotate a joystick, that in turn controlled the

distance of a cursor to a goal location (Caligiuri et al. 2000 Jan-Mar). A group

of depressed patients were shown to apply significantly less effort than the control

group. An acute positive manipulation of affective state by treating healthy people

with amphetamine yielded the opposite result (Wardle et al. 2011). People under
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the drug treatment exerted more effort than controls, particularly in trials where

the indicated probability of reward was at a minimum.

The amphetamine study was motivated by a previous study in the effort expenditure

task in rats (Bardgett et al. 2009). In this study animals had to choose between

a low-effort and low-reward action and a high-effort and high-reward alternative.

Amphetamine made the animals more likely to choose to exert the required effort

for the high reward, while there was no manipulation to the probability of reward. In

another study, induction of a negative affective state by restraining the animals for

an hour before the task led to reduced choices for the high-reward option and longer

action latencies overall, which reflected the results of the human studies (Shafiei

et al. 2012). Complementary tasks, within the same study, revealed that the effect

of restraint stress was more likely to be specific to the animals’ decision on the

exerted effort rather than to their valuation of the different reward amounts or to

the temporal discounting of delayed rewards. Dopamine has been thought to play

a central role in the effort-related motivational deficits of depression. The animal

version of the task has enabled more invasive and targeted research specifically on

the role of dopamine (Salamone et al. 2016b for a review of studies that combine

the effort expenditure task with physiological measurements and interventions).

Measuring vigor has diagnostic value when inferring an individual’s state of depres-

sion. A study monitored the movements of participants, who wore a watch-like

activity monitoring device for one month (Todder et al. 2009) . Elevated vigor

of movements was associated with remission in depression symptoms and a more

positive affective state during daytime activities, as indicated by the chosen ques-

tionnaires. In particular, vigor of movement was a more reliable predictor than

quantity of the executed movements.

1.1.5 Learning bias

The pathologically negative affective state of depressed people has additionally been

shown to affect their responsiveness to reward. A probabilistic learning task mea-

sured such a bias by presenting a simplistic drawing of a human face with varying

lengths of the single mouth line (Pizzagalli et al. 2005). Participants then had to

judge whether the length of the mouth was long or short, while one length category

lead to a monetary reward three times as often as the other one. People that scored

high on a depression index questionnaire chose the more frequently rewarded action
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significantly less often than healthy controls.

A subsequent study on clinically diagnosed patients with depression revealed the

same lack of a response bias, supporting the claim about a limited capacity to

adapt the action selection process, given a history of relevant rewards (Pizzagalli

et al. 2008). This finding was replicated on a later study, which further measured a

smaller bias towards the richly rewarded option in depressed patients with elevated

anhedonia, as opposed to ones with a low anhedonia index (Vrieze et al. 2013). This

result links the reward learning deficits with the diminished vigor of movement that

was discussed previously, with the common element being the presence of anhedonia.

A reduction in the value that individuals assign to potential actions could be the

outcome of the learning deficit and a causal factor behind the vigor deficit.

Inducing a negative affective state via acute manipulations has resulted in deficits

akin to those measured in patient groups. Performing the reward learning task

presented above under a threat of electric shock reduced the response bias towards

the more rewarded action, relative to a condition without a threat (Bogdan et al.

2006). The stressful condition induced by the threat of shock was shown to cause

a negative affective state through multiple questionnaires prior to and following the

task. Another study involving choices between two cues, whose outcomes had to be

learned, found that threat of shock resulted in diminished response bias towards the

optimal action only when the action led to reward and not for an action that led to

the avoidance of punishment (Berghorst et al. 2013). The effect was pronounced in

the subjects, for whom the threat of shock was most successful in inducing a negative

affective state, thus highlighting the influence of affective state on adaptations to

rewarded actions.

A version of the probabilistic learning task was designed for rats as well (Der-Avakian

et al. 2013). In it, animals were initially trained to discriminate between two refer-

ence tones of distinct durations and the same frequency by pressing the matching

lever. During a subsequent test session, two tones of intermediate duration were

presented as ambiguous cues, with one of them being three times more likely as the

other one to lead to a reward after a correct action. Rats exhibited a response bias

in choosing the richly rewarded action more often than its alternative during either

ambiguous cue and this bias was potentiated under an amphetamine treatment.

Conversely, a negative manipulation to the animals’ affective state, exposure to so-

cial defeat across three days, diminished the response bias, suggesting that animals

were less able to adapt to the reward feedback under this state (Der-Avakian et al.
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2017).

A behavioural task that is related to the probabilistic learning one is the probabilistic

reversal learning task. In this case, subjects learn cue-action-probability for reward

contingencies across trials, for two simultaneously presented cues, and after a number

of trials the reward probabilities swap. Depressed patients were not able to follow

the optimal strategy either before of after the reversal of reward probabilities, as

they switched their choices more frequently after a negative feedback (Murphy et

al. 2003). Similar results were found in a subsequent study, thus corroborating the

increased sensitivity to the omission of reward (Taylor Tavares et al. 2008). However,

acute positive, negative or neutral affective manipulations, in the form of videos, did

not cause any changes in the strategies that healthy people employed during this

task (Nusbaum et al. 2018).

Rats performing the probabilistic reversal learning task after an acute treatment

with citalopram, an antidepressant SSRI drug, were less sensitive to switching their

preferred choice after negative feedback compared to controls (Bari et al. 2010).

Moreover, daily treatment, across a week, with the same compound led to an elevated

sensitivity to positive feedback, while both treatments caused a better adaptation

to rule changes, when reward probabilities swapped. An acute ketamine treatment

in another study led to a selective decrease in negative feedback sensitivity, without

affecting the rats’ actions after positive feedback (Rychlik et al. 2017).

1.2 Inference by statistical models

In the previous section, inference on affective state was conducted by analysing sum-

mary statistics of subjects’ actions. This was a type of direct inference, immediately

linking the summary statistics with affective state. The present section provides

an overview of statistical models that can extend this inference, by accounting for

individual data points, such as actions in a sequence of trials, and by allowing for

multiple factors to influence these actions. This way, the effect of affective state

on actions can be dissected into individual components and the relative importance

of each component can be quantified using standard statistical models. Avoiding

data summaries, particularly across time, can enable the correlation of the latent

factors, that are hypothesised to constitute affective state, with other time-sensitive

measures, such as electrophysiological recordings, fMRI and questionnaires.
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Commonly used statistical models fall into the category of generalised linear models

(GLM) (McCullagh et al. 2019). The structure of a GLM could be broken down

into three primary components; a distribution of the data, for example a Binomial

distribution for actions in a two-alternative choice task, a linear function, including

slope parameters that quantify the effect of the factors under consideration and

intercepts for factor-independent effects, and a nonlinear link function connecting

the linear function to the parameters of the data distribution.

One study used a GLM on an effort expenditure for reward task, as it was pre-

sented above, to dissect the effects of several factors, which could potentially drive

the actions of healthy and depressed participants (Treadway et al. 2012). The prob-

ability of being rewarded, the reward amount and the required effort were shown

to participants in the beginning of each trial. By incorporating these three factors

as potential drivers of the participants’ actions, the authors found that depressed

people were less willing to exert effort and this behaviour was more insensitive to

both reward probabilities and amounts, compared to healthy controls.

Linear models have been used to assess whether reward magnitude and its surpris-

ingness could modulate affective state. An initial study implemented a two-choice

task between an action with a certain reward and a gamble with known probabilities

and possible outcomes, along with intermediate questions regarding the participant’s

happiness (Rutledge et al. 2014). The fitted model parameters indicated that the

unexpectedness of reward, as measured by a reward prediction error (RPE), was a

better predictor of the participants’ happiness scores, as opposed to the magnitude

of the earnings. In a follow-up experiment, patients with major depressive disorder

exhibited the same influence of RPEs to their affective state (Rutledge et al. 2017).

Moreover, the same RPEs correlated with blood oxygen level activity within the

ventral stratium, a region that has been thought to represent RPEs, almost equally

well in depressed patients and controls. Similar results around RPEs were found

in a more ecological setting (Villano et al. 2020). The unexpectedness of an exam

result was a better predictor of both a positive or negative affective state compared

to the exam grade. Additionally, a negative unexpected exam outcome could predict

a negative affective state for longer, as opposed to a pleasant surprise.
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Control Drug

Subject level

Group level

Data level

Figure 1.1: An example of a hierarchical model: There are two experimental
groups, one under a drug that is hypothesised to alter the subjects’ affective state
and a control one. Each group includes the subjects under the matching condition
and each subject generates actions during the task. The actions are denoted as left
or right arrows.

1.2.1 Hierarchical statistical models

Statistical models, such as the GLMs of the previous section, could account for mul-

tiple factors that affect subjects’ actions. On their own though, they are unable to

incorporate information about the structure of the observed data. Namely, multiple

actions are generated by multiple subjects that either belong to different population

groups, for example diagnosed patients and healthy controls, or perform the task

under different experimental conditions, such as a vehicle and a drug treatment,

purported to change their affective state (Figure 1.1). Thus, the data has a hi-

erarchical structure with clusters of actions, subjects and population or treatment

groups. Another common term for this structure is nested data.

Important heterogeneity can exist within each level of clustering (Bell et al. 2015).

A common source of heterogeneity is individual subject differences; even though

an experimental group includes people diagnosed with depression, it should not be

expected that all of them would behave in an identical manner in the experiment.

Equally, the effect of a drug could vary across the subjects that were treated by

it. Generalised linear models could account for such sources of heterogeneity within

each level of the observed data by being embedded in a hierarchical model (Leeuw

et al. 2008). In a hierarchical model, parameters, such as intercept and slope terms,

for each subject are assumed to be samples out of a distribution that is common for

all subjects within a group, that is a population or an experimental condition. The

result of an inference process in this case would be both subject-specific and group-

specific parameters, with the latter representing the parameters of the group-level

distributions.

A hierarchical model with a GLM incorporated within it for each subject was fitted

15



on observational data in an urban environment to test whether the unexpectedness

of rewards also influences affective state outside the lab (Otto et al. 2016). Peo-

ple residing within distinct zip codes in New York City were organised in groups

according to an index of the socioeconomic status of each neighbourhood. It was

then shown that people were more likely to gamble after recent unexpected pos-

itive events that were germane to them, such as a local sports team winning or

local weather conditions being better than expected. The effects of both sports-

and weather-related unexpected outcomes (slope parameters) were similar for the

high and low socioeconomic group, while the latter group exhibited higher gambling

activity overall (intercept parameter). This observation links to an optimism bias

that was hypothesised to be the result of a more positive affective state.

Using GLMs for individual subjects without introducing a group level, to cluster

subjects under, is feasible and allows for individual differences. However, in a simu-

lation study using synthetic data, it was shown that the use of an explicit hierarchical

structure in conjunction with GLMs when analysing nested data could reduce the

false positive rate for effects and increase statistical power to detect an experimental

effect (Aarts et al. 2015). Using data from published studies to inform the number

of observations within each group, or cluster, another simulation study corroborated

the same claim about the inflation of false positive rates and used visualisations of

the data within each group to discuss this observation (Aarts et al. 2014). More-

over, hierarchical models can be used without GLMs, as a way to calculate summary

statistics while accounting for the hierarchical structure of the data via hierarchi-

cal bootstrapping, which partially accounts for the variability within each group

(Saravanan et al. 2020).

There are technical benefits to hierarchical models that underlie the inferential ben-

efits around false positive rates and statistical power. In particular, parameters of

group members are being drawn towards a group average during inference, which is

a way to regularise inference and deal with outlier data (McElreath 2016, chapter

13). This process is known as partial pooling, which lies in between assuming identi-

cal parameters for all subjects (complete pooling) and assuming that each subjects’

parameters are independent (no pooling), as the examples of the previous section

did. The benefits of partial pooling will be more pronounced in the following sec-

tion, where Bayesian inference will be introduced as a way of calculating the model

parameters that best describe the data.
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1.2.2 Bayesian inference

The inference process discussed previously, whether GLMs were part of a hierarchical

structure or not, resulted in point estimates. That is, the inferred model parameters

were scalar numbers, representing the parameter values that best describe the data.

This type of inference is commonly called frequentist. This section will present an

alternative approach, known as Bayesian inference (Gelman et al. 2015; McElreath

2016, but see Quintana et al. 2018 for a discussion on the logic behind each approach

and equivalent statistical tests between them). Bayesian inference is based upon the

Bayes rule from probability theory

Pm(θ|D) =
Pm(D|θ)Pm(θ)

Pm(D)
(1.1)

where θ are the model parameters, such as the intercept and slope terms of a GLM

for individual subjects and parameters of the population-level distributions, D is

the observed data, representing a subject’s actions, P represents a probability and

the | symbol denotes a conditional probability. Then Pm(D|θ) is the likelihood of

observing the data given, or conditioned on, the model parameters θ, Pm(θ) is the

prior distribution of model parameters and Pm(D) is the probability of the data,

irrespective of model parameters, which is also known as the marginal likelihood or

model evidence. Combining these three probability terms in Bayes rule yields the

probability of the model parameters after observing the data, Pm(θ|D), that is the

posterior distribution of model parameters. The index m on each term indicates

that the inference process is dependent upon a chosen model m, for instance a

hierarchical model with GLMs for each subject.

The result of Bayesian inference is a joint distribution of possible values for all

model parameters, that is the posterior distribution. In order to calculate it, the

likelihood of observing the data, given a model and its parameters, are combined

with a belief about possible model parameters before observing the data. Thus, the

prior distribution is transformed into the posterior via the likelihood distribution.

Instead of the point estimates of frequentist inference, Bayesian inference yields a

joint distribution on the model parameters, thus quantifying the uncertainty around

the values of each parameter. This uncertainty is valuable for evaluating the extent

at which an effect was present and for performing model comparisons between mul-

tiple possible models, each one representing a separate hypothesis about how data

was generated (McElreath 2016, chapter 7).
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Related to the benefit of having an estimate of uncertainty is the pronounced ad-

vantage of the partial pooling property of hierarchical models in Bayesian inference.

There is a bidirectional influence between lower- and upper-level parameters within

the hierarchy that constitutes partial pooling (McElreath 2016, chapter 13). For

instance, subject-level parameters will be chosen to match individual subject data

and their values will inform the selection of the parameters of the group-level dis-

tributions, that should include the individual subjects. In turn, the group-level

parameters constrain the values that individual subject parameters can have, as the

subjects are samples out of the groups. Thus, uncertainty about individual subjects

will propagate upwards to uncertainty about the corresponding group, which can

consequently inform parameter comparisons. Furthermore, subject-level parameters

are pooled closer to the expected value of their group-level distribution, with the

extent of this pooling being weighted by the uncertainty around the likelihood of

observing a subject’s data given their parameters.

In the current example of a hierarchical model, the subject-level parameters es-

sentially have an adaptive prior distribution, which is shaped by the group-level

parameters as they adapt to the data during inference (McElreath 2016, chapter

13). However caution must be taken when defining priors for the group-level pa-

rameters themselves. Different choices of prior distributions for the highest level of

the hierarchy could both hide or yield an effect with high certainty, as it was shown

in an analysis of simulated data of healthy and depressed individuals making choices

in a probabilistic learning task (Valton et al. 2020).

The product of the likelihood and prior distributions, Pm(D|θ)Pm(θ), constitutes a

generative model of how the data and the model parameters are jointly distributed,

P (D, θ). This means that the product could be used to simulate fictive data, first by

drawing samples out of the prior and then by using these parameter values to sample

fictive data out of the likelihood. This step is important both before inference, in

order to inspect the data that the model expects to observe, and after inference,

by using the posterior in place of the prior (Gelman et al. 2020 and Wilson et al.

2019 for a discussion of the benefits of simulating data specifically for behavioural

tasks). Simulating fictive data using the prior could help to diagnose unreasonable

prior distributions, particularly on the highest group level of the hierarchy. The

case of producing fictive data after inference could be a useful process for assessing

the quality of inference by comparing the generated with the observed data and

for using the generated data as a prediction of future observations, that could for

example inform future experiment designs (van de Schoot et al. 2021).
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The frequentist inference framework comes with multiple statistical tests. Reliable

inference in this case depends upon the type of data, strict cut-off thresholds for sig-

nificance and correction after the tests (McElreath 2016 chapter 1 for an overview).

This fact could make correct inference harder to accomplish and in many cases to

replicate as well. On the other hand, the Bayesian framework offers a simpler process

to achieve good quality in the inference results. This process relies solely on Bayes

rule and mathematical operations on the posterior distribution results, for example

taking the difference between the posterior of a parameter from a drug treatment

group and the same parameter from the vehicle control group to calculate what is

the probability of a nonzero effect.

Nevertheless, Bayesian inference often is not as straightforward as an application of

the Bayes rule. The marginal likelihood term is calculated as

Pm(D) =

∫
Pm(D|θ)Pm(θ)dθ

the integral of the product of the likelihood and the prior over all model parameters

θ is often too computationally expensive or intractable to calculate. Two families

of methods offer a solution to this issue by approximating the posterior distribution

without calculating the marginal likelihood: variational inference and sampling-

based inference. Variational inference approximates the posterior distribution with

a known distribution, which is called the variational distribution (MacKay 2003,

chapter 4). The parameters of the variational distribution are then determined by

minimising a distance metric between the variational distribution and the actual

posterior. Given Bayes rule, the actual posterior within such a distance metric is

decomposed into a likelihood and a prior, thus circumventing the issue of having

to calculate the marginal likelihood. This approximation is particularly accurate

for specific pairs of likelihood and prior distributions that fulfill the conjugate prior

property (Fink 1997).

The second family of methods approximates the actual posterior by drawing samples

from it. It does not calculate the marginal likelihood, however it does perform a

normalisation to the samples so that the result is a probability density function.

Algorithms belonging to this family will be employed in the current thesis and they

are presented in the following section.
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Sampling-based approximate Bayesian inference

Approximating the posterior distribution by drawing samples from it can be achieved

by multiple algorithms (McElreath 2016, chapter 9). A common element across

these methods is that they build a sequence, or chain, of samples, that follows the

Markovian property. That is, each new sample in the chain will only depend on

the previous one in the sequence. This family of methods is called Markov chain

Monte Carlo (MCMC). Methods of this family use different processes for taking a

new sample and deciding on whether to attach it to the sequence or redraw.

A commonly used MCMC method that can draw samples efficiently and robustly

is the No-U turns sampler (NUTS), an extension of the Hamiltonian Monte Carlo

(HMC) method (Hoffman et al. 2014). The goal of HMC is to move around the typ-

ical set of the posterior distribution, that is the area in parameter space where most

of the probability mass of the posterior lies, and draw independent samples from it

(Duane et al. 1987; Betancourt 2018). In order to achieve this without diverging

away from the target region, it utilises the notion of Hamiltonian mechanics, that

is a way to describe the trajectory of dynamical systems. The posterior probability

density function is mapped to a potential energy term, while a kinetic energy term

is calculated through momentum values for each parameter. The momentum values

are sampled according to the respective parameter values using various distributions,

with the Gaussian distribution being a typical choice.

The sum of the potential and kinetic energy terms constitutes the Hamiltonian,

which is then used to draw a trajectory in the extended space that includes both

parameters and their momentum vectors. This way of drawing a trajectory allows

for the exploration of the parameter space in closed contours, where the total Hamil-

tonian is approximately preserved and there is only an exchange of energy between

potential and kinetic (Betancourt 2018). Consequently, the trajectories do not di-

verge away from the region of importance (Figure 1.2). As the goal of the method

is to draw independent samples, the NUTS sampler allows the trajectory to move

in parameter space until it begins to move towards its starting point, making a U

turn. At that point the trajectory is stopped and the sampler decides on whether

to keep this final point as the next sample or reject it and start again. The decision

is based upon the ratio of probability densities at the initial and the final point of

the trajectory.

In addition to the simulation-based checks that were discussed in the previous sec-
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Figure 1.2: A trajectory during inference by Hamiltonian Monte Carlo
methods: The red band represents the typical set, or the target region, of the
posterior distribution to be explored. The ideal case for the trajectory in green is
to move within this band to maximise the number of representative samples. This
is achieved in HMC methods by using the Hamiltonian, the sum of a potential and
a kinetic energy term, to define the contours, which constrain the directions that
trajectories can move through. Each contour is represented by arrows that draw a
closed curve. In the NUTS variant of HMC, the current trajectory will stop before it
starts to come around the left side of the circle towards its initial point and a decision
will be made on whether to keep the sample or not. Subsequently, a new initial point
will be chosen close to the red band and a new trajectory will be drawn. The HMC
methods negotiate a balance between kinetic and potential energy to sample points
and draw trajectories as close to the red band as possible. Taken from Betancourt
2018.

tion, there are multiple diagnostic checks specific to sampling-based inference meth-

ods (Baribault et al. 2021; Vehtari et al. 2021b). Thus, the extent at which the

posterior distribution was explored sufficiently is verifiable. These diagnostics will

be presented more thoroughly in the following chapters when they are applied to

the posterior samples.

1.3 Inference by theoretical models

The final approach to inferring affective state through observations of a subject’s

actions concerns theoretical models of behaviour. Such models are mathematical

descriptions of mental processes that precede the selection of an action. They repre-

sent distinct hypotheses about how actions are being generated, given sensory input

and any internal process, such as memory replay. The two broad categories where

the influence of affective state has been described mathematically are learning and
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decision-making tasks.

A theoretical model is defined by a set of parameters that represent different factors

and a set of mathematical equations that describe how these factors give rise to

actions. The difference between theoretical models and the statistical models of

the previous section is that theoretical models are domain-specific and based upon

formal theories around learning and decision-making. In order to quantify the effect

of affective state on the model parameters, tools from the previous section will be

utilised. Models are fit to action data, via either frequentist or Bayesian inference,

and the resultant parameters are analysed in order to assess how affective state

modifies each one of them.

The application of theoretical models particularly to the behaviour of patients with

psychiatric disorders, including anxiety and depression, falls under the recent field

of computational psychiatry (Friston et al. 2014; Huys et al. 2016). The combina-

tion of behavioural tasks with theoretical models of learning and decision-making,

informed by observations of actions, has contributed to a better understanding of

mood disorders (Huys et al. 2020). Examples of such applications, along with stud-

ies with acute affective state manipulations on healthy subjects, will be presented

in the following sections.

1.3.1 Decision-making models

A classical approach to modelling decision processes is the drift-diffusion model

(DDM) (Ratcliff et al. 2008 for an overview of applications). The DDM (Figure 1.3)

models the real-time integration of sensory evidence towards one of two alternative

interpretations as a stochastic process. The drift of the process corresponds to the

ratio of the likelihood of the evidence supporting one interpretation over its alterna-

tive, while the added diffusion on the drift represents the quality of the accumulated

evidence. The result is a noisy integration of the sensory input towards one of two

decision bounds, with each bound corresponding to an action. Moreover, the model

is able to account for biases towards any action via the position of the starting point

of the drift-diffusion process, relative to the decision bounds.

The DDM has been used to explain the behaviour of rats in the Judgement Bias

Task, where the interpretation of an ambiguous cue could lead to either a high or a

low reward (Hales et al. 2016). It was shown that the negative affective state after an

anxiogenic drug treatment or after repeated restraint stress and social isolation led to
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Figure 1.3: The drift-diffusion model of decision-making: The response time
of a decision is modelled as a noisy evidence integration process. The evidence
accumulation initiates at the decision starting point and proceeds according to a
drift and a diffusion term towards either one of the decision bounds. When a bound
is reached, the corresponding action is taken. The model is able to account for
multiple factors that are thought to be important in a decision process; a bias
towards an action via the distances between the starting point and the bounds, a
non-decision response time potentially due to the execution of the action, noise in
the sensory evidence to be accumulated via the diffusion term and interpretation of
the sensory input via the drift. Taken from Hales et al. 2016.

an increased interpretation of the ambiguous cue as the reference cue associated with

the low reward. A reduced anticipation of high reward and an elevated anticipation

of low reward were measured under the negative state, indicated by the position of

the decision starting point and the distance between the bounds. A follow-up study

using positive affective manipulations found comparable changes to the summary

statistics of the animals’ actions under chronic treatment with fluoxetine, an SSRI

antidepressant, and acute treatment with ketamine, an NMDA receptor antagonist

and novel antidepressant (Hales et al. 2017). However the model revealed differences

in how the drugs affected the decision-making process. Ketamine resulted in a

more optimistic interpretation of the ambiguous cue towards the high-reward cue,

whereas fluoxetine increased the decision starting point towards the high-reward

action bound. The same version of JBT was translated into a human task (Aylward
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et al. 2020). In this case, symptomatic people with anxiety disorder exhibited a more

negative drift rate, an observation that suggests an interpretation of the ambiguous

cue as the low-reward one.

Other studies have used Bayesian decision models to investigate the effect of affective

state. These models have been shown to be equivalent to the DDM model under

certain conditions (Bitzer et al. 2014; Fard et al. 2017). The Bayesian models assume

that a subject is using Bayes rule, as it was presented in the previous section,

to reason about incoming sensory input and potential outcomes that alternative

interpretations could lead to (Whiteley et al. 2008). Thus, unlike DDM these models

make use of information about the magnitude of potential outcomes.

A JBT variant in humans used visual stimuli and a choice to either take a gamble,

for a monetary win or loss, or opt out (Iigaya et al. 2016). The actions of participants

were fitted to a Bayesian decision model using variational inference and a hierarchical

model structure of trials, subjects and two groups. People that were given a bag

of sweets prior to the task and placed into a pleasantly decorated room for the

experiment were shown to value losses more than wins and were less risk-averse,

compared to a second group of participants, who were placed in an undecorated

room and received no food reward beforehand.

In a similar JBT variant with auditory cues, rewards and punishments, it was shown

that when rats experienced more rewards shortly before a test session, they were

subsequently more risk-averse when interpreting the ambiguous cues (Neville et al.

2020b). Conversely, rats that were previously exposed to multiple air puffs exhibited

a more optimistic bias, since they interpreted the ambiguous cue as one leading to

reward and not punishment. A model fitting process similar to the human version

was employed, using a hierarchical model and variational inference. Model parame-

ters for the group of rats in the reward condition revealed an increased sensitivity to

punishments and a bias towards the risk-averse action, while conversely the air-puff

group had an increased sensitivity to reward.

A more recent JBT variant in humans used groups of dots on a screen moving ran-

domly towards the left or right direction, with various degrees of coherence between

the direction of individual dots (Neville et al. 2021). The average movement di-

rection of the group determined whether the outcome would be a win or a loss of

known magnitude. Participants had to keep pressing a button to achieve the out-

come or stop pressing it to opt out of a trial. The authors extended the Bayesian

decision model by adding a GLM in order to account for the influence of the recent
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history of reinforcement on the subjects’ actions. Periods of high past earnings and

positive prediction errors were correlated with positive affect, as measured by inter-

mittent questionnaires, and were biasing the subjects away from the risky action.

Furthermore, participants in a more negative affective state were less able to cor-

rectly estimate the amount of time between initiating the button press and receiving

the outcome.

The DDM model has also been applied to the effort expenditure for reward task,

where depression patients and healthy controls had to press a button multiple times

for a high reward or choose a less effortful low-reward alternative (Berwian et al.

2020). The drift rate of the model was the difference between a weighted sum of

the effort and the reward of the high-effort action and the equivalent sum for the

low-effort one. Patients were more sensitive to the required effort, as their drift

rate was less positive, resulting in more low-effort actions. Moreover, the amount of

evidence required to make a decision for the low-effort option, as measured by the

low-effort decision bound, could predict the relapse of patients within 6 months of

stopping their medication.

1.3.2 Learning models

The role of affective state is important in cases when the potential outcomes of

actions are not known a priori and need to be learned via interaction. Reinforcement

learning is the primary framework that describes such interactions between an agent

and its environment (Sutton et al. 2020). A reinforcement learning agent acts in

order to change the state of its environment and receives rewards or punishment

from it as an outcome. In doing so, the agent learns about the optimal actions

to take in a given state of the environment in order to maximise its accumulated

reward in the future.

States of an environment could be thought of as sensory input to the agent. The

process of learning constitutes updating an estimate of how beneficial an action is

in a certain state. The estimate of an action in a state reflects either a preference

for the action given a behavioural policy or the expected outcome that this action

would lead to (see Bennett et al. 2021 for a discussion on the distinction between

preferences and expected outcomes). In both cases, the running estimate of an

action is compared to the experienced outcome during learning. This difference is

the reward prediction error (RPE), which guides the update of the action estimate
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via a learning rate parameter that determines how much distant experiences should

be weighted relative to recent ones. The final component of a reinforcement learning

agent is an action selection rule that weighs the expectations of available actions

and decides on which one to take.

Reinforcement learning models have been widely used across learning experiments,

particularly in conjunction with the tasks that were discussed in section 1.1.5 (Huys

et al. 2013). They have aided in the characterisation of differences between patient

and control groups in sensitivity to positive and negative feedback, when learning

the expected outcome of actions (Pike et al. 2022).

Probabilistic learning tasks have been used in conjunction with reinforcement learn-

ing models to elucidate how affective state modulates the adaptation to feedback.

One study included actions that could lead to both a win and a loss with indepen-

dent probabilities (Pulcu et al. 2017). The authors manipulated the probabilities of

wins and losses separately to distinguish the effect of positive and negative feedback

on learning. Each probability was either in a stable or a volatile condition, where it

varied frequently across trials. A reinforcement learning model with distinct learn-

ing rates for wins and losses was fitted to the choices of healthy humans performing

the task. The model parameters that were retrieved indicated that participants had

an elevated learning rate for the probability that was volatile within each block of

trials, suggesting that they were following the most informative feedback.

Using the same probabilistic learning protocol with stable and volatile conditions,

another study found that highly anxious individuals were less able to adjust their

learning rate when the condition changed (Browning et al. 2015). Individuals with

a high anxiety index were using a higher baseline learning rate in a probabilistic

reversal learning study, which involved choices between three options, whose the

probability of reward varied across three values (Huang et al. 2017). The higher

learning rates led to an elevated lose-shift behaviour due to the higher sensitivity to

recent negative feedback. A subsequent article discussed these and similar findings

and suggested that people with anxiety and depression possibly misestimate the

amount of uncertainty in their environment and find negative events more informa-

tive to focus on (Pulcu et al. 2019).

A disproportionate focus on negative feedback has also been observed in healthy hu-

mans, when performing a multi-step probabilistic learning task (Eldar et al. 2020).

Participants’ actions given a visual cue could either result in an immediate out-

come or in another cue, where a second action would lead to an outcome. By
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manipulating the cue-cue and cue-outcome contingencies, while recording magne-

toencephalographic (MEG) data, the authors observed that the best performing

participants had a propensity to replay trials that resulted in a negative feedback.

This occurred when participants were not engaged with the task and it was detected

by matching the MEG activity during the task with that during periods of rest, in

between blocks of trials. Subsequent work using an extended reinforcement learning

model suggested that replaying negative feedback is beneficial in cases when learned

contingencies are being forgotten quickly or the learner is uncertain about them

(Antonov et al. 2021).

The parameters of reinforcement learning models could interact in ways that are

not immediately obvious. For instance, in a similar probabilistic learning task with

fixed probabilities of wins and losses, participants were split into a high and a low

depression index group, as judged by a questionnaire (Kunisato et al. 2012). The

high depression index group was found to have a higher average learning rate for

losses. However, a subsequent meta-analysis of multiple studies involving people

with depression indicated that this adaptation deficit was more likely to be due to

a diminished reward sensitivity, rather than an increased learning rate (Huys et al.

2013). In this work, reward sensitivity was modelled as a multiplier to the acquired

reward, which is then incorporated into the value of the relevant action.

The learning models discussed so far have described ways in which affective state

influences learning. However affective state could also be modulated by ongoing ex-

periences. For example, the effect of positive and negative surprises, corresponding

to positive and negative RPEs, has already been discussed in section 1.2. A study

investigated the reciprocal relationship between affect and learning by extending a

classical reinforcement learning model with a mood parameter, which was fit on the

actions of humans during a probabilistic learning task (Eldar et al. 2015). Mood

was calculated as a running average of RPEs and it modulated the sensitivity to

wins and losses. Intermittent trials of a wheel of fortune producing an unexpected

outcome were implemented as a means to cause sudden changes in mood. The mood

parameter correlated closely with scores from a self-reported mood questionnaire,

suggesting that the model could reliably infer the participants mood. Addition-

ally, a mood instability score was correlated with a positive modulation of outcome

sensitivity by the mood parameter. This positive modulation is equivalent of a

magnification of wins and losses and it could lead to mood instability, as model

simulations indicated.
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Another study that investigated how affective state changes during ongoing learning

experience found that this effect was specific to learning-relevant surprises (Blain

et al. 2020). This study implemented a probabilistic reward learning task in a stable

or a volatile condition, where probabilities of reward reversed after a set amount of

trials. Participants had to learn the probability of reward for each action, while the

reward amount was irrelevant. The authors used a reinforcement learning model to

update expectations and choose actions, along with a GLM to correlate prediction

errors around probabilities and rewards with self-reported mood. Happiness was

more sensitive to errors in the estimation of the probability rather than reward.

Elevated depressive symptoms correlated even more with the modulation of affective

state by probability prediction errors, particularly in the volatile condition.

1.4 Aims and objectives

The overarching aim of the present thesis was to develop reliable approaches for

inferring the affective state of animals through their actions in decision-making and

learning tasks.

Chapter 2 involved experimental work on the Judgement Bias Task. The objectives

were initial replications of previous findings with pharmacological manipulations

and the design of a new task variant in an effort to enhance the ambiguity of the

testing cues.

Chapter 3 describes the design of a novel behavioural task with the goal of measuring

affective-state related biases in animals’ responses as they are conflicted between

foraging for reward or fleeing from an imminent aversive event. The task was inspired

by the conditioned suppression task that has been previously used, particularly as

a model of fear with high-intensity inescapable punishments. The aim was to assess

whether escapable aversive events of low intensity could be employed to elicit a

suppression of the reward-seeking behaviour. This way our novel protocol could

be an improvement in terms of animal welfare and it could be used for chronic

studies. Complementary to the task design was a hierarchical Bayesian model that

was designed to capture individual differences in the animals’ behaviour.

Chapter 4 returns to the JBT task with the aim of looking into the animals actions in

more detail, by considering the actual sequence of trials rather than averaging across

an experimental session. A large scale analysis of previously acquired JBT data
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suggested that factors such as the history of reinforcement and the feedback of the

most recent trial were important determinants of the animals’ actions. Hierarchical

Bayesian models were designed and fitted to a large dataset of animals’ actions

during JBT. These models combined principles of the decision models, discussed in

section 1.3.1, and the learning models of section 1.3.2, in order to capture both the

interpretation of the ambiguous stimuli and the influences from the past. Each model

represented a distinct hypothesis about which factors were most important. A model

comparison was performed to evaluate the probability of each model being correct.

Differences between animal populations originating in distinct breeding facilities and

between the pharmacological manipulations of chapter 2 were investigated in light

of the most accurate model.

Finally, the work of chapter 5 was inspired by the action biases, which were measured

in the Affective Bias Test (ABT) and involved non-immediate contingencies between

actions and outcomes. We designed a novel reinforcement learning (RL) agent model

that could account for the ABT observations by incorporating affective state in its

learning process. Moreover, novel simulated tasks were designed and implemented

in code, as examples of naturalistic environments that deviate from the standard

trial-based structure that only involves immediate action-outcome contingencies.

The functional benefits of our model were evaluated in these environments and

compared against alternative models, as a way of assessing the functional benefits

of including affective state in an RL agent.
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Chapter 2

Judgement bias task:

interpretation bias under

ambiguity

2.1 Introduction

There are multiple versions of the Judgement Bias Task (JBT), also known as the

Ambiguous Cue Interpretation task, varying in terms of sensory modality, outcome

valence and reinforcement schedule among other factors (Roelofs et al. 2016 for a

review). This chapter includes experimental work on two versions of the task in rats

using reward outcomes, yet different reinforcement schedules and sensory stimuli.

Besides these differences, the premise of the task remained the same: decisions

under an ambiguous stimulus are primarily driven by expectations of outcomes.

The valence and the magnitude of the expected outcomes in turn reflect an animal’s

affective state.

The JBT has exhibited efficacy as an animal model of antidepressant manipulations.

Past experiments have measured a positive shift in the interpretation bias of rats

under an acute ketamine treatment, while conventional antidepressants only had an

effect after a chronic treatment (Hales et al. 2017). These results have supported the

claim that ketamine is a compound with novel rapid-acting antidepressant properties

(Carboni et al. 2021 for a recent review). Thus, the positive ketamine finding was

an important one for the translational validity of the JBT. The first study of cohort

1 was designed as a replication study of this result.
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Results from the Affective Bias Test (ABT), a different animal model of affective

state manipulations, have indicated that administering ketamine 24 hours before

a test session had an effect in mitigating a negative bias (unpublished data). The

ABT measures affective biases of previously learned stimulus-outcome contingencies,

however the differential influence of the drug depending on the pretreatment time

was deemed relevant for JBT as well. Even though ketamine previously caused a

rapid change in interpretation bias, the duration of this effect is unknown. Thus,

the second study of cohort 1 measured the delayed effects of a ketamine treatment,

which was administered 24 hours before testing.

Given a failure to replicate the positive shift in interpretation bias under ketamine,

an amphetamine study was subsequently conducted in cohort 1 as a positive con-

trol. An acute amphetamine treatment has previously resulted in the largest positive

shift in the rats’ interpretation bias, as compared with ketamine, cocaine and con-

ventional SSRI antidepressants (Hales et al. 2017). The effect of amphetamine was

replicated successfully. Given this result and the fact that animals of cohort 1 were

supplied by a different breeding facility, compared to animals that took part in the

original ketamine experiments (Hales et al. 2017), a ketamine dose-response study

was performed. The aim of this experiment was to assess whether the failed repli-

cation was due to a difference in sensitivity to the drug between cohort 1 and the

animals of past studies.

In past JBT studies in rats, different frequency tones were used as reference cues

and the ambiguous cue (AC) was a tone, whose frequency was between the two

references (Harding et al. 2004; Hales et al. 2016; Hales et al. 2017; Jones et al.

2018). However, there is no common agreement across studies about which tone

frequency would make AC purely ambiguous. Thus, setting the frequency for the

AC constitutes a design choice, which might promote biased actions in JBT, caused

by perceptual interpretations of the ambiguous cue as one of the other two cues.

Animals could learn new stimulus-action-outcome contingencies for the newly pre-

sented AC, akin to their past training with reference cues. Several JBT studies have

measured a drift in the animals’ responses to the AC over trials, which was indica-

tive of learning from past feedback (Roelofs et al. 2016 for a review). Introducing

fewer AC trials decreased the amount of drift, making CBI more stable, thus more

likely to be driven by an interpretation bias, based on prior reward expectations,

instead of a learned expectation for the value of each action.

Both the perceptual biases and learning effects could potentially confound the in-
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terpretation of the animals’ actions according to the premise of the task. Namely,

animals could respond to the AC based on a perceptual interpretation of the cue or

the feedback during past trials and not according to their expectation of a large or

small reward.

A novel variant of the JBT was designed with the aim of addressing these confound-

ing factors. Cohort 2 took part in the pilot run of this task. The reference cues were

simultaneous tone and light presentations, with a common light component. The

ambiguous cue consisted of a sole presentation of the same light stimulus. Addition-

ally, there were fewer ambiguous trials within a test session, compared to the JBT

variant of cohort 1. The reference cues resulted in probabilistic feedback, instead of

always leading to the corresponding reward on correct choices, as was the case of

the original JBT of cohort 1. The aim of this design was to enhance ambiguity by

omitting information, as there was the familiar light but no sound during ambiguous

trials, instead of placing the ambiguous stimulus on the same scale as the reference

cues. Moreover, the ambiguous trials were further apart in time and omissions of

reward were partially expected, since the animals were trained on probabilistic feed-

back. It was hypothesised that these changes would hinder any potential learning

of new contingencies about the ambiguous cue and promote responses driven by an

interpretation bias.

Cohort 2 was initially assessed in a test to evaluate how ambiguous the chosen light

stimulus was with respect to the multimodal reference cues. Reward magnitudes for

correct actions were kept the same in this experiment, so that responses would be

purely driven by a perceptual interpretation of the AC.

Previous work in humans has measured disruptions in a perceptual decision-making

task without differences in reward magnitudes, where it was suggested that ke-

tamine could make the accumulation of ambiguous sensory stimuli more uncertain

(Salvador et al. 2022). A potential change in perceptual processing under ketamine

could confound the effect of the drug on the interpretation bias. Thus, in the sec-

ond experiment of cohort 2, I tested whether ketamine could shift the perceptual

interpretation of the AC, when both reward magnitudes were equal.

Following these experiments, it became evident that the animals could have been

using the tone loudness when responding to the AC. In order to test this hypothesis,

the third experiment of cohort 2 changed the loudness of the tone of one of the

reference cues, while keeping the rewards magnitudes equal.
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2.2 Methods

2.2.1 Animals

The experiments in this chapter were conducted on two cohorts of male Lister

Hooded rats (N=15 for cohort 1 and N=16 for cohort 2), supplied by Envigo UK.

Rats weighed approximately 270-300 g at the start of training, and approximately

400 g at the start of the pharmacological manipulations. They were housed in groups

of two in cages with environmental enrichment, which consisted of a red 3 mm Per-

spex house (30 x 10 x 17 cm), a cardboard tube and a cotton rope suspended across

the cage lid. Temperature was controlled within the range of 19-23 oC and humidity

at 45-65%. Rat cages were placed in rooms with a twelve-hour reverse light cycle

(lights off at 0800 hours) to ensure behavioural testing was carried out during their

active period (between 0800 and 1800 hours). Water was available ad libitum in the

home cage. During training and testing, rats were maintained at no less than 90% of

their free-feeding body weight with restricted access to laboratory chow (LabDiet,

PMI Nutrition International) to 18 g per rat per day. All procedures were carried

out under local institutional guidelines (approved by the University of Bristol An-

imal Welfare and Ethical Review Board) and in accordance with the UK Animals

(Scientific Procedures) Act 1986. During experiments all efforts were made to min-

imise suffering, and at the end of experiments rats were killed by giving an overdose

of sodium pentobarbitone.

2.2.2 Hardware

Standard rat operant chambers (Med Associates, Sandown Scientific, UK) were

used to conduct all experimental studies. The dimensions of the chambers were

30.5 x 24.1 x 21.0 cm. Each chamber was positioned inside a light-resistant and

sound-attenuating box that contained a ventilation fan. All chambers included two

retractable response levers, which were located on each side of the food magazine.

Two lever lights (LL) were positioned above each lever (1” White Lens, 28 V). A

rubber tube connected the food magazine to the pellet dispenser, while a house light

(28 V, 100 mA) was located above the magazine. The pellets used as reward in all

sessions were 45 mg grain-based sweetened food pellets (5TUL Test Diet, Sandown

Scientific, UK). An audio generator (ANL-926, Med Associates, Sandown Scientific,

UK) produced tones that were delivered to each chamber via a speaker placed at
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the top of the chamber, above the left lever.

2.2.3 Software

The K-Limbic software (Conclusive Solutions Ltd., UK) operated as an interface

between the operant chamber and a computer. It managed all input parameters

to the chamber, such as dispensing pellets, extending and retracting levers and

switching lights on and off. The software further controlled the audio generator.

It received chamber output through lever presses and magazine entries, which it

turned into a Microsoft Excel file (.xlsx format) after the end of each session. Cus-

tom code was developed in Julia (v1.6) (Bezanson et al. 2015) to read through the

output forms, map the data into a common table format and produce all figures

(https://github.com/harisorgn/JBT).

2.2.4 Task Design

Each rat of both cohorts of the present studies was trained to associate one of two

reference cues with one of two available actions, which in turn led to one of two

different reward amounts. In previous studies, to optimize the design of this version

of the JBT, the magnitude of the the reward outcomes was chosen as one and four

reward pellets (Hales 2016). The cues corresponding to the high and low reward

magnitudes are presently referred to as HC and LC respectively. The available

actions throughout all experiments were single presses on either one of the two

levers located on either side of the magazine inside the operant chamber. The levers

remained extended throughout each session. These actions are referred to as high

action (HA) and low action (LA), to represent the correct action that leads to a

high reward (HR) and a low reward (LR) value respectively. Both cue-action and

action-outcome pairs were counterbalanced across all animals of both cohorts.

Figure 2.1 includes a graphical representation of the task. Successful graduation

from all training stages ensured that rats were able to respond to each of the HC

and LC stimuli with the appropriate action to receive an HR or an LR outcome.

During the subsequent test sessions, the AC was presented for the first time. Given

no prior association between the newly presented ambiguous cue and the available

actions, the task’s premise is that a rat would use its prior expectation of a small or

large reward and take the action that corresponds to the expected reward amount.
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HC HA HR

LC LA LR

AC Prior

HA

LA

optimistic

pessimistic

Figure 2.1: Graphical representation of the basic premise of JBT: The top
two rows are sequences of cue-action (HC-HA, LC-LA) and action-reward (HA-HR,
LA-LR) associations, being built through training. The ambiguous cue (AC) is
presented during test sessions for the first time, thus it is not linked to a particular
action. The premise of the task is that actions towards the previously high rewarded
option, HA, reflect a more optimistic prior expectation and therefore a positive
affective state, whereas choosing LA, which was previously led to a low reward
value, would imply a pessimistic prior and a more negative state.

As depicted in the bottom sequence of Figure 2.1, an action taken towards the lever

that had been previously associated with a high reward was deemed an optimistic

action, reflecting a positive affective state. Conversely, an LA response, which had

a trained association with the LR, would imply a more negative affective state.

2.2.5 Task parameters

Tables 2.1 and 2.2 summarise the task parameters, where there were differences

between the task versions implemented for cohort 1 and cohort 2 respectively.

The magnitude values of all tones were based on a linear approximation of the

audiogram of hooded rats (Heffner et al. 1994), while the audiogram curve in the

range between 2 and 8 KHz was the closest to linear (Syka et al. 1996). The

loudness adjustment was performed so that all tones were equally audible by the rats.

Counterbalance between reference cues and reward amounts was not implemented,

as it has been shown that rats were unable to be trained successfully when the 8 KHz
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tone was paired with the high reward of four pellets (Hales 2016). The amplitude

of all tones remained constant during cue presentation, after an initial rise period

of 0.025 seconds.

In the novel JBT design for cohort 2, there was no need to carefully adjust the

frequency of the AC to ensure that the AC was perceptually equidistant from the

two reference tones. The AC was a visual stimulus (LL), which was a common

component between the reference cues. The reference cues were compound stimuli,

consisting of the lever lights switching on and a tone of constant frequency. The

tone parameters were initially the same as for cohort 1. However the loudness of

the LC changed from 64 to 76 dB for experiment 3. In order to make sure that rats

were trained efficiently to discriminate between the reference cues, the tone started

playing 0.5 seconds before the lever lights came on, during all stages of the task.

Moreover, the number of ambiguous trials in a test session was reduced and the

reinforcement schedule for correct responses on reference cues was probabilistic for

this task.

HC AC LC
Parameters Tone (2 KHz, 75 dB) Tone (5 KHz, 70 dB) Tone (8 KHz, 64 dB)

N of trials
in test session

40 40 40

Reinforcement
schedule

100% 50% 100%

Table 2.1: Task parameters for the JBT of cohort 1

HC AC LC

Parameters
Tone (2 KHz, 75 dB)
+LL

LL
Tone (8 KHz, 64/76 dB)
+LL

N of trials
in test session

40 20 40

Reinforcement
schedule

80% 50% 80%

Table 2.2: Task parameters for the JBT of cohort 2: LL: lever lights on

2.2.6 Trial structure

Figure 2.2 depicts a flowchart of the structure of a trial. This format was imple-

mented exactly as shown for the Reward Magnitude Training stage and during all

consecutive experimental studies. The earlier Discrimination Training stage was

based on the same structure with the only difference being that the size of both

rewarded outcomes, HR and LR, was set to one pellet. All trials were self-initiated
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by the rat with a nose-poke into the magazine. An inter-trial interval (ITI) between

the beginning of the trial and the presentation of a cue ensured that rats learned to

hold their responses until a cue was presented to avoid a time-out due to a prema-

ture lever press. All cues were played for a maximum time of 20 seconds and were

stopped if a response was made during this time. No response within the allotted

time resulted in a time-out. Reference cues, HC and LC, were always rewarded

after a correct response, while the AC was rewarded 50% of trials, with the reward

amount being dependent on the action taken.

This flowchart was used for trials of both cohort 1 and 2. The only deviation from

this trial structure is that for cohort 2 a correct action HA or LA, during a trial

where HC or LC was presented respectively, led to a reward 80% of the time, with

no reward the rest of the time. A graphical example depicting the rat in the operant

chamber during an HC trial is shown in Figure 2.3.

Trial start,
HL off, ML on

Nose poke
in magazine

ITI=5 sec,
HL off, ML off

TO=20 sec,
HL on

present AC,
T=20 sec

present HC,
T=20 sec

present LC,
T=20 sec

TO=5 sec,
HL on

deliver HR,
ML on

TO=5 sec,
HL on

deliver LR,
ML on

TO=5 sec,
HL on

Premature
response
during ITI

HA

LA
or no
response

LA

HA
or no
response

HA

50%

50%

LA

50%

50%

No
response

Figure 2.2: Structure of a JBT trial: Boxes represent states during a trial and
arrows contain in unframed text the conditions for transitioning between consecutive
states. Trials are self-initiated by a nose-poke into the magazine, followed by an ITI
and then the presentation of a cue, chosen pseudo-randomly. Cues are presented for
a maximum of 20 seconds and if no response if made within this time, the trial is
registered as an omission. Responses during the AC lead to probabilistic outcomes
50%/50%, dependent on the type of response. HL : House Light, ML : Magazine
Light, ITI : Inter-Trial Interval, TO : Time Out, T : Time of cue duration, HC :
High Cue, AC : Ambiguous Cue, LC : Low Cue, HA : High Action, LA : Low Action,
HR : High Reward, LR : Low Reward.
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Figure 2.3: Graphical depiction of a JBT trial: A tone is presented at the
beginning of a trial (left panel). The rat makes a choice by pressing one of the two
levers (middle panel). The tone stops after an action is taken. The rat receives
a reward, which is dependent on the presented tone and the pressed lever (right
panel). In this example the tone was a high-reward cue (HC, 2 KHz) and the rat
correctly chose the high-reward action (HA), resulting in the high reward (HR, 4
pellets).

2.2.7 Behavioural metrics

Several metrics were calculated from the raw output of each session. These quantities

were extracted for each rat of both cohorts. The number of indices on each metric

denotes the its number of dimensions, while the type of each index describes the

granularity used for its calculation. First of all responses were measured as

Response percentage : Rc,a =
Nc,a

Nc

100% (2.1)

where Nc,a is the number of trials when cue C was presented and action A was

taken, and Nc is the total number of trials where cue C was presented, regardless of

the chosen action. In the following Results section, response percentages to all cues

are reported only for the HA action, that is matched with the HC reference cue to

deliver the HR reward. This way, accuracy for the HC can be directly monitored,

along with inaccurate responses during LC, since HA was chosen incorrectly in these

trials. Most of the LC trials when an HA response was not made, a correct LA one

was, since the omissions were consistently low. Thus an estimate of LA accuracy

could be gained indirectly.

When no response was made during a trial, that trial was registered as an omission

in the output. The rate of omissions was measured for each cue as

Omission percentage : Oc =
Nc,∅

Nc

100% (2.2)

where Nc,∅ represents trials of cue C where no action was taken within the cue

presentation time.
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Responses during the ITI, before cue presentation and after the nose-poke that

initiates a trial, were registered as premature actions.

Premature percentage : P =
Np

N
100% (2.3)

with Np being the total number of premature responses in a session and N being

the total number of trials in a session, including the premature ones.

Response times measured the time in seconds between cue presentation and action

taken in response as

Response time : RTa,c,i = Ta,c,i − Tc,i (2.4)

where Ta,c,i is the time when action a was taken during trial i when cue c was played

and Tc,i denotes the start of cue c presentation in trial i. The response time of

omission trials was set to the maximum cue presentation time of 20 seconds. In the

current chapter, response times are reported as averages across all correct response

times during reference cues, HC and LC, and for either response made during the

AC for each animal in each session.

The four metrics above were control measures. The pharmacological manipulations

used in our experiments were purported to only change the affective state and there-

fore the prior expectation for reward that drives actions during the AC (Figure 2.1).

Thus, any changes to these four control measures would imply some off-target effect

of the drug.

The Cognitive Bias Index (CBI) was the final metric. It measured the affective

biases of rats during the AC trials of test sessions. This was the principal metric for

JBT:the core hypothesis is that affective state influences actions under ambiguity

and, therefore, change the lever preference under the AC. This is what the CBI

measured and it was defined as

CBI =
NAC,HA −NAC,LA

NAC,HA +NAC,LA

(2.5)

where NAC,HA and NAC,LA were the number of trials when AC was presented and

the HA or LA action was made respectively. The CBI varied between -1 and 1, with

more positive values representing a bias towards choosing the high reward action,

HA, thus implying an optimistic prior expectation of reward and conversely for

negative values.
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2.2.8 Training stages: cohort 1

The original training stages of the JBT protocol were designed based on the phe-

nomenon of Pavlovian-to-instrumental transfer (Cartoni et al. 2013). Pavlovian

conditioning sessions of cue-outcome associations were followed by action-outcome

training without cues. Cues, actions and outcomes were then combined in a third

training stage. Here, an altered version of this protocol was tested in an effort to

reduce the length of the training period. All training stages, the number of sessions

spent on each one and the criteria for moving to the next stage are presented in

Table 2.3. Training sessions took place 5 days per week, Monday to Friday.

Training Stage
Duration

(Sessions)
Criteria

Magazine Training 2 • >20 pellets eaten

Tone Training 4 • >70% accuracy on two consecutive sessions

• >1:1 correct:premature responses ratio on two consecutive sessionsDiscrimination Training 16

Reward Magnitude Training 10
• >60% accuracy on two consecutive sessions

• 1:1 correct:premature responses ratio on two consecutive sessions

Table 2.3: Training stages for cohort 1: Training stages are shown along with the
number of sessions it took for the cohort to graduate each stage and the correspond-
ing graduation criteria. Experiments started after the end of Reward Magnitude
Training.

Magazine training had the form of typical Pavlovian conditioning. It consisted of

two sessions, during which one of the two reference cues was presented for 5 seconds,

followed by a single pellet reward. Trials were not self-initiated at this stage. The

ITI between cues was 30 seconds. Each session included presentations of only one

of the two reference cues, while the same process was repeated for a second session

with the other cue.

The next stage was Tone Training, where the goal was to teach the rats to respond

to each reference cue with the correct action. Each session included repetitions of a

single reference cue, while the session cues alternated for consecutive sessions. Only

the correct lever for each cue was extended. Rats were rewarded with a single pellet

if they pressed on the lever during the 20 seconds of cue presentation. This stage

introduced self-initiation trials, an ITI between trial start and cue presentation,

premature actions and time-out, as shown in the flowchart of Figure 2.2.

The Discrimination Training stage was the first one to include both cues within a

session. Cue presentations followed a pseudo-randomised order and each cue was

presented for 50 trials. Both levers were extended at this stage. Rats had to learn
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to respond to each cue with the correct action and be more than 70% accurate on

both cues in order to graduate from this stage.

After successful discrimination performance, the Reward Magnitude Training stage

introduced the difference in reward values. The HC cue, followed by the correct

HA action now led to four sugar pellets. All other parameters were identical to the

Discrimination Training Stage. The accuracy criterion at this stage was reduced to

60% to allow for biases due to the differential reward outcomes.

Experiments with pharmacological manipulations were initiated after successful ful-

fillment of the Reward Magnitude Training criteria. The only experiment that was

conducted before that point was a probe test session that introduced the ambiguous

cue, immediately after the end of Discrimination Training. This session was carried

out in order to asses perceptual biases when responding to the AC. Since the reward

values were both set to one pellet, any deviation from choosing randomly between

HA and LA during the AC would imply that this stimulus is not truly ambiguous

and the rats interpret it as one of the reference cues before responding.

2.2.9 Experiment design: cohort 1

Experiment 1: 1vs1 perceptual test

This experiment included a single session, which introduced the AC for the first

time. There were no differences in rewarded outcomes, with LA and HA resulting

in a one-pellet reward 100% of the time during HC and LC trials and 50% of all AC

trials.

Experiment 2: 4vs1 baseline test

In experiment 2, the baseline behaviour of cohort 1 was measured, when both the

AC and the different reward values were present. This experiment took place over a

week. On Monday and Thursday a session identical to Reward Magnitude Training

was run. Tuesday and Friday included probe test sessions, the same as the Exper-

iment 1 session, with the only exception being that there was now a difference in

reward magnitude.
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Overview of pharmacological experiments 3-6

Subsequent experimental studies involved pharmacological manipulation. The de-

tails of each experiment are included in Table 2.4. Each one of these experiment was

a fully counterbalanced, double-blinded, within-subject study. All drugs were sup-

plied by Sigma-Aldrich (UK). They were dissolved in 0.9% sterile saline vehicle. The

same saline was used as a control treatment in every experiment. All substances,

control and drugs, were administered through intraperitoneal (i.p.) injection, using

non-restrained technique, shown to reduce reduce stress in animals (Stuart et al.

2015a). The week schedule during each experiment was identical to experiment

2, with pharmacological manipulations occurring on Tuesdays and Fridays, while

Reward Magnitude Training sessions were run on Mondays and Thursdays.

Experiment 3 Experiment 4 Experiment 5 Experiment 6
Drug Ketamine Ketamine Amphetamine Ketamine

Dose volume [mg/kg] 1.0 1.0 0.3 0.3, 1.0, 3.0
Pretreatment time [h] 1 24 0.25 1

Table 2.4: Pharmacological manipulations for Experiments 3-6.

2.2.10 Training stages: cohort 2

Table 2.5 summarises the training stages, their criteria and the time spent on each.

one for the new JBT variant. The initial stage, Magazine Training, was the same as

for cohort 1. Presentations of one reference cue for 5 seconds per trial were followed

by a reward pellet, every 30 seconds.

Training Stage
Duration

(Sessions)
Criteria

Magazine Training 2 • >20 pellets eaten

CRF Training 7 • >70% accuracy on two consecutive sessions

• >1:1 correct:premature responses ratio on two consecutive sessionsDiscrimination Training 15

Experiments 1 & 2

Discrimination Training

(new contingencies)
18

• >70% accuracy on two consecutive sessions

• >1:1 correct:premature responses ratio on two consecutive sessions

Experiment 3

Table 2.5: Training stages for cohort 2: Training stages are shown along with
the number of sessions it took for the cohort to graduate each stage and the corre-
sponding graduation criteria. Experiments 1 and 2 took place after the end of the
first round of Discrimination Training. Then, Discrimination Training was repeated
with new cue-action contingencies before Experiment 3.
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The following stage was CRF (Continuous Reinforcement) Training, where levers

were extended and rats were rewarded after either lever press during the presentation

of either one of the reference cues. This stage was implemented in order to train the

rats to wait for the light component of the compound reference cues, before making

a response. The tone component of each cue was initiated 0.5 seconds before the

lever lights were switched on during all trials. Responses before the lever lights were

on counted as premature.

The design of the third stage, Discrimination Training, was similar to that of cohort

1. Presentations of both reference cues were interleaved in a pseudo-randomised

order. Only responses to the lever matched to the cue presented were considered

correct. For the first seven sessions, correct responses were always rewarded, while

after that point the probability of reward changed to 80% and remained constant

throughout all future stages and experiments.

After achieving the criteria for successful discrimination, two experiments took place.

The first one was a baseline 1vs1 experiment, in order to assess how the rats re-

sponded to the novel ambiguous cue. Consequently, the effect of an acute treatment

with ketamine on the perception of this ambiguous cue was measured in a second

experiment.

The results from the above experiments indicated potential sources of bias in the

rats’ responses, not caused by their affective state. Therefore, training was restarted,

with alterations on the auditory component of the reference cues, to further inves-

tigate our observations. In order to restart the training process, cue-action contin-

gencies were swapped for reference cues. Thus, rats had to learn anew to press a

previously incorrect lever for both cues. After fulfilling the discrimination training

criteria for the new contingencies, experiment 3 commenced.

2.2.11 Experiment design: cohort 2

Experiment 1: 1vs1 perceptual test

The first experiment of the compound JBT was to test the ambiguity of the chosen

AC. Correct responses to the reference cues were rewarded at 80% of their trials,

while the reward rate for ambiguous cues was set at 50%. All rewards had the same

magnitude. Two test sessions were conducted as part of this experiment.
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Experiment 2: Effect of an acute ketamine treatment on the perception

of the ambiguous cue

This was a fully-counterbalanced, double-blinded, within-subject study with a single

dose volume of ketamine at 1.0 mg/kg and a vehicle drug as control. All rewards

had the same magnitude.

Experiment 3: 1vs1 perceptual test with altered reference cues

Experiment 3 was a repetition of experiment 1 after an adjustment to the loudness

of one of the reference cues was made. After retraining the animals to discriminate

the new cues, two test sessions took place.

2.2.12 Statistical Analysis

Cohort 1 studies were a direct replication of past experiments that had shown an

effect of a drug treatment on CBI by performing one-sample t-tests on the difference

in CBI between drug and vehicle treatments. Thus, the same statistical test was

used to assess the replicability of the past published results (Hales et al. 2017) and

to test for effect of novel drug treatments. The cohort 2 experiments were designed

to evaluate whether a novel AC could induce greater ambiguity. One-sample t-tests

were then used to calculate deviations of CBI values from the value of zero, which

corresponded to total ambiguity under our hypothesis.

2.3 Results

2.3.1 Cohort 1

Experiment 1: 1vs1 perceptual test

The first experiment conducted in cohort 1 was a test of the ambiguous cue under

equal reward values. The first test session of this experiment had to be excluded,

since no animal met the criterion of having the ratio of correct responses over prema-

ture being more than 1. Moreover on the second session two animals were excluded
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for the same reason.

The results for the included animals and sessions are shown in Figure 2.4. The

CBI was negative for most animals, with the standard error of the cohort mean not

overlapping 0. A t-test on the Cognitive Bias Index (Figure 2.4A) revealed an effect

that was not statistically significant (one-sample t-test: t(12) = −2.14, p = .054).

The HA response here was paired with the 2 KHz tone, thus negative values of

CBI imply a bias towards the 8 KHz-paired lever (LA) when responding during the

ambiguous 5 KHz tone. Accuracy values for both reference cues were around 80%,

as judged by looking at the HA responses (Figure 2.4B) and the omission rates

(Figure 2.4D) that were very low across cues. The response times (Figure 2.4C)

were comparable across cues, although being more variable for the 5 and the 8 KHz

tones. The premature responses (Figure 2.4E) were elevated relative to future test

sessions, however they were within the criteria for 13 out of 15 animals in the second

session.
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Figure 2.4: Behavioural metrics for the 1vs1 perceptual test: A: Cognitive
Bias Index, B: percentage of trials when HA was chosen for each cue, C: response
times for correct trials during 2 and 8 KHz and either responses during 5 KHz
trials, D: omission percentages for each cue, E: premature response percentages
during the session. Session 1 of the 1vs1 was excluded as all animals failed to meet
the required criteria. Diamonds are cohort means, whiskers are SEM, circles are
individual animals, N=15. HA : High Action, corresponds to the correct action for
the 2 KHz cue
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Experiment 2: 4vs1 baseline test

In experiment 2, I measured the baseline behaviour of cohort 1 under differential

reward values. These were four pellets for HA responses at HC and one pellet for

responding LA during LC trials. The CBI values of both sessions (Figure 2.5A)

were centered around 0, though individual animals covered most part of the range

of possible CBI values (first session one-sample t-test: t(14) = .07, p = .941, second

session one-sample t-test: t(14) = −0.63, p = .537). The CBI values were stable

across sessions (paired sample t-test: t(14) = 1.09, p = .293). The response times

(Figure 2.5C) during correct responses on the HC were much faster than those during

the LC, with minimal overlap between the two conditions. Response times during

the AC, irrespective of the chosen action, were closer to those during the LC than

responses during HC. Additionally, omission rates (Figure 2.5D) were higher for LC

trials compared to HC ones. Omissions during AC trials shifted upwards from the

first to the second session, with the sample statistics of the cohort overlapping those

during the LC.

Experiment 3: Effect of an acute ketamine treament

The first drug study for cohort 1 was a single-dose, acute treatment with ketamine.

Figure 2.6A depicts the difference in CBI between the ketamine session and the

vehicle one. Most animals exhibited a positive shift in CBI under ketamine, however

the drug’s effect on the population mean was not significant (one-sample t-test:

t(14) = 1.9, p = .077, Figure 2.6A). Ketamine did not disrupt the accuracy during

the HC or the LC (Figure 2.6B). Inaccurate responses during the LC occurred at

the same rate between conditions, even though the omission rate in these trials was

decreased under ketamine (Figure 2.6D). Response times for correct responses during

the HC were consistently the fastest, however correct responses during LC trials

and particularly AC trial responses exhibited a downwards shift under ketamine

(Figure 2.6C). Finally, the ketamine treatment did not alter premature response

rates (Figure 2.6E).
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Figure 2.5: Behavioural metrics for the 4vs1 test sessions: A: Cognitive Bias
Index, B: percentage of trials when HA was chosen for each cue, C: response times
for correct trials during 2 and 8 KHz and either responses during 5 KHz trials,
D: omission percentages for each cue, E: premature response percentages during
the session. Diamonds are cohort means, whiskers are SEM, circles are individual
animals, N=15. HA : High Action, HC : High Cue, AC: Ambiguous Cue, LC : Low
Cue
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Figure 2.6: Behavioural metrics for the acute ketamine treatment sessions:
A: Difference in Cognitive Bias Index between ketamine and a vehicle drug, B:
percentage of trials when HA was chosen for each cue, C: response times for correct
trials during 2 and 8 KHz and either responses during 5 KHz trials, D: omission
percentages for each cue, E: premature response percentages during the session.
Ketamine dose was 1.0 mg/kg, delivered via i.p. injection, 1 hour before the test
sessions. Diamonds are cohort means, whiskers are SEM, circles are individual
animals, N=15. HA : High Action, HC : High Cue, AC: Ambiguous Cue, LC : Low
Cue.
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Experiment 4: Delayed effect of an acute ketamine treament

Experiment 4 involved the same drug treatment as experiment 3, a single dose of

ketamine. In experiment 4 though, the pre-treatment time was 24 hours before each

test session to determine if there were any sustained effects of ketamine. There was

no significant effect of the ketamine treatment on CBI (one-sample t-test: t(14) =

1.67, p = .115, Figure 2.7A). No changes were observed on the rest of the behavioural

metrics, indicating no off-target effect of the drug.

Experiment 5: Effect of an acute amphetamine treatment

Experiment 5 aimed at measuring the effect of an acute treatment with a single dose

of amphetamine on actions during the AC. There was a significant positive difference

in CBI between amphetamine and vehicle (one-sample t-test: t(14) = 2.82, p = .013,

Figure 2.8A). Amphetamine additionally caused an increase in incorrect responses

during LC (Figure 2.8B) and an elevated premature response rate (Figure 2.8E).

There were no differences in the rest of the measures, except for a small decrease in

response times during LC trials under amphetamine (Figure 2.8C).

Experiment 6: Dose-response ketamine study

The final experiment for cohort 1 was a dose-response study with three dose volumes

of ketamine. No dose caused a significant shift in CBI (Figure 2.9), relative to the

vehicle treatment (one-sample t-tests: 0.3 mg/kg t(14) = 0.18, p = .857, 1.0 mg/kg

t(14) = 0.63, p = .541 and 3.0 mg/kg t(14) = 1.13, p = .276). Similarly, no ketamine

dose caused changes to the rest of the behavioural metrics.
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Figure 2.7: Behavioural metrics for the acute ketamine treatment, 24 hours
before test sessions: A: Difference in CBI between ketamine and a vehicle drug, B:
percentage of trials when HA was chosen for each cue, C: response times for correct
trials during 2 and 8 KHz and either responses during 5 KHz trials, D: omission
percentages for each cue, E: premature response percentages during the session.
Ketamine dose was 1.0 mg/kg, delivered via i.p. injection, 24 hours before the
test sessions. Diamonds are cohort means, whiskers are SEM, circles are individual
animals, N=15.HA : High Action, HC : High Cue, AC: Ambiguous Cue, LC : Low
Cue.
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Figure 2.8: Behavioural metrics for the acute amphetamine treatment:
A: Difference in Cognitive Bias Index between amphetamine and a vehicle drug,
B: percentage of trials when HA was chosen for each cue, C: response times for
correct trials during 2 and 8 KHz and either responses during 5 KHz trials, D:
omission percentages for each cue, E: premature response percentages during the
session. Amphetamine dose was 0.3 mg/kg, delivered via i.p. injection, 15 minutes
before the test sessions. Diamonds are cohort means, whiskers are SEM, circles
are individual animals, N=15. ∗p < .05. HA : High Action, HC : High Cue, AC:
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Figure 2.9: Behavioural metrics during the ketamine dose-response study:
A: Difference in Cognitive Bias Index between each ketamine dose volume and a
vehicle drug, B: percentage of trials when HA was chosen for each cue, C: response
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D: omission percentages for each cue, E: premature response percentages during the
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60 minutes before the test sessions. Diamonds are cohort means, whiskers are SEM,
circles are individual animals, N=15.
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2.3.2 Cohort 2

Experiment 1: 1vs1 perceptual test

Both reward value after HA and LA were set to 1 pellet for this test, in order

to investigate potential perceptual biases around the novel ambiguous cue. The

CBI values during both sessions of this experiment were significantly negative (one-

sample t-tests: t(15) = −14.48, p < .001, Figure 2.10A). Following the convention

that HA action is paired with the compound cue that includes the 2 KHz tone

component, negative CBI values indicate a bias towards the LA action, which is

paired with the 8 KHz + LL cue. Most animals appeared faster at responding

correctly to the 2 KHz + LL cue, compared to the other reference cue (Figure

2.10C).

Experiment 2: Effect of an acute ketamine treatment on the perception

of the ambiguous cue

No shift in CBI (Figure 2.11A) was detected under ketamine (one-sample t-test:

t(15) = 1.13, p = .274). Moreover, there were no changes to the other four be-

havioural metric, as shown in Figure 2.11.

Experiment 3: 1vs1 perceptual test after reference cue changes

The final experiment with cohort 2 involved another perceptual test with equal

reward values, akin to the design of experiment 1. The difference between the

two experiments was that the loudness of the 8 KHz tone was changed to 75 dB

from its previous value of 64 dB. This adjustments led to significantly positive CBI

values in both sessions, as shown in Figure 2.12A (one-sample t-tests: session 1

t(15) = 23.86, p < .001 and session 2 t(15) = 27, p < .001). This observation

reflected a bias during the ambiguous cue trials towards the HA response, which

was paired with the 2 KHz + LL cue throughout training. Interestingly, the rats

appeared to choose the HA lever press more frequently during ambiguous trials,

compared to trials of the 2 KHz + LL reference cue (Figure 2.12B). There was a

small decrease in the sample mean of correct response times during the 8 KHz +

LL cue, compared to the other reference cue, as depicted in Figure 2.12C.
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Figure 2.10: Behavioural metrics for the 1vs1 perceptual test: A: Cognitive
Bias Index, B: percentage of trials when HA was chosen for each cue, C: response
times for correct responses during reference cues and either response during the AC,
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Figure 2.12: Behavioural metrics for the 1vs1 perceptual test with altered
tone loudness: A: Cognitive Bias Index, B: percentage of trials when HA was
chosen for each cue, C: response times for correct responses during reference cues and
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2.4 Discussion

The present chapter aimed at expanding upon the JBT in rats, which involved exclu-

sively rewarded outcomes and measured interpretation biases, driven by differential

expectations of reward. In cohort 1, replication attempts of positive findings with

ketamine were conducted, along with an effort to investigate the delayed effects of

the drug for the first time in JBT. Subsequently, cohort 2 was part of a novel JBT

variant, designed to address several confounding factors of the original task.

The direct replication attempt of a positive shift in interpretation bias under ke-

tamine (Hales et al. 2017) was not successful. A second study that repeated the

ketamine dose under investigation (1.0 mg/kg), along with two other ones (0.3 and

3.0 mg/kg), also did not show an effect for any of them, suggesting that the issue

was not a different sensitivity to the drug between cohort 1 and the rats of the orig-

inal ketamine studies. Moreover, none of the secondary behavioural metrics were

disrupted under ketamine (Figures 2.6 and 2.9), thus confirming that the drug did

not have any off-target effect. Furthermore, the baseline behaviour of the animals

in cohort 1 was stable across sessions (Figure 2.5), and similar to the animals’ be-

haviour in the original ketamine studies. The CBI was centered around zero, while

the omissions and premature actions were below the exclusion criteria.

Two more direct replication attempts of the effect of ketamine, within the same

facility as cohort 1, by the authors of the published study, were unsuccessful as

well (unpublished data). The only known difference between the published work

and these subsequent replication attempts was the animal supplier. This factor is a

subtle one but could have undocumented effects on the animals’ behaviour. Both ge-

netic and behavioural differences have been reported in inbred mice across breeding

facilities (Bryant 2011; Jaric et al. 2022). Moreover, outbred rats, which originated

in different facilities, have exhibited differences in risk-taking and exploratory be-

haviour (Palm et al. 2011). A factor that could vary across breeding facilities is the

extent at which animals are handled by people. Rats, which are not handled reg-

ularly during their first month, exhibit elevated anxiety-like behaviour in multiple

tests, such as novelty-suppressed feeding and open-field exploration (Caldji et al.

2000).

The present study considered low doses of ketamine, in the range of 0.3-3 mg/kg,

as previous work has shown positive shifts in interpretation bias without any be-

havioural side-effects at this range (Hales 2016). Ketamine and its main metabolite,
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norketamine, are non-competitive NMDA receptor antagonists (Ebert et al. 1997),

particularly in the medial prefrontal cortex (mPFC) and dorsal hippocampus (HPC)

of rats in the considered dose range (Mion et al. 2013). The concentration of the

drug in plasma and brain tissue, extracted from mPFC and HPC, increases rapidly

within a few minutes of systemic administration of an 2.5 mg/kg dose, but dimin-

ishes within the first hour (Saland et al. 2018). The concentration of norketamine,

however, remains more elevated within the same time window, and this effect is

particularly pronounced in female rats. A similar systemic dose of 5 mg/kg in rats

has been shown to disrupt communication between the two brain sites, by causing

synaptic depression of the HPC-mPFC pathway, an effect that is likely mediated by

the availability of dopamine D1 receptors in mPFC (Kamiyama et al. 2011).

Amphetamine previously caused the largest positive effect on CBI (Hales 2016).

This effect was replicated successfully, in cohort 1, as was the increase in premature

responses (Figure 2.8), which is thought to be an outcome of the drug’s stimulation

of motor activity in general. Another JBT study with amphetamine observed a sig-

nificant effect only at a higher dose (1.0 mg/kg, compared to our 0.3 mg/kg) (Rygula

et al. 2014). However, the task design of that study involved a reward and a pun-

ishment as the potential outcomes, not rewards of different amount. Amphetamine

is known to increase the release of monoamine neurotransmitters, primarily target-

ing dopamine and noradrenaline (Heal et al. 2013). The effects of dopamine and

noradrenaline on responding to an ambiguous stimulus could be different, when the

potential outcomes are rewards or when a punishment is also probable.

The failed replication attempts of ketamine motivated a closer look into the task

design. One design factor that could be a caveat is the choice of the AC parameters,

when the AC is on the same scale as the reference cues. In cohort 1, the AC was

thought to be truly ambiguous due to a combination of tone frequency and loudness.

However, the results of experiment 1, which was designed to assess the perception

of this AC without different reward amounts, were inconclusive as one session had

to excluded, due to an elevated number of premature responses (Figure 2.4). The

included data also revealed an increased number of premature actions, relative to

past and future sessions. Interestingly, all animals did fulfill the same criterion of

having more correct responses than premature ones in the Discrimination Training

stage, exactly before moving on to the test week for this experiment. This disparity

in behaviour could only be attributed to the presence of the ambiguous cue.

Having ambiguous cue trials during the two test sessions of experiment 1 decreased
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the number of rewards earned, since the presentations of reference cues, which were

100% rewarded after correct responses, were diluted by the presence of 50% rewarded

ambiguous trials. Responses on reference cues were more than 70% accurate, given

the criteria of Discrimination Training (2.3). Thus, rats were used to a higher reward

rate during training. Consequently, during the test session, the lower reward rate

due to unrewarded ambiguous trials could have caused an agitation that led to the

increase in the premature percentage. The observations of more vigorous actions due

to higher food deprivations have been reported across a range of species (Hull 1943).

In Pavlovian conditioning, an increase in response vigor was observed when reward

probability was decreased, thus reducing reward rate (Anselme 2015). The authors

suggested that this effect arose because of an elevated appetite. Here I similarly

assume that a decrease from the accustomed reward rate led to a higher appetite

and consequently higher vigor, which overrode the animal’s inhibitory control to

withhold responding before the ITI ends, as per the task rules.

In addition to a possible effect of reward rate, experiments 1 and 2 of cohort 1 imply

that there was a potential perceptual bias driving the rats’ actions. Experiment

2 differed from experiment 1 only in the reward amounts after correct actions to

the reference cues. The CBI values of experiment 2 (2.5A), when the outcomes

were four or one pellets, did not change with respect to the CBI measured in the

perceptual test of experiment 1 (Figure 2.4A), when both rewards were equal to one

pellet. According to the hypothesised process behind AC responses, as described

in Figure 2.1, this observation implies that rats had no prior expectation of any

particular reward amount. However, this is unlikely to be the only interpretation

of the data, since rats of the same strain, under the same food restriction protocol,

were willing to work for a similar amount of reward pellets, even when multiple lever

presses led to a single pellet reward (Griesius et al. 2020). It could be possible that

the rats valued the four pellets more than the one, yet they were primarily driven

by a perceptual interpretation of the AC, rather than one reflecting their reward

expectations.

The novel JBT design of cohort 2 primarily aimed at addressing the potential per-

ceptual bias of the original task design. However, the goal of removing the AC

from the same scale as the one containing the reference cues, which is the frequency

scale, was not successful in this initial attempt. The animals of cohort 2 exhibited a

significant bias in experiment 1, with smaller inter-individual variance compared to

the original task (Figure 2.10A). The sign of this extreme CBI value was reversed in

experiment 3 (Figure 2.12), when the tone loudness of one of the cues was changed.
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Rats are able to distinguish between tones within the range of loudness values that

I used between experiments 1 and 3 (Akrami et al. 2018). Thus, it is likely that

the rats were matching the AC to the reference cues using the tone loudness as the

common scale. The AC contained no explicit tone, so it is probable that the cue

was interpreted as the reference cue that was least perceptible to the animals.

Ketamine did not shift the animals’ CBI under equal reward values in cohort 2

(Figure 2.11A). Nevertheless, the apparent perceptual bias during experiments 1

and 3, due to the potential use of tone loudness as the scale of reference, is a limiting

factor when interpreting the effect of ketamine. The animals did not appear to treat

the AC as an ambiguous stimulus, thus the experiment could not provide any insight

in terms of the influence of ketamine on processing uncertain sensory information.

Overall, both JBT versions have provided evidence in favour of the existence of a

perceptual bias, due to the AC not being truly ambiguous. Nevertheless, any in-

terpretation of the animals’ actions as being driven by perception is limited. This

limitation stems from the increased number of premature actions and the high ex-

clusion rate in the perceptual test of cohort 1 and the extreme CBI values of cohort

2 that rendered further experiments impossible.

Future JBT studies could reassess the possibility of perceptual interpretations of the

AC by introducing probabilistic rewards to lower the reward rate that the animals are

trained on. Probabilistic rewards could consequently lower the number of premature

responses during the perceptual test with equal rewards. Moreover, using multiple

ambiguous stimuli could further inform the inference on potential perceptual and

reward-driven effects. Psychometric curves of the animals’ actions during each cue

could then be better fitted to the data (Carandini et al. 2013).

One hypothesis could be that intermediate tones closer to the reference ones are

more likely to be perceptually matched to the closest reference cue, whereas tones

that are equidistant from the reference cues are more ambiguous and thus more

likely to lead to actions driven by reward expectations. A meta-analysis of JBT

studies has shown that responses to intermediate cues are differentially modulated,

depending on their distance to the reference cues (Neville et al. 2020a). Multiple

tones of intermediate frequencies have been used in JBT studies with a reward and a

punishment as the potential outcomes (Harding et al. 2004; Jones et al. 2018; Neville

et al. 2020b). However, these studies only compared actions during the intermedi-

ate tones under different outcomes. In our JBT variant with exclusively rewarded

outcomes, a perceptual test with multiple cues and equal outcomes could precede a
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baseline test with different reward amounts, in order to dissect any perceptual and

reward-driven effects on actions.

Future JBT studies could additionally benefit from testing for a potential effect of

ketamine on the perceptual processing of the AC. A human study has shown that a

comparable low dose of ketamine (0.4 mg/kg) caused a disruption in the integration

of sensory information in a perceptual decision-making task without different reward

values for each one of the two available actions (Salvador et al. 2022). Particularly

in the original JBT task, where ketamine has previously shown promising results

of translational value, it would be beneficial to investigate perceptual biases as a

potential confounding factor. The use of multiple intermediate cues could further

enhance the inference capabilities of perceptual effects.

Besides a new definition of ambiguity as missing information, the novel JBT design

of cohort 2 included probabilistic rewards and fewer AC trials. These design choices

were made to address potential learning effects and effects of the average reward

rate, as animals were used to more frequent rewards and less instances of negative

feedback in the training sessions than in the test sessions of the original JBT.

Given the extreme bias in most animals’ actions in the novel JBT, the effect of these

changes in the task design could not be assessed. However, chapter 4 will address

the effects of past reinforcement and the negative feedback due to the 50% rewarded

AC in the original JBT using a model-based approach. A generative model of the

animals’ actions will be embedded within a hierarchical statistical model, which will

further account for any potential differences between rats originating in different

breeding facilities. Thus, a large-scale analysis, including animals from both the

original successful ketamine studies and the replication attempts, will be conducted

to investigate the animals’ behaviour in more detail.
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Chapter 3

Conditioned suppression task:

reward-seeking under threat

3.1 Introduction

Animals act to fulfill their needs for primary reinforcers, such as food and water, and

to avoid aversive experiences, such as pain. Studies on the Affective Bias Test (ABT)

in rats have provided evidence that the animal’s affective state, during learning

of an action-reward association, influences the memory of the learned reward and

consequently leads to biases either towards or away from taking the same action,

depending on the valence of the affective state (Stuart et al. 2013; Stuart et al.

2015b; Stuart et al. 2019; Hinchcliffe et al. 2022). However, less is known about how

affective state during an aversive event might influence the animal’s memory of it

and bias future actions.

Fear conditioning studies have provided evidence for exacerbated responses to un-

conditioned aversive stimuli after the induction of a negative affective state during

training, by serotonin receptor agonist drugs (Bauer 2015). Conversely, anxiolytic,

serotonin receptor antagonists have resulted in lower levels of fear expression in the

same protocol. These fear conditioning studies involve Pavlovian associations of a

conditioned stimulus with an aversive event and require no action from the animal.

The main behavioural metric is the amount of time an animal freezes during condi-

tioned stimuli presentations. There has not been a reliable way to measure freezing

as of now, as measurements by manual and automated methods do not agree to a

satisfactory degree (Anagnostaras et al. 2010). Moreover, the elicitation of freez-
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ing requires inescapable electric shocks of high intensity, which compromises animal

welfare and does not enable extended studies with chronic treatments.

The present chapter involves the design of a novel behavioural task, with the aim of

measuring affective biases on actions that are associated with the avoidance of an

aversive outcome. This design was based on the conditioned suppression task (CST)

(Ayres 1968). In CST, animals are trained to associate a conditioned stimulus (CS)

with an aversive outcome. During subsequent test sessions, the animals are free to

act in order to receive a reward and they suppress this reward-seeking behaviour

when the CS is presented. The task has been used in the past as an animal model of

fear (Kamin et al. 1963) and multiple studies introduced pharmacological manipula-

tions (Davis 1968 for a review) or altered Pavlovian conditioning protocols (Thomas

et al. 2005) to mitigate the suppression of the reward-seeking behaviour.

The aversive outcome typically used in published CST studies has been an electric

shock, either constant or in a pulse pattern, of intensities more than 0.5 mA (Davis

et al. 1979). Moreover the shock was unavoidable across all studies. This design

is more relevant for animal models of post-traumatic stress disorder (PTSD) (Bali

et al. 2015). However, we aimed at investigating how affective state influences

memories of aversive events, that are not traumatic. Thus, we introduced an escape

platform that was always available to the animals and considerably reduced the

shock intensity to the range of 0.2-0.3 mA. Additionally, these choices were made to

improve animal welfare for our task.

Maintaining a stable baseline suppression behaviour is essential for the design of

studies akin to the ABT protocol. The effect of affective state manipulations on the

memory of an aversive stimulus could then be measured by comparing the conse-

quent suppression behaviour with the baseline. Thus, making the aversiveness of the

shock stimulation smaller would enable longer within-subject studies without com-

promising animal welfare. This way, prolonged or chronic effects of affective state

manipulations could also be evaluated. This is unlike published conditioned suppres-

sion experiments, where animals typically took part in only one or two week-long

studies with inescapable shocks of higher intensity.

Making the aversive stimulus avoidable could induce a conflict in the rat between

staying to press for reward and potentially experience the electric shock or flee.

Other tasks, such as the Geller-Seifter (Geller et al. 1960) and the Vogel test (Vogel

et al. 1971) showed that rats suppress a reward-seeking behaviour when such a

conflict is present. However, in these tasks, the reward-seeking action also caused
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the delivery of the electric shock. This design does not allow for a manipulation on

the memory of the aversive stimulus specifically, which was the intention of our task.

Therefore, we introduced an escape platform to the CST in order to have aversive

conditioning and avoidable shocks.

The work described in this chapter involved a pilot study of our novel CST. It was

a proof of concept for our design, as it assessed the baseline suppression behaviour

of the animals without any affective state manipulations. Two experiments were

conducted using different types of conditioned stimuli, in order to assess whether

the option to flee from the imminent shock and the lower shock intensity could still

lead to reliable conditioned suppression measurements. A hierarchical statistical

model was designed to capture the effects of each shock condition on the cohort as a

group and on individual animals. Sampling-based approximate Bayesian inference

was employed to fit the model to data from both experiments and calculate the

posterior distributions of the possible effects.

The ultimate goal of this line of work is to conduct the Pavlovian conditioning

part of the protocol in different contexts, while manipulating the animal’s affective

state during the same days. Following this training process, the memory of the

aversive outcomes would be tested by reintroducing the same contexts along with

the matching CS, while the animals would be free to act for reward. Previous

experiments have indicated several contextual elements, such as odour of the operant

chamber and visual patterns on its walls, that do not allow for generalisation across

contexts during Pavlovian conditioning (Thomas et al. 2003).

3.2 Methods

3.2.1 Animals

The experiments in this chapter were conducted on one cohort of male Lister Hooded

rats (N=16), supplied by Envigo UK. Rats weighed approximately 260-300 g at the

start of training. They were housed in groups of two in cages with environmental

enrichment, which consisted of a red 3 mm Perspex house (30 x 10 x 17 cm), a

cardboard tube and a cotton rope suspended across the cage lid. Temperature was

controlled within the range of 19-23 oC and humidity at 45-65%. Rat cages were

placed in rooms with a twelve-hour reverse light cycle (lights off at 0800 hours)
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to ensure behavioural testing was carried out during their active period (between

0800 and 1800 hours). Water was available ad libitum in the home cage. During

training and testing, rats were maintained at no less than 90% of their free-feeding

body weight with restricted access to laboratory chow (LabDiet, PMI Nutrition In-

ternational) to 18 g per rat per day. All procedures were carried out under local

institutional guidelines (approved by the University of Bristol Animal Welfare and

Ethical Review Board) and in accordance with the UK Animals (Scientific Proce-

dures) Act 1986. During experiments all efforts were made to minimise suffering,

and at the end of experiments rats were killed by giving an overdose of sodium

pentobarbitone.

3.2.2 Hardware

Standard rat operant chambers (Med Associates, Sandown Scientific, UK) were

used to conduct all experimental studies. The dimensions of the chambers were

30.5 x 24.1 x 21.0 cm. Each chamber was positioned inside a light-resistant and

sound-attenuating box that contained a ventilation fan. All chambers included two

retractable response levers, which were located on each side of the food magazine.

Two lever lights were positioned above each lever (1” White Lens, 28 V). A rubber

tube connected the food magazine to the pellet dispenser, while a house light (28

V, 100 mA) was located above the magazine. The chamber floor was a grid of

parallel stainless-steel bars (ENV-005A), connected to programmable shock boxes

that could deliver scrambled electric shocks in the range of 0 to 10 mA. A removable

stainless-steel waste pan (ENV-007A3, dimensions 29.1 x 25.48 x 1.91 cm) was placed

underneath the floor bars, containing absorbent paper. The pellets used as reward

in all sessions were 45 mg grain-based sweetened food pellets (5TUL Test Diet,

Sandown Scientific, UK). An audio generator (ANL-926, Med Associates, Sandown

Scientific, UK) produced tones that were delivered to each chamber via a speaker

placed at the top of the chamber, above the left lever.

After the preliminary training stages, an escape platform was place on the grid floor.

It was located adjacent to the wall, opposite of the levers and the food magazine.

The platform was made of acrylic perspex and covered approximately 30% of the

grid floor. Additionally, a camera (Microsoft LifeCam HD-3000) was attached to

the ceiling of the operant chamber in order to both monitor the animals’ behaviour

during the experiments and record it in video files.
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3.2.3 Software

The K-Limbic software (Conclusive Solutions Ltd., UK) operated as an interface be-

tween the operant chamber and a computer. It managed all input parameters to the

chamber, such as dispensing pellets, extending and retracting levers and switching

lights on and off. The software further controlled the audio generator and the shock

boxes. It received chamber output through lever presses and magazine entries, which

it turned into a Microsoft Excel file (.xlsx format) after the end of each session. The

output file was a form of no consistent structure across entry rows. Custom code

was developed in Julia (v1.6) (Bezanson et al. 2015) to read through the output

form and extract the relevant entries (https://github.com/harisorgn/CST).

Video acquisition from all cameras was synchronised via a custom Python (v3.8)

script that interfaced with the cameras simultaneously, using parallel processing

(https://github.com/harisorgn/multi webcam). Video frames were both dis-

played on a PC screen for online monitoring and saved as video files.

3.2.4 Task Design

The task was designed to measure the extent at which an animal suppresses a

reward-seeking behaviour in the presence of an anticipated aversive stimulus. The

two components of the task, reward seeking and being able to predict an imminent

negative experience, were trained separately and finally combined in test sessions.

The reward-seeking component was implemented as multiple lever presses leading

to a reward pellet. This was achieved during the preliminary training. The aversive

conditioning was done differently in the two experiments that the rat cohort took

part in. Both experiments had a common Pavlovian conditioning basis with the same

unconditioned stimulus, the delivery of an electric shock. However, the experiments

had different types of CS that that the animals were trained to associate with the

shock.

Preliminary training

The conditioned suppression protocol was initiated by training rats to respond to

levers, as shown in Figure 3.1A. The first training stage was CRF (Continuous

Reinforcement) Training, where one lever remained extended throughout a session
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and each lever press was rewarded with one sugar pellet. Active levers alternated

in consecutive sessions.

The following stage introduced the trial structure in the task, by keeping a lever

extended for up to 60 seconds. Rats were required to press this lever N times,

where N depended on the Fixed Ratio (FR) schedule, to gain one reward pellet.

Consecutive presses had to be within 10 seconds of each other and all N presses

had to be performed within the 60 seconds. If the N lever presses were not fulfilled

in time, the lever was retracted and a reward pellet was not delivered. After the

end of a trial, regardless of the outcome, there was an ITI of 20 seconds until the

same lever was extended again for the next trial. The position of the active lever for

each session alternated. The sequence of FR schedules was FR(1), FR(2), FR(4),

FR(8) FR(16) and finally FR(32), where the number in the parenthesis denotes the

number of lever presses required to receive a reward. The FR(32) schedule was used

on all future sessions with active levers. The FR criterion in Figure 3.1A had to be

met for each schedule before the next one started.

After successfully being trained to press a lever 32 times for a pellet reward, all rats

progressed to the experimental phase of the protocol, including two different versions

of evaluating the conditioned suppression behaviour. For all experiment sessions

the escape platform was placed inside the operant chamber. Both experiments were

designed around a five-day schedule, running one session per day, every day from

Monday to Friday.

Experiment 1

The first conditioned suppression experiment is depicted in Figure 3.1B. Its first

session was identical to FR(32) training, which was implemented to ensure that

the rats’ performance was stable. Following this session, 3 sessions of Pavlovian

conditioning were conducted, training the rats to associate a CS with the delivery of

an aversive unconditioned stimulus (US) and flee from it onto the escape platform.

The CS in experiment 1 was a tone of 8 KHz and 65 dB, playing for 5 seconds. The

US was a pulsed shock, delivered through the metal grid floor. The pulse pattern

consisted of a time period of 0.2 seconds of active shock and 1.8 seconds of no

shock, repeated 15 times. This pulse pattern was previously used in tasks involving

active avoidance, as a less aversive alternative to continuous shock (Hinchcliffe 2019).

Moreover, by including periods of no shock, we aimed at giving rats a better chance of

68



(A) Preliminary training

CRF
Training

FR(N)
Training

E1
FR(32)
Training

E24 46 5 5

✓ >60 responses on two
consecutive sessions

✓ >80% completed trials
on two consecutive
sessions

(B) Experiment 1 (E1)

FR(32)
Training

Tone-Shock
Training

FR(32)+Tone
Test session

1 3

✓ >80% completed trials

✓ shock avoided in >70%
trials on two
consecutive sessions

(C) Experiment 2 (E2)

FR(32)
Training

Odour-Shock
Training

FR(32)
baseline session

FR(32)+odour
Test session

1 2 1

✓ >80% completed trials

✓ shock avoided in >70%
trials on two
consecutive sessions

✓ >80% completed trials

Figure 3.1: Conditioned suppression protocol: Preliminary training stages (A)
were followed by two types of conditioned suppression tests, one involving tones as
the CS (B) and the second one where CS was an odour, sprayed on the paper inside
the waste pan C. Consecutive stages are linked by arrows, which contain within
them the number of sessions animals spent on the first stage. Above each session
number there is a list of criteria, in grey and denoted by a tick symbol, that animals
had to fulfill to progress to the next stage. Squares represent individual stages and
ellipses are experiments that contain a sequence of different types of stages.
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escaping to the platform, without any disrupting motor effects of shock stimulation.

There were 10 trials of tone-shock pairs with an ITI of 150 seconds between them.

The ITI was set to be long enough in order to avoid associations being built between

the context of the operant chamber and the shock stimulus, as it was shown for

similar CS-US profiles in fear conditioning (Detert et al. 2008). Successful avoidance

of the shock was measured manually, through the recorded videos.

Response Time [sec]
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0.156
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Figure 3.2: Empirical cumulative density function of response time during
training: Response times from all animals were collated for the final week of FR(32)
training and the empirical cumulative density function (ECDF) was calculated to
estimate the proportion of trials that could be completed up to any number of
seconds. The time point of interest was the time of shock onset in future test
sessions. Given the chosen time delay between lever extension and tone onset, the
tone duration and the delay between tone offset and shock onset, the first shock pulse
would be delivered 8 seconds after lever extension. Within this time only 15.6% of
trials could be completed, as shown by the dashed lines. Therefore it was unlikely
for the rats to be able to finish an FR(32) schedule and flee from the imminent shock
in time.

The last session of an experiment 1 week was the conditioned suppression test ses-

sion. There were repetitions of a bank of trials, consisting of 8 trials identical to the

FR(32) training trials and 1 trial, where an FR(32) trial and a CS tone presentation

were ran in parallel. During the compound, FR(32) and tone, trials, the session
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lever was extended and 2 seconds later the CS tone started playing for 5 seconds,

as it was during Tone-Shock training. The delay between lever extension and tone

presentation was chosen to encourage the rats to start pressing the lever before the

tone that predicted an aversive event would be played. The delay of 2 seconds was

chosen based on the rat’s response times during the last week of FR(32) Training,

shown in Figure 3.2. Approximately 15.6% of all trials were completed after 8 sec-

onds, which is the time when the first shock is delivered (2 seconds lever-tone delay

+ 5 seconds tone presentation + 1 second tone-shock delay). Thus, the rats would

have to decide on whether to carry on responding for food and risk shock exposure or

flee, since it would be unlikely that they would manage to do both. This conflict was

the purported driving force behind suppression behaviour. The assumption behind

the chosen delay value was that the rats would start pressing a lever as soon as the

lever was extended, which was a safe assumption to make as judged by qualitatively

observing their behaviour via the cameras. Looking at the curve of Figure 3.2, it is

evident that even after allowing for a couple of seconds more before the first lever

press, up to 10 seconds since lever extension, still half of all trials would not have

finished.

The week schedule of Figure 3.1B was repeated for two consecutive weeks, for two

different values of shock intensity during the Tone-Shock Training sessions. These

were 0.2 and 0.3 mA.

Experiment 2

At the end of experiment 1 there was a week of daily FR(32) sessions; this was used

to verify that the animals’ lever-pressing performance had not changed because of

the aversive training and test session. It was noted during Tone-Shock training in

experiment 1 (Figure 3.1B) that all of the animals spent most of the session time

staying on the escape platform and not fleeing onto it during tone presentations.

This observation suggested that the rats might have been conditioned on the cham-

ber context during the Tone-Shock sessions, instead of on the tone exclusively. An

example of a clear contextual difference between conditioning and testing sessions

was the presence of a lever. In Tone-Shock training no lever was extended, while the

FR(32)+Tone test session included an active lever on every trial. Rats could have

used the absence of a lever as a cue that shocks could be delivered in the current

session and thus chose to stay on the platform.
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Experiment 2 was designed with the hypothesis of context conditioning in mind.

It involved an explicit contextual element, which was present in both the shock

conditioning and the test sessions. The aim was to promote stronger associations

between the chamber context and the shock, which could in turn lead to higher

suppression.

There were five sessions of different types, occurring daily from Monday to Friday,

as shown in Figure 3.1C. The first session of experiment 2 was an FR(32) Training

session, identical to that of experiment 1. The next two sessions were the condition-

ing sessions for this variant of the task. During Odour-Shock Training sessions, an

odour was sprayed on the sheet of paper, which was placed inside the waste pan on

the chamber floor. Essentially this session was identical to the Tone-Shock training

of experiment 1 with the only exception being that there were no tones in Odour-

Shock training. The conditioned stimulus now was the odour of the chamber. The

pulsed shocks were the same as in experiment 1, being delivered with an ITI of 150

seconds. The papers where odour was sprayed were discarded after each session and

the chamber was thoroughly cleaned.

Given that the animals were trained to associate the chamber odour with an electric

shock, suppression was measured across two sessions. First, there was an FR(32)

baseline session, when there was no added odour to the chamber. The next day,

an FR(32)+odour test session took place and the conditioned odour was present

throughout the session. The two sessions were identical in trial structure, matching

that of FR(32) training, while the only difference was the presence of the conditioned

odour in the final test session.

The session sequence of experiment 2, as depicted in Figure 3.1C, was repeated

for four consecutive weeks. The first and second week contained electric shocks of

0.2 and 0.3 mA intensity respectively. At the beginning of the weekend between the

second and third week the animals were taken off their food-restricted diet and given

access to free food. The hypothesis behind this manipulation was that by increasing

the rats’ satiety, they would devalue the pellet reward, given the effort required

to acquire it and consequently they would suppress or flee to the platform more

often during the test session. The third and fourth week of experiment 2 tested this

hypothesis with shock intensities of 0.3 and 0.2 mA respectively for all animals. The

shock intensity was not counterbalanced within either pair of weeks that included the

same dietary restrictions, as this was a pilot study to assess the animals sensitivity

to the given range of shock stimulation. All animals experienced 0.2 mA on the
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first week and 0.3 mA on the second. However, in order to account for confounding

factors, such as re-exposure to shock causing stronger Pavlovian associations or

sensitisation, the two shock intensities were presented in reverse order during the

third and fourth week of the experiment, after the dietary manipulation.

The conditioned odour for the first and second week of experiment 2 was a bergamot

essential oil, while the odour for the third and fourth week was a eucalyptus essential

oil. Both oils were diluted in water, with 5 drops of oil in a 100 ml water bottle.

3.2.5 Model-based analysis

Inference on suppression behaviour given the data from experiments 1 and 2 was

performed using a hierarchical Bayesian model. The model described our hypothesis

about how the response time during each trial was generated. Its structure was

Ts,c ∼ LogNormal(αs,c, ρ) (3.1)

αs,c = µc + ᾱs,cσc (3.2)

ᾱs,c ∼ Normal(0, 1) (3.3)

µc ∼ Normal(2.5, 0.5) (3.4)

σc ∼ Exponential(0.5) (3.5)

ρ ∼ Exponential(0.5) (3.6)

The first line of the model equations represented the likelihood density function

that generated the response time data, T . The LogNormal distribution is a common

choice for response time data, that can capture observed relationships between mean

response time and variance in decision-making tasks (Wagenmakers et al. 2007).

Response time in the current chapter was calculated as the time between the first

and the last lever press in a trial. This definition differs from those in standard

decision-making tasks, where response time is the time of deliberation before an

action is taken. Despite this semantic difference, the LogNormal was chosen as the

likelihood density function, as it can qualitatively match the distribution of observed

response times and its parameters are easily interpretable.

All other lines containing a ∼ symbol represented model parameters to be inferred,

given the observed response times, T , and the generative model. The αs,c variable

was an auxiliary quantity, representing the effect of a condition c on a subject

s. The hierarchical structure of the model was based on the assumption that all
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subject effects for a condition c were samples out of a Normal(µc, σc) distribution,

where µc and σc were the mean and standard deviation of effect of condition c on

the entire cohort respectively. Thus, subject-level parameters were sampled from

cohort-level distributions. This sampling was indirect, by first sampling ᾱ out of

a standard normal distribution and consequently constructing α, in equation 3.2.

This parameterisation was implemented to avoid pathological behaviour during the

inference process, known as funneling (Betancourt et al. 2013). This way ᾱmeasured

each subject’s deviation away from the cohort mean µc in units of standard deviation

σc, for each condition c.

The indices of the data and the model parameters were

normalised trial time : t ∈ [0, 1]

subject : s ∈ {1, 2, . . . , 16}

condition : c ∈ {1, 2, . . . , Nconditions}

where normalised trial time, t, was calculated by dividing all trial indices with

the final trial index for each session of each animal. The other two variables were

categorical and represented the subject and condition identities. All 16 subjects

were included in the model fitting process. The number of conditions varied across

the two experiments and are summarised in Table 3.1.

Experiment 1 involved comparisons of response time across different trial types,

within the same session. The cohort-lever condition distributions of the model cor-

responded to the presence or absence of the tone, which was conditioned to predict

the electric shock. In experiment 2, the list of conditions describes different sessions,

marked by the presence or absence of the odour cue, which was the conditioned stim-

ulus. The animals’ diet was manipulated in the middle of experiment 2 and the same

shock intensities were repeated with a new odour, in the reverse order with 0.3 mA

preceding 0.2 mA. Behaviour during baseline sessions within the food restricted and

the free-food weeks of experiment 2 was assumed to be the same. This assump-

tion was based on the observed absence of difference between baseline trials during

the 0.2 mA and the 0.3 mA weeks of experiment 1. However, it was assumed that

baseline behaviour could be different after the change to free food, thus making it a

separate condition in Table 3.1.

Approximate Bayesian inference was used to fit the present hierarchical model to the

response time data. Given our prior beliefs about model parameters, the LogNor-
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Experiment 1 Experiment 2

- Baseline trials, 0.2 mA week

- Tone trials, 0.2 mA week

- Baseline trials, 0.3 mA week

- Tone trials, 0.3 mA week

- Baseline sessions, 0.2 and 0.3 mA
weeks

- Odour session, 0.2 mA week

- Odour session, 0.3 mA week

- Baseline sessions, 0.2 and 0.3 mA
weeks, free food

- Odour session, 0.3 mA week, free
food

- Odour session, 0.2 mA week, free
food

Table 3.1: List of conditions for both experiments : Each condition described
an experimental manipulation and corresponded to a cohort-level distribution of
effects in the hierarchical model, out of which the individual, subject-level effects
were being sampled. The conditions are listed in the same order at which the
corresponding manipulations took place.

mal likelihood function and the observed response times, the posterior distribution

of model parameters was approximated by sampling from it. This was achieved

using the No-U-Turn-Sampler (NUTS) algorithm (Hoffman et al. 2014), a variant

of the Hamiltonian Monte Carlo family of sampling methods (Betancourt 2018).

Four independent chains of samples were used, each one containing 3000 samples.

All sample values were then collated to approximate the posterior distribution of

model parameters. The analysis was performed in Turing (v0.19.4), a probabilistic

programming language based on the Julia programming language (Ge et al. 2018).

Prior specification

The choice of prior distributions for the model parameters is an integral part of

Bayesian inference. These prior distributions are combined with the generative

model of the data, as it was presented in the previous section, in order to lead to

updated beliefs about the distribution of model parameters. In order to specify

informative priors, that represent realistic expectations about response time data,

the model parameters need to have an intuitive explanation. This is possible with

our current model structure, equations 3.1-3.6. Our choice for the likelihood density
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function of response time data, equation 3.1, was

T ∼ LogNormal(α, ρ) (3.7)

by ignoring the subject and condition indices. The median of the LogNormal dis-

tribution is

m = eα (3.8)

which after solving for α becomes

log(m) = α (3.9)

Given training data that was not used in the fitting process, for example the one in

Figure 3.2, I expected the median, m, of the response time distribution to be around

12 seconds. Then, log(12) = 2.4849, so centering the distribution of α around 2.5

was a reasonable expectation. The α parameter was a subject-lever parameter that

was assumed to be sampled out of a Normal(µc, σc) distribution for each subject,

within each condition c, as equations 3.2 and 3.3 indicate. Thus, its mean, µc was

assigned the prior

µc ∼ Normal(2.5, 0.5) (3.10)

with 2.5 reflecting the prior expectation for the median of response times under

no effect of time and the standard deviation of 0.5 representing my uncertainty

around the choice of the mean value. Most samples out of this distribution will be

contained within 2.5±3∗0.5, which is the range [1, 4]. This range can be mapped to

the more meaningful, real time scale, by transforming it with equation 3.8, resulting

in [2.7, 54.9] seconds. The range is quite large, however it contains not too unrealistic

response time values even at its extremes. It should be noted that the animals had

up to 60 seconds to fulfill the FR schedule and receive a pellet, thus the maximum

value of 54.9 seconds for the median of the response time distribution is deemed a

good starting point.

The remaining model parameters that required prior distributions were ρ and σc.

Both parameters affect the variance of the response time distribution in non-linear

ways, either directly (ρ) in the likelihood density or indirectly as the standard de-

viation of the cohort-lever distributions (σc). The same prior distribution or Expo-

nential(0.5) was chosen for both parameters, as a prior that was not too restrictive.

A prior predictive test was conducted as a way of verifying the choices for the prior

distributions of all model parameters, and particularly the choices for σ and σα that
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have less intuitive interpretations. This test involved sampling parameter values

from the respective prior distributions and then using those values to sample fictive

response time data, from the generative model of equations 3.1-3.6. The output is

plotted in Figure 3.3.
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Figure 3.3: Prior predictive test : Fictive response time data was sampled using
the proposed generative model. Values for all model parameters were first sampled
from their prior distributions and consequently they were used to calculate the
parameters of the LogNormal likelihood density and sample fictive response time
values from it. A: the density of all fictive samples, across subjects and conditions,
B: the empirical cumulative density function.

The density function of all fictive response time data in Figure 3.3A, collated across

subjects and conditions, represents a reasonable expectation for the data. Addi-

tionally, it is not too restrictive by having a heavy tail towards larger response time

values. Thus, the prior distributions for all model parameters were deemed informa-

tive for the subsequent inference process. The shape of the Empirical Cumulative

Density Function (ECDF) in Figure 3.3B does not match that of the data from the

final stage of training, as shown in Figure 3.2, however the median values are very

close to each other, around 12 seconds.
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3.2.6 Model diagnostics

The diagnostic checks of sampling algorithms of the Hamiltonian Monte Carlo family

provide indications about the quality of the samples drawn during the inference

process. The approximation of the posterior distribution is as good as the quality of

the samples that are drawn from it, thus it is important to validate them. Ideally,

the drawn samples will be independent from each other, both within and across

sampling chains. Moreover, they should explore the entirety of the typical set of

the posterior, that is the region where most of the probability mass is concentrated

(Betancourt 2018). Three of the most common diagnostic plots will be used, that

have proven to be useful particularly when performing inference on behavioural data

from learning and decision-making tasks (Baribault et al. 2021).

The first diagnostic check that was implemented was the rank plot, as shown in

Figures 3.4 and 3.5 for experiments 1 and 2 respectively (Vehtari et al. 2021b). This

is a representative example of the rank plot on the mean effect of condition on the

cohort level of the model, one of the main parameters that we were interested in.

The plot is constructed by ranking the combined sampled values from all four chains

into bins and consequently drawing histograms for each chain separately with the

number of their samples that belong to each rank bin. Ideally the histogram of each

chain should be close to a uniform distribution, indicating that the entire range of

the sampled parameter was equally sampled by all chains. This was the case for the

present inference process in both experiments.
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Figure 3.4: Rank plot for the cohort mean parameter in experiment 1:
Samples of the µc parameter, collated across all four sample chains of the algorithm,
were ranked according to their value. Consequently the ranks for each chains were
drawn in separate histograms. The dashed lines represent a uniform distribution of
ranks within each chain. This is the ideal distribution, as it implies that all chains
sampled equally from the entire range of the posterior distribution of µc. The four
panels correspond to rank plots for each condition. 0.2: 0.2 mA shock, 0.3: 0.3 mA
shock
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Figure 3.5: Rank plot for the cohort mean parameter in experiment 2:
Samples of the µc parameter, collated across all four sample chains of the algorithm,
were ranked according to their value. Consequently the ranks for each chains were
drawn in separate histograms. The dashed lines represent a uniform distribution of
ranks within each chain. This is the ideal distribution, as it implies that all chains
sampled equally from the entire range of the posterior distribution of µc. The six
panels correspond to rank plots for each condition. FF: Free Food, 0.2: 0.2 mA
shock, 0.3: 0.3 mA shock
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The effective sample size (ESS) of the chain samples was additionally calculated,

as a way to assess whether there were enough independent samples drawn from the

posterior distribution to approximate it. The ESS calculation combines samples

drawn from all chains to estimate the effective number of samples coming from

each quantile of the investigated parameter (Vehtari et al. 2021b). A small interval

of 20 samples was used around each µc quantile. Figures 3.6 and 3.7 depict the

results for the mean effect of cohort, µc, in both experiments. The dashed lines

represent a recommended minimum of 400 samples, which is greatly surpassed across

all quantiles for all conditions of both experiments.

Finally an energy plot was drawn as an additional measure of the extent at which the

sampling chains explored an important part of the posterior distribution in an unbi-

ased manner. The marginal energy distribution represents the distribution of energy

levels that were visited during sampling, while the energy transition distribution is

the distribution of energy level that could be reached between two consecutive sam-

ples (Betancourt 2018). Ideally both distribution should be matched. The marginal

distribution was calculated as all visited energy levels minus the average energy

level, so it contained a difference in energy values like the energy transition distri-

bution did, thus making both of them directly comparable. This qualitative check

is augmented by the Bayesian Factor of Missing Information (BFMI), which is the

ratio of the variance of the energy transition distribution over the variance of the

marginal energy distribution. Values of more than 0.3 are recommended, a criterion

that was fulfilled for all four chains of both inference processes in Figure 3.8.

The rank and ESS plots were checked for the posterior distributions of all model

parameters, which resulted from the inference processes in both experiments. Addi-

tionally the R̂ metric was calculated (Gelman et al. 1992). This metric is a formula

containing the ratio of the sample variability within each chain over the variability

across chains. Values of R̂ < 1.01 are indicative of a healthy mixing behaviour in

the chains, which means that all chains, across their sequence of samples, explored

the regions of high posterior probability mass well enough, without getting stuck in

any particular subregions.
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Figure 3.6: Effective sample size plot for the cohort mean parameter in
experiment 1: The effective sample size (ESS) was calculated on the combined
samples from all four chains, for a small region around each quantile of µc, the cohort
mean effect of condition. A dashed line is drawn along the minimum recommended
sample size of 400 samples. The ESS values are well above the minimum for all
quantiles of µc. The four panels correspond to ESS plots for each condition. 0.2:
0.2 mA shock, 0.3: 0.3 mA shock
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Figure 3.7: Effective sample size plot for the cohort mean parameter in
experiment 2: The effective sample size (ESS) was calculated on the combined
samples from all four chains, for a small region around each quantile of µc, the cohort
mean effect of condition. A dashed line is drawn along the minimum recommended
sample size of 400 samples. The ESS values are well above the minimum for all
quantiles of µc. The six panels correspond to ESS plots for each condition. 0.2: 0.2
mA shock, 0.3: 0.3 mA shock
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Experiment 1
chain  0 BFMI = 0.68
chain  1 BFMI = 0.70
chain  2 BFMI = 0.73
chain  3 BFMI = 0.71
Marginal Energy
Energy transition

Experiment 2
chain  0 BFMI = 0.68
chain  1 BFMI = 0.70
chain  2 BFMI = 0.73
chain  3 BFMI = 0.71
Marginal Energy
Energy transition

Figure 3.8: Energy plot of the sampling process in experiments 1 and 2:
The marginal distribution of all visited energy levels during sampling is plotted in
dark blue, along with the distribution of the transition between energy levels cor-
responding to two consecutive samples of the algorithm in light blue. The average
energy value, among those visited, was subtracted from all visited energy values to
calculate the marginal energy distribution. The Bayesian Factor of Missing Infor-
mation (BFMI), the ratio of the variance of the energy transition distribution over
the variance of the marginal energy transition, is shown in the legend for each chain
of the algorithm. The recommended minimum value of BFMI was 0.3. The left
panel depicts the energy plot for the sampling process using the experiment 1 data
and the right panel is the same plot for the experiment 2 data.
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3.2.7 Statistical analysis of model results

As discussed in section 3.2.5, the result of performing Bayesian inference on the hi-

erarchical model was a posterior distribution over the model parameters, informed

by the observed data. The original hypothesis of this chapter was that the ani-

mals would suppress their responses during the presence of a shock-predicting cue.

In order to quantify the effect of the experimental manipulations on suppression,

I calculated the probability that the difference in response time between a shock

condition and its respective baseline was positive. This was equivalent to measur-

ing the cumulative probability of the posterior distribution of this difference being

positive. Thus, only the right tail of the distribution was considered, as it reflected

the original hypothesis. A lower bound of 0.2 seconds was used instead of the zero

value, assuming that differences in response time that were smaller than 0.2 seconds

could have been attributed to motor effects relating to executing the lever-pressing

movement.

This probability, named P+, was the cumulative density function value of the pos-

terior of the difference between shock and baseline conditions. It was defined as

P+(x > 0.2) =

∫
X+

P (x|D)dX+ ≈ |X̃+|
N

(3.11)

where x is the difference in the median of the response time distribution between

shock and baseline conditions, either on the group or the subject level. The posterior

P (x|D) of the difference in medians X given data D is integrated across

X+ = {x : x > 0.2} (3.12)

to result in the desired cumulative density function value, representing the prob-

ability of suppression. However, since the posterior P (x|D) is only approximated

in a sample-based manner, this cumulative probability was also approximated by

dividing the cardinality of the set X̃+, representing the number of samples for which

x > 0.2 holds, by the total number of samples drawn, N .
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3.3 Results

Bayesian inference was performed on the model of section 3.2.5, by fitting it to

response time data from experiments 1 and 2. Omission trials, when the FR(32)

schedule was not fulfilled were excluded from the fitting process. Inference results

are distributions on the model parameters, representing the updated knowledge

that was gained by observing the data, relative to the prior expectations before the

experiments.

The main parameter of interest was the effect of shock intensities on the entire co-

hort. Thus, the posterior distribution of the cohort-level mean of the distribution of

possible individual effects under each condition, µc, was transformed by the expo-

nential function, in order to map it to the scale of response times in seconds. This

result is presented in Figure 3.9A for experiment 1 and in Figure 3.11A for experi-

ment 2. Both figures include the transformed prior distribution of µc, common for

all conditions c. This transformed parameter could be interpreted as a distribution

of the median of the response time distribution of each subject under each condi-

tion. The prior and posterior distributions are centered around similar values of

approximately 12 seconds, however the uncertainty around this value was greatly

decreased in the posterior, as the result of the inference process.

In order to better visualise the effect of each shock condition, the difference in the

posterior distributions of eµc between tone and baseline trials is plotted in Figures

3.9B and 3.11B for both experiments. These differences are centered close to zero,

with the probability of suppression P+ being not higher than 0.6 for any shock

condition across the two experiments. Only in the case of the Free Food (FF)

manipulation did the peak of the distribution of cohort effects shift towards positive

values in Figure 3.11B, resulting in a probability of suppression P+ ≈ 0.6.

Looking within each shock condition, a posterior distribution of subject-level effects

is drawn in Figures 3.10 and Figure 3.12 for experiments 1 and 2 respectively. This

is the difference in the exponential transformation, f , of the intercept

f(µc, ᾱs,c, σc) = eµc+ᾱs,cσc (3.13)

between a shock and its respective baseline condition, for each subject s. Conceptu-

ally each distribution represents the uncertainty about a subject’s median response

time, given that this median was a sample out of the cohort-level distribution of the
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Figure 3.9: The effect of shock conditions on the cohort level in experiment
1: A: The posterior distribution of the exponent of the cohort-level mean param-
eter, eµc , under each condition c is plotted against the common prior distribution,
transformed by exponentiation as well, which reflected the expectation before the
inference process. B: The effect of condition was calculated as the difference between
a shock condition and the respective baseline. Baseline B, 0.2 was subtracted from
0.2 and B, 0.3 from 0.3, resulting in the two distributions of differences. A dashed
line across 0 indicates the absence of an effect. P+ = 0.381 for the 0.2 condition
and P+ = 0.535 for the 0.3 one. B: Baseline, 0.2: 0.2 mA shock, 0.3: 0.3 mA shock.

same condition. The condition colours of cohort-level and subject-level distributions

are consistent between Figures 3.9 and 3.10, and between Figures 3.11 and 3.12.

The subject-level effects fluctuate around zero, which explains the similarity between

the cohort-level posterior distributions in Figures 3.9B and 3.11B. It should be noted

though that there are subjects for whom the effect of shock is very likely to be non-

zero. Such effects exist on either side of the zero line, indicating that some animals

were going faster during tone trials that were associated with the electric shock,

while others were responding more slowly, as our original suppression hypothesis

predicted. The probabilities of suppression, P+, for each subject are summarised

in Table 3.2 for experiment 1 and in Table 3.3 for experiment 2. This change in

the median of a subject’s response time distribution between a shock and a baseline

condition is more apparent in experiment 2, as seen both in the figures and the tables.

Moreover, the FF manipulation on the last two weeks of experiment 2 resulted in
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Figure 3.10: The effect of shock conditions on the subject level in experi-
ment 1: Posterior distributions of the difference in the exponent of the subject-level
intercept parameter, eµc+ᾱs,cσc between shock and baseline trials, A: for the 0.2 con-
dition and B: for the 0.3 condition. A dashed line across zero indicates the absence
of an effect. The probability of suppression for each subject is presented in Table
3.2. 0.2: 0.2 mA shock, 0.3: 0.3 mA shock.

larger fluctuations for some animals, given the larger scale of the y-axis in Figures

3.12C and 3.12D.
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Conditions
Subject 0.2 0.3

1 0.122 0.465
2 0.8 0.624
3 0.21 0.5
4 0.572 0.76
5 0.39 0.734
6 0.042 0.725
7 0.41 0.08
8 0.79 0.353
9 0.254 0.382
10 0.13 0.6
11 0.075 0.33
12 0.36 0.755
13 0.217 0.266
14 0.8 0.8
15 0.632 0.2
16 0.2 0.785

Table 3.2: Probability of suppression for each subject in Experiment 1 :
The probability of a suppression P+, that is a positive shift in RT, was measured
for each subject individually, using the data from Figure 3.10.

Conditions
Subject 0.2 0.3 0.3, FF 0.2, FF

1 0.0 0.99 0.0 0.99
2 0.914 0.003 0.0 1.0
3 0.158 0.008 0.99 0.042
4 0.0 0.99 0.0 1.0
5 0.0 0.977 0.372 0.77
6 0.12 1.0 0.39 0.58
7 0.0 1.0 0.0 1.0
8 1.0 0.946 0.0
9 1.0 0.0 1.0 0.0
10 1.0 0.008 0.993 0.717
11 0.431 0.69 0.39 0.436
12 0.812 0.146 0.458 0.305
13 0.0, 1.0 0.017 0.0
14 0.137 1.0 0.127 0.98
15 0.0 0.161 0.008 0.096
16 1.0 0.0 1.0 0.0

Table 3.3: Probability of suppression for each subject in Experiment 2 :
The probability of a suppression P+, that is a positive shift in RT, was measured
for each subject individually, using the data from Figure 3.12.
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Figure 3.11: The effect of shock conditions on the cohort level in exper-
iment 2: A: The posterior distribution of the exponent of the cohort-level mean
parameter, eµc , under each condition c is plotted against the common prior distribu-
tion, transformed by exponentiation as well, which reflected the expectation before
the inference process. B: The effect of condition was calculated as the difference
between a shock condition and the respective baseline. Baseline B was subtracted
from the 0.2 (P+ = 0.467) and 0.3 (P+ = 0.481) shock conditions and B, FF from
the 0.3, FF (P+ = 0.587) and 0.2, FF (P+ = 0.6) conditions. The result was the
four distributions of differences. A dashed line across 0 indicates the absence of an
effect. B: Baseline, 0.2: 0.2 mA shock, 0.3: 0.3 mA shock, FF: Free Food.
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Figure 3.12: The effect of shock conditions on the subject level in experi-
ment 2: Posterior distributions of the difference in the exponent of the subject-level
intercept parameter, eµc+ᾱs,cσc between shock and baseline trials A: for the 0.2 con-
dition and B: for the 0.3 condition. A dashed line across zero indicates the absence
of an effect. 0.2: 0.2 mA shock, 0.3: 0.3 mA shock, FF: Free Food.
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3.4 Discussion

The experimental work of this chapter was a proof of concept for a novel task design

based on the conditioned suppression task. Two versions of our task, both involving

escapable shock stimuli of low intensities, were tested with regard to their ability to

elicit suppression of a reward-seeking behaviour during conditions that predicted the

shock stimuli. The versions differed in terms of the condition that was paired with

the delivery of the pulsed shock. The conditioned context of experiment 2, using

an odour cue, was more successful in causing a change in the animals’ response

time, compared to the more classical tone-shock association of experiment 1. The

direction of the effect however varied across individual animals.

A hierarchical statistical model was designed to infer the effects of different shock

intensities on the animals’ suppression behaviour, on individual subjects and on

the group level of the entire cohort. The results of a Bayesian inference process

revealed that the shock-predictive condition did not have a highly certain effect

on the cohort level, as measured by the cumulative probability of suppression P+.

This observation held for both experiments, with either one of the 0.2 and 0.3 mA

shock intensities. Reducing the animals motivation for reward by putting them onto

free food, during the third and fourth week of experiment 2, revealed only a small

positive shift towards suppression for the same shock intensities, as was shown in

Figure 3.11B. The potentially more sated state of the animals during these weeks

did not lead to elevated suppression due to the hypothesised decrease in the value

of the pellet rewards.

The subject level of the model provided a more detailed view of the animals’ be-

haviour. Conditions associated with shock had a more certain non-zero effect on a

few animals in experiment 1 (Figure 3.10 and Table 3.2) and even more animals in

experiment 2 (Figure 3.12 and Table 3.3). Particularly in the presence of the odour

cue in experiment 2, individual animals exhibited shifts in the median of their re-

sponse time distribution, with extreme values of P+. Interestingly, such effects were

observed on either side of the zero line, implying that some animals were responding

more quickly during the shock-associated condition, while others showed signs of

classic suppression by responding more slowly. The effects were more pronounced in

the food-restricted condition, in Figure 3.12A and 3.12B. The estimated subjects’

effects during the free-food weeks, in Figure 3.12C and 3.12D, were more variable,

probably reflecting the increase in omission trials, which resulted in less data to

inform the model, thus making inference more uncertain.
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It should also be noted that the shocks during the Odour-Shock training sessions of

experiment 2 were presented at seemingly random times from the animals’ point of

view, as opposed to experiment 1, when each shock was preceded by a conditioned

tone. The higher unpredictability of shock delivery in experiment 2 could have exac-

erbated the individual differences within the cohort, thus resulting in more non-zero

individual effects. Nevertheless, a conditioned suppression study with inescapable

shocks found that rats were suppressing more after a tone predicting a certain shock,

compared to a tone predicting an uncertain shock (Wright et al. 2019). Thus, the

individual differences of experiment 2 could relate to the nature of the CS. A herbal

odour might is a more naturalistic stimulus for a rat as opposed to a pure tone.

This difference in CS could have caused the underlying difference among individual

animals between experiments.

Facilitation, as opposed to suppression, of the reward-seeking behaviour has been

previously reported in a variant of the conditioned suppression task with inescapable

shocks and conditioned stimuli instead of a conditioned context and only after ex-

tensive training (Strickland et al. 2021). Despite the task design differences between

this study and ours, it is possible that a common underlying factor is the individu-

als’ ability to adapt to the threat of shock, as suggested by the authors of the study.

For instance, rats that sped up their responding while the odour was present could

potentially have done so in order to acquire the reward and flee to the platform

before the shock is presented.

Individual differences when responding to aversive outcomes have additionally been

reported for fear conditioning (Bush et al. 2007; Ji et al. 2018 Jan-Dec), where 25%

of rats were considerably slower at reducing their freezing during extinction sessions.

This result was correlated with increased anxiety-like behaviour in secondary tasks.

Moreover, when animals were being trained to act in order to avoid an incoming

shock, approximately 25% of them were unable to meet the training criteria, because

they resolved to freezing instead of fleeing to safety (Laughlin et al. 2020). Thus,

individual differences are apparent in different tasks that involve both avoidable

and inevitable punishment and they potentially indicate inherent differences around

the processing of punishment. It is therefore very likely that such differences were

present within our cohort and they led to the divergence of effects of shock conditions

in experiment 2.

Increasing the intensity of the electric shock has been shown to result in smaller

individual differences (Pietersen et al. 2006). This reduction in inter-individual
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variability is associated with more traumatic experiences, which typically elicit a

freezing response. This behaviour is more relevant for an animal model of PTSD.

However, we aimed at designing a behavioural assay that could work as an animal

model of anxiety, by inducing and manipulating aversive memories, that are not

traumatic.

Given all evidence about individual differences in experiencing and responding to

shock stimulation, particularly one of low intensity, a hierarchical model was deemed

the most beneficial approach to analysing the experimental data. By structuring the

model parameters on a cohort- and a subject-level, we allowed for variations in the

response times of each individual both within and across experimental conditions,

while constraining the amount of variation between individuals that were assigned

to the same experimental condition. Our model was an initial attempt to capture

effects of shock on both of these levels in our new task. It could be expanded to

include more degrees of freedom, for example by allowing the second parameter

of the LogNormal likelihood, ρ to vary across subjects and conditions in order to

investigate changes in the variability of response times under the threat of shock.

Overall, neither the conditioned tone nor the conditioned context resulted in clear

effects on our cohort, in experiments 1 and 2 respectively. We aimed at increasing

the welfare standard of behavioural tasks that measure responses to aversive, yet not

traumatic, events by designing a task with escapable, low-intensity shocks. However,

these features did not cause enough conflict in our rats to make them more indecisive

about whether to flee or press for reward, so that they would eventually respond

more slowly. On an individual level though, the second version of the task, involving

odour cues as the conditioned context, did result in clear individual differences.

Given that manipulations of contextual elements were part of the original plan, this

version would seem the most promising for future studies. Any future work should

include a fully counterbalanced design in terms of the order to presentation of each

shock intensity to avoid issues around differential sensitisation within the cohort.

Another element of our task that needs to be addressed in future work is the Pavlo-

vian conditioning sessions, which are essential for training the animals to associate

the conditioned context or stimulus with the electric shock. In both experiments

of our task, these sessions were conducted under escapable shocks. It was observed

through the recorded videos that all 16 animals spent most of the session time on

the escape platform, as early as the second training session. Thus, we did not have

a reliable measure of the extent at which they were trained to associate the condi-
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tioned context or stimulus with the shock. A different training protocol could be

implemented in future studies, that involves Pavlovian conditioning sessions with

inescapable shocks in a first phase. The escape platform could then be introduced

during further Pavlovian conditioning sessions. This way the first phase would

enable more reliable conditioning and the second phase would involve avoidance

training. This is akin to the training process of active avoidance tasks, where the

reward-seeking component is not present (Bravo-Rivera et al. 2014; LeDoux et al.

2017).
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Chapter 4

A model-based analysis of the

judgement bias task

4.1 Introduction

The primary statistical approach to the Judgement Bias Task (JBT) is to measure

the Cognitive Bias Index (CBI) and test whether the average CBI in a cohort of

animals has been significantly altered under some affective state manipulation. This

inference is based on the assumption that CBI is exclusively driven by the animal’s

prior expectation of an outcome, which in turn is modulated by affective state.

However, it could be possible that multiple factors are driving the animals’ choices

during ambiguous trials. These factors could themselves be modulated by affective

state. For example, past experiences of reward have been shown to lead to a more

positive affective state during a subsequent decision task (Nygren et al. 1996; Iigaya

et al. 2016). Conversely, the omission of an expected reward could lead to a negative

affective state. This has been corroborated by Pavlovian conditioning studies where

a cue, that predicted the omission of reward with certainty, blocked the conditioning

to a new cue predicting an electric shock, thus suggesting generalisation across

punishment and reward omission (Dickinson et al. 1980). Additionally, the influence

of reward omission on affective state is present in situations of uncertain rewards

and relates to their predictability (Rutledge et al. 2014; Blain et al. 2020).

Effects of the history of reinforcement are not limited to studies that explicitly

investigate affective state. There are evidence from both sensory decision making

tasks in rats and humans (Akrami et al. 2018; Roy et al. 2021) and value-based tasks
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in humans (Bornstein et al. 2017) and macaques (Wittmann et al. 2020), suggesting

that the outcomes of past trials influence future actions. Importantly, these studies

included fully-trained subjects and learning of cue-action-outcome contingencies was

not required during their sessions.

The JBT is based upon both sensory- and value-based decisions. The experience of

reward or its omission is an integral part of the task, occurring multiple times within

a session. The current chapter used a large dataset of JBT sessions to visualise the

CBI across trials and the probability of taking an action conditioned on the feedback

of the most recent trial. These visualisations suggested that reinforcement history

affected the animals’ actions. Thus, accounting for these factors could enable a finer

look into the influence of affective state on actions under ambiguity. Hierarchical

statistical models were employed in order to dissect the effects of feedback and the

interpretation bias, which the task was originally designed to measure. The models

encompassed the effects of past actions, the reinforcement history, perceptual and

reward-driven biases and lapses to explain the animals’ choices.

The effect of reinforcement history was split into two separate factors, each one

operating on a different timescale. Firstly, the immediate past was considered to

capture the animals’ sensitivity to the most recent feedback given their chosen ac-

tion. This effect could be interpreted as the extent at which the animals employ

a win-stay, lose-shift strategy (Robbins 1952). This strategy suggests that animals

are more likely to repeat an action that has been recently rewarded and switch to

a different action after the omission of reward. It has been suggested that ani-

mals have a propensity to utilise this heuristic rule because it can lead to optimal

resource acquisition in certain foraging scenarios (Charnov 1976). Supporting evi-

dence for this strategy have been observed across species and decision-making tasks

(humans: Worthy et al. 2012; Ivan et al. 2018, monkeys: Medin 1972, rats: Reed

2016; Rayburn-Reeves et al. 2013).

The second factor, that was linked to reinforcement history, considered a longer time

window into the past to capture the effect of the average reward earned. Besides

the influence on affective state mentioned above, the average reward of the past,

or reward rate, has been shown to affect animals’ decisions in tasks that were not

designed to promote this effect (Wittmann et al. 2020; Scholl et al. 2015). Here,

this effect was incorporated into a generative model of decision making in two ways;

as the average reward of past ambiguous trials, in the learning model, and as the

average reward of all past trials, which was part of the reward rate model. An influ-
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ence of past reinforcement that was specific to ambiguous trials could indicate that

the animals were trying to learn new ambiguous cue-action-outcome contingencies,

whereas the influence of all past outcomes could modulate the motivational state of

the animal by altering its state of hunger.

Data from multiple past studies, including cohort 1 of chapter 2, was used to perform

inference on the model parameters. The data included baseline sessions, a ketamine

and a vehicle treatment. Approximate Bayesian inference resulted in posterior dis-

tributions for model parameters, with each parameter reflecting the effect of one

of the considered factors, either on a population or a subject-specific level. Subse-

quently the learning and reward rate models were compared in order to estimate

which one described the animals’ data more accurately.

The animals were also split into two populations, according to the breeding facility

that supplied them. As discussed in chapter 2, the animal supplier was the main dif-

ference between cohorts of rats, where ketamine had successfully induced a positive

shift in CBI (Hales 2016; Hales et al. 2017), and cohorts that subsequently failed

to replicate this result. After leaving the bredding facility, the animals were housed

in the same facility during the experiments and were handled by the same people.

Thus, my current investigation constituted a more detailed analysis of the animals’

actions by considering potential effects from past reinforcement and differences in

their strategies, both within and across the two populations of distinct origins. The

positive effect of amphetamine on the CBI of cohort 1 in chapter 2 was additionally

reexamined in light of the two proposed models.

4.2 Methods

4.2.1 Model definition

A hierarchical Bayesian model was designed to estimate the effects of past trials,

perceptual and interpretation biases on the animals’ behaviour during the ambiguous

cue trials.

There were three levels to our model. First was the data level, that corresponded to

the subjects’ choices. Next was the subject level containing parameters for each indi-

vidual animal that were used to generate that animal’s choices for each trial of each

condition. Subject-level parameters were sampled from distributions that were pa-
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rameterised by the population-level parameters of the top level. The population-level

parameters were the mean and standard deviation of the distributions of possible

subject-specific effects for each condition.

The choice data was generated by each subject in each trial of each condition,

according to

Ac,s,t ∼ Binomial(Pc,s,t) (4.1)

for each trial t of subject s within each condition c. The range of each index was

trial : t ∈ {1, 2, . . . , Ntrials}

subject : s ∈ {1, 2, . . . , Nsubjects}

condition : c ∈ {1, 2, . . . , Nconditions}

with Ntrials being the number of trials completed by an animal in each condition.

One condition corresponded to a single session, which could be a baseline, a vehicle,

a ketamine or an amphetamine session. The number and types of conditions used

in each inference process is mentioned in the following Results section, along with

the number of subjects.

The Binomial distribution of equation 4.1 was the likelihood of observing each action

given a model. Actions were encoded in a binary format with 0 corresponding to

choosing the high-reward lever and 1 representing low-reward lever choices. The

probability of choosing the low-reward lever was defined as

Pc,s,t =
ϵs
2
+

1− ϵs
1 + e−Kc,s,t

(4.2)

which had the form of a logistic function with an added lapse rate ϵs. The lapse rate

was the probability of a subject choosing at random between the two levers. We

assumed that it only varied across subjects and not across conditions, as the drug

studies used to fit the model contained a low dose of ketamine or amphetamine that

has not been associated with the dissociative effects that are typical in higher dose

volumes.

When choices were not made at random, with probability 1−ϵs, they were generated

according to a logistic function, parameterised by

Kc,s,t = bc,s + wc,sIc,s,t + ac,sR̂c,s,t (4.3)
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The three terms that made up Kc,s,t in equation 4.3 corresponded to three types of

effects we were expecting to be important in driving animals’ behaviour. The bias

variable, bc,s, was a subject-specific intercept term for each experimental condition.

In other words, it represented the bias that an animal had towards selecting an

action, irrespective of past reinforcement. Given the JBT design, it was interpreted

as the combined perceptual and interpretation biases. Perceptual biases described

the tendency to match the sound of the ambiguous cue to one of the reference

cues. The prior expectation for either a small or a large reward that was originally

hypothesised to drive ambiguous cue responses in chapter 2 was the interpretation

bias component of bc,s.

The wc,s variable was added in order to estimate the extent at which animals used

a win-stay, lose-shift strategy. Its regressor Ic,s,t was an indicator function of the

choice and the outcome of the previous trial. It was defined as

Ic,s,t =



+1, if A−1 = LA and R−1 = 1

−1, if A−1 = LA and R−1 = 0

−4, if A−1 = HA and R−1 = 4

+4, if A−1 = HA and R−1 = 0

(4.4)

where HA and LA were the actions paired with the high- and low-reward levers

respectively. Since low-reward actions were coded as 1 in the Binomial distribution of

the likelihood (equation 4.1), positive values of Ic,s,t indicate a tendency to choose the

low-reward lever. We assumed that this win-stay, lose-shift strategy was modulated

by the reward magnitude that was experienced (positive Ic,s,t values) or missed

(negative Ic,s,t values).

The remaining variable in the model of an animal’s actions was ac,s. This was the

weight that animals put in the average past reward R̂c,s,t. Two different models were

fit to JBT data. Their structure was identical to the model presented here, with the

only difference being how the R̂c,s,t regressor was calculated. In one model, titled

learning model, R̂c,s,t was the average reward of past trials when the ambiguous

cue was presented, whereas in the other model, called reward rate model, it was

calculated as the average reward across all types of past trials. The R̂c,s,t value of

each trial was calculated for a time window containing the 12 trials that preceded

it, for both models. This window length was chosen as JBT sessions were split into

10 banks of 12 trials each. Each trial bank was guaranteed to contain four trials of

each one of the two reference cues and four ambiguous trials. Thus, the chosen time
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window was most likely to contain an equal number of trials of each cue.

All subject-level variables, bc,s, wc,s, ac,s, ϵs, followed the non-centered parameterisa-

tion. Random parameters were sampled from a standard Normal prior distribution

as

b̄c,s ∼ Normal(0, 1) (4.5)

w̄c,s ∼ Normal(0, 1) (4.6)

āc,s ∼ Normal(0, 1) (4.7)

ϵ̄s ∼ Normal(0, 1) (4.8)

which were then used to construct the subject-level variables

bc,s = µc + b̄c,sσc (4.9)

wc,s = ξc + w̄c,sγc (4.10)

ac,s = ηc + āc,sρc (4.11)

ϵs = Φ(κ+ ϵ̄sω) (4.12)

based on these subject-level parameters and the population-level mean and standard

deviation parameters. The inference method employed required that all model pa-

rameters were sampled from unconstrained distributions, defined on the real number

axis. However, the lapse rate represented a probability, so it had to be mapped to

the [0,1] interval. This was achieved by transforming the unconstrained κ + ϵ̄sω

through the use of the cumulative density function of a Normal(0,1) distribution,

Φ(x), in equation 4.12. This strategy has been used in similar hierarchical models

for learning and decision-making (Ahn et al. 2017).

The population-level mean parameters were sampled from their respective prior

distributions according to

µc ∼ Normal(0, 1) (4.13)

ξc ∼ Normal(0, 1) (4.14)

ηc ∼ Normal(0, 1) (4.15)

κ ∼ Normal(−1.5, 0.2) (4.16)

while the population-level standard deviation parameters were sampled from their
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prior distributions as

σc ∼ Exponential(1) (4.17)

γc ∼ Exponential(1) (4.18)

ρc ∼ Exponential(1) (4.19)

ω ∼ Exponential(0.5) (4.20)

Constructing the subject-level variables according to equations 4.9-4.12 was equiva-

lent to directly sampling them from the population-level distributions, for example

bc,s ∼ Normal(µc, σc). However, the indirect parameterisation employed here, via

the b̄c,s, w̄c,s, āc,s, ϵ̄s parameters was implemented to avoid pathological behaviour

during the inference process, known as “funneling” (Betancourt et al. 2013). This

way, bc,s, wc,s, ac,s, ϵs were not directly inferred. They were auxiliary variables that

were used internally by the model.

The subject-level parameters and the population-level mean and standard deviation

parameters containing a ∼ comprised the model parameters. These were assumed

to be sampled from the respective prior distributions, which in turn represented our

belief about each parameter before observing the choice data. Inference was then

conducted to update these prior distributions to posterior ones given the data from

ambiguous trials. Model lines containing a = are definitions of auxiliary variables

that were used internally by the model.

Approximate Bayesian inference was used to fit these hierarchical models to the

choice data. Given our prior beliefs about model parameters, the likelihood function

and the actions, the posterior distribution of model parameters was approximated

by sampling from it. This was achieved using the No-U-Turn-Sampler (NUTS)

algorithm (Hoffman et al. 2014), a variant of the Hamiltonian Monte Carlo sampling

method (Betancourt 2018). Four independent chains of samples were used, each one

containing 2000 samples. All sample values were then collated to approximate the

posterior distribution of model parameters.

Prior specification

The prior distributions for the population-level mean effects of bias (µc), average

reward of the past (ηc) and win-stay, lose-shift behaviour (ξc) were centered around

zero to be unbiased towards either lever. The standard deviation for these mean
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parameters was chosen as one. This choice, and the choice of Exponential(1) for

the prior of all the population-level standard deviation parameters (σc, ρc, γc) are

common choices for prior distributions that we do not have previous knowledge of,

yet they are not completely uniform and uninformative (McElreath 2016).

The prior for the mean and the standard deviation of the distribution of possible

lapse rates were more informed, since we expected the animals to not behave at

random during these test sessions after successfully passing all training stages. The

population-level mean, κ, was centered around -1.5, which after the transforma-

tion gives Φ(−1.5) ≈ 0.065. The Φ(x) function used to map unconstrained real

values to [0,1] is a continuous and monotonic function, thus the transformed pa-

rameter ϵ was expected to be centered around 0.065. This corresponded to a 6.5%

rate of lapsing and choosing randomly. The uncertainty around this mean value,

reflected by the standard deviation of the κ prior distribution, and the standard

deviation of the population-level distribution, ω were tuned in order to attain a rea-

sonable prior distribution. In order to assess the effect of the two standard deviation

terms, the distribution of subject-level lapse rates was plotted, by sampling from

the population-level priors and transforming through Φ(x). The eventual choice of

prior distributions for both κ and ω resulted in the distribution of lapse rates for

individual animals that is shown in Figure 4.1. Most of the probability mass was

concentrated in small values of ϵ. This expectation was reasonable, given the fact

that animals were highly trained on the task. Moreover, the distribution had a long

tail to allow for deviations towards large probabilities of lapsing. As such, this choice

of population-level priors made modest assumptions about the data.

4.2.2 Model diagnostics

Diagnostic checks were performed to ensure that the four chains of consecutive

samples, as calculated by the NUTS algorithm, were independent of each other and

covered all regions of the posterior distribution equally well. The energy plot, the

effective sample size for each quantile plot and the rank plot were visually inspected

for all parameters. A more detailed presentation of these plots and the check that

is performed in each one was presented in chapter 3. Moreover, the R̂ metric was

calculated for each parameter of both models and it was verified that no values

were larger than 1.01, as recommended in Gelman et al. 1992. Both the plot-based

diagnostic checks and the R̂ metric were successfully fulfilled, thus validating that

the sampling chains of both models indeed contained representative samples out of
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Figure 4.1: Prior distribution of subject-level lapse rates: Lapse rates for
individual animals were calculated using the transformation Φ(κ + ϵ̄sω) after sam-
pling κ, ω and ϵ̄s from their respective prior distributions. This check was performed
in order to evaluate the distribution of lapse rates that were expected prior to ob-
serving the data. The depicted prior distribution of ϵ was considered a reasonable
expectation.

the posterior distribution.

4.2.3 Statistical analysis of model results

A similar approach to Section 3.2.7 was taken for effect quantification by calculat-

ing cumulative probability values from the posterior distribution of the difference

between a manipulation and its baseline condition. Unlike Chapter 3 though, there

was no a priori expectation about the direction of an effect. A region of practical

equivalence (ROPE) was chosen around zero to indicate values that are equivalent

to zero (Kruschke 2018). A difference between treatment and baseline parameter

values that falls within the ROPE is interpreted as there was no effect of treatment

on the particular parameter.
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The entire posterior of difference between treatment and baseline for each parameter

was used to calculate the ROPE. This metric has exhibited satisfactory robustness

to noise and minimal false positive results, relative to other established Bayesian

metrics for measuring effects, in simulation studies (Kelter 2020).

The choice of ROPE was based on the effect that the difference in a parameter would

have on the probability of choosing the low-reward action, Pc,s,t (equation 4.2). All

model parameters are centered around zero, which leads to Pc,s,t = 0.5. I treated

probability values in the interval (0.45, 0.55) as equivalent to 0.5. Thus the ROPE

for the logistic regression parameters would be

|x| < logit(0.55)− logit(0.45)

4
≈ 0.1 (4.21)

so the ROPE interval would be (−0.1, 0.1) for any parameter difference x. The logit

function in equation 4.21 is the inverse of the logistic function of equation 4.2. The

division-by-four is an approximation to the actual change in probability for logistic

regression models, which is more accurate when there are similar number of both

choices in the data (Kruschke 2018). Rats in the present experiments have not

shown a strong bias for either the high- or low-reward choices during ambiguous

trials, thus this approximation was considered appropriate.

The cumulative probability that a difference x falls inside the ROPE is

P0(−0.1 ≤ x ≤ 0.1) =

∫ 0.1

−0.1

P (x|D)dx ≈ X̃0

N
(4.22)

where P (x|D) is the posterior of the difference x, given data D. Similar to Section

3.2.7, since the posterior was approximated using a chain of samples, the cumulative

probability of being within the ROPE is also approximated in a Monte Carlo manner,

where X̃0 is the number of posterior samples that are within the ROPE and N is

the total number of samples.

The metric that is reported in this chapter when posterior distributions are compared

is the complementary probability to the ROPE probability

P∗ = 1− P0(−0.1 ≤ x ≤ 0.1) (4.23)

representing the probability of a non-zero effect, that is a difference in a parameter

that falls outside the ROPE.
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4.2.4 Model comparison

The learning and reward rate models were evaluated in terms of their predictive

accuracy after successful inference of the posterior distribution of their parameters.

The Leave-One-Out Information Criterion (LOOIC) was used for this comparison

(Vehtari et al. 2017). The LOOIC is based on cross-validation and evaluates the

probability of a model observing some held-out data point, after it is fitted on the

rest of the available data. The benefit of this metric over alternative information

criteria, such as the Akaike Information Criterion (AIC) or the Bayesian Information

Criterion (BIC), is that LOOIC is a pointwise estimate of the result of leaving out

each data point, resulting in a distribution of values, unlike AIC and BIC which are

scalar estimates. Thus, model comparison uses the variance of the LOOIC values

as an estimate of uncertainty about the accuracy of each model. Typically, the

difference in the mean of LOOIC between models is accompanied by the standard

error of this mean.

Since multiple iterations are require, one for each choice of excluded data point, the

complete cross-validation process is, in general, computationally expensive, often

prohibitively so. The Pareto-Smoothed Importance Sampling (PSIS) is an approx-

imation to the complete cross-validation process that greatly reduces the compu-

tational cost of calculating LOOIC. Moreover, PSIS offers a diagnostic check of

how well it approximated the cross-validation, with suggested guidelines on how to

interpret indications of a bad approximation (Vehtari et al. 2021a).

4.2.5 Software

The analysis was performed in Turing (v0.19.4) (Ge et al. 2018), a probabilistic

programming language based on the Julia programming language (v1.6) (Bezanson

et al. 2015). The implementation of PSIS-LOOIC from the ArviZ package for Julia

(Bezanson et al. 2015) was used for model comparison (Kumar et al. 2019). All

code to extract the data, run the analysis and produce the following figures is freely

available online (https://github.com/harisorgn/JBT).
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4.3 Results

4.3.1 Raw data visualisation

The influence of past trials on the rats’ behaviour during ambiguous trials was first

visualised using data from baseline sessions for 199 animals. This group of an-

imals included the rats of both the original (N=31) and the replication (N=52)

ketamine studies, corresponding to the two breeding facilities. The rest of the an-

imals (N=116) originated from either one of the two breeding facilities and took

part in JBT experiments within the same experimental facility as the animals of the

ketamine studies. There were two baseline sessions per animal.

Firstly, each session of each animal was split into five blocks, with each block con-

taining approximately 24 trials. Each block contained two banks of 12 trials each,

thus it was almost guaranteed to contain 8 trials of each reference cue and eight

trials of the ambiguous cue, given the bank structure of the session. The Cognitive

Bias Index (CBI) within each block is shown in Figure 4.2A. Individual animals

span the entire range of CBI values from −1 to 1 across all blocks. However, an-

imals exhibit shifts in their CBI values as trials progress. This shift is illustrated

in Figure 4.2B, which contains the difference in CBI between consecutive blocks of

trials. Specifically early trials, between the first and second block, exhibit a decrease

of CBI for more animals compared to later blocks. Individual animals are spread

on both sides of the zero line in Figure 4.2B suggesting an effect of past trials on

animals choices during the ambiguous trials.

The effect of the immediate past was investigated as well. The extent to which the

action and the outcome of the most recent trial affected the current action during

an ambiguous trial was measured in 4.3 as the ratio

Conditional probability ratio =
P (A|C = AC, A−1, R−1)

P (A|C = AC)
(4.24)

where A was the current action, C was the current cue that was equal to the am-

biguous cue AC and A−1, R−1 where the previous action and outcome respectively.

Ratio values equal to 1 suggest that the choice of the current action was independent

of the previous action and outcome. Values larger than 1 suggest that the animal

was more likely to choose action A after A−1 and R−1 than it did overall in the

session. Conversely, ratio values smaller than 1 imply that the animal was less likely

to choose A given the past action and outcome compared to how often it chose A
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Figure 4.2: Cognitive Bias Index changes over trials : A: Trials of baseline
test sessions were split into five blocks (B1-B5) and the Cognitive Bias Index (CBI)
was calculated for all trials within each block. The CBI exhibited a shift towards
negative values as trials progressed. B: Difference in CBI between consecutive blocks
per animal. The CBI decreased the most in early trials, between the first and second
block. Colored circles are individual animals, black diamonds and whiskers represent
the mean and SEM respectively. N=199.

overall in ambiguous trials.

The distributions of the conditional probability ratio for each scenario were spread

around the value of 1, with most of their density within the [0, 2] interval. Partic-

ularly when the previous trial resulted in no reward, the distributions were more

heavy-tailed. Specifically when an animal first chose a high-reward action (HA),

received no reward (A−1 = HA,R−1 = 0) and then switched to a low-reward ac-

tion (LA), the mode of the distribution was shifted towards more positive values.

This shift suggested that the animals were more likely to switch to LA after an

unrewarded HA, compared to how often they chose LA overall. In the same case

of previous action and outcome (A−1 = HA,R−1 = 0), the distribution of ratio

values for choosing the HA again was bimodal, with more values close to zero.

This indicated that some animals would never repeat a HA that was unrewarded

on the most recent trial. This result was specific to negative feedback on the HA.

The distribution of choosing the LA again, after it previously resulted in no reward

(A−1 = LA,R−1 = 0) was more concentrated around one, suggesting that animals
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Figure 4.3: The effect of the previous action and outcome on the current
action during ambiguous trials: The dependence of an action during an am-
biguous cue presentation on the most recent action and outcome was assessed for
each possible combination of previous action and outcome and current action. The
independence probability ratio was calculated as the ratio of the probability of tak-
ing an action given a current ambiguous trial and a previous action and outcome
over the probability of taking the same current action given only a current ambigu-
ous trial. A value of the ratio equal to 1 means that the current action does not
depend on the previous action and outcome during ambiguous trials. Values greater
than 1 mean that it was more likely for an animal to choose a current action after
a specific previous action-outcome case than it chose the same action on average
and conversely for values smaller than 1. The ratio was calculated for each animal
and its distribution is presented for each case. Even though the mode of the ratio
distribution lied near the value of 1 in most cases, it spread on either side of 1,
with longer tails in cases when the previous outcome was no reward. A−1: action
on the previous trial, R−1: outcome on the previous trial, HA: High-reward action,
LA: Low-reward action, HR: High reward (4 pellets), LR: Low reward (1 pellet).
N=199.

were less affected by the omission of the low reward.
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4.3.2 Model comparison

The results of the model comparison using the PSIS-LOOIC are summarised in Ta-

ble 4.1. The data used for comparison included two baseline test sessions, a ketamine

(1.0 mg/kg) session and its vehicle control session. The comparison was performed

separately for the two populations of animals, corresponding to the original ketamine

studies and the replication attempts.

The learning model had higher predictive accuracy of the held-out data, indicated

by the higher LOOIC value. The difference between the LOOIC of both models

including its standard error was 8.44±5.13 for the original studies and 8.85±5.7 for

the replication studies. Both difference values including the standard error did not

overlap zero. Therefore the learning model was given a higher probability of being

the model that animals employed when selecting an action during ambiguous trials.

Finally the diagnostic check for the PSIS approximation indicated a good fit of the

Pareto distribution, thus validating the comparison.
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Original studies

model LOOIC SE ∆LOOIC ∆SE weight
reward rate -2989.55 26.2 8.44 5.13 0.18
learning -2989.55 26.06 0 0 0.82

Replication studies

model LOOIC SE ∆LOOIC ∆SE weight
reward rate -4585.91 40.35 8.85 5.7 0.22
learning -4577.05 40.52 0 0 0.78

Table 4.1: Model comparison using LOOIC : LOOIC: the sum of the logarithm
of the pointwise predictive density values for each held-out data point, that is the
probability density of a data point given a posterior distribution of the model param-
eters after observing all other data points, SE: standard error around the logarithm
of the pointwise predictive density values for each held-out data point, ∆LOOIC
: difference in LOOIC between the current model and the model with the highest
LOOIC, ∆SE: standard error of the difference in LOOIC, weight: the probability
of the model being the best model to predict the data among the considered mod-
els. The top table used data from the original studies (N=31), where there was a
main effect of ketamine on CBI towards more positive values. The bottom table
corresponded to model comparison after inference was conducted on data from the
replication studies (N=52), where the effect of ketamine was not replicated.

4.3.3 Model-based analysis of baseline sessions and a ke-

tamine study

Posterior distribution results are presented for the learning model, as model com-

parison suggested that it performed much better at predicting held-out trial data,

compared to the reward rate model. The posterior distributions of population-level

mean parameters is shown in Figure 4.4. The animals were divided into two popu-

lations; one corresponded to the original ketamine studies were a significant positive

effect of ketamine on CBI was observed and the second one included the rats from

the replication studies. Moreover the rats of the original and the replication studies

were supplied by two distinct breeding facilities.

The bias term µ (Figure 4.4A), which encompassed both perceptual and interpre-

tation biases, was comparable between populations for baseline sessions. Positive

bias values describe a bias towards choosing the LA. The vehicle condition led to

an increase in bias only for the population of the replication studies. During the

ketamine condition, the bias of both populations was comparable.
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The population-level effect of the previous trial (Figure 4.4B), denoted by ξ, was

comparable for the two populations across conditions. Positive values of ξ corre-

spond to a win-stay, lose-shift strategy. The posterior distributions indicate that ξ

was very likely to be non-zero, particularly for the animals of the replication studies.

The effect of learning (Figure 4.4C) was comparable across all three conditions of

the two populations. Particularly at the baseline condition, this mean parameter

was most likely to be non-zero. Smaller effects were also found for the vehicle and

the ketamine conditions. Negative values of η indicate that a higher average reward

on past ambiguous trials made animals more likely to choose the HA on the current

ambiguous trial.
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Figure 4.4: Posterior distributions of population-level mean parameters for
baseline sessions and a ketamine study: Each effect considered by the learning
model is shown as the posterior distribution of its population-level mean parameter
across all conditions of the two populations. (Continued on the following page)
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Figure 4.4: (Continued) The populations corresponded to the original studies, where
ketamine caused a significant positive shift of CBI and the replication studies, where
there was no effect. A: The combined perceptual and interpretation bias parameter.
Positive values correspond to a bias towards the low-reward action. B: The effect of
the previous trial, as a win-stay, lose-shift strategy. Note the different y-axis scale.
The prior for this effect is the same as the other two plots of the figure, however
the scale was shrunk in order to better visualise the posterior distributions. C: The
mean effect of learning for the two populations. This was the weight that animals
put on the reward of ambiguous trials, averaged over the most recent 12 trials. The
grey-coloured distribution is the prior distribution for the respective parameter.
Ketamine dose volume was 1.0 mg/kg). Original studies: N=31, Replication studies
: N=52.

The effect of ketamine on each population-level mean parameter of the learning

model is summarised in Figure 4.5. The depicted distributions are the posterior of

the difference between each parameter during the ketamine condition and the same

parameter during vehicle treatment. Ketamine had opposite effects on the bias term

µ (Figure 4.5A); it shifted the bias towards the HA in the replication studies and it

increased the bias towards LA in the original studies. These effects were likely to be

non-zero, as indicated by the P∗ values (P∗ > 0.8 for both studies). Ketamine led to

a positive shift in the win-stay, lose-shift parameter ξ of the animals of the original

studies (Figure 4.5B) and a negative shift in the learning parameter η (Figure 4.5C).

However the probabilities of a non-zero effect P∗ for these two effects, as shown in

the figure label, did not indicate a very likely effect.
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Figure 4.5: The effect of ketamine on the original and the replication stud-
ies: Population-level mean parameters for each one of the three considered factors
are depicted as the posterior of the difference between the ketamine and the vehicle
conditions. (Continued on the following page)
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Figure 4.5: (Continued) A: Ketamine caused opposite effects on the combined per-
ceptual and interpretation bias parameter. During the original studies, ketamine
led to a shift in bias towards the low-reward action (P∗ = 0.857). Conversely,
in the replication studies, ketamine caused a shift towards the high-reward action
(P∗ = 0.83). B: The effect of the feedback of the most recent trial was slightly
increased by ketamine in the original studies. However, a difference of zero has
considerable probability mass around it, thus a clear positive change is uncertain
(P∗ = 0.4). In the replication studies, it is more certain that ξ did not change under
ketamine (P∗ = 0.15). C: Ketamine did not cause changes to the effect of learning
with high certainty for either population of animals (Original studies: P∗ = 0.666,
Replication studies: P∗ = 0.616). Ketamine dose volume was 1.0 mg/kg). Original
studies: N=31, Replication studies : N=52.

Subject-level parameters for each of the factors included in the learning model are

shown in Figure 4.6. The expected value for each parameter was plotted in place

of its posterior distribution to simplify the visualisation. This value was calculated

as the mean over all samples from the four sampling chains of the corresponding

parameter.

Animals of the replication studies appear to have greater inter-individual variance in

the bias parameter b, compared to the animals of the original studies (Figure 4.6A).

However, ketamine reduced the variability for the win-stay, lose-shift effect w (Fig-

ure 4.6B), specifically for the animals of the replication studies. The subject-level

effect of learning, r, was comparable between the two populations (Figure 4.6C).

Most animals had a negative expected value or r, suggesting that they were more

likely to choose HA after a greater average reward from past ambiguous trials.
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Figure 4.6: Posterior distributions of subject-level parameters for baseline
sessions and a ketamine study: The expected value of each subject-level param-
eter is presented for all animals of the two populations. (Continued on the following
page)
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Figure 4.6: (Continued) The populations corresponded to the original studies, where
ketamine caused a significant positive shift of CBI and the replication studies, where
there was no effect. A: The combined perceptual and interpretation bias param-
eter. Positive values correspond to a bias towards the low-reward action. B: The
parameter w corresponded to the effect of the previous trial, as a win-stay, lose-shift
strategy. C: The effect of learning r was the weight that animals put on the reward
of ambiguous trials, averaged over the most recent 12 trials. Each circle corresponds
to the expected value of the respective parameter for an individual animal. Ke-
tamine dose volume was 1.0 mg/kg). Original studies: N=31, Replication studies :
N=52.

Finally, the lapse rates of individual subjects are summarised in Figure 4.7. The

prior distribution of Figure 4.1 is shown as well for comparison. It is evident that

high values of lapse rate were more likely in the posterior, after the inference process

on either population of animals, compared to the chosen prior distribution.
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Figure 4.7: Posterior distribution of subject-level lapse rates for baseline
sessions and a ketamine study: Lapse rates for individual animals of the two
populations were calculated using the transformation Φ(κ + ϵ̄sω) after sampling
κ, ω and ϵ̄s for each subject s from their respective posterior distributions. The
populations corresponded to the original studies, where ketamine caused a significant
positive shift of CBI and the replication studies, where there was no effect. The
posterior distributions of individual animals within a population were collated to
produce a single distribution of subject-level lapse rate values. This was done so
that the posterior would be directly comparable to the prior. The prior distribution
is also shown in grey. The posterior distribution of both populations had a heavier
tail towards larger lapse rate values, even though these values were not initially
expected, as shown by the thinner tail of the prior. Individual animals’ lapse rates
were assumed to be sampled out of a common distribution for the baseline, vehicle
and ketamine (1.0 mg/kg) conditions. Original studies: N=31, Replication studies
: N=52.
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4.3.4 Model-based analysis of an amphetamine study

Following the inference on baseline sessions and the ketamine study, both models

were fitted on the amphetamine (0.3 mg/kg) study of cohort 1, presented in chapter

2. The model comparison in this case resulted in very similar differences between

the models as Table 4.1, with the learning model being the best candidate model

for the action selection process. Thus, only the posterior of the learning model is

presented for the amphetamine study.

The effect of amphetamine on the population-level parameters was different from

that of ketamine. Figure 4.8 contains a summary of the posterior distribution of

these parameters. Amphetamine mitigated the bias towards the LA, setting the

value of µ closer to zero (Figure 4.8B, P∗ = 0.974). The drug did not influence

the effect of the previous trial ξ with enough certainty (P∗ = 0.395), suggesting

no alterations to a potential win-stay, lose-shift strategy (Figure 4.8D). The effect

of learning, η, was moved closer to zero under amphetamine, with a probability

P∗ = 0.77 of a non-negligible effect (Figure 4.8F).
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Figure 4.8: Posterior distributions of population-level mean parameters for
an amphetamine study : Each effect considered by the learning model is shown as
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the following page)
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Figure 4.8: (Continued) A: The combined perceptual and interpretation bias pa-
rameter. Positive values correspond to a bias towards the low-reward action. B:
There was a considerable shift in bias towards the high-reward action under am-
phetamine (P∗ = 0.974). C: The effect of the previous trial, as a win-stay, lose-shift
strategy. D: Under amphetamine its value was concentrated around zero with only
a small amount of variance, making the absence of an effect likely (P∗ = 0.395). E:
The mean effect of learning for the population. This was the weight that animals
put on the reward of ambiguous trials, averaged over the most recent 12 trials. F:
Amphetamine did not alter the effect of learning with high certainty (P∗ = 0.77).
Grey-coloured distribution in A,C,E is the prior distribution for the respective pa-
rameter. Dashed vertical lines at zero in B,D,F. Amph: Amphetamine (0.3 mg/kg).
N=15.

The posterior distribution of individual animals’ lapse rates had a heavier tail to-

wards larger values than in the prior distribution (Figure 4.9). This mismatch be-

tween the prior and posterior distributions was similar to that observed in Figure 4.7

for the case of baseline sessions and the ketamine study of the previous section.
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Figure 4.9: Posterior distribution of subject-level lapse rates for an am-
phetamine study: Lapse rates for individual animals were calculated using the
transformation Φ(κ + ϵ̄sω) after sampling κ, ω and ϵ̄s for each subject s from their
respective posterior distributions. The posterior distributions of individual animals
were collated to produce a single distribution of the subject-level lapse rate values.
This was done so that the posterior would be directly comparable to the prior. The
prior distribution is also shown in grey. The posterior distribution of both popula-
tions had a heavier tail towards larger lapse rate values, even though these values
were not initially expected, as shown by the thinner tail of the prior. Individual
animals’ lapse rates were assumed to be sampled out of a common distribution for
the vehicle and amphetamine (0.3 mg/kg) conditions.

4.4 Discussion

The JBT was designed as a decision-making task, where the behaviour at each trial

was assumed to be independent of the trial history. However, visualisation of the

animals’ CBI across trials (Figure 4.2) and of the effect of the most recent trial

(Figure 4.3), which included multiple animal cohorts, suggested that this assump-

tion was not entirely accurate. A model-based analysis of the animals’ actions was

employed in order to account for such effects of past reinforcement. This analysis
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revealed differences between two populations of animals, each one originating in

a different breeding facility. Moreover, differences were observed in the effects of

ketamine and amphetamine on the animals’ responses to the ambiguous cue.

The bias parameter of the learning model revealed the most striking difference be-

tween the two populations of rats (Figure 4.4A). Even though the bias during base-

line sessions was comparable between populations, the vehicle condition led to a shift

in bias towards the LA for the animals of the replication studies. Previous work on a

similar rat strain indicated that handling the animals during their development led

to decreased anxiety-like behaviour in an open field and a novelty-suppressed feeding

test, compared to unhandled animals (Caldji et al. 2000). The behaviour of the un-

handled animals of this study was comparable to the behaviour of animals that had

undergone maternal separation, early in their development. Although information

about handling conditions or the weaning period in either breeding facility was not

available, differences in handling could potentially explain this difference in bias.

Moreover, it has been shown that maternal separation can cause early life adversity

and consequently a heightened sensitivity to stressful conditions (Stuart et al. 2019).

For instance, the elevated bias towards the least rewarding action in the animals of

the replication studies could have been triggered by a more aversive response to the

injection if these animals were less handled in their breeding facility and hence more

anxious. Even though the bias parameter was a combination of both perceptual

and interpretation biases, it is unlikely that the two rat populations differed in their

perception of the ambiguous cue, as their bias values during baseline sessions were

comparable (Figure 4.4A).

In the population of the original studies, ketamine led to a small increase in bias

towards the LA (Figure 4.5A). A similar effect has been observed, when a subset

of this population was used to fit the parameters of a drift-diffusion model (DDM)

(Hales et al. 2017). The decision starting point, corresponding to the initial bias

of the animals prior to any sensory evidence accumulation, was shifted closer to an

LA decision under the drug. However, in the current analysis ketamine caused a

small shift to the opposite direction for the population of the replication studies. If

the above assumption about a more aversive response to the injection is true, then

this effect of ketamine could be akin to the efficacy of the drug to mitigate negative

biases (Stuart et al. 2015b; Carboni et al. 2021). A corollary of this hypothesis is

that the animals need to first be at a negative affective state in order for the drug

to reduce the associated negative bias.
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Amphetamine caused a greater shift in bias towards zero, thus mitigating a bias

towards the LA that was present during the vehicle session (Figure 4.8A). There is

no evidence for disruptions in perception under amphetamine, thus its effect on bias

was most likely a change in interpretation bias. In a different decision-making task

with probabilistic rewards, rats showed a similar bias towards the more frequently

rewarded action under amphetamine and when ambiguous stimuli were presented

(Der-Avakian et al. 2013). Similar effects have been observed in human studies that

pharmacologically increase dopamine, for example using the L-DOPA drug (Sharot

et al. 2012). In the human experiments, dopaminergic drugs induce an “optimism

bias”, as participants tend to persevere on previously learned best actions, even after

negative feedback.

Interestingly though, cocaine, which increases the levels of dopamine, did not lead to

a significant change in CBI in the same JBT variant, as amphetamine did (Hales et

al. 2017). Amphetamine increases the release of all monoamine neurotransmitters,

so its effect could be further mediated via noradrenaline or serotonin. Data from the

cocaine study can be used to fit the current learning model and compare the results

with those of amphetamine to evaluate the differences between the two treatments

in more detail.

Apart from their difference in bias, the posterior distributions of the other two model

parameters, corresponding to the effects of the immediate and the longer-term past,

were comparable for the two populations. The mean parameters ξ and η were

likely to be nonzero in most cases (Figure 4.4B and C). This result supported the

suggestion from the visualisations of CBI (Figure 4.2) and the conditional probability

ratio (Figure 4.3) that past reinforcement was affecting the animals’ actions during

ambiguous trials.

Sensitivity to recent feedback has also been observed in rats performing a proba-

bilistic reversal learning task (PRLT) (Noworyta-Sokolowska et al. 2019). This work

observed inter-individual differences in sensitivity to the feedback of the previous

trial, while the sensitivity of each rat was stable across time. Besides the spread

of the conditional probability ratio distributions (Figure 4.3), our inference results

support this claim as well. The expected values of the w parameter, correspond-

ing to the effect of the most recent trial, for each rat covered both positive values

and the region around zero (Figure 4.6B). This result indicates that some rats were

sensitive to the most recent feedback and employed a win-stay, lose-shift strategy,

while others did not exhibit this sensitivity.
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On the population-level, the mean effect of the most recent trial, ξ, had a positive

value for baseline sessions, the ketamine condition and its matching vehicle treat-

ment, suggesting that a win-stay, lose-shift strategy was likely to be part of the

animals’ behaviour (Figure 4.4B). A similar effect of the previous outcome was also

observed in a group of rats during a JBT task that involved both punishments and

rewards (Neville et al. 2020b). Inference on the amphetamine study resulted in a

distribution for ξ closer to zero (Figure 4.4B), however this inference had only a

limited number of animals to inform the population-level parameters.

The dependency of actions on the most recent trial varied across animals and was

particularly pronounced in in cases of negative feedback and even more so when

the large reward was omitted (Figure 4.3). Assuming that the animals were holding

some expectation for reward when they were choosing a lever, this observation could

be interpreted as a disappointment-like effect due to the omission of reward.

The shift in CBI towards more negative values over trials (Figure 4.2), suggested

that there was an effect of the longer-term past, which could not be captured by the

sensitivity to the previous trial. Some animals showed an increase in CBI over trial

blocks, while some others were choosing the LA more often as the session progressed

(Figure 4.2B). These changes to CBI for individual animals spanned the entire range

from −1 to +1. Thus, it was unlikely that this effect was driven by a factor related

to the passage of time, for example satiety. I proposed that reinforcement history

could be responsible, since one third of the trials were ambiguous ones and these

trials were reinforced only half of the time with a reward that depended on the

action taken. Model comparison indicated that the learning model, which included

an average over the outcomes of past ambiguous trials within a time window, was

much more likely to explain the animals’ behaviour in both populations, compared

to a reward rate model, which included an average over the outcomes of all trials

within the same window.

Ketamine increased the variability of the subject-level learning parameter, r, com-

pared to both the baseline and the vehicle conditions (Figure 4.6B). One interpreta-

tion is that ketamine causes a disruption to working memory, that is the capacity to

temporarily store and manipulate information (Baddeley 2007). Even a smaller dose

volume of the drug (0.4 mg/kg) has caused behavioural deficits in macaques during

a visual working memory task, while it increased the variability of single-neuron

firing within the lateral prefrontal cortex (Ma et al. 2015). Thus, it was possible

that rewards further into the past, that contributed to the calculation of the average
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reward, were not processed as reliably as during the baseline and vehicle conditions.

Previous model-based analysis of JBT experiments in humans with rewards and

punishments as the potential outcomes found an effect of the average reward of all

past trials on the participants’ actions during ambiguous trials (Neville et al. 2021).

However, this study did not directly compare the model that incorporated this

average reward with one using the average of previous ambiguous trials, to test for

learning-specific effects. Additionally the average reward acquired did not correlate

with the participants’ self-reported affect scores. The learning model of the current

chapter could be fitted to the data from this human study and compared with the

reward rate model in order to evaluate whether the current results are also found

in humans and when punishments are present. Moreover, the difference between

the reward of an ambiguous trial and the latest average estimate could be used as

a prediction error, as it has been used in other studies, where it was successfully

correlated with affective state (Rutledge et al. 2014; Blain et al. 2020).

Inference on the lapse rates of individual animals yielded partially unexpected out-

comes. Even though most animals’ probability of acting at random was concentrated

between 0 and 0.1, there was a long tail and a considerable amount of probability

mass in higher values. This result was common between the inferred lapse param-

eters of the baseline sessions and the ketamine study (Figure 4.7) and those of the

amphetamine study (Figure 4.9). This could indicate an issue of unidentifiable pa-

rameters in the model. If all other subject-level parameters are close to zero, then

an animal would select an action with probability 0.5, regardless of the value of the

lapse rate. This is a common issue in behavioural models, particularly when the

parameters are selected to be interpretable (Wilson et al. 2019). A parameter re-

covery study should thus be performed, where model parameters are sampled from

their respective prior distributions in order to generate fictive choice data, which in

turn will be used to fit the model and verify whether the original parameter values

were recovered (Gelman et al. 2020).

Besides the potential methodological limitation, an elevated lapse rate could reflect

exploratory behaviour rather than inattention, as it was shown in a perceptual

decision-making task in rats (Pisupati et al. 2021). A lower average reward of the

recent past could lead rats to use a more exploratory behaviour, particularly to the

unfamiliar ambiguous cue. Examples of such behaviour include downshifts in reward

value during a radial maze task in rats (Pecoraro et al. 1999) and a foraging task

in humans (van Dooren et al. 2021). Recent model-based inference on a perceptual
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task in mice proposed that the animals can behave according to multiple strategies

and switch between them within a session, with exploratory, lapse-like strategies

following bouts of biased responding (Ashwood et al. 2022). A similar behavioural

motif could be underlying the rats’ behaviour during JBT, where the animals switch

to an exploratory strategy, for instance after a low average reward of the recent past.

Incorporating multiple strategies within the same model, along with assumptions

about the structure of transitions between strategies could elucidate the animals’

behaviour even further. It could also circumvent potential issues with unidentifiable

parameters, as only a subset of factors would be part of each strategy.

The current work provided evidence about learning from past reinforcement being

an important factor in modulating responses to the ambiguous cue. This result

justifies the suggestions of chapter 2 about introducing probabilistic rewards and

reducing the number of ambiguous trials in the session (see also Roelofs et al. 2016

for similar suggestions for JBT task design). Moreover, the learning model could be

expanded to include running estimates of the value of each lever-press action using

the reinforcement learning framework (Sutton et al. 2020).

By extending the learning model to incorporate reinforcement learning rules (Sutton

et al. 2020), the effects of past reinforcement can be described in more detail. For in-

stance, a learning rate parameter provides temporal discounting, so that the weight

that animals put on past rewards decays exponentially. This is a less limiting as-

sumption than an average over a time window of 12 trials, R̂, being multiplied by r,

as the time window of the considered rewards depends on the learning rate, which is

a model parameter to be inferred. Additionally, learning from positive and negative

feedback could be separated by distinct learning rates. The conditional probability

ratio (Figure 4.3) of cases of negative feedback was more variable across animals,

whereas the positive feedback cases were more concentrated near the value of 1. This

suggests that the previous feedback was more influential in cases of negative feed-

back. Previous studies on PRLT found that rats were less sensitive specifically to

negative feedback under ketamine (Rychlik et al. 2017; Wilkinson et al. 2020). Thus

separating the effects of wins and losses in conjunction with temporal discounting

of the past could further elucidate the effects of the drug.

Finally, past model-based inference on the present version of JBT utilised a DDM,

informed by both choices and response time distributions (Hales et al. 2016; Hales et

al. 2017). These studies revealed differences between affective state manipulations,

even when the CBI scores of the respective experiments were similar. However,
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these studies assumed stationarity of the decision-making process across trials. In

this chapter, I have argued that the past is an important determinant of the animals’

actions. The generative model of choices presented here could be augmented by a

generative model of response times, similar to the model in chapter 3 or a more

theoretically inspired model that combines the evidence accumulation of the DDM

with the reinforcement learning mechanisms discussed above (Fontanesi et al. 2019),

in order to make inference more informative.
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Chapter 5

Affective state in learning: a

theoretical model & naturalistic

simulation environments

5.1 Introduction

Typically in reinforcement learning (Sutton et al. 2020) - whether in a learning

task for an animal or human participant or in a simulated task for an artificial

agent - a single action leads to a matching outcome. This is the assumption which

underpins a large number of successful reinforcement learning models such as Q-

learning (Watkins et al. 1992) and temporal-difference learning (Montague et al.

1996) in explaining behavioural and neural data from experimental studies (Niv

2009 for a review).

Though common in laboratory experiments and simulations, temporally strict action-

outcome contingencies are rarely encountered in the real world. An agent could

perform several actions before receiving any reward from their environment, while

actions might vary in terms of how long a reward caused by them is delayed. There-

fore, attributing causes to outcomes is a key problem in learning. The implications

of this mismatch between contrived and natural environments in mental disorder re-

search have been discussed in a recent review (Scholl et al. 2018). More naturalistic

tasks could elucidate learning and decision-making deficits that have been observed

in patients. By emulating features of the real world in a task, subjects could ex-

hibit behaviour that is closer to their everyday actions and processing of outcomes.
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Thus, the observed behaviour would be a more representative example of the way

patients interact with their environment. Consequently, computational models, able

to process features of real environments, would be beneficial when doing inference

on patient groups.

Two experiments in macaques with both instructed and uninstructed delays between

actions and their causal rewards have measured correlations between actions and

rewards that were not causally linked (Jocham et al. 2016). The results were in

agreement with early observations of outcomes reinforcing non-causal actions, which

occurred in temporal proximity to the causal action (Thorndike 1933). Importantly,

in this experiment, actions were followed by immediate outcome feedback, yet the

same outcome affected actions that occurred several trials both before and after

subjects received it, resulting in higher repetition of false actions in future trials. A

reward schedule task that required a sequence of correctly timed actions before the

delivery of a reward revealed influences of the macaque’s position in the sequence

on error rates, that could not have been accounted for by the temporal distance

between action and reward (Bowman et al. 1996).

Seemingly unrelated actions and outcomes have been shown to influence the be-

haviour of rats, even when subjects were not explicitly trained to associate them.

These studies used multimodal outcomes, including primary reinforcers and affective

state manipulations. The Affective Bias Test (ABT) was introduced as a behavioural

assay in rats to test whether subjects have differential preference between two ac-

tions, when both actions result in the same learned reward but one of them had been

paired with a manipulation on affective state during learning (Stuart et al. 2013).

Manipulations of either positive or negative valence were equally effective in lead-

ing to an action bias, whether they were administered before or after the learning

sessions. Another ABT study found that an anxiogenic drug, adminsitered shortly

before a learning session, led to a negative action bias, while this bias was mitigated

when a positive affective manipulation, in the form of social play, took place several

hours after the learning session on the same day (Hinchcliffe et al. 2022). Both

ABT studies involved manipulations that biased animals’ choices during test day,

even when they occurred several hours after a learning session. This observation

is indicative of a memory consolidation process, which combines all experiences of

the same day. Salient experiences in this case include learning action-reward contin-

gencies during ABT sessions and being in different affective states during and after

manipulations.
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We propose here that seemingly undesirable influences of outcomes upon actions

that are not causally linked with them could be beneficial in natural environments,

where actions and outcomes do not obey a strict temporal order. In such cases, we

claim that an agent would still seek to learn associations between its actions and

rewards and we investigate how this challenge might be attainable when a model of

the environment is unknown. Without structural knowledge of its environment, we

suggested that an agent’s affective state is an important component of its learning

process. Affective state works as a contextual cue, aiding the agent as it is looking

back into past experiences that have resulted in its current state, in an effort to

account for it. The agent model we proposed, named Delta agent, could be seen as

a functional account of affective state in reinforcement learning environments where

actions lead to delayed outcomes.

We have augmented classical action-value learning models with two computational

components that have been supported by experimental evidence, and expand on

them in order to account for the novel observations in the ABT studies. These com-

ponents are a leaky integrator of reward prediction errors (RPEs) and experience-

based priority sampling during an offline replay phase. The Delta agent updates

its expected reward prediction error (RPE) across all experiences of an episode by

using a leaky integrator of RPEs, which we have called the episode’s residue. Online

the agent learns the immediate value of its actions, while offline it updates values,

representing the expected, long-term RPE that the respective action will cause.

The offline values correspond to the affective biases of the original ABT studies,

as the online values of the two rewarded substrates are the same and represent the

immediate pellet reward.

While it might seem detrimental for a reward-maximising agent to conflate actions

and outcomes that are not necessarily causally linked, we argue that our offline

learning rule is beneficial in environments where contingencies are unknown and do

not conform to a trial-based structure of immediate rewards after actions within

a trial. Building upon standard ten-bandit problems, we designed a number of

novel tasks in order to capture features of naturalistic action-reward contingencies

that are not immediate in (discretised) time. Two types of tasks were created:

the Deferred Bandits (DB) and the Tardy Bandits (TB) tasks. Both environments

include immediate and delayed outcomes, while differing in the generative processes

that deliver both types of outcomes.

A comparison of the Delta agent was performed against the Monte Carlo agent
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model (Sutton et al. 2020, section 5.4), which learns exclusively offline and holds all

information about future rewards following every action. The Monte Carlo model

was chosen as an ideal case of a tabular agent, since it learns the future gain after

an action, including rewards that are delayed by any number of timesteps within

an episode. Additionally, a version of the Delta agent without the leaky integra-

tor and the offline sample-based learning was implemented as a way to assess the

contribution of these proposed components in the agent’s performance.

5.2 Methods

5.2.1 Simulated environments

Deferred Bandits

The basic idea behind the DB task was that a reward was delivered immediately

after its causal action, while a larger reward was deferred until the end of the episode.

The large reward was a function of all previous actions within an episode. There

were three variants of the DB task, which differed in the immediate reward, while

they utilised the same deferred reward rule.

In the first variant (DB1, Figure 5.1A), rewards during all timesteps but the last

one were set to 0, whereas the final action delivered the deferred reward, Rd. In the

other two environments, all actions led to either a binary (DB2, Figure 5.1B) or a

continuous (DB3, Figure 5.1C) reward, while the deferred reward was added on the

final timestep.

All three DB tasks modelled a “day and night” cycle; during the day there are

multiple trials, but the substantial part of the reward for these trials was only

received at night. In the simplest version, DB1, this deferred reward was the only

reward, so

Rt =

0, t ∈ [1, tf − 1]

Rd, t = tf
(5.1)

where the ”night” trial was t = tf and the deferred reward was

Rd = 2
∑
a∈A

ρaIa (5.2)
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(A) DB1: no rewards
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Figure 5.1: Structure of the Deferred Bandits and the Tardy Bandits tasks:
In DB, A-C, rewards were sampled from different distributions and a deferred re-
ward Rd was added to the reward of the final step of each episode. A: DB1 generated
no rewards during the first tf −1 timesteps, B: in DB2 rewards were sampled from a
Binary(0.5) distribution for the same timesteps, C: DB3 used a Normal(0,1) distribu-
tion to generate them. D: In TB, rewards were sampled from Normal distributions
with mean values dependent on the bandit index (1-10) and a common standard
deviation of 1. They were delivered with a delay of td timesteps, which was sampled
at each step from a Poisson distribution. The shading of blue and orange nodes
marked the magnitude of the negative and positive outcome respectively. at: action
taken at timestep t, Rt: reward received at timestep t
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where

ρa =
Na

tf
(5.3)

was the ratio of the number of times action a was chosen, Na, over the total number

of timesteps in an episode tf and Ia was the bandit identity of the same action,

which corresponded to a reward equal to i for the ith bandit. The factor of 2 in

equation 5.2 was applied to ensure that the deferred reward would be much larger

than the immediate rewards, particularly in DB2 and DB3, where the immediate

reward was nonzero.

The DB2 and DB3 variants included, in addition to the deferred reward Rd, an

immediate reward R̂t. For DB2 this was a random binary reward

Rt =

R̂t ∼ Bernoulli(0.5), t ∈ [1, tf − 1]

R̂t +Rd, t = tf
(5.4)

whereas in DB3 the immediate reward was sampled from a continous distribution:

Rt =

R̂t ∼ Normal(0, 1), t ∈ [1, tf − 1]

R̂t +Rd, t = tf
(5.5)

Delayed Bandits

The second task was also an elaboration of the standard 10-arm bandit. This was

the TB task (Figure 5.1D), where choosing a bandit resulted in a delayed reward.

The delayed time of delivery td was being sampled from a Poisson distribution with

an expected rate λ.

Reward magnitudes depended on the identity of the chosen bandit at each timestep,

IA(t), which was the mean of a Normal distribution that generated them. Rewards

from multiple actions were summed together when their sampled delays made them

coincide at the same future timestep.

5.2.2 Delta agent

The proposed agent, which we called the Delta agent, learned in two phases. During

the online phase, the model updated the action value Qa, for an action a, taken at
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timestep t, according to the delta rule

δt = Rt −QA(t),t (5.6)

Qa,t+1 = Qa,t + ηδt, t ∈ [1, tf ], a = A(t) (5.7)

with learning rate η, A(t) being an indicator function of the action taken at time

t and tf representing the final timestep of an episode. Q values represented the

immediate value of taking an action.

The RPE δt was then being integrated to accumulate the episode’s residue

∆t+1 = ∆t + ψ
(
δt − bA(t),− −∆t

)
(5.8)

Our choice for the episode’s residue update rule was a recency-weighted average of

RPEs relative to the initial bias value of the chosen action, bA(t),−. The RPE, δt was

compared to the bias of the chosen action bA(t),− during the update of equation 5.8.

In section 5.2.2, it will be shown that bias learning driven by our episode’s residue is

equivalent to assigning a proportion of the integrated episode’s RPE to bias values.

Leaky integrators of RPE values have been shown to correlate with mood in humans

and influence decision-making in lottery tasks with no learning required (Eldar et al.

2015; Rutledge et al. 2014). In learning tasks, integrated RPEs were more impor-

tant for predicting future choices of human subjects compared to reward magnitude

(Blain et al. 2020). Here we treat affective state as a generalisation of mood for non-

human species, in the sense that both concepts could be mapped on a 2-dimensional

plane of valence and arousal (Russell 2003). Affective biases then represent the ex-

pected affective state that an action might lead the agent to experience. The values

learned offline in our model corresponded to affective biases, as the ones observed

in the original ABT studies.

Biases were only updated offline, during the replay phase, according to

ba,+ = ba,− + ξMa∆tf , 0 ≤Ma ≤M (5.9)

Thus, bias values were being updated by a fraction of the episode’s residue, given

a learning rate 0 ≤ ξ ≤ 1 and Ma corresponding to the number of times action ”a”

was sampled during replay, out of a total of M replay samples. The definition of

the episode’s residue included the integrated value of past RPEs, along with the

bias values of past actions. Given our assumption about integrated values of RPE
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estimating the agent’s current affective state, bias values could be interpreted as

the expected affective state that the agent will experience after taking the corre-

sponding action. The bias update was equivalent to an agent that tried to match its

current value of integrated RPE, or affective state, to bias values of past actions by

performing least-square regression. This equivalence will be shown in section 5.2.2.

During the offline phase of our agent, sample priority was given to less likely actions,

with probabilities assigned by the agent’s policy as

p =


1− π(A(t1))

1− π(A(t2))
...

1− π(A(tf ))

 (5.10)

where π(a) was the probability of taking action a given the policy that the agent

used when engaged with a task. This rule was inspired by the action typicality (or

normality) bias, the elevated affective responses of humans after surprising events

followed non-typical actions (Kahneman et al. 1986). The episode’s residue was a

measure of how much reward was not predicted by the agent; it therefore was likely

that the events that contributed to the residue were ones that the agent had not

encountered frequently enough in the past for them to have already formed part of

the agent’s model of the reward environment. Thus, unlikely actions were prioritised

during the replay phase. During each one of the M steps of the replay phase an

action is being sampled according to

a ∼ Categorical(p) (5.11)

using the priority vector defined in equation 5.10. The final value ba,+ for each action

then became the value to be used during the next episode ba,−. The episode index

was dropped for simplicity of notation.

In the subsequent episode an agent would take actions according to its policy π by

combining the learned online and offline values as

a ∼ Categorical(π(Q+ b−)) (5.12)

where Q and b− were the vectors of online and offline values respectively. By

incorporating the bias values in the action selection process, the agent considered

the expected RPE that it would experience as a result of the chosen action. Thus, the
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agent was being influenced by estimates of its future affective state, when deciding

how to act. The idea of expected RPE values driving action selection has been

previously used to explain leave-stay behaviour during a foraging task in humans

(Wittmann et al. 2016), where classical reinforcement learning models of pure reward

learning failed. Furthermore, Mendl and Paul have presented a theoretical account

of affect during decision making, which included, among other components, the

expected affective state after an action influencing action selection (Mendl et al.

2020).

Equivalence between the offline update rule and least-square regression

During the replay phase, the agent looks back into its actions in an effort to account

for its current affective state. This interpretation becomes more apparent by consid-

ering the similarity between the combined residue and bias update rules, equations

5.8 and 5.9 respectively, and the minimisation of the objective function

U =

(
∆̂tf −

∑
a∈A

waba

)2

(5.13)

by gradient descent. A was the set of all possible actions in the environment and

∆̂tf is the integrated RPE values, δt, reflecting the agent’s affective state at the end

of an episode

∆̂t+1 = ∆̂t + ψ
(
δt − ∆̂t

)
(5.14)

Minimising the objective function in equation 5.13 was done by gradient descent

with respect to the bias values of each action i as

∂U

∂bi
= −2wi

(
∆̂tf −

∑
a∈A

waba

)
, i ∈ A (5.15)

Updating the bias values according to this gradient had the form

bi,+ = bi,− − ξ
∂U

∂bi
, i ∈ A (5.16)

with ba,− and ba,+ being the bias values before and after the update respectively and

ξ the step size along the gradient. Substituting the gradient function at 5.15 into
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5.16 resulted in the bias update

bi,+ = bi,− − 2ξwi

(
∆̂tf −

∑
a∈A

waba

)
, i ∈ A (5.17)

This was the normative formula for bias updates in order to minimise equation 5.13.

It enabled the agent to achieve the hypothesised goal of holding actions accountable

for the eventual episode’s residue. Each bias update was then proportional to

∆ba ∝ ∆̂tf −
∑
a∈A

waba (5.18)

It can be shown that the proposed ∆t update of equation 5.8 is an approximation to

the above update rule. First by expanding the recursive formula in equation 5.14,

while assuming that its initial value was 0, it followed that

∆̂t+1 = (1− ψ)t�
��
0

∆̂0 +
t∑

i=1

ψ(1− ψ)t−iδi

=
t∑

i=1

ψ(1− ψ)t−iδi (5.19)

Performing the same expansion of the delta rule in equation 5.8, ∆t+1 is written as

a function of all past RPEs and biases

∆t+1 = (1− ψ)t�
�>
0

∆0 +
t∑

i=1

ψ(1− ψ)t−i
(
δi − bA(i),−

)
=

t∑
i=1

ψ(1− ψ)t−i
(
δi − bA(i),−

)
(5.20)

Consequently, by substituting equation 5.19 into equation 5.20 we got

∆t+1 = ∆̂t+1 −
t∑

i=1

ψ(1− ψ)t−ibA(i),− (5.21)

Changing the summation over timesteps to a summation over possible actions yielded

∆t+1 = ∆̂t+1 −
∑
a∈A

ba,−
∑

j∈T (a,t)

ψ(1− ψ)t−j (5.22)
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where T (a, t) was the set of all timesteps when action a was taken until and including

timestep t. Rewritting equation 5.22 for the final timestep tf and simplifying the

notation of the weights of each ba,− term resulted in

∆tf = ∆̂tf −
∑
a∈A

kaba,0 (5.23)

where

ka =
∑

j∈T (a,tf )

ψ(1− ψ)t−j (5.24)

Substituting the above definition of ∆tf into the bias update rule (equation 5.9) led

to

ba,+ = ba,− + ξMa

(
∆̂tf −

∑
a∈A

kaba,0

)
(5.25)

which was rewritten to show that the difference between consecutive bias values

after an update was proportional to

∆ba ∝ ∆̂tf −
∑
a∈A

kaba,− (5.26)

This gradient matched the normative gradient that the least-square problem should

follow, in equation 5.18, with the bias weights being equal to

wa = ka =
∑

j∈T (a,tf )

ψ(1− ψ)t−j (5.27)

Therefore an agent that integrated the difference between RPEs and the bias of

the chosen action as ∆t, in equation 5.8, and performed bias updates according

to equation 5.9 approximated a normative solution to the regression problem of

equation 5.13. Thus, the agent updated its bias values offline in order to match its

affective state at the end of the latest episode.

The proposed bias update rule could also be seen as a delta rule, akin to the standard

tabular learning of equation 5.7, with two exceptions: the same quantity, ∆tf , was

being used to update all bias values and the update for each bias value additionally

depended on the bias values of other actions that were taken during the episode.
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Relation between the Delta agent and a contextual value agent

A model that has been used to explain experimental observations of how non-

immediate rewards influence actions around them is the contextual value agent.

Given that the Delta agent was motivated by similar behavioural observations, this

section was concerned with the relation between the two agent models. It was shown

that the Delta agent included a running estimate of reward rate, similar to the con-

textual value agent, although the reward rate affected the agent’s value updates in

the opposite way compared to the contextual value agent.

The contextual value agent model learns context-dependent state- or action-values

by comparing the immediate reward received with a recency-weighted average of past

rewards, or reward rate. In order to achieve this, the agent integrates all rewards

received into an estimate of reward rate, using a delta rule with a learning rate,

which modulates how far into the past rewards are being considered. Higher values

of the learning rate parameter create an estimate for the reward rate by including

rewards from the recent past and, conversely, lower values integrate rewards further

into the past.

In a vigilance task, where rewards were delivered after a variable number of trials

in different cued contexts, the error rate of macaques was dependent on the prox-

imity of the current trial to the rewarded one and on the context itself. Temporal

difference learning of immediate rewards offset by an average of reward rate could

explain these results (Dayan 2009). Punishment avoidance is another topic that has

been addressed with a similar model, offering an explanation about how avoiding a

punishment could be rewarding and thus reinforced as an action (Palminteri et al.

2015). Macaques’ choices in a probabilistic reward learning task also depend on the

average reward rate of the past and the contextual value model could account for

differences in stay/switch behavior, when recent reward history was either rich or

poor (Wittmann et al. 2020).

A contextual value agent updates the average reward rate ρt as

ρt+1 = ρt + ψ(Rt − ρt) (5.28)

and its Q action-values as

Qa,t+1 = Qa,t + η(Rt − ρt −Qa,t) (5.29)
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Expanding on the recursive formula of equation 5.28 led to the reward rate as a

function of all past rewards

ρt+1 = (1− ψ)t��>
0

ρ0 +
t∑

i=1

ψ(1− ψ)t−i (Ri)

=
t∑

i=1

ψ(1− ψ)t−i (Ri) (5.30)

Applying the same expansion on the Q update rule resulted in

Qa,t+1 = (1− η)N(a,t)
���*

0
Qa,0 +

N(a,t)∑
i=1

η(1− η)N(a,t)−i
(
RT (a,i) − ρT (a,i)

)
=

N(a,t)∑
i=1

η(1− η)N(a,t)−i
(
RT (a,i) − ρT (a,i)

)
(5.31)

where the function N(a, t) calculated the number of times action a was taken up to

timestep t and T (a, i) provided the timestep t, at which action a was taken for the

ith time.

The integrated reward rate, ρt appeared in Delta agent’s updates, first by expanding

the ∆ update rule of equation 5.8,

∆t+1 = ∆t + ψ
(
δt − bA(t),− −∆t

)
= (1− ψ)t�

�>
0

∆0 +
t∑

i=1

ψ(1− ψ)t−i
(
δi − bA(i),−

)
=

t∑
i=1

ψ(1− ψ)t−i
(
Rt −QA(i),t − bA(i),−

)
=

t∑
i=1

ψ(1− ψ)t−iRt −
t∑

i=1

ψ(1− ψ)t−i
(
QA(i),t + bA(i),−

)
(5.32)

the first summation term was the reward rate of equation 5.30

∆t+1 = ρt+1 −
t∑

i=1

ψ(1− ψ)t−i
(
QA(i),t + bA(i),0

)
(5.33)

assuming equal values of learning rate, ψ, for ρt and ∆t. Finally the bias update
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rule in equation 5.9, after substituting equation 5.33, became

ba,+ = ba,− + ξMa∆tf

= ba,− + ξMa

[
ρtf −

tf∑
i=1

ψ(1− ψ)tf−i
(
QA(i),t + bA(i),−

)]
(5.34)

Thus the bias values of the Delta agent are proportional to the integrated value

of the reward rate at the end of an episode, ρtf . Conversely, the same estimate of

reward rate has the opposite relationship with the Q values of the contextual value

agent in equation 5.31.

5.2.3 Monte Carlo agent

The simulated tasks, DB1, DB2 and DB3 (Figure 5.1A-C) involved deferred rewards

that were proportional to the number of times each action was chosen in the past

timesteps of the same episode. These rewards occurred after the final action of each

episode. We used an every-visit Monte Carlo (MC) agent, as it was presented by

Sutton and Barto (Sutton et al. 2020, section 5.4), for comparisons with the Delta

agent. The Monte Carlo agent stored all future rewards after each timestep and used

them to learn its QMC action values offline. This way it learned a recency-weighted

average of the episode’s reward, Gt, after an action at time t

Gt =

tf∑
i=t

γi−tRi (5.35)

QMC,a,t+1 = QMC,a,t + η(Gt −QMC,a,t) (5.36)

Here we set γ equal to 0, assuming no temporal discounting. Note that G accumu-

lated over each episode and included the deferred reward that was delivered right

before the end of it. Rewriting the learned QMC values in terms of all past accumu-

lated rewards G, revealed that the MC agent assigned accumulated reward to each

action in proportion to the number of times that action was taken, N(a, t), until the

current timestep

QMC,a,t+1 = (1− η)N(a,t)
�����:0
QMC,a,0 +

N(a,t)∑
i=1

η(1− η)N(a,t)−iGT (a,i)

=

N(a,t)∑
i=1

η(1− η)N(a,t)−iGT (a,i) (5.37)
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assuming initial action vales equal to 0. The T (a, i) function indicated the timestep

when action a was chosen for the ith time in an episode. We used the MC agent

for comparison, as an ideal model that held all actions and rewards in memory for

offline learning and updated its action values in a similar manner to the deferred

reward generation rule. The similarity of its learning rule to the deferred reward’s

one became more evident by rewriting the reward of an episode after time t as a

function of the deferred reward

Gt = Rd +

tf∑
i=t

Ri (5.38)

since Rd was always delivered at t = tf and γ = 1. Then by substituting in (5.37)

we got

QMC,a,t+1 =

N(a,t)∑
i=1

η(1− η)N(a,t)−i

Rd +

tf∑
j=T (a,i)

Rj

 (5.39)

while at the end of an episode we had N(a, tf ) = Na by definition and the QMC

values were

QMC,a,tf ∝ Rd

Na∑
i=1

η(1− η)Na−i (5.40)

The MC agent’s learning rule, equation 5.40, showed that the agent integrated

the deferred reward Rd into all of its action values QMC,a in proportion to the

deferred reward magnitude and a weight term that depended on Na. Unlike the

linear relationship between Rd and Na for deferred reward generation in equation

5.2, the MC agent’s learning had a nonlinear dependence on Na. However, among

classic, tabular reinforcement learning agents, this agent was the most advantageous

and thus it was used as an ideal case. Additionally, the agent considered all potential

delays on the Delayed Bandit task (Figure 5.1D), as it integrated all future rewards

in an episode. Since the agent had no information about the distribution of time

delays, considering all future rewards, up to the episode’s end, was most beneficial.

5.2.4 Software

All code to define the Delta agent and the DB and TB environments and run the

simulations was developed in Julia (v.1.6) (Bezanson et al. 2015) and is freely avail-

able online (https://github.com/harisorgn/deferred RL).
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5.3 Results

The Delta agent was tested along with the Monte Carlo agent and a variant of

the Delta agent without any offline learning, named Delta-online, which had all ba,·

values fixed to 0. The latter was included to assess the contribution of the offline

component of bias learning. A sensitivity analysis was conducted over the online

learning rate, η, the common parameter for all agents, in the range [0.05, 0.95] with

a step of 0.1. Simulations were run for 50 steps per episode, 300 episodes, repeated

for 1000 runs, for each value of η.

The policy and agents’ parameters used in these simulations are summarised in

Table 5.1. The η values shown are the ones that led to optimal performance during

the sensitivity analysis for each agent. The learning rate for the episode’s residue,

∆, was set to 0.02 to match the timescale of the episode (50 timesteps). The offline

learning rate for bias values, ξ, the number of offline updates M and the lapse rate

ϵ were chosen after a coarse grid search.

Delta Delta-online Monte Carlo ϵ-greedy policy
η ψ ξ M η η γ ϵ

0.05 0.02 0.1 10 0.05 0.05/0.55 1.0 0.1

Table 5.1: Agent and policy parameters : These parameters were used to run the
Deferred Bandits and the Delayed Bandits tasks. Online learning rate parameters
η were chosen based on a grid search and only the Monte Carlo’s η was changed to
0.55 for the Delayed Bandits simulation. η: online learning rate, ψ: learning rate for
∆ (episode’s residue), ξ: offline learning rate, M : number of offline sampling steps,
γ: reward discount rate, ϵ: probability of choosing an action at random, Delta-
online: the variant of Delta agent that does not include the offline, bias-learning,
component.

Two metrics were chosen for the sensitivity analysis over the online learning rate:

the first episode T0 when the agent’s episode reward matched that of the random

agent and Re, the reward of the final episode. This way agents were tested both

in terms of their learning speed and of their long-term performance. The complete

results of the sensitivity analysis are shown in Figures 5.2 and 5.3 for T0 and Re

respectively.

In the Deferred Bandits tasks, adding the offline bias learning to the Delta agent

gave the agent an apparent advantage over a purely online variant, particularly in

the reward of the final episode Re, where the Delta agent outperforms the Delta-

online one (Figure 5.3A-C). The steepness of their learning curves was matched for

small learning rate values, as indicated by T0 (Figure 5.2A-C). The Delta agent’s
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learning speed deteriorated in DB1 (Figure 5.2A) with increasing online learning

rates, which was the opposite relationship of all other agents and variants. However

it still managed to reach comparable reward amounts at episode 300, noticeably

higher than Delta-online, as shown in Figure 5.3A.

For small learning rates the Delta agent had similar performance to the MC agent.

The Delta’s reward at the final episode (Figure 5.3) tended to stay larger in the

investigated range of learning rates. Comparing learning speed, the MC agent fell

short of Delta for small values on DB1 (Figure 5.2A), with a quick rise for larger

values. In DB2 (Figure 5.2B), Delta’s performance rose more quickly throughout

the range, while the two agents’ T0 completely overlap in DB3 (Figure 5.2C).

The second type of task was the Delayed Bandit task. The average time delay, λ of

the Poisson distribution, was set to four timesteps. In these simulations, the Delta

agent accumulated more reward (Figure 5.3D) and faster (Figure 5.2D) for online

learning rate values between 0.05 and approximately 0.2 compared to the other two

models. While its T0 value remained small for larger values of η, the last episode’s

reward, Re, deteriorated. Conversely, the Re value for the MC agent increased over

the first half of the range of η and remained higher in the second half. The benefits

of offline learning became apparent when looking at Figure 5.3D, where the Delta

agent’s curve was at a fixed distance above that of the Delta-online agent.

Finally, Figure 5.4 includes an example run for all agents using the online learning

rate values that resulted in the optimal values for T0 and Re during the grid search.

The plotted metric here was the accumulated reward for each episode, relative to

the reward earned by an agent following a random policy, R̃.
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Figure 5.2: Sensitivity analysis of learning speed : The learning speed of all
agents was assessed by measuring the number of episodes, T0, it took each one to
match the performance of an agent that takes actions at random. The performance
metric used was R̂, the accumulated reward per episode relative to the random
agent. In the case of the DB3 environment, the Delta and MC agents completely
overlap. Lines represent average values over 1000 runs. Delta-online was the variant
of Delta agent that did not include the offline, bias-learning, component. DB :
Deferred Bandits, TB : Tardy Bandits.
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Figure 5.3: Sensitivity analysis of long-term performance : The performance
of all agents after 300 episodes, Re, was evaluated by measuring the accumulated
reward at the 300th episode, relative to that of a random agent. Lines represent
average values over 1000 runs. Delta-online was the variant of Delta agent that
did not include the offline, bias-learning, component. DB : Deferred Bandits, TB :
Tardy Bandits.
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Figure 5.4: Example run for all agents : A timeline of the accumulated reward
per episode R̂, relative to that of an agent implementing a random policy is shown
for the three agents, over the four environments. Lines represent average values
over 1000 runs. Delta-online was the variant of Delta agent that did not include the
offline, bias-learning, component. DB : Deferred Bandits, TB : Tardy Bandits.
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5.4 Discussion

One would not have to look further than everyday interactions to come up with sit-

uations where an individual’s actions would lead to outcomes that do not obey some

strict temporal order. Multiple actions could be taken before potential outcomes

would be experienced by the individual, with outcome delays not being constant

or known in advance in novel environments. Assigning credit to the right action

to ensure future proliferation becomes even more challenging in such environments.

For instance, an animal that falls sick after consuming various kinds of food within

a day needs to figure out which food source led to its poor health. Without sub-

stantial prior experience of these food sources, the animal might be forced to avoid

more than one of the food sources that were experienced during the same day.

Though common in the real world, non-local action-reward contingencies tend to be

absent from laboratory experiments investigating learning and decision-making or

simulated environments, designed to assess agent models.

In this chapter, we put forward a hypothesis claiming that the non-local associa-

tions, observed in human and animal behavioral studies, are the result of learning

rules developed to cope with the challenging nature of causal action-reward relations

in natural environments. The Delta agent was presented as a mathematical imple-

mentation of our hypothesis. The agent held no a priori knowledge of the structure

of our simulated tasks, yet it built non-local contingencies indirectly through offline

replay. The guiding quantity for learning offline was a leaky integrator of reward

prediction errors (RPEs), which could be thought of as a proxy for affective state,

as past experimental and theoretical work has argued (Blain et al. 2020; Bennett

et al. 2020; Eldar et al. 2015; Rutledge et al. 2014).

Our simulation results indicated that the hypothesised offline learning rule was ben-

eficial most of the time over a simpler, online Q learning model, both in terms of

the learning speed and eventual performance. Additionally it matched, and in some

cases, surpassed an MC agent, which updated each action according to all outcomes

that occurred after it. These results highlight the functional benefits of using a

mood-like quantity as the gradient for offline learning. Moreover, the Delta agent is

a more plausible model for animals’ behaviour than the MC agent. The MC agent

required the log-term future gain after each timestep to be stored in memory and

subsequently the actions of the episode to be replayed in the order they occurred.

On the other hand, the Delta agent updated action values using the immediate re-

wards and only stored the surprisingness of each action in memory, along with the
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value of the day’s residue, for the offline learning phase.

Synergy between the online Q values and the offline bias values of the Delta agent is

more robustly attained for smaller values of the online learning rate. In this regime,

Q values do not closely track the immediate outcomes delivered, leaving room for

the RPE integrator, or episode’s residue ∆, to accumulate errors and subsequently

guide bias learning offline.

The timescale of the RPE integrator was set equal to an episode’s length and was

not included in the sensitivity analysis, as the only relevant information from the

rodent ABT experiments was that all experiences within a training day influenced

the observed choice bias during testing. This timescale was conceptually related to

the frequency of offline replay events. As the model calculated an average of errors

and during an offline phase tried to account for these errors by looking back to

the actions taken, the timescale of the RPE integrator, ∆, should match the time

between two consecutive offline phases. How replay events are triggered remains an

open question. This work assumed that they only occur after an episode, when the

agent is not engaged with a task.

Our Delta agent suggests a process of sampling from past experiences in order to

account for the agent’s current affective state. The quantity that is being integrated

to approximate affective state and the algorithm used to sample past experiences

were parsimonious choices that could be easily extended in more sophisticated en-

vironments. For example, the leaky integrator over RPEs could be replaced by an

integrator of advantage. Advantage is an estimate of how valuable an action is over

its alternatives in a certain state. It could be approximated by an RPE integrator

or, more faithfully, by using counterfactual information about alternative actions.

It has recently been shown to account for mood-related effects on learning tasks,

while resulting in reduced variance during learning in simulations (Bennett et al.

2020). Integrating advantage instead of RPE values, as the episode’s residue ∆,

could extend the efficacy of the Delta agent to environments that offer counterfac-

tual information.

Our prioritised sampling process during replay could also be extended to include

utility metrics for sampling each action-state pair in environments with multiple

states and where the agent has some knowledge of the possible transitions between

states through its actions. Examples of such metrics, supported by experimental

evidence, are the the estimated frequency of state visits and the long-term gain after

a state visit (Mattar et al. 2018), or the prioritised replay of unrewarded action that
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were later avoided (Eldar et al. 2020).

Animal studies, based on the Affective Bias Test, have indicated that actions are

being associated with temporally distant internal outcomes, in the form of affective

state changes of either valence. These observations along with the fact that affective

state is intertwined with most psychiatric disorders, has motivated the design of the

DB and TB tasks, based on more naturalistic action-outcome contingencies, along

with the Delta agent as a reinforcement learning model, augmented with affective-

based rules for replay and offline learning.

The work of this chapter was a simulation-based proof of concept, which showed

how biases due to affective state might develop. Future human experiments em-

ploying our DB and TB tasks, or similar ones that deviate from the traditional

trial-based structure, along with affective state assessments at various times around

the learning sessions could provide more naturalistic data. Such tasks could aid in

the characterisation of deficits related to learning and decision-making, which are

only present in the interaction of psychiatric patients with natural environments

(Scholl et al. 2018). Our DB and TB tasks were designed with the specific goal of

capturing the non-local action-reward contingencies of natural environments, where

multiple actions could be taken by an agent before an outcome is delivered. Addi-

tionally, computational models, such as the Delta agent, that are able to account

for such features of real environments, are beneficial in linking the results of studies

in patient groups with experiments involving animal models, such as the ABT.

Inference of model parameters and comparison between the Delta agent and alterna-

tive designs, for example the contextual value agent, would be critical in elucidating

how affective state is implicated in the consolidation of recent experiences. An

open question of translational value is how sudden changes in affective state due to

a treatment, like ketamine, could cause reconsolidation of past experiences without

re-exposure to them, as has been shown in rats using the ABT (Stuart et al. 2015b).
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Chapter 6

General discussion

The present thesis incorporated different approaches for measuring the affective state

of rats by using observations of their actions in two behavioural tasks, involving both

rewards and avoidance of punishments. An initial inference by the summary statis-

tics of actions in the Judgement Bias Task (JBT) of chapter 2 was complemented

by a hierarchical statistical model in chapter 4, in an effort to dissect the animals’

behaviour into factors that were deemed important. A similar approach was em-

ployed in chapter 3 where a hierarchical model was used to capture the variability of

individual animals within and across each condition of the Conditioned Suppression

Task (CST). Finally, a novel theoretical model was proposed in 5, inspired by obser-

vations in a different assay where biases due to affective state have been measured,

the Affective Bias Test (ABT). The current chapter has brought together common

themes that emerged throughout the work of my thesis.

6.1 Affective state as part of a closed loop

Multiple lines of experimental work have investigated affective state as a causal

factor behind an animal’s actions. For instance, the JBT, the CST, and most of the

literature that was discussed in the introductory chapter 1 were concerned with this

directional relationship between affective state and multiple types of actions, such

as responding after the interpretation of ambiguous information or suppressing a

foraging behaviour because of an anticipated threat. However, a causal relationship

of the opposite direction seems most likely to exist as well, with actions and their

outcomes changing one’s affective state.
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Recently, there has been a plethora of studies that tried to address this bidirec-

tional relationship between affective state and actions (Rutledge et al. 2014; Eldar

et al. 2015; Eldar et al. 2016; Rutledge et al. 2017; Neville et al. 2021). In order to

account for unobservable changes in affective state, these studies employed compu-

tational models, which incorporated hypotheses about how affective state changes

given recent experiences. My present work on a large-scale analysis of the JBT found

evidence suggesting that the animals were not interpreting the ambiguous stimuli

purely based on their prior expectations of a small or large reward, but they also

were influenced by past feedback. This influence could be interpreted as a result

of learning new action-outcome contingencies for the ambiguous cue. However, an

alternative explanation is that it is also a result of changes to the animals’ affec-

tive state during the session. The probabilistic feedback after each response to the

ambiguous cue could result in a mismatch between the acquired outcome and the

animals’ expectation. This mismatch has been known to modulate humans’ affective

state (Rutledge et al. 2014; Eldar et al. 2015; Rutledge et al. 2017; Villano et al.

2020; Bennett et al. 2020). Assuming that a similar modulation of affective state by

prediction errors is present in non-human animals’, it is possible that the prediction

errors in ambiguous trials in the JBT lead to changes in affective state, which in

turn affect the way the ambiguous cue is being interpreted.

This proposal about the modulation of affective state in animals was further cor-

roborated in the theoretical work of chapter 5. In simulated environments, which

captured more naturalistic contingencies between actions and their outcomes, af-

fective state was shown to be a beneficial component of a learning agent. There,

affective state was situated in a feedback loop, where it could change as a result of

prediction errors. It was further used in a predictive manner, as the agent consid-

ered the future affective state that it could find itself experiencing, when deciding

on how to act in its environment. Thus, affective state is an active part of both

feedback-adaptive and feedforward-predictive internal loops that shape an animals’

actions. These ideas have been previously expressed as descriptive theories of emo-

tions (Baumeister et al. 2007), whereas now computational tools are available to

investigate them in greater detail.

Similar ideas were part of classical theories about mood disorders. People in patho-

logical states are entrenched in a loop of negative expectations leading to inaction or

missed opportunities to experience positive outcomes, which further validate the neg-

ative expectations (Beck 1967). A more recent theory has extended this statement,

claiming that prior to the development of pathology, associations can be created
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between affectively charged experiences and an individual’s actions (Robinson et al.

2016). Our Delta agent is able to capture such associations. Thus the agent can be

used to make long-term predictions of this theoretical proposition by running longi-

tudinal simulation studies to evaluate how making associations between the agent’s

actions and its affective state may lead to the development of pathological states.

Statistical models, such as the one that was fit to JBT data in chapter 4, could be

extended by theoretical models, such as the Delta agent of chapter 5 in order to

capture a bidirectional relationship between the animals’ affective state and their

actions. Particularly when trying to infer the effect of manipulations with transla-

tional value, such as ketamine, it is worth considering how malleable affective state

is under the influence of the drug. For instance, a successful antidepressant would

have to be able to cause a positive affective state that is stable enough against the

typical negative surprises of the environment, at least in the short term, before the

patient is able to maintain a healthy affective state on their own.

6.2 Rewarding avoidance and punishing omission

The presence or omission of rewards and punishments are distinct types of outcome,

which were present in both of the tasks that were implemented in the present the-

sis. In JBT the outcomes were food rewards, which could have been omitted after

an incorrect action or due to the probabilistic feedback of the ambiguous cue. In

CST, every trial presented a choice between avoiding a potential punishment or keep

exerting effort for a food reward. Since both tasks aimed at inferring an animal’s

affective state via its actions, the valence of reward omission and punishment avoid-

ance will be evaluated in light of our theoretical model, which situates affective state

in-between actions and outcomes.

The case of reward omission is more straightforward according to reinforcement

learning theory (Sutton et al. 2020). An action is positively reinforced, and hence

more readily repeated, after a reward exceeds an animal’s expectation for it. This

reinforcement implies that the animal has learned to expect a positive outcome after

its action. Even though the JBT was not designed to encourage learning, its premise

was that animals act according to their expectation of reward. Naturally then, when

this expectation is not met, a negative prediction error is created, which is known

to negatively modulate affective state, as discussed in the previous section and in

chapter 4. Thus, the omission of reward could be considered an affectively negative
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event. Our theoretical model would predict that the negative affective state caused

by the negative prediction errors after reward omission would result in a bias away

from the action that led to this error. This proposition has implications particularly

for the trials where the ambiguous cue is presented, as there is a 50% chance that

there will be no reward after an animal’s response. The basic premise of JBT is that

animals respond to the ambiguous cue according to their expectations of reward,

thus a nonzero prediction error must be present during these trials.

Avoidance of punishment can not be explained as easily as acting to acquire reward,

since after the punishment has been successfully avoided, there is no outcome to

reinforce the avoidance action. Previous theoretical work has assumed that punish-

ment avoidance needs to be rewarding so that the avoidance action can be reinforced

(Kim et al. 2006; Moutoussis et al. 2008), although it is also possible to choose an

avoidance action of neutral value, because the action to stay has been negatively

reinforced (Maia 2010). More recently, a contextual value model of reinforcement

learning was used to explain how the avoidance action acquires a positive value

(Palminteri et al. 2015). In chapter 5, our Delta agent model was shown to incorpo-

rate this definition of contextual value, yet it used it in the opposite way compared

to the contextual value model.

The contextual value model predicts that the avoidance action will acquire a positive

value, since it is learned by comparing the immediate outcome with the average value

of the context, which is negative due to past electric shocks. On the other hand,

our Delta agent predicts that the action of not escaping will acquire a negative bias,

during the offline phase when the animal tries to account for its negative affective

state. The action value of escaping in our model, reflecting the immediate outcome

of taking it, would be neutral, since no explicit outcome occurs after an avoidance

action.

Even though the action value of our model is not reinforced immediately after an

escape, the day’s residue is positively updated. The day’s residue is the running

average of past prediction errors, reflecting the animal’s affective state. It would

be negative during training, since only negative surprises would take place in the

form of electric shocks. After an escape, there is no immediate outcome and hence

a prediction error of zero, which will decrease the magnitude of the day’s residue, as

this error is integrated in it. Thus, our model suggests that avoidance of punishment

in our CST leads to an immediate positive shift in affective state, while the same

action is chosen not because of a positive value, but because of a much more negative
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value of the alternative action.

Overall, the decision on whether to stay or flee depends on the difference between

the values of the two choices (Seymour et al. 2008). There are multiple ways to

produce the same difference. The contextual value model and our Delta agent could

in principle produce similar difference in values, even though they embody distinct

learning processes.

Going beyond the JBT and the CST, towards more naturalistic environments, where

there are multiple available actions varying by context, delayed outcomes and un-

certainty in both rewards and punishments, could help to delineate the difference

between the learning processes proposed by our proposed model and alternative ones.

Chapter 5 presented several ideas about naturalistic task designs. Future work could

implement these tasks as behavioural experiments in order to inform theoretical pre-

dictions by empirical evidence. After inferring model parameters from the choice

data, the inferred values for each action, in each context it appears, could be in-

ferred for each subject, thus providing an estimate of how rewarding is punishment

avoidance and how punishing is the omission of reward. Complementary measures

of affect, such as questionnaires in humans, could be utilised intermittently to assess

whether punishment avoidance and reward omission influences affective state in a

similar way as our model predicts.

6.3 The average rat

It does not exist. Individual differences between animals were observed in both of

the behavioural tasks that were implemented in the present thesis, involving both

rewarding and aversive experiences. Such differences could hide potential effects

and bias the inference process towards an average case. Particularly when studying

affective state, which is an unobservable quantity, intertwined with subjective expe-

rience, accounting for individual differences in behaviour could aid in inferring the

true state of the animal and how that state influences actions.

Individual differences could be innate or they could depend on the past experiences

of each animal (Gomez-Marin et al. 2019). Previous work has suggested that all

historical information about the living conditions of animals should be reported in

studies of affective state, as these factors can greatly confound the experimental

results (Tye 2018). Hierarchical statistical models offer a way to account for indi-
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vidual differences both within and across conditions, allowing for inference on both

a subject level and a population level. This model structure was employed in the

current thesis, in conjunction with generative models of actions in JBT and response

times in CST.

The model-based inference of JBT data, across cohorts of rats originating in dif-

ferent breeding facilities, revealed differences in the parameter that was primarily

linked to the interpretation bias hypothesis, which the task was based on. Moreover

individual animals within each breeding facility group, exhibited variations in the

weight they assigned to feedback from the most recent and longer-term past. A

non-zero influence of past experiences could diminish the effect of an interpretation

bias, thus confounding the interpretation of the experimental results as optimistic

and pessimistic actions. Similarly in the CST, some animals exhibited the predicted

suppression of reward-seeking, yet other animals had a clear opposite effect, as they

sped up their responding under the threat of shock.

Looking into the behaviour of individual animals in both tasks, it is evident that dif-

ferent strategies could have been employed. Even animals, whose behaviour did not

conform with the original hypothesis -responding according to a prior expectation

of reward in JBT or suppressing responses in CST- could behave in ways that are

influenced by their affective state. For instance, animals that change their action

after a loss could have an increased sensitivity to negative feedback, a symptom that

is common in patients with major depressive disorder (Murphy et al. 2003).

Averaging over animals would discard all information about such differences. This

is particularly detrimental in animal models of psychiatric disorders. Diagnosis in

patients is conducted on an individual level, yet in animal studies inference often

follows group averages, thus neglecting potential differences that a treatment could

have on individuals (Ardi et al. 2016). This disparity could reduce the translational

value of animal models. One argument in favour of averaging is the reduction of noise

or uninformative variability in the data (Estes 2002). However, the uninformative

variability could be discarded along with useful information about each subject

and how a treatment might have affected them. On the other hand, hierarchical

statistical models allow for a more structured organisation of variability without loss

of important information about individual subjects (Gelman et al. 2015; McElreath

2016; Ahn et al. 2017).

Particularly when paired with Bayesian inference, hierarchical models can be gener-

ative models, able to produce fictive data while preserving the heterogeneity between
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animals. The posterior distribution over model parameters, which is the result of

inference, could work as the prior expectation when designing future experimental

studies. Fictive data could be created based on parameter values, which are sampled

from the posterior distribution, to simulate cohorts of animals. If the goal of the

experimental study is the investigation of particular strategies or biases, thought

to be modulated by affective state, then an expectation for the prevalence of these

behavioural patterns among the fictive cohort could be calculated. Assuming the

inference was conducted properly given all the diagnostic checks, this expectation

could work as a prediction for the prevalence of the relevant behaviour in future

cohorts of animals. This prediction could aid in the optimisation of the number of

animals employed in future studies.

159



References

Aarts, Emmeke et al. (Apr. 2014). “A Solution to Dependency: Using Multilevel

Analysis to Accommodate Nested Data”. In: Nature Neuroscience 17.4, pp. 491–

496. issn: 1546-1726. doi: 10.1038/nn.3648.

Aarts, Emmeke et al. (Dec. 2015). “Multilevel Analysis Quantifies Variation in the

Experimental Effect While Optimizing Power and Preventing False Positives”.

In: BMC Neuroscience 16.1, p. 94. issn: 1471-2202. doi: 10.1186/s12868-015-

0228-5.

Ahn, Woo-Young, Nathaniel Haines, and Lei Zhang (Oct. 2017). “Revealing Neuro-

computational Mechanisms of Reinforcement Learning and Decision-Making With

the hBayesDM Package”. In: Computational Psychiatry (Cambridge, Mass.) 1,

pp. 24–57. issn: 2379-6227. doi: 10.1162/CPSY_a_00002.

Akrami, Athena et al. (Feb. 2018). “Posterior Parietal Cortex Represents Sensory

History and Mediates Its Effects on Behaviour”. In: Nature 554.7692, pp. 368–372.

issn: 1476-4687. doi: 10.1038/nature25510.

Anagnostaras, Stephan G. et al. (Sept. 2010). “Automated Assessment of Pavlovian

Conditioned Freezing and Shock Reactivity in Mice Using the Video Freeze Sys-

tem”. In: Frontiers in Behavioral Neuroscience 4, p. 158. issn: 1662-5153. doi:

10.3389/fnbeh.2010.00158.

Anderson, David J. and Ralph Adolphs (Mar. 2014). “A Framework for Studying

Emotions across Species”. In: Cell 157.1, pp. 187–200. issn: 1097-4172. doi: 10.

1016/j.cell.2014.03.003.

Anderson, Michael H., Marcus R. Munafò, and Emma S. J. Robinson (Apr. 2013).
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