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Abstract

There exists a rich variety of real-world networks beyond those with un-

weighted and undirected edges. This thesis considers the statistical analysis

of adjacency spectral embedding beyond these standard networks. By em-

bedding the nodes of these networks into low dimensional space in a consis-

tent and meaningful manner, it is possible to make better inferences from

the embedded data. This thesis extends the existing theory for unweighted,

undirected networks with two major contributions.

First, we extend the generalised random dot product graph, a latent po-

sition graph model, to allow for weighted networks and provide new results

regarding the asymptotic distribution of the adjacency spectral embedding of

these networks. This opens up new possibilities as a network can be trans-

formed using a different representation of the edge weights, for example,

embedding an adjacency matrix of p-values or an adjacency matrix of log

p-values. In the case of the weighted stochastic block model, we can com-

pare the quality of the different embeddings using the size-adjusted Chernoff

information and consider the optimal transformation for a network.

Second, we consider dynamic networks where individual nodes, commu-

nities or the entire graph may change over time. We show that unfolded

adjacency spectral embedding produces an embedding for every node at ev-

ery time point in a statistically consistent way. Up to noise, nodes behaving

similarly at a given time are given the same embedding (cross-sectional sta-

bility), as is a single node behaving similarly across different times (longitu-

dinal stability). We show that many common dynamic network embedding

algorithms often lack one, or both, of these desirable properties.
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Chapter 1

Introduction

A wide variety of data sets can be interpreted as networks. Nodes repre-

senting entities are connected by a possibly weighted or temporal edge repre-

senting some interaction between those entities. It includes social networks,

either face-to-face human interaction or collaboration, or online communica-

tion via email or an online social network. It includes computer networks

where interaction between computers is a mixture of automated activity and

those initiated by people. It includes biological networks such as neuron com-

munication within the brain and protein-protein interaction. Many physical

infrastructures can be interpreted as a network, such as the road network,

the power grid or flights between airports. Our thoughts and opinions on

products and media can be converted into bipartite networks. The list goes

on and on.

One approach to analysing these networks is to convert the graph into a

low dimensional space representing the nodes that captures their structure

in the network. By mapping the nodes into a low dimensional space, the

embedding can be used as input for other techniques, such as node clustering

[23] and edge weight prediction [7].

The rest of the thesis is structured as follows. In Chapter 2 we introduce

the concept of graph embedding as a whole, highlighting the advantages

of these approaches as a method of reducing the dimensionality of a net-

work while maintaining some of its structural properties. We then gradually

narrow our attention by looking at graph embeddings based on matrix fac-

torisation, moving to those based on spectral decomposition before finally

1



Chapter 1. Introduction

focusing on adjacency spectral embedding.

In Chapter 3 we describe some simple unweighted graph models such

as the stochastic block model and show how adjacency spectral embedding

can recover the underlying structure of these models. Based on this, we

cover the existing theory of the generalised random dot product model and

the asymptotic behaviours under adjacency spectral embedding [61]. This

theory is the basis of the rest of the research in this thesis.

In Chapter 4 we extend the theory of the generalised random dot product

model to allow for weighted networks. This requires a new way of thinking as

the latent position now encapsulates information about a family of distribu-

tions rather than edge probabilities. This adds an extra layer of abstraction

between the latent positions of a weighted generalised random dot prod-

uct graph and the resulting adjacency spectral embedding. We provide new

results regarding the asymptotic behaviour of this extended model under

adjacency spectral embedding [21].

In Chapter 5 we discuss how to compare the quality of different spectral

embeddings, in particular measuring the community separation in a stochas-

tic block model using size-adjusted Chernoff information. By extending the

theory to weighted networks in the previous chapter, we are able to transform

a weighted network by an entry-wise transformation of every edge. This can

result in some representations having better community separation as shown

by our synthetic example of pairwise p-value data first shown in Gallagher

et al. [21].

In Chapter 6 we study dynamic networks in which nodes can change

behaviour over time, forming new connections accordingly. The goal is to

create an extension of adjacency spectral embedding for every node at every

time point in a statistically consistent way. We propose two desirable prop-

erties for such an embedding; cross-sectional stability where nodes behaving

similarly at a particular time have comparable embeddings, and longitudinal

2



stability where a node behaving similarly at different time points have com-

parable embeddings. We show that an existing technique called unfolded

adjacency spectral embedding has both of these stability properties while

many existing algorithms have neither. This research was first published in

Gallagher et al. [22].
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Chapter 2

Graph embedding

2.1 Graph embedding overview

There are numerous approaches to convert a graph into a low dimensional

embedding. For example, the surveys [9, 24] bring together different tech-

niques focusing on unweighted, undirected networks. Matrix factorisation

based embeddings compute decompositions of some matrix of node proxim-

ity in a network, for example, the adjacency matrix directly or the symmetric

Laplacian matrix defined in Section 2.3. Spectral embedding [72] refers to a

subset of these algorithms that uses a spectral decomposition to perform the

matrix factorisation.

Algorithms inspired by deep learning techniques have been adjusted to

create graph embedding by the computer science community, such as Deep-

Walk [55] and node2vec [25]. These algorithms provide useful embeddings

for large real-world networks, but often lack the statistical rigour explaining

why these are sensible approaches. For example, many deep learning ap-

proaches apply ideas from natural language processing to random walks in

the network and it was only until later that a link to matrix factorisation

was discovered [43] and proof that they produce consistent embeddings for

simple graph models [78].

A major advantage of spectral embedding algorithms is that these ap-

proaches can be given the necessary statistical rigour to show that they

perform in a sensible and consistent way. In Chapter 3 we introduce the

generalised random dot product graph [61], whose approach to analysing the

5



Chapter 2. Graph embedding

adjacency spectral embedding algorithm (given in Definition 1 below) is a

key inspiration for the new extensions given in the rest of this thesis.

2.2 Adjacency spectral embedding

Definition 1 (Adjacency spectral embedding). Given a d-truncated singular

value decomposition of an adjacency matrix A ∈ Rn×n,

A = UAΣAV>A + UA,⊥ΣA,⊥V>A,⊥,

where UA,VA ∈ O(n × d) = {Q ∈ Rn×d : Q>Q = I} and ΣA ∈ Rd×d is

the diagonal matrix comprising the d largest singular values of A arranged

in decreasing order denote by X̂ ∈ Rn×d the adjacency spectral embedding

X̂ = UAΣ
1/2
A ∈ Rn×d.

We divide the adjacency spectral embedding into rows to represent the

spectral embedding for each node in the graph. By writing X̂ = (X̂1 | · · · |
X̂n)>, X̂i is the spectral embedding representation for node i. Occasionally

it will be useful to construct the adjacency spectral embedding for some-

thing other than an adjacency matrix. Given a d-truncated singular value

decomposition of an arbitrary matrix M, we denote the adjacency spectral

embedding as XM = UMΣ
1/2
M .

In this thesis, we do not concern ourselves with how the embedding di-

mension d is chosen, instead assuming that it has been given to us by an

oracle. The dimension d can be estimated based on the spectral decomposi-

tion of the adjacency matrix A [80, 12]. In Section 3.2 we show for simple

graph models how to compute the correct embedding dimension and how

it relates to the observed adjacency matrix. In these cases, we know which

singular values of A can be discarded as they are close to zero and essentially

noise. We will not treat estimation of d in any further detail, and assume it

is known.

6



2.2. Adjacency spectral embedding

Example 1 (Les Misérables co-occurrence network). To give an example of

adjacency spectral embedding, consider the weighted graph of co-occurrences

between characters in the novel Les Misérables [33]. A node represents one

of the 77 characters in the book and the edge weight counts the number of

times the characters appeared in the same chapter [40].

Figure 2.1 shows the adjacency spectral embedding of the network into

d = 2 dimensions chosen using the singular values of A [80]. The embedding

approximately creates two rays of points emanating from the origin. One

of these rays contains some of the major characters in the novel with a few

examples shown as red triangles with the protagonist Jean Valjean located

at the end. We shall see in Section 3.1.3 that this is common feature of a

degree-corrected stochastic block model.

3 2 1 0

2

1

0

1

2

Valjean

Javert

Cosette

Marius

Les Miserables co-occurrence network
adjacency spectral embedding

Major characters
Friends of the ABC

Other characters

Figure 2.1: The embedding X̂ of the Les Misérables co-occurrence network

into d = 2 dimensions. The points are coloured according to their role in the

book.
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Chapter 2. Graph embedding

The other ray shows members of the Friends of the ABC, a revolutionary

club of students, shown as green circles. One point along this ray is different

but corresponds to the street urchin Gavroche who is linked to the revolu-

tionary group. The adjacency spectral embedding is able to capture some of

the character interactions from the network and reduces the information to

a more manageable dimension where further analysis can be performed. /

In previous work [60, 21] the adjacency spectral embedding was defined

in terms of the eigendecomposition of the adjacency matrix A. However,

for generalisation, it is convenient to define adjacency spectral embedding

using singular value decomposition. For example, the rectangular unfolded

adjacency matrix [36] cannot be analysed at all using an eigendecomposition.

Given the eigendecomposition of an adjacency matrix A ∈ Rn×n,

A = USU> + U⊥S⊥U>⊥,

where U ∈ O(n × d) and S ∈ Rd×d is the diagonal matrix comprising the d

largest eigenvalues of A arranged in decreasing order of magnitude, the ad-

jacency spectral embedding X̂ ∈ Rn×d can also be defined using the absolute

value of the eigenvalues,

X̂ = U|S|1/2.

It is important the singular value decomposition is using the d largest

eigenvalues of A in magnitude. A large collection of exemplary work on ad-

jacency spectral embedding initially used the d largest positive eigenvalues of

A, reviewed by Athreya et al. [6]. By only considering the largest eigenvalues

it is only possible to correctly analyse networks with positive definite adja-

cency matrices. However, in a bipartite network, for every positive eigenvalue

there exists a negative one with the same magnitude and it is incorrect to say

that one of these is more important to understanding the network structure

than the other. This is just one example and we will see many more in this

thesis where both the positive and negative eigenvalues are key.

8



2.2. Adjacency spectral embedding

To show that the two versions of the adjacency spectral embedding algo-

rithm are the same, we introduce the indefinite orthogonal group.

Definition 2 (Indefinite orthogonal group). Given p > 0, q ≥ 0 and d =

p+q, the indefinite orthogonal group is defined as the set of matrices in Rd×d

such that

O(p, q) = {Q ∈ Rd×d : Q>Ip,qQ = Ip,q},

where

Ip,q = diag(1, . . . , 1︸ ︷︷ ︸
length p

,−1, . . . ,−1︸ ︷︷ ︸
length q

).

When p = d and q = 0 this reduces to the standard group of orthogonal

matrices O(d) = {Q ∈ Rd×d : Q>Q = I}. A matrix M has signature (p, q)

if it has p positive and q negative eigenvalues. In both case, the adjacency

spectral embedding satisfies

M = XMIp,qX
>
M.

However, given an adjacency spectral embedding, we can provide another

valid embedding XMQ> for any Q ∈ O(p, q). This non-uniqueness is a key

feature of the adjacency spectral embedding algorithm and results regarding

its behaviour, such as Theorem 1 and 2, have to account for these transfor-

mations.

Given an eigendecomposition adjacency spectral embedding, one can al-

ways construct one using the singular value decomposition by setting UM =

U, ΣM = |S| and VM = UIp,q. However, some care must be taken when

considering the reverse statement. Using a singular value decomposition

can lead to non-uniqueness issues. For example, bipartite graphs have re-

peated singular values and hence can have different basis for the singular

vectors compared to the eigenvectors. However, it is always possible to find

a transformation Q ∈ O(p, q) that converts the singular value decomposition

embedding into one obtained by an eigendecomposition.

9



Chapter 2. Graph embedding

For the remainder of the thesis, we will use adjacency spectral embedding

to refer to the singular value decomposition version.

2.3 Other spectral embeddings

Adjacency spectral embedding is not the only way to use spectral techniques

to embed a network into lower dimensions. Rather than analysing the graph

adjacency matrix, different representations of the network can be used. For

example, Laplacian spectral embedding is the same as adjacency spectral

embedding in Definition 1 except the unweighted adjacency matrix is replaced

with the symmetric normalised Laplacian matrix,

Lsym = D−1/2AD−1/2,

where D ∈ Rn×n is the diagonal matrix of node degrees with diagonal entries

Di =
∑

j Aij. Another embedding technique instead uses the random walk

Laplacian matrix [50],

Lrw = D−1A.

Using different matrix regularisation techniques for the adjacency ma-

trix can result in different types of structure being detected by the spectral

embedding [63, 68, 10]. For example, in brain connectivity networks, clus-

tering using the Laplacian spectral embedding separates the left and right

hemispheres of the brain, while adjacency spectral embedding distinguishes

between white and grey matter [57]. Using the random walk embedding to

analyse a social network captures a person’s friend preferences separately

from how popular or active they may be in that social network [50].

Moving from unweighted to weighted networks, for Laplacian-based spec-

tral embedding techniques one needs to be aware what the degree of a node

actually means for a weighted network. In many situations defining the de-

gree as the sum of weighted edges, Di =
∑

j Aij, makes sense. For example,

10



2.3. Other spectral embeddings

in computer networks where edge weights represent the number of bytes be-

ing transferred between computer nodes and the degree represents the total

amount of data leaving or arriving at a computer. Although, things may not

always be so clear.

Example 2 (Network of pairwise p-values). Suppose we have a weighted

network where edge weights represent the observed p-value between a pair

of nodes quantifying our surprise in their level of activity. The degree of a

node is the sum of p-values and, while there are approaches based on adding

p-values [18], probably the most common method for combining p-values

p1, . . . , pn is Fisher’s method [20] using the test statistic,

−2
n∑
i=1

log pi.

This suggests using the log p-values as an alternative edge weight in this

network as the node degree is now proportional to this test statistic.

Alternatively, one can convert the matrix of p-values into a binary graph

where edges represent p-values below a particular threshold that is deemed

to be of interest. After this transformation, the degree is the number of

interesting p-values involving a particular node. This network is discussed in

much more detail in Section 5.3. /

It is often assumed that all of the weights in a network are positive,

however, there is nothing preventing negative edge weights in the network,

perhaps to denote disassociation between nodes. This can lead to problems

if some nodes in the network have negative degrees as spectral embedding

using the symmetric normalised Laplacian Lsym cannot be computed without

resorting to complex numbers, although the random walk Laplacian Lrw can

still be used.

To avoid the issues around node degree in weighted networks, this thesis

will focus solely on adjacency spectral embedding. There is plenty of scope

11



Chapter 2. Graph embedding

for future research to extend Laplacian-based spectral embedding techniques

to weighted networks and dynamic networks in a meaningful and consistent

way.

12



Chapter 3

Unweighted networks

In this chapter we give a review of research related to the adjacency spectral

embedding algorithm for unweighted networks. We describe a few basic un-

weighted graph models before introducing the generalised random dot prod-

uct graph [60]. This will provide an important starting point for the rest of

the thesis which introduces two new extensions to this model.

3.1 Simple graph models

This section introduces three graph models as motivation for the use of ad-

jacency spectral embedding to recover the structure of these models. Sec-

tion 3.3 gives the asymptotic distribution for adjacency spectral embedding

in general, justifying the algorithms for recovering the graph model parame-

ters discussed here.

3.1.1 Stochastic block model

Suppose we have a network of university staff where links represent com-

munication between two faculty members. In this network, the probability

of an edge between two members of staff will depend on their departments

within the university. People within the same department are much more

likely to communicate, but other pairs of departments may also be likely to

communicate, for example, mathematics and computer science compared to

biology and history. The departments divide the university in communities

13



Chapter 3. Unweighted networks

and one basic network model assumes that the probability two members of

staff communicate depends only on the departments they belong.

The stochastic block model is a graph generative model that creates net-

works with this community structure [31]. Nodes in a graph are assigned

to one of K possible communities using a latent variable Zi represents the

community assignment of node i. The probability of an edge between two

nodes i and j depends only on their community assignments Zi and Zj.

Definition 3 (Stochastic block model). Let Z = {1, . . . , K} be a sample

space with probability distribution F . A symmetric matrix A ∈ Rn×n is

distributed as a stochastic block model, if Z1, . . . , Zn
iid∼ F and, for i < j,

Aij | Zi, Zj
ind∼ Bernoulli(BZiZj

),

where B ∈ [0, 1]K×K is the mean block matrix, a matrix of inter-community

edge probabilities.

Given Z ∼ F , we define π = (π1, . . . , πK) where πk = P(Z = k) is the

probability a node is assigned to community k.

To see why this is known as a block model, imagine that the rows and

columns of the adjacency matrix A are arranged according to their com-

munity assignment Zi. The adjacency matrix can be rewritten as a block

matrix,

A =


A(1,1) · · · A(1,K)

...
. . .

...

A(K,1) · · · A(K,K)

 ,

where A(k,`) represents the adjacency matrix where one node is in community

k, and the other is in community `. In each of these blocks, the edge density

is fixed since

A
(k,`)
ij

ind∼ Bernoulli(Bk`),

14



3.1. Simple graph models

for all nodes i, j such that Zi = k and Zj = `. The entry Bk` is the Bernoulli

parameter for the adjacency block A(k,`), the mean of the Bernoulli distribu-

tion. The importance of the block mean matrix will become more apparent

when extending the stochastic block model to weighted graphs.

Example 3 (Erdős-Rényi model). In the G(n, p) version of the Erdős-Rényi

random graph model [19], a graph is constructed on n nodes where every

possible edge is included with probability p, independently from all other

edges. This can be thought of as a stochastic block model with a single

community (Zi = 1 for all nodes) and block mean matrix B = (p). The

stochastic block model is an extension of the Erdős-Rényi random graph

model to include community structure. /

Example 4 (Two-community stochastic block model). Consider a stochastic

block model with two communities with block mean matrix

B =

(
0.10 0.20

0.20 0.05

)
,

with signature (1, 1), and a distribution F that assigns equal probability to

the two communities; π1 = 1/2 and π2 = 1/2.

Using this model, we generate a stochastic block model with n = 1000

nodes and perform adjacency spectral embedding into d = 2 dimensions.

The number of embedding dimensions is chosen to be the rank of the block

mean matrix B, which in this case is the number of communities in the

stochastic block model. The reasoning behind this choice is explained in

Section 3.2.1. The leading two singular values of the resulting adjacency

matrix A correspond to one positive and one negative eigenvalue matching

the signature of the block mean matrix B. Figure 3.1 shows the embedding

X̂ of the stochastic block model. Points are coloured according to their

community assignment Zi and form two clusters.
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Figure 3.1: The embedding X̂ of a two-community stochastic block model

into d = 2 dimensions. The points are coloured according to their true

community assignment Zi.

Suppose we did not know the true community assignment of the nodes

within the graph. By performing the adjacency spectral embedding and fit-

ting a Gaussian mixture model with two components, we can recover the

community labels of the nodes, up to community relabeling. As shown in

Figure 3.1, the cluster covariances can be unequal and non-spherical, which

is justified by the asymptotic distribution of the embedding given in Sec-

tion 3.3.1. Therefore, the chosen clustering algorithm should account for

that possibility meaning an algorithm like k-means may not be appropriate,

as seen in Example 20. /
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3.1. Simple graph models

3.1.2 Mixed membership stochastic block model

While the stochastic block model is a straightforward way to generate ran-

dom graphs with community structure, it is perhaps unrealistic to assume

that a node in the network belongs to a single community. For example,

returning to the university communications network in the previous section,

a data scientist may be employed by the mathematics department, but also

be considered part of the biology and social science departments.

The mixed membership stochastic block model extends the stochastic

block model and allows nodes within the graph to belong to multiple com-

munities [3]. Every node is assigned a probability distribution over the K

communities, which dictates how they behave for a possible connection in

the graph.

To model this, node i generates a random variable Zi→j ∼ Fi repre-

senting the community role node i adopts when communicating with node j.

Returning to our data scientist, suppose they have the majority of their prob-

ability mass assigned to the mathematics department, with smaller amounts

assigned to the biology and social science departments and the remaining

departments within the university have probability mass zero. This defines

their distribution Fi. Most of the time they will behave like a mathematician

when interacting with other staff members, but occasionally behave like a

biologist or social scientist.

To see if there is a link between the two nodes, node j generates a ran-

dom variable Zj→i ∼ Fj represents the community role node j adopts when

communicating with node i. The probability of an edge between two nodes

i and j depends only on their community assignments Zi→j and Zj→i. Once

the community assignments Zi→j and Zj→i have been selected, the model

works in the same way as the stochastic block model.

Definition 4 (Mixed membership stochastic block model). Let Z = {1, . . . , K}

17



Chapter 3. Unweighted networks

be a sample space where each node has a probability distribution Fi. A sym-

metric matrix A ∈ Rn×n is distributed as a mixed membership stochastic

block model, if Zi→j
ind∼ Fi, Zj→i

ind∼ Fj, and, for i < j,

Aij | Zi→j, Zj→i
ind∼ Bernoulli(BZi→jZj→i

),

where B ∈ [0, 1]K×K is the matrix of inter-community edge probabilities.

Given Zi ∼ Fi, we define πi = (πi1, . . . , πiK), where πik = P(Zi = k) is

the probability a node is assigned to community k.

The stochastic block model is a special case of the mixed membership

stochastic block model where the distributions Fi places all of its probability

mass on the community Zi. In this case Zi→j = Zi, Zj→i = Zj and the model

reduces to Definition 3.

Example 5 (Three-community mixed membership stochastic block model).

Consider a three-community mixed membership stochastic block model with

block mean matrix

B =


0.10 0.20 0.22

0.20 0.05 0.16

0.22 0.16 0.26

 .

The block mean matrix is not full rank and has signature (1, 1). Each node

generates a probability distribution Fi over the three communities indepen-

dently using a Dirichlet distribution with parameter α = (0.2, 0.2, 0.2) so

each community is given equal preference. Since αk < 1 in each compo-

nent, Fi is likely to be unbalanced meaning a large amount of probability is

assigned to a single community.

We generate a mixed membership stochastic block model with n = 1000

nodes and perform adjacency spectral embedding into d = 2 dimensions, the

rank of the block mean matrix B, in this case, smaller than the number of

communities.
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3.1. Simple graph models

Figure 3.2 shows the embedding X̂ of the mixed membership stochastic

block model. Points are coloured a mixture of red, blue and green according

to their probability distribution Fi over the communities. Nodes that are

more likely to behave like a single community, πik = P(Zi→j = k) ≥ 0.9 for

some community k, are shown as larger points; πi1 ≥ 0.9 as red triangles,

πi2 ≥ 0.9 as blue squares, and πi3 ≥ 0.9 as green circles.

0.55 0.50 0.45 0.40 0.35 0.30 0.25

0.4

0.2

0.0

0.2

0.4

Three-community mixed membership
stochastic block model embedding

Community 1
Community 3

Community 2

Figure 3.2: The embedding X̂ of a three-community mixed membership

stochastic block model. The points are coloured a mixture of red (triangle),

blue (square) and green (circle) according to their probability distribution Fi

over the communities.

The node embedding X̂ forms a noisy triangle, a two-dimensional sim-

plex, where the corners represent the three communities. Points near the

corners have the majority of their probability mass in Fi assigned to a sin-

gle community, a red triangle, blue square or green circle depending on the

dominant community. The remaining points approximately lie within this
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Chapter 3. Unweighted networks

simplex where their position represents the community probabilities πik in

Fi.

Suppose we did not know the the community distributions Fi for the nodes

that we wish to recover. Rubin-Delanchy et al. [61] describes an algorithm

that gives consistent estimation of the parameters for a K-community mixed

membership stochastic block model, although for this example, the method

for recovering the distributions Fi is sufficient. In this example, their ap-

proach finds the smallest area triangle enclosing the embedding. The point

X̂i in the embedding can be expressed as a convex combination of the corners

giving an estimator of the community distribution Fi. The reason why this

approach gives a consistent estimator for Fi is discussed in Section 3.3.2. /

3.1.3 Degree-corrected stochastic block model

Another potential downside of the stochastic model block is that nodes within

a community approximately have the same amount of activity in the network.

To demonstrate this, we compute the expected degree of a node in a stochas-

tic block model,

E(Di) =
∑
j 6=i

E(Aij) =
∑
j 6=i

BZiZj
.

The expected degree of a node depends only on its community, therefore,

two nodes in the same community have the same expected degree.

While a network may have groups of similarly behaving nodes, it may

be desirable to allow nodes within a community to display different levels of

activity. Returning again to the university communications network, different

members of a department may be more active. For example, a professor may

communicate more and have a higher degree compared to a new PhD student,

even though they both communicate to similar types of people.

The degree-corrected stochastic block model extends the stochastic block

model by introducing a node-specific weight parameter wi ∈ (0, 1] which
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3.1. Simple graph models

represents their activity [37]. The probability of an edge between two nodes

i and j still depends on their community assignments Zi and Zj, but also the

weights wi and wj. In the university communication network example, the

professor above may have weight close to one, while the new PhD student

may have weight closer to zero.

Definition 5 (Degree-corrected stochastic block model). Let Z = {1, . . . , K}
be a sample space with probability distribution F , and let Gk, k ∈ Z be a

collection of probability distributions on the interval (0, 1]. A symmetric ma-

trix A ∈ Rn×n is distributed as a degree-corrected stochastic block model, if

Z1, . . . , Zn
iid∼ F and, for i < j,

Aij | wi, wj, Zi, Zj
ind∼ Bernoulli(wiwjBZiZj

),

where B ∈ [0, 1]K×K is the matrix of inter-community edge probabilities and

wi | Zi
ind∼ GZi

is a node-specific weight parameter.

Similarly to the stochastic block model, we define π = (π1, . . . , πK), where

πk = P(Z = k) is the probability a node is assigned to community k.

In this model, the weight parameter wi for a node can be distributed

differently depending on the community assignment Zi. Perhaps one com-

munity contains more active nodes with larger weight parameters on average

than another community.

To demonstrate why this model is known as the degree-corrected stochas-

tic block model, given the weight parameters wi, the expected degree of any

given node is

E(Di) =
∑
j 6=i

E(Aij) = wi
∑
j 6=i

wjBZiZj
.

Unlike the stochastic block model, the expected degree of a node increases

with the weight parameter wi. For two nodes i and j in the same community

(Zi = Zj), the node with the larger weight parameter has the larger expected
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degree, for wi > wj,

E(Di)− E(Dj) = wi
∑
k 6=i

wkBZiZk
− wj

∑
k 6=j

wkBZjZk

= (wi − wj)
∑
k 6=i,j

wkBZiZk
> 0.

Note that for nodes in different communities (Zi 6= Zj) this may not be

the case but, in the university communication network example, the profes-

sor would have a larger expected degree than a PhD student in the same

department.

The stochastic block model is a special case of the degree-corrected stochas-

tic model where wi = 1 for all nodes. More interestingly, the degree-

corrected stochastic block model can also be interpreted as a mixed mem-

bership stochastic block model.

Example 6 (Degree-corrected to mixed membership stochastic block model).

Consider a K-community degree-corrected stochastic block model with block

mean matrix B and weight parameters wi. This can be written as a (K+ 1)-

community mixed membership stochastic block model by introducing a new

community that generates no edges in the network. Define a new mean block

matrix B′ ∈ [0, 1](K+1)×(K+1) such that nodes assigned to community K + 1

have probability zero of forming an edge,

B′ij =

Bij if 1 ≤ i, j ≤ K,

0 otherwise.

The community assignment distribution Fi is defined such that, for Zi→j ∼
Fi, the probability a node is assigned to a community k in the mixed mem-

bership stochastic block model is given by

πik = P(Zi→j = k) =


wi if k = Zi,

1− wi if k = K + 1

0 otherwise.
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3.1. Simple graph models

Each node can be considered as a mixture of its true community and the new

null community where the probability a node is assigned to its true commu-

nity Zi is equal to wi, and the probability it is assigned to the null community

K + 1 is 1 − wi. By summing over the possible community assignments in

this new mixed membership stochastic block model, the probability of an

edge between nodes i and j is given by

P(Aij = 1 | Zi, Zj) =
K+1∑
k,`=1

πikπj`B
′
k` = wiwjBZiZj

.

Therefore, the probability of an edge between two nodes in the (K + 1)-

community mixed membership stochastic block model is identical to the K-

community degree-corrected stochastic block model. /

Example 7 (Two-community degree-corrected stochastic block model). Con-

sider a two-community degree-corrected stochastic block model with the same

block mean matrix as the stochastic block model in Example 4, and a dis-

tribution F that assigns equal probability to the two communities; π1 = 1/2

and π2 = 1/2. Each node is independently assigned a weight parameter

wi
ind∼ Beta(2, 2). Note that in this case, the distribution is the same for both

communities, but in general that does not need to be the case. We generate

a degree-corrected stochastic block model with n = 1000 nodes and perform

adjacency spectral embedding into d = 2 dimensions, chosen to be equal to

the number of communities.

Figure 3.3 shows the embedding X̂ of the degree-corrected stochastic

block model. Points are coloured according to their community assignment

Zi and form two rays starting from the origin. Points near the origin corre-

spond to a weight parameter wi ≈ 0, while points near the ends of the rays

correspond to a weight parameter wi ≈ 1.

Suppose that we did not know the community assignments or the weight

parameters for each node. There are other spectral embedding techniques
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Figure 3.3: The embedding X̂ of a two-community degree-corrected stochas-

tic block model into d = 2 dimensions. The points are coloured according to

their true community assignment Zi.

designed for degree-corrected stochastic block models [34, 50], however we

can recover the communities by projecting the adjacency spectral embedding

on to the unit sphere [53] or a hyperplane [50] then clustering the projected

points. A line can be fitted to each ray of points using linear regression

and the weight wi can be estimated by the distance from the origin, the

justification for this technique given in Section 3.3.3. /

3.2 Generalised random dot product graph

This section introduces the generalised random dot product graph [60]. It

is an extension of the random dot product graph where the probability of

an edge is the inner product of the corresponding latent positions [77, 51].
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3.2. Generalised random dot product graph

Under this model the resulting adjacency matrix A will very likely be positive

definite. In general, the random dot product graph cannot model graphs

that are not positive definite, like the examples given so far in this chapter.

Constructing a spectral embedding of an adjacency matrix by only using the

largest positive eigenvalues necessarily fails to capture some of the underlying

structure of the network [6]. By allowing the probability of an edge to be the

indefinite inner product of the corresponding latent positions, the generalised

random dot product graph models a wider variety of network.

Definition 6 (Generalised random dot product graph). Let X be a subset

of Rd such that x>1 Ip,qx2 ∈ [0, 1] for all x1, x2 ∈ X , with FX a probability

distribution over X . A symmetric matrix A ∈ Rn×n is distributed as a

generalised random dot product graph with signature (p, q), if X1, . . . , Xn
iid∼

FX and, for i < j,

Aij | Xi, Xj
ind∼ Bernoulli(X>i Ip,qXj).

As with the adjacency spectral embedding, it is convenient to call X =

(X1 | · · · | Xn)> ∈ Rn×d, the latent positions of the generalised random

dot product graph. In this section we show how the latent positions of the

generalised random dot product graph X relate to the adjacency spectral

embedding X̂. Note that the conditional distribution of A is unchanged if

the latent positions Xi are replaced by QXi for any indefinite orthogonal

matrix Q ∈ O(p, q), so the connection between the two will need to account

for this unidentifiability.

The standard definition of the generalised random dot product allow for

sparse networks by introducing a parameter ρn that prevents the average

degree of a node growing linearly as the number of nodes n increases. This

is done by scaling the latent positions ρ
1/2
n Xi so that the probability of an

edge between two nodes is distributed as

Aij | Xi, Xj
ind∼ Bernoulli(ρnX

>
i Ip,qXj).
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In this setting, the expected degree of a node grows as nρn so by having

ρn → 0, the model can produce sparse networks. In this thesis, we will focus

on the dense setting where ρn = 1 as this is our setting for making extensions

for weighted networks in Chapter 4 and dynamic networks in Chapter 6.

Example 8 (Multipartite networks). To show the flexibility of the gener-

alised random dot product graph, consider a subset X that is union of K

isotropic subspaces,

X =
K⋃
k=1

Xk,

meaning, for all x1, x2 ∈ Xk, x>1 Ip,qx2 = 0. One example of isotropic sub-

spaces is given by the latent positions in two dimensions X1 = {(x, x) : x ∈ R}
and X2 = {(x,−x) : x ∈ R} with signature (1, 1). For two nodes represented

by latent positions in the subspace Xk, there is zero probability of an edge

between them, generating a K-partite graph [49]. /

The three versions of the stochastic block model defined in Section 3.1 are

examples of the generalised random dot product graph. Each example uses

the adjacency spectral embedding of the block mean matrix B ∈ [0, 1]K×K .

If B has signature (p, q), then the embedding dimension is given by d =

p + q = rank(B) ≤ K resulting in the adjacency spectral embedding XB =

UBΣ
1/2
B ∈ RK×d. As shown in Section 2.2, the adjacency spectral embedding

satisfies

B = XBIp,qX
>
B.

This resembles the Bernoulli probability X>i Ip,qXj given in Definition 6.

Let (M)k denote row k of a matrix M. The rows of the adjacency spectral

embedding (XB)>1 , . . . , (XB)>K provide a good starting point for constructing

latent positions for generalised random dot product graphs for these simple

graph models. The statistical theory in this section requires that the embed-

ding dimension for the adjacency spectral embedding is equal to the rank
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3.2. Generalised random dot product graph

of the block mean matrix B. The next three sections show how the differ-

ent stochastic block models in Section 3.1 can be expressed as a generalised

random dot product graph [60].

3.2.1 Stochastic block model

Lemma 1. The stochastic block model is an instance of the generalised

random dot product graph.

Proof. Recall Definition 3 for a stochastic block model. Given a sample space

Z = {1, . . . , K} with probability distribution F , then, for Z1, . . . , Zn
iid∼ F , a

symmetric matrix A ∈ Rn×n satisfies, for i < j,

Aij | Zi, Zj
ind∼ Bernoulli(BZiZj

),

where B ∈ [0, 1]K×K is the matrix of inter-community edge probabilities.

To construct the equivalent generalised random dot product graph, map

the latent position Zi to the corresponding row of the adjacency spectral

embedding XB,

Xi = (XB)>Zi
.

The latent space X consists of the K points (XB)>1 , . . . , (XB)>K with distri-

bution FX inherited from the stochastic block model, for X ∼ FX ,

πk = P(X = (XB)>k ).

By the construction of the adjacency spectral embedding XB,

X>i Ip,qXj = BZiZj
,

therefore, the probability of an edge Aij is identical under the stochastic

block model and generalised random dot product graph.
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From this construction, there are K possible latent positions Xi in the

generalised random dot product graph assigned depending on the latent po-

sitions Zi in the stochastic block model. There is evidence of this behaviour

in Figure 3.1 from Example 4. For this particular two-community stochas-

tic block model, there are two clusters of points in the adjacency spectral

embedding. We show in Section 3.3.1 how the centres of these clusters are

related to the latent positions (XB)>1 , . . . , (XB)>K .

For sensibly defined stochastic block models, there is a separate latent

position for each community in the network, regardless of the dimension of

the adjacency spectral embedding. Suppose that two distinct communities

were assigned the same latent positions; (XB)>k = (XB)>` for some k 6= `.

Since B = XBIp,qX
>
B, this implies that the corresponding rows of B must

be equal. Therefore, we could have defined the stochastic block model more

efficiently by combining communities k and ` into a single community with

assignment probability πk + π`. In general, it is assumed that the stochastic

block models are defined using as few communities as necessary.

There is no issue if the mean block matrix B is rank-deficient and the

embedding dimension d is strictly smaller than the number of communities

K in the stochastic block model. It is possible for the K communities to

coexist in Rd and still be distinguishable.

3.2.2 Mixed-membership stochastic block model

Lemma 2. The mixed membership stochastic block model is an instance of

the generalised random dot product graph.

Proof. Recall Definition 4 for a mixed membership stochastic block model.

Given a sample space Z = {1, . . . , K} where each node has a probability

distribution Fi over Z, then, for Zi→j
ind∼ Fi, Zj→i

ind∼ Fj, a symmetric matrix
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3.2. Generalised random dot product graph

A ∈ Rn×n satisfies, for i < j,

Aij | Zi→j, Zj→i
ind∼ Bernoulli(BZi→jZj→i

),

where B ∈ [0, 1]K×K is the matrix of inter-community edge probabilities.

To construct the generalised random dot product graph, we define X
as the simplex with corners given by the rows of the adjacency spectral

embedding (XB)>1 , . . . , (XB)>K . The latent position Xi of a node is defined

as a convex combination of these corners weighted by the probability a node

is assigned to the k communities, πik = P(Zi→j = k) given by Fi,

Xi =
K∑
k=1

πik (XB)>k .

The embedding Xi is a point within the simplex (K − 1)-dimensional X
with barycentric coordinates determined by the distribution Fi. The exact

form of the distribution FX will depend on the how the distributions Fi are

assigned to each node in the mixed membership stochastic block model. The

indefinite inner product of these latent positions is given by

X>i Ip,qXj =

{
K∑
k=1

πik (XB)>k

}>
Ip,q

{
K∑
k=1

πjk (XB)>k

}

=
K∑

k,`=1

πikπj` (XB)k Ip,q (XB)>`

=
K∑

k,`=1

πikπj`Bk`

= P(Aij = 1 | Zi, Zj).

Therefore, the probability of an edge Aij is identical under the mixed mem-

bership stochastic block model and generalised random dot product graph.
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Chapter 3. Unweighted networks

In the above construction of the generalised random dot product graph,

the corner (XB)>k corresponds to a node that has all the probability in the

distribution Fi assigned to community k; πik = 1, πi` = 0 for all k 6= `.

In Example 5, the adjacency spectral embedding of the three-community

mixed membership stochastic block model form a noisy triangle, a two-

dimensional simplex. In Section 3.1.2, we show how the noisy simplex formed

by the embedding X̂ relates to the simplex with corners given by the latent

positions (XB)>1 , . . . , (XB)>K .

The mean block matrix B being rank-deficient has an interesting effect

on the embedding of the mixed membership stochastic block model. When

the embedding dimension d is equal to K − 1, it is still possible to place a

(K − 1)-dimensional simplex in Rd as seen in Example 5. However, when

d < K − 1, the embedding Xi can no longer be uniquely written as a convex

combination of the simplex corners.

3.2.3 Degree-corrected stochastic block model

Lemma 3. The degree-corrected stochastic block model is an instance of

the generalised random dot product graph.

Proof. Recall Definition 5 for a degree-corrected stochastic block model.

Given a sample space Z = {1, . . . , K} with probability distribution F , and

a collection of probability distributions Gk on the interval (0, 1] then, for

Z1, . . . , Zn
iid∼ F , a symmetric matrix A ∈ Rn×n satisfies, for i < j,

Aij | wi, wj, Zi, Zj
ind∼ Bernoulli(wiwjBZiZj

),

where B ∈ [0, 1]K×K is the matrix of inter-community edge probabilities, and

wi | Zi
ind∼ GZi

is a node-specific weight parameter.

To construct the equivalent generalised random dot product graph, map

the latent position Zi to the corresponding row of the adjacency spectral
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3.2. Generalised random dot product graph

embedding XB,

Xi = wi (XB)>Zi
.

The latent space X consists of the K rays starting at the origin going to the

endpoints (XB)>1 , . . . , (XB)>K . For a particular node, the latent variable Zi

says which ray the embedded point lines on, and the weight parameter wi

says how far the point lies along the ray. The distribution FX is defined such

that, for X ∼ FX ,

X = WZ (XB)>Z ,

for Z ∼ F and Wk ∼ Gk, using uppercase to distinguish a weight drawn for

a particular community, rather than a node-specific weight parameter.

By the construction of the adjacency spectral embedding XB,

X>i Ip,qXj = wiwjBZiZj
,

therefore, the probability of an edge Aij is identical under the degree-corrected

stochastic block model and generalised random dot product graph.

For a sensibly defined K-community degree-corrected stochastic block

model, there are K rays of latent positions in the generalised random dot

product graph. If two rays of points overlapped, that would imply that, for

some k 6= `, the endpoint (XB)>k is positioned somewhere along the ray with

endpoint (XB)>` , meaning that (XB)>k = c(XB)>` for some c ≤ 1. Therefore,

any node in community k could instead be described as a node in community

` with new weight parameter cwi. It is assumed that the degree-corrected

stochastic block model uses as few communities as necessary.

Figure 3.3 shows an example adjacency spectral embedding of a two-

community degree-corrected stochastic block model forming two noisy rays

of points starting from the origin and ending at the points giving by the

points (XB)>1 , . . . , (XB)>K .
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Chapter 3. Unweighted networks

Example 6 showed that the degree-corrected stochastic block model can

be considered as a special case of the mixed membership stochastic block

model. However, as with the stochastic block model, if the mean block

matrix B is rank-deficient, it is possible for the K rays of points to coexist

in Rd and still be distinguishable.

3.3 Asymptotic results

This section describes how the adjacency spectral embedding for each node

X̂i converges to the latent position of the generalised random dot product

graph Xi. Recall that the latent positions of the generalised random dot

product graph Xi can all be replaced by QXi for any indefinite orthogonal

matrix Q ∈ O(p, q) to create an equivalent parameterisation of the model.

Therefore, the adjacency spectral embedding X̂i can only hope to estimate

the latent position Xi up to some transformation by Q. This needs to be

taken into account when describing the asymptotic theory.

There exists an indefinite orthogonal matrix Q ∈ O(p, q) such that the

adjacency spectral embedding is uniform consistent meaning that even the

largest difference between Xi and its estimate QX̂i across all nodes tends

to zero with high probability. This is known as the two-to-infinity norm,

the maximal Euclidean distance between Xi and QX̂i [11]. Furthermore, a

central limit theorem shows that this convergence is with an asymptotically

Gaussian error that we can quantify.

In order to obtain these convergence results, we must first make an as-

sumption that the generalised random dot product graph is somehow sensibly

defined. This is done via the second moment matrix ∆ = E(XX>) ∈ Rd×d

where X ∼ FX . This matrix plays a key role in the asymptotic distribution

of the adjacency spectral embedding.
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3.3. Asymptotic results

Assumption 1 (Minimal dimensionality). For X ∼ FX , the second moment

matrix ∆ = E(XX>) has full rank d.

Assumption 1 is not a real constraint on the generalised random dot

product graph, existing to ensure that the latent positions Xi ∈ Rd have

been defined economically. If ∆ is not full rank d, then it is possible to

define new latent positions X ′i ∈ Rd′ with smaller dimension d′ < d such that

the resulting second moment matrix ∆′ ∈ Rd′×d′ is full rank.

For Theorem 1 below, we say that a sequence of random variables Xn

converges in probability to the random variable X, denoted by Xn
P−→ X, if

for all ε > 0,

P(|Xn −X| > ε)→ 0,

as n → ∞. For Theorem 2, let Φ(z,Σ) denote the cumulative distribution

function of a multivariate Gaussian random variable with mean 0 and co-

variance Σ. For Z ∼ Normal(0,Σ), Φ(z,Σ) is the probability that Z is less

than or equal to z for all components, Φ(z,Σ) = P(Z ≤ z).

The following two theorems were first stated and proved in Rubin-Delanchy

et al. [60]. We provide a sketch proof highlighting the main ideas of the re-

sults.

Theorem 1 (Adjacency spectral embedding uniform consistency). Let A be

an instance of a generalised random dot product graph satisfying Assump-

tion 1. There exists a sequence of matrices Qn ∈ O(p, q) such that

max
i∈{1,...,n}

∥∥∥QnX̂i −Xi

∥∥∥ P−→ 0.

Theorem 2 (Adjacency spectral embedding central limit theorem). Let A

be an instance of a generalised random dot product graph satisfying Assump-

tion 1. Given x ∈ X , define the covariance-valued function

Σ(x) = Ip,q∆
−1E

[
(x>Ip,qX)(1− x>Ip,qX)XX>

]
∆−1Ip,q,
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Chapter 3. Unweighted networks

where X ∼ FX . Then, there exists a sequence of matrices Qn ∈ O(p, q) such

that, for all z ∈ Rd,

P
(
n1/2

(
QnX̂i −Xi

)
≤ z | Xi = x

)
→ Φ (z,Σ(x)) .

The original paper gives the convergence rate for uniform consistency [60],

but for the results in this thesis we are only concerned that the limit tends

to zero. The result was later strengthen by explaining how the sequence of

matrices Qn converge up to some other transformation [2]. We shall see this

in the equivalent central limit theorem for dynamic networks in Chapter 6,

which was developed once this discovery was made.

Sketch proof. This proof outline brings together ideas from similar arguments

from several papers involving some form of the generalised random dot prod-

uct graph [60, 21, 36, 22]. Theorem 1 and 2 are proved simultaneously by

breaking down the connection between the spectral embedding X̂ and the

latent positions X as a series of matrix perturbations. Here we describe how

the sequence of matrices Qn are constructed.

For a fixed n, let P ∈ [0, 1]n×n be the matrix of probabilities that two

nodes in the network form an edge,

Pij = E(Aij) = X>i Ip,qXj.

The adjacency matrix A can be thought of as a noisy observation of the

probability matrix P.

The aim is to construct Qn in two steps by aligning the adjacency spectral

embedding X̂ to the adjacency spectral embedding of the matrix P given by

XP, before aligning XP to the latent positions X. The first step is to find

W such that X̂W> ≈ XP. This is done by solving a one-mode orthogonal

Procrustes problem [69] to find an orthogonal matrix Q that best aligns the

left and right singular vectors of the matrices A and P,

W = arg min
Q∈O(d)

{
‖U−UPQ‖2F + ‖V −VPQ‖2F

}
,
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3.3. Asymptotic results

where ‖ · ‖2F represents the Frobenius norm. The solution is given by W =

W1W
>
2 constructed using the singular value decomposition

U>PU + V>PV = W1ΣW>
2 ,

when it can also be shown that W ∈ O(p, q).

For the second step, note that XPIp,qX
>
P = P = XIp,qX

> meaning there

exists QX ∈ O(p, q) such that XP = XQX. Together with the first step, this

gives X̂W>Q−1X ≈ X which gives the matrix Qn = W>Q−1X in Theorem 1

and 2.

The bulk of the two proofs revolves around quantifying the expression

X̂Qn ≈ X more precisely. After some matrix perturbation decompositions,

we arrive at the expression

n1/2(X̂Qn −X) = n1/2(A−P)X(X>X)−1Ip,q + n1/2RQn,

where R ∈ Rn×d is some residual matrix whose behaviour can be well-

controlled. Theorem 1 is obtained by bounding the two-to-infinity norm

of the right hand side [11], while Theorem 2 is obtained by applying the stan-

dard central limit theorem on each row of the matrix n1/2(A−P)X(X>X)−1Ip,q.

More details can be found in the Appendix of Rubin-Delanchy et al. [60].

3.3.1 Stochastic block model asymptotic distribution

When showing that the stochastic block model is an instance of the gen-

eralised random dot product graph in Lemma 1, we considered the latent

positions

Xi = (XB)>Zi
.

Under this construction, there are only K possible latent positions a node can

take. Theorem 1 and 2 show that the adjacency spectral embedding X̂i con-

verges to these K latent positions consistently with asymptotically Gaussian
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Chapter 3. Unweighted networks

error up to an indefinite orthogonal transformation Q. The covariance-valued

function Σ(x) only needs to be computed for the K latent positions in X ,

where we denote

Σk = Σ((XB)>k )

to be the covariance corresponding to community k.

From Theorem 1 and 2, the points QnX̂i have an approximate Gaus-

sian mixture model distribution with components Normal((XB)k,Σk/n) with

components probability πk. Since Qn is a linear transformation, this implies

that the adjacency spectral embedding X̂ also has an approximate Gaussian

mixture model distribution, which can be seen in Figure 3.1. This motivates

the choice of using a Gaussian mixture model to cluster points in an adjacency

spectral embedding to find community structure compared to an algorithm

that does not account for unequal and non-spherical cluster covariances.

In the remainder of this section, we show how the parameters of the

approximate Gaussian mixture model are computed for a stochastic block

model. For X ∼ FX , the second moment matrix is given by

∆ = E(XX>)

=
K∑
k=1

πk (XB)>k (XB)k

= X>BΠXB,

where Π = diag(π) ∈ RK×K is the diagonal matrix consisting of the commu-

nity assignment probabilities. To compute the covariance Σk corresponding
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3.3. Asymptotic results

to latent position x = (XB)>k , we need to compute the following expectation,

E
[(
x>Ip,qX

) (
1− x>Ip,qX

)
XX>

]
=

K∑
`=1

π`

(
(XB)k Ip,q (XB)>`

)(
1− (XB)k Ip,q (XB)>`

)
(XB)>` (XB)`

=
K∑
`=1

π`Bk` (1−Bk`) (XB)>` (XB)`

= X>BΠΛkXB,

where Λk = diag(Bk1(1−Bk1), . . . ,BkK(1−BkK)) ∈ RK×K . Recall that Bk`

is the mean of an edge between communities k and `, meaning Bk`(1−Bk`)

is the corresponding variance term. Therefore, Λk is the diagonal matrix

with entries equal to the variances for edges involving community k. Piecing

these terms together gives the covariance matrix

Σk = Ip,q∆
−1 (X>BΠΛkXB

)
∆−1Ip,q.

Example 9 (Two-community stochastic block model continued). We com-

pute the asymptotic Gaussian mixture model for the adjacency spectral em-

bedding of the two-community stochastic block model described in Exam-

ple 4. Firstly, the asymptotic distribution for the points QnX̂i is constructed

by computing the Gaussian components Normal((XB)k,Σk/n) for each com-

munity. In this case Qn can be constructed since we know the matrix of

probabilities P used to generate the adjacency matrix A. Transformation by

Qn provides a Gaussian mixture model for the adjacency spectral embedding

X̂.

Figure 3.4 shows the asymptotic distribution for the embedding X̂ of the

stochastic block model. Points are coloured according to their community as-

signment Zi. The ellipses show the 95% contours of the asymptotic Gaussian

components, which fit the adjacency spectral embedding points well. /
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Figure 3.4: The embedding X̂ of a two-community stochastic block model

into d = 2 dimensions. The points are coloured according to their true com-

munity assignment Zi. The ellipses show the 95% contours of the asymptotic

Gaussian components.

3.3.2 Mixed membership stochastic block model asymp-

totic distribution

When showing that the mixed membership stochastic block model is an in-

stance of the generalised random dot product graph in Lemma 2, we consid-

ered the latent positions

Xi =
K∑
k=1

πik (XB)>k .

There are now infinitely many latent positions to consider within X , the

simplex with corners given by the latent positions (XB)>1 , . . . , (XB)>K . To

describe the asymptotic distribution of the adjacency spectral embedding,
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3.3. Asymptotic results

we need to be able to compute the covariance structure for any point in the

simplex.

To do this, we need to know how nodes are assigned their probability

distribution Fi over the K possible communities. In Definition 4 for the

mixed membership stochastic block model, no assumption was made about

these distributions. Often the probability masses for the distributions Fi are

sampled from a Dirichlet distribution with parameter α, part of the original

definition of a mixed membership stochastic block model [3],

πi = (πi1, . . . , πiK)
ind∼ Dirichlet(α).

The distribution FX over the simplex X is defined inheriting this distribution;

if π ∼ Dirichlet(α), then X =
∑K

k=1 πk (XB)>k ∼ FX .

For ρ = (ρ1 . . . , ρK) ∈ RK in the standard simplex where ρk ≥ 0 and∑K
k=1 ρk = 1, we compute the covariance Σ(x) for x =

∑K
k=1 ρk (XB)>k ∈ X .

This is more involved than the corresponding calculation for the stochastic

block model as it requires the moments of the Dirichlet distribution. For

β = (β1, . . . , βK), these can be neatly expressed using the gamma function,

E

(
K∏
k=1

πβkk

)
=

Γ(
∑K

k=1 αk)

Γ(
∑K

k=1 αk + βk)
×

K∏
k=1

Γ(αk + βk)

Γ(αk)
.

Using these moments, the second moment matrix is given by

∆ = E(XX>)

=
K∑

k,`=1

E(πkπ`) (XB)>k (XB)`

=
1

α0(α0 + 1)

(
K∑
k=1

αk(αk + 1) (XB)>k (XB)k +
K∑
k 6=`

αkα` (XB)>k (XB)`

)

=
1

α0(α0 + 1)
X>B

(
diag(α) + α>α

)
XB
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For X =
∑K

k=1 πk (XB)>k ∈ X , the indefinite inner product is given by

x>Ip,qX =
K∑

k,`=1

ρkπ` (XB)k Ip,q (XB)>`

=
K∑

k,`=1

ρkπ`Bk`.

Finally, using this, the expectation in the covariance term is given by

E
[(
x>Ip,qX

) (
1− x>Ip,qX

)
XX>

]
= E

[(
K∑

k,`=1

ρkπ`Bk`

)(
1−

K∑
k,`=1

ρkπ`Bk`

)(
K∑

k,`=1

πkπ` (XB)>k (XB)`

)]

There is not much insight to be gained by continuing this calculation; it is a

complicated expression involving the third and fourth moments of the Dirich-

let distribution. However, it gives some indication about how the calculation

of Σ(x) can be performed on a computer, combining this equation with the

second moment matrix ∆, as shown in the following example.

Example 10 (Three-community mixed membership stochastic block model

continued). We compute the asymptotic distribution for the adjacency spec-

tral embedding of the three-community mixed membership stochastic block

model described in Example 5. To visualise this, we aim to find the asymp-

totic distribution for the points at the corners of the simplex, which corre-

spond to a node where all the probability mass in Fi is assigned to a single

community. These are constructed using the equations above then trans-

formed using the Qn from Theorem 1 and 2 to get the asymptotic distribution

for the adjacency spectral embedding X̂ at those positions.

Figure 3.5 shows the embedding X̂ of the mixed membership stochastic

block model. Points are coloured a mixture of red, blue and green according

to their probability distribution Fi over the communities. The solid black
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3.3. Asymptotic results

triangle represents the simplex X after transformation by Q−1n corresponding

to the points ρ = (1, 0, 0), (0, 1, 0) and (0, 0, 1) in the standard simplex. The

ellipses show the 95% contours of the asymptotic Gaussian distribution at

the corners of this transformed simplex.
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stochastic block model embedding
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Figure 3.5: The embedding X̂ of a three-community mixed membership

stochastic block model. The points are coloured a mixture of red (triangle),

blue (square) and green (circle) according to their probability distribution Fi

over the communities. The lines show the transformed simplex X and the

ellipses show the 95% contours of the asymptotic Gaussian components at

the corners of the simplex.

Given the choice of Dirichlet distribution parameter α = (0.2, 0.2, 0.2),

many points in the embedding, shown by red triangles, blue squares and

green circles, are very close to the simplex corners. These points fit the

asymptotic distributions particularly well. /
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3.3.3 Degree-corrected stochastic block model asymp-

totic distribution

When showing that the degree-corrected stochastic block model is an instance

of the generalised random dot product graph in Lemma 2, we considered the

latent positions

Xi = wi (XB)>Zi
.

Recall that the distribution FX is defined such that, for X ∼ FX ,

X = WZ (XB)>Z ,

where Z ∼ F and Wk ∼ Gk for k = 1, . . . , K. Using Ek(·) to denote expecta-

tion with respect to the distribution Gk, we can compute the second moment

matrix,

∆ = E(XX>)

=
K∑
k=1

πkEk(W 2
k ) (XB)>k (XB)k

= X>BΠΓXB,

where Γ = diag(E1(W
2
1 ), . . . ,EK(W 2

K)) ∈ RK×K is the diagonal matrix of

second moments for the weight parameter for each community. To compute

the covariance Σ(x) for x = w (XB)>k ∈ X , we need to compute the following

expectation,

E
[(
x>Ip,qX

) (
1− x>Ip,qX

)
XX>

]
=

K∑
`=1

π`E`
[
wW`Bk`(1− wW`Bk`)W

2
` (XB)>` (XB)`

]
=

K∑
`=1

π`
[
wE`(W 3

` )Bk` − w2E`(W 4
` )B2

k`

]
(XB)>` (XB)`

= X>BΠΛk(w)XB,
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3.3. Asymptotic results

where Λk(w) ∈ RK×K is the diagonal matrix where (Λk(w))`` = wE`(W 3
` )Bk`−

w2E`(W 4
` )B2

k`. The asymptotic covariance Σ(x) can be calculated by com-

bining this equation with the second moment matrix ∆.

Example 11 (Two-community degree-corrected stochastic block model con-

tinued). We compute the asymptotic distribution for the adjacency spectral

embedding of the two-community degree-corrected stochastic block model

described in Example 7. These are constructed using the equations above

then transformed using the Qn from Theorem 1 and 2 to get the asymptotic

distribution for the adjacency spectral embedding X̂ at those positions.

Figure 3.6 shows the embedding X̂ of the stochastic block model. Points

are coloured according to their community assignment Zi. The solid black

lines represent the rays of latent positions X after transformation by Q−1n .

The ellipses show the 95% contours of the asymptotic Gaussian distribu-

tion for two points along each ray for the two communities, x = w(XB)>k for

w = 0.5 and w = 1. Given the form of Λk(w), the covariance Σ(x) tends to

get smaller as w gets closer to zero. This can be seen in Figure 3.6 where

points have smaller error closer to the origin. /
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Figure 3.6: The embedding X̂ of a two-community degree-corrected stochas-

tic block model into d = 2 dimensions. The points are coloured according to

their true community assignment Zi. The lines show the transformed rays

of X and the ellipses show the 95% contours of the asymptotic Gaussian

components for latent positions corresponding to w = 0.5 and w = 1.
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Chapter 4

Weighted networks

In this chapter, we extend the generalised random dot product model to al-

low for weighted networks. This requires a new way of thinking as the latent

position now must encapsulate information about a family of distributions

rather than edge probabilities. This adds an extra layer of abstraction be-

tween the latent positions and an instance of a weighted generalised random

dot product graph, which must be included when linking this model to adja-

cency spectral embedding. The work was first published in Gallagher et al.

[21].

4.1 Weighted graph models

In order to model weighted networks, we need a collection of distributions

that can be used to generate the edge weights.

Definition 7 (Symmetric family of distributions). For a set Z, {H(z1, z2) :

z1, z2 ∈ Z} is a symmetric family of real-valued distributions, if H(z1, z2) is

a distribution on R for all z1, z2 ∈ Z such that H(z1, z2) = H(z2, z1).

The distributions in {H(z1, z2) : z1, z2 ∈ Z} do not need to be from the

same parameter family of distributions, for example, it could contain both

discrete and continuous distributions. This allows for a lot of flexibility for

the weighted graph models introduced in the remainder of the chapter.

The adjacency spectral embedding of a weighted graph is encapsulated by

the mean and variance of the distributions in the family {H(z1, z2) : z1, z2 ∈
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Z}, similar to how Theorem 1 and 2 rely on the mean and variance of the

Bernoulli distributions in the generalised random dot product graph. The

following example shows how the unweighted setting can be written using

this new notation.

Example 12 (Symmetric family of Bernoulli distributions). The family of

distributions used for the stochastic block model in Definition 3 is a symmet-

ric family of distributions over Z = {1, . . . , K}. For all z1, z2 ∈ Z,

H(z1, z2) = Bernoulli(Bz1z2). /

In this section, the three versions of the stochastic block model described

in Section 3.1 are updated to allow for weighted edges. In each case, the

symmetric family of distributions are initially defined over a finite number

of latent positions Z = {1, . . . , K} and the mean and variance of the distri-

butions in the family {H(z1, z2) : z1, z2 ∈ Z} can be written in a convenient

manner.

Definition 8 (Block mean and variance matrices). For Z = {1, . . . , K} and a

symmetric family of distributions {H(z1, z2) : z1, z2 ∈ Z}, denote B ∈ RK×K

and C ∈ RK×K
+ respectively as the block mean matrix and block variance

matrix, where, for X ∼ H(k, `), Bk` = E(X) and Ck` = var(X), if those

moments exist.

4.1.1 Weighted stochastic block model

We define the most general version of the weighted stochastic block model.

Previous work has focused on weighted homogeneous stochastic block models

where there is a fixed behaviour for within community edges and between

community edges [35, 76] and labelled stochastic block models [29, 41].

Definition 9 (Weighted stochastic block model). Let Z = {1, . . . , K} be a

sample space with probability distribution F and {H(z1, z2) : z1, z2 ∈ Z} be a
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symmetric family of real-valued distributions. A symmetric matrix A ∈ Rn×n

is distributed as a weighted stochastic block model, if Z1, . . . , Zn
iid∼ F and, for

i < j,

Aij | Zi, Zj
ind∼ H(Zi, Zj).

Unsurprisingly, given Example 12, the standard stochastic block model

from Definition 3 is also a weighted stochastic block model. In the same way

as before, given Z ∼ F , we define π = (π1, . . . , πK) where πk = P(Z = k) is

the probability a node is assigned to community k.

The sample space for this model is Z = {1, . . . , K} so we can compute

the block mean and variance matrices B and C using Definition 8. In the

standard stochastic block model, this definition returns the same mean block

matrix B previously defined as part of Definition 3. The success probability

p of a Bernoulli distribution is also the mean. We have also seen the variance

block matrix C previously appear when discussing the standard stochastic

block model. In Section 3.3.1, when calculating the asymptotic distribution

of the adjacency spectral embedding, the covariance term Σk involved the

variance of the Bernoulli distribution, Ck` = Bk`(1−Bk`).

Example 13 (Two-community Poisson distribution stochastic block model).

Consider a weighted stochastic block model with two communities where ma-

trix entries are Poisson random variables. The symmetric family of distribu-

tions {H(z1, z2) : z1, z2 ∈ Z} is given by

H(z1, z2) =

Poisson(λ1) if z1 = z2,

Poisson(λ2) if z1 6= z2,

where λ1 6= λ2.

We generate a weighted stochastic block model with n = 1000 nodes,

λ1 = 0.5, λ2 = 0.6 and a community assignment distribution F such that
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Chapter 4. Weighted networks

π1 = 1/2 and π2 = 1/2. The block mean and variance matrices are given by

B =

(
λ1 λ2

λ2 λ1

)
, C =

(
λ1 λ2

λ2 λ1

)
.

Figure 4.1 shows the embedding X̂ of the weighted stochastic block model in

d = 2 dimensions. The points form two clusters based on their community

assignment Zi. /
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Figure 4.1: The embedding X̂ of a two-community weighted stochastic block

model into d = 2 dimensions. The points are coloured according to their true

community assignment Zi.

Example 14 (Two-community Gaussian distribution stochastic block model

with equal means). Consider a weighted stochastic block model with two

communities where matrix entries are Gaussian random variables with sym-

metric family of distributions {H(z1, z2) : z1, z2 ∈ Z}, where

H(z1, z2) = Normal(1, σ2
z1z2

).
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4.1. Weighted graph models

The mean of the distributions are the same regardless of the community

assignments, only the variance changes. In this example, B is equal to the

all-one matrix and rank(B) = 1.

We generate a weighted stochastic block model with n = 1000 nodes,

σ2
k` = 2 if k = 1, ` = 1, and σ2

k` = 1 otherwise, with community assignment

distribution F such that π1 = 1/2 and π2 = 1/2. Figure 4.2 shows the

embedding X̂ of the weighted stochastic block model in d = 1 dimensions,

the rank of the block mean matrix. The empirical distributions for the two

communities are approximately centred around -1.0 but the variances are

different; the embedding for nodes with Zi = 1 having a larger variance

compared to the embedding for nodes with Zi = 2.
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Figure 4.2: The embedding X̂ of a two-community weighted stochastic block

model into d = 1 dimensions. The violin plot show the empirical distribution

of the points separated by their true community assignment Zi. A sample

of 200 jittered points are shown coloured according to their true community

assignment Zi.

Suppose we did not know the true community assignment of the nodes
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within the graph. While it is not possible to separate the nodes into two

clusters, fitting a Gaussian mixture model would identify the embedding as

a mixture of two components. Points in the tail of the distribution are more

likely to correspond to one community than the other, one can at least achieve

better-than-random community recovery. /

4.1.2 Weighted mixed membership stochastic block model

Creating a weighted version of the mixed membership stochastic block model

follows the same procedure as creating a weighted version of the stochastic

block model.

Definition 10 (Weighted mixed membership stochastic block model). Let

Z = {1, . . . , K} be a sample space with probability distribution F and

{H(z1, z2) : z1, z2 ∈ Z} be a symmetric family of real-valued distributions. A

symmetric matrix A ∈ Rn×n is distributed as a weighted mixed membership

stochastic block model, if Zi→j
ind∼ Fi and, for i < j,

Aij | Zi→j, Zj→i
ind∼ H(Zi→j, Zj→i).

As with the standard mixed membership stochastic block model, given

Zi ∼ Fi, we define πi = (πi1, . . . , πiK), where πik = P(Zi = k) is the proba-

bility a node is assigned to community k.

4.1.3 Zero-inflated stochastic block model

The degree-corrected stochastic block model extends the stochastic block

model by introducing a node-specific weight parameter wi which represents

their activity. With probability wiwj, both nodes are willing to form an edge,

in which case, an edge is sampled using the stochastic block model.

The zero-inflated stochastic block model applies this interpretation to

the weighted stochastic block model. Rather than the weight parameter wi
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4.1. Weighted graph models

adjusting the parameters within the distribution, it models the probability

that an edge is made. If both endpoints are willing to form an edge, one

is sampled using the distribution in the weighted stochastic block model,

otherwise the edge weight is zero representing no connection.

Given a distribution F and probability π, the zero-inflated distribution

is defined as the following mixture distribution,

(1− π)δ0 + πF,

where δ0 is the delta distribution that places all its probability mass at zero.

If X is a random variable with this zero-inflated distribution, then with

probability π, X is sampled from F , and with probability 1−π, X is sampled

from δ0 and X = 0. Note that this is not saying that P(X = 0) = 1 − π as

there is a chance that the distribution F could also set X to zero.

Definition 11 (Zero-inflated stochastic block model). Let Z = {1, . . . , K}
be a sample space with probability distribution F , and let Gk, k ∈ Z be

a collection of probability distributions on the interval (0, 1]. A symmetric

matrix A ∈ Rn×n is distributed as a weighted zero-inflated stochastic block

model, if Z1, . . . , Zn
iid∼ F and, for i < j,

Aij | wi, wj, Zi, Zj
ind∼ (1− wiwj)δ0 + wiwjH(Zi, Zj),

where wi | Zi
ind∼ GZi

is a node-specific weight parameter.

Given Z ∼ F , we define π = (π1, . . . , πK) where πk = P(Z = k) is the

probability a node is assigned to community k.

Example 15 (Zero-inflated Bernoulli distribution stochastic block model).

In this example, we show that the zero-inflated stochastic block model is an

extension of the standard degree-corrected stochastic block model. Consider

a zero-inflated stochastic block model where matrix entries are Bernoulli
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random variables with the symmetric family of distributions {H(z1, z2) :

z1, z2 ∈ Z}, where

H(z1, z2) = Bernoulli(Bz1z2).

In this case, the probability of an edge between nodes i and j in the zero-

inflated stochastic block model is given by

P(Aij = 1 | Zi, Zj) = wiwjBZiZj
.

This is the probability of an edge in the degree-corrected stochastic block

model with the same weights meaning the two models are identical. /

Example 16 (Two-community zero-inflated Poisson distribution stochastic

block model). Consider a zero-inflated stochastic block model with two com-

munities where matrix entries are Poisson random variables. The symmetric

family of distributions {H(z1, z2) : z1, z2 ∈ Z} is given by

H(z1, z2) =

Poisson(λ1) if z1 = z2,

Poisson(λ2) if z1 6= z2,

where λ1 6= λ2.

We generate a zero-inflated stochastic block model with n = 1000 nodes,

λ1 = 0.5, λ2 = 1.0 and a community assignment distribution F such that

π1 = 1/2 and π2 = 1/2. Each node is independently assigned a weight

parameter wi
ind∼ Beta(2, 2). Figure 4.3 shows the embedding X̂ of the zero-

inflated stochastic block model in d = 2 dimensions. The points form two

rays starting from the origin based on their community assignment Zi. /

4.2 Weighted generalised random dot prod-

uct graph

First, we make an assumption about the means of the symmetric family

of distributions {H(z1, z2) : z1, z2 ∈ Z}, akin to the form of the Bernoulli
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Figure 4.3: The embedding X̂ of a two-community weighted stochastic block

model into d = 2 dimensions. The points are coloured according to their true

community assignment Zi.

probability given in Definition 6 for the generalised random dot product

graph.

Assumption 2 (Low-rank expectation). Given a symmetric family of real-

valued distributions {H(z1, z2) : z1, z2 ∈ Z}, there exists a map φ : Z → Rd

such that, for all z1, z2 ∈ Z, if X ∼ H(z1, z2), then

E(X) = φ(z1)
>Ip,qφ(z2).

This low-rank assumption is not a major constraint on our graph model

as, from a practical view point, many real-world networks are observed to

have low rank [71]. A generalised version of Mercer’s theorem [48] shows that

it is always possible to at least construct a possibly infinite-dimensional map

φ. In the case where φ is infinite-dimensional, it can be shown for unweighted
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networks that the latent positions φ(Z) often live in a low-dimensional man-

ifold in infinite-dimensional space [59]. For weighted networks different rep-

resentations of the edge weights (introduced in Section 5.2) can produce

embeddings into a different number of dimensions, potentially converting a

network into one where Assumption 2 is satisfied.

Note that the map φ is not unique. Given a valid map, it is possible to

create a new map φ′(z) = Qφ(z) for Q ∈ O(p, q) such that Assumption 2

remains satisfied.

Definition 12 (Weighted generalised random dot product graph). Let Z be

a sample space with probability distribution F and {H(z1, z2) : z1, z2 ∈ Z} be

a symmetric family of real-valued distributions satisfying Assumption 2. A

symmetric matrix A ∈ Rn×n is distributed as a weighted generalised random

dot product graph with signature (p, q), if Z1, . . . , Zn
iid∼ F and, for i < j,

Aij | Zi, Zj
ind∼ H(Zi, Zj).

The map φ in Assumption 2 is key to understanding the adjacency spec-

tral embedding of a weighted generalised random dot product graph. In

Section 4.3, we show that the adjacency spectral embedding X̂i only allows

inference about the value φ(Zi) rather than the latent position Zi directly.

The three versions of the weighted stochastic block model defined in Sec-

tion 4.1 are examples of the weighted generalised random dot product graph.

As with the generalised random dot product graph, each example uses the

adjacency spectral embedding of the block mean matrix B ∈ RK×K . If B

has signature (p, q), then the embedding dimension is given by the rank of

the block mean matrix rank(B) = p+ q = d.

4.2.1 Weighted stochastic block model

Lemma 4. The weighted stochastic block model is an instance of the weighted

generalised random dot product graph.
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4.2. Weighted generalised random dot product graph

Proof. Since the conditional distribution of Aij under the weighted stochastic

block model is already of the right form, all that is required is to show that

Assumption 2 is satisfied. Define the map φ : Z → Rd using the rows of the

adjacency spectral embedding XB,

φ(Zi) = (XB)>Zi
.

Using the signature (p, q) of the block mean matrix B,

φ(Zi)
>Ip,qφ(Zj) = (XB)Zi

Ip,q(XB)>Zj

= BZiZj

= E(Aij | Zi, Zj).

Therefore, Assumption 2 is satisfied.

Note that, unlike for the standard stochastic block model, it is possible for

two distinct communities to have the same latent positions, φ(Zi) = φ(Zj) for

Zi 6= Zj. Two communities can have the same rows in the block mean matrix

B but have different distribution, something we observe in Example 14.

4.2.2 Weighted mixed membership stochastic block model

Lemma 5. The weighted mixed membership stochastic block model is an

instance of the weighted generalised random dot product graph.

Proof. This proof finds a new sample space Z ′ and a family of real-valued dis-

tributions {H ′(z1, z2) : z1, z2 ∈ Z} satisfying the conditions in Definition 12.

Let Z ′ be the standard (K − 1)-dimensional simplex,

Z ′ =

{
z = (z1, . . . , zK) ∈ RK :

K∑
k=1

zk = 1; zk ≥ 0

}
,
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and let {H ′(z1, z2) : z1, z2 ∈ Z ′} be the symmetric family of mixture distribu-

tions using the distributions from the weighted mixed membership stochastic

block model,

H ′(z1, z2) =
K∑

k,`=1

z1kz2`H(k, `).

This converts the weighted mixed membership stochastic block model into

the form of the weighted generalised random dot product graph. Finally, to

show Assumption 2 is satisfied, define the map φ : Z ′ → Rd,

φ(Z ′i) =
K∑
k=1

zik(XB)>k .

Using the adjacency spectral embedding and signature (p, q) of the block

mean matrix B,

φ(Z ′i)
>Ip,qφ(Z ′j) =

{
K∑
k=1

zik (XB)>k

}>
Ip,q

{
K∑
k=1

zjk (XB)>k

}

=
K∑

k,`=1

zikzj`Bk`

= E(Aij | Z ′i, Z ′j).

This proof differs from the corresponding proof for the standard mixed

membership stochastic block model by constructing a new sample space

Z ′ and symmetric family of distribution {H ′(z1, z2) : z1, z2 ∈ Z ′} for the

weighted generalised random dot product graph. Naturally, this approach

can also be used to prove Lemma 2, but for Bernoulli distributions it is easy

to show the edge probabilities are identical under both models. By construct-

ing the necessary sample space Z ′ for the weighted generalised random dot

product graph, we explicitly describe the simplex of latent positions we see

in the adjacency spectral embedding.
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4.3. Asymptotic results

4.2.3 Zero-inflated stochastic block model

Lemma 6. The zero-inflated stochastic block model is an instance of the

weighted generalised random dot product graph.

Proof. Define a new latent space Z ′ = (0, 1] × Z where z′i = (wi, zi), with

probability distribution F ′ constructed using the distribution F for the orig-

inal latent space Z and the distributions Gk for the weight parameters in

each community. Let {H ′(z′1, z′2) : z′1, z
′
2 ∈ Z ′} be the symmetric family of

real-valued distributions such that

H ′(z′1, z
′
2) = (1− w1w2)δ0 + w1w2H(z1, z2).

To show Assumption 2 is satisfied, define the map φ : Z ′ → Rd,

φ(Z ′i) = wi(XB)>Zi
.

Using the signature (p, q) of the block mean matrix B,

φ(Z ′i)
>Ip,qφ(Z ′j) =

{
wi (XB)>Zi

}>
Ip,q

{
wj (XB)>Zj

}
= wiwjBk`

= E(Aij | Z ′i, Z ′j).

As with the weighted mixed membership stochastic block model, by con-

structing the sample space Z ′ we explicitly describe the rays of latent posi-

tions we see in the adjacency spectral embedding.

4.3 Asymptotic results

This section describes how the adjacency spectral embedding for each node

X̂i is connected to the latent position of the generalised random dot product
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graph Zi. As hinted to previously, the embedding X̂i can only hope to esti-

mate φ(Zi) rather than the latent position Zi directly, and this statement is

formalised here. Once again, the adjacency spectral embedding X̂i this time

can only estimate the latent position φ(Zi) up to some unknown transfor-

mation by Q ∈ O(p, q), which needs to be incorporated into the asymptotic

theory. As with the generalised random dot product graph, there are two

types of statistical results here. The first is that the adjacency spectral em-

bedding is uniform consistent meaning that the largest difference between

φ(Zi) and its estimate QX̂i for all nodes tends to zero with high probability.

The second is a central limit theorem that shows this convergence is with an

asymptotically Gaussian error.

In order to obtain these convergence results, we need to make an assump-

tion that the weighted generalised random dot product graph is sensibly

defined.

Assumption 3 (Minimal dimensionality). For Z ∼ F , the second moment

matrix ∆ = E
[
φ(Z)φ(Z)>

]
has full rank d.

This is playing the same role as Assumption 1 for the generalised random

dot product graph. Rather than assuming that the latent positions Zi are

sensibly chosen, instead the responsibility is being placed on the choice of

map φ : Z → Rd. Assumption 3 ensures that the dimension d for the map

has been defined economically. If ∆ is not full rank d, then it is possible

to find a new map φ′ : Z → Rd′ also satisfying Assumption 2 with smaller

dimension d′ < d such that the resulting second moment matrix ∆′ ∈ Rd′×d′

is full rank.

The following two assumptions are related to the distributions in the sym-

metric family of distributions {H(z1, z2) : z1, z2 ∈ Z}. This ensures the edge

weights in the network are suitably well-behaved to allow for convergence.
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Assumption 4 (Bounded expectation). There exists universal constants

a, b ∈ R such that, for all z1, z2 ∈ Z, if X ∼ H(z1, z2) then

E(X) = φ(z1)
>Ip,qφ(z2) ∈ [a, b].

Assumption 5 (Exponential tails). There exists universal constants α > 0

and βρ > 0 for each ρ ∈ R, such that, for all z1, z2 ∈ Z, if X ∼ H(z1, z2)

then

P(|X| ≥ βρ logα t) ≤ t−ρ.

Of the two, Assumption 5 is the more restrictive insisting that the tails

of the distributions are not too large. This trivially holds for bounded dis-

tributions like the Bernoulli and beta distribution. Many other commonly

used distributions satisfy this condition such as the Gaussian and Poisson

distributions. For example, for the exponential distribution X ∼ Exp(λ),

P(X ≥ x) = e−λx for x > 0. Therefore,

P(X ≥ ρ

λ
log t) = t−ρ,

meaning the exponential distribution with parameter λ satisfies Assump-

tion 5 with α = 1 and βρ = ρ/λ.

The following two theorems were first stated and proved in my paper

Gallagher et al. [21]. We provide a sketch proof highlighting the main ideas

of the results.

Theorem 3 (Weighted adjacency spectral embedding uniform consistency).

Let A be an instance of a weighted generalised random dot product graph.

There exists a sequence of matrices Qn ∈ O(p, q) such that

max
i∈{1,...,n}

∥∥∥QnX̂i − φ(Zi)
∥∥∥ P−→ 0.
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Theorem 4 (Weighted adjacency spectral embedding central limit theorem).

Let A be an instance of a weighted generalised random dot product graph.

Given z ∈ Z, define the covariance-valued function

Σ(z) = Ip,q∆
−1E

[
v(z, Z)φ(Z)φ(Z)>

]
∆−1Ip,q,

where v(z1, z2) is the variance of the distribution H(z1, z2) and Z ∼ F . Then,

there exists a sequence of matrices Qn ∈ O(p, q) such that, for all x ∈ Rd,

P
(
n1/2

(
QnX̂i − φ(Zi)

)
≤ x | Zi = z

)
→ Φ (x,Σ(z)) .

The proofs also provide the convergence rate for the uniform consistency,

which are also a function of the constant α in Assumption 5 [21]. These

two results are very similar in nature to Theorem 1 and 2 for the generalised

random dot product graph. In the weighted versions of these theorems,

the quantity φ(Zi) is now playing the role of Xi. The adjacency spectral

embedding X̂i estimates φ(Zi) rather than the latent position Zi directly, and

only up to an indefinite orthogonal transformation Qn. In the unweighted

case, the latent positions Xi in the generalised random dot product graph

are purposely chosen so there is no need to include a map φ : X → Rd.

To show that the asymptotic theorems for the generalised random dot

product graph are a special case of these given in Theorem 3 and 4, we need

to show that all the necessary assumptions hold for the symmetric family of

distributions {H(x1, x2) : x1, x2 ∈ X},

H(x1, x2) = Bernoulli(Bx1x2).

Assumption 2 about the low-rank expectation is built into the generalised

random dot product graph as the mean of a Bernoulli distribution for Aij

was explicitly written as X>i Ip,qXj. This also explains why there is no map φ

present in those results; it is equal to the identity map and we can equate Xi
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4.3. Asymptotic results

and φ(Zi) in these equations. Knowing that φ is the identity map, Assump-

tion 3 about minimal dimensionality is precisely the same as Assumption 1

required for the unweighted results. Assumptions 4 and 5 trivially hold as a

Bernoulli random variable is bounded by [0, 1].

Finally, given the symmetric family of Bernoulli distributions and the

low-rank expectation assumption, the variance function for x1, x2 ∈ X is

given by

v(x1, x2) =
(
x>1 Ip,qx2

) (
1− x>1 Ip,qx2

)
.

Therefore, the variance term in Theorem 2 is equal to the weighted version

in Theorem 4.

The proofs of Theorem 3 and 4 are largely identical to those for the

generalised random dot product model but we include a sketch proof to

highlight the key areas where extra work is required.

Sketch proof. For a fixed n, let P ∈ [a, b]n×n be the matrix of expected edge

weights in the network using Assumption 4 to bound the entries of this

matrix. By Assumption 3 the entries can be written as

Pij = E(Aij) = φ(Zi)
>Ip,qφ(Zj),

and the weighted adjacency matrix A can be thought of as a noisy observation

of the matrix P.

The matrix Qn is then constructed in exactly the same way as before. An

orthogonal Procrustes problem is solved to align the adjacency spectral em-

bedding X̂ and XP, so X̂W> ≈ XP for some W ∈ O(p, q). The embedding

XP is then aligned to the matrix consisting of the latent positions φ(Zi),

X = (φ(Z1) | · · · | φ(Zn))> ∈ Rn×d,

so that XP = XQX for some QX ∈ O(p, q). This results in the expression

X̂W>Q−1X ≈ X when Qn = W>Q−1X in Theorem 3 and 4.
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Again the main part of the proof resolves around the matrix perturbation

n1/2(X̂Qn −X) = n1/2(A−P)X(X>X)−1Ip,q + n1/2RQn,

for some residual matrix R ∈ Rn×d. This time controlling the behaviour of

the right hand side is more involved as the difference A − P now depends

on the edge weight distributions, which is where Assumption 4 and 5 are

required. More details can be found in the Appendix of Gallagher et al.

[21].

4.3.1 Weighted stochastic block model asymptotic dis-

tribution

To show that the weighted stochastic block model is an instance of the

weighted generalised random dot product graph in Lemma 4, we considered

the latent position map

φ(Zi) = (XB)>Zi
.

Due to the similarity of these positions to the unweighted stochastic block

model much of the asymptotic distribution calculations remain unchanged.

The function Σ(z) needs to be evaluated for the K latent positions in Z,

Σk = Σ(φ(k)). For Z ∼ F , the second moment matrix is given by

∆ = E(φ(Z)φ(Z)>)

=
K∑
k=1

πk (XB)>k (XB)k

= X>BΠXB,

where Π = diag(π) ∈ RK×K is the diagonal matrix consisting of the com-

munity assignment probabilities. The covariance for community k is given
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by

Σk = Ip,q∆
−1E

[
v(k, Z)φ(Z)φ(Z)>

]
∆−1Ip,q

= Ip,q∆
−1

{
K∑
`=1

π`Ck` (XB)>` (XB)`

}
∆−1Ip,q

= Ip,q∆
−1X>BΠΛkXB∆−1Ip,q,

where Λk = diag((C)k) ∈ RK×K is the diagonal matrix consisting of the row

of the block variance matrix corresponding to community k.

Example 17 (Two-community Poisson distribution stochastic block model

continued). Figure 4.4 shows the asymptotic distribution for the embedding

X̂ of the Poisson distribution stochastic block model from Example 13. Qn

can be constructed since we know the matrix of expected values P for the

distributions used to generate the adjacency matrix A. The asymptotic

distribution is constructed using the equations above then transformed using

Qn from Theorem 3 and 4 to get the asymptotic distribution for the adjacency

spectral embedding X̂ at those positions. Points are coloured according to

their community assignment Zi. The ellipses show the 95% contours of the

asymptotic Gaussian components. /

Example 18 (Two-community Gaussian distribution stochastic block model

with equal means continued). We compute the asymptotic distribution for

the embedding X̂ of the Gaussian distribution stochastic block model from

Example 14. Computing the adjacency spectral embedding of the block

mean matrix B gives φ(Zi) = 1 for both Zi = 1 and Zi = 2. The asymptotic

distributions differ in the variance terms; Σ1 = 1.5 and Σ2 = 1.0, which

match the observed variances when normalised by n = 1000. /
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Figure 4.4: The embedding X̂ of a two-community weighted stochastic block

model into d = 2 dimensions. The points are coloured according to their

true community assignment Zi. The ellipses show the 95% contours of the

asymptotic Gaussian components.

4.3.2 Weighted mixed membership and zero-inflated

stochastic block model asymptotic distribution

Section 4.3.1 showed how the asymptotic distribution calculation changed

when going from the generalised stochastic block model to the weighted

version. Similarly, the calculations for the mixed membership and degree-

corrected stochastic block model in Sections 3.3.2 and 3.3.3 do not change

meaningfully when converted to their weighted versions so we conclude with

an example.

Example 19 (Two-community zero-inflated Poisson distribution stochastic

block model continued). Figure 4.5 shows the embedding X̂ of the zero-
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inflated stochastic block model from Example 16. Points are coloured ac-

cording to their community assignment Zi. The solid black lines represent

the rays of latent positions X after transformation using Qn and the ellipses

show the 95% contours of the asymptotic Gaussian components for latent

positions corresponding to w = 0.5 and w = 1. /
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Figure 4.5: The embedding X̂ of a two-community weighted zero-inflated

stochastic block model into d = 2 dimensions. The points are coloured

according to their true community assignment Zi. The lines show the trans-

formed rays of X and the ellipses show the 95% contours of the asymptotic

Gaussian components for latent positions corresponding to w = 0.5 and

w = 1.
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Chapter 5

Embedding comparison

In this chapter we discuss how to compare different spectral embeddings.

For example, in a stochastic block model, we may wish for the embedding

to create the best separation of the different communities in the network.

We begin by motivating the use of Chernoff information commonly used as a

method for comparing embeddings [68, 10, 57]. We show how this metric can

be used to compare different embeddings of a weighted network where the

entries in the adjacency matrix have been transformed by some entry-wise

function and explain what benefits this may have. The latter part of this

work was first published in Gallagher et al. [21].

The following example shows the danger of using standard clustering

algorithms to evaluate the quality of a spectral embedding.

Example 20 (Stochastic block model community recovery). Consider a

stochastic block model with two communities with block mean matrix

B =

(
0.10 0.12

0.12 0.05

)
,

and a distribution F that assigns equal probability to the two communities;

π1 = 1/2 and π2 = 1/2. We generate a stochastic block model with n = 1000

nodes and perform adjacency spectral embedding into d = 2 dimensions.

Suppose we did not know the community assignment of the nodes within

the graph. Knowing the asymptotic distribution of the embedding from The-

orem 2, we fit a Gaussian mixture model using the sklearn machine learning

package for Python with two communities and unequal, non-spherical co-
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variance matrices. This correctly classifies all but two of the data points, an

accuracy of 99.8%.

Alternatively, we can use another clustering algorithm such as k-means

also available in the sklearn package. Figure 5.1a shows the embedding X̂ of

the stochastic block model where points are now coloured according to their

k-means cluster assignment, while the ellipses show the 95% contours of

the asymptotic Gaussian components. Using k-means performs only slightly

worse correctly classifying all but six of the data points, an accuracy of 99.4%,

which is comparable to the Gaussian mixture model although there are a few

noticeable misclassifications.
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a) Two-community stochastic block model
embedding
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b) Two-community stochastic block model
embedding transformed

k-means Cluster 1 k-means Cluster 2

Figure 5.1: The embedding X̂ of a two-community stochastic block model

into d = 2 dimensions, a) unaltered and b) transformed by Q ∈ O(p, q).

The points are coloured according to their k-means cluster assignment. The

ellipses show the 95% contours of the asymptotic Gaussian components.

However, since the signature of the block mean matrix B is (1, 1), any

transformation of the embedding by Q ∈ O(1, 1) is also a valid embedding
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of the network. Figure 5.1b shows the embedding X̂ after transformation by

one such matrix Q chosen to elongate the two clusters. This has no effect

on fitting a Gaussian mixture model with unequal, non-spherical covariance

matrices; the accuracy remains at 99.8%. However, the transformation does

have an effect on the k-means output, which misclassifies 38 of the data

points, an accuracy of only 96.2%. This highlights the issue that any metric

chosen to evaluate the quality of an adjacency spectral embedding will need

to be invariant under transformation by Q ∈ O(p, q). /

Even in this example there is another issue with using classification ac-

curacy as a measure of the quality of a spectral embedding. As the number

of nodes tends to infinity, the community clusters will separate more due to

the smaller covariance in the central limit theorems, Theorem 2 and Theo-

rem 4. A worse representation of the data will eventually be just as good at

separating points as the number of nodes increase.

5.1 Chernoff information

In this section, we introduce Chernoff information, a commonly used method

for evaluating the spectral embedding of a stochastic block model [68, 10, 57].

Definition 13 (Chernoff information). Let F1 and F2 be continuous mul-

tivariate distributions on Rd with density functions f1 and f2 respectively.

The Chernoff information [14] is defined by

C(F1, F2) = sup
t∈(0,1)

{
− log

∫
f t1(x)f 1−t

2 (x) dx

}
,

When given three or more distributions, one reports the Chernoff information

of the critical pair, mink 6=` C(Fk, F`).

To understand why we use Chernoff information, we follow Nielsen [52].

Consider a classification task between two classes C1 and C2 with density
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functions f1 and f2 respectively where an observation x is drawn from the

mixture distribution f(x) = P(C1)f1(x) + P(C2)f2(x). The probability of

that observation being from either class is given by Bayes’ theorem,

P(Ci | x) =
P(Ci)fi(x)

f(x)
.

The Bayes decision rule under a 0-1 loss function assigns the observation x

to its most likely class, that is, x is assigned to class C1 if P(C1)f1(x) >

P(C2)f2(x) and to class C2 otherwise. The Bayes decision rule minimises the

average probability of a misclassification,

E =

∫
min{P(C1 | x),P(C2 | x)}f(x) dx,

the probability that an observation from C1 is assigned as C2 and vice versa.

Given a set of observations, this is the limit of the observed average mis-

classification error. To create an upper bound for the error, observe that

min(a, b) ≤ atb1−t for all t ∈ (0, 1), so

E ≤ inf
t∈(0,1)

P(C1)
tP(C2)

1−t
∫
f t1(x)f 1−t

2 (x) dx dx

= P(C1)
t∗P(C2)

1−t∗e−C(F1,F2),

where t∗ ∈ (0, 1) is the value that gives the smallest upper bound. In sum-

mary, the Chernoff information is the exponential rate of an upper bound for

the average misclassification error.

The Chernoff information is invariant up to invertible transformations

[16]. In particular, it is invariant to indefinite orthogonal transformations

Q ∈ O(p, q) meaning that it is suitable to use for adjacency spectral embed-

dings.

Example 21 (Chernoff information of Gaussian distributions). Consider

the multivariate Gaussian distributions F1 = Normal(µ1,Σ1) and F2 =
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Normal(µ2,Σ2) with probability density functions,

fi(x) =
1√

2π det(Σi)
exp

{
−1

2
(x− µi)

>Σi(x− µi)

}
.

The integral in the Chernoff information can be evaluated by rewriting it as

the probability density function of another multivariate Gaussian distribu-

tion. The Chernoff information C(F1, F2) is given by [52]

sup
t∈(0,1)

[
t(1− t)

2
(µ1 − µ2)

>Σ(t)−1(µ1 − µ2)
1

2
log

det(Σ(t))

det(Σ1)1−t det(Σ2)t

]
,

where Σ(t) = (1− t)Σ1 + tΣ2. /

5.1.1 Stochastic block model Chernoff information

The larger the Chernoff information, the easier it is to distinguish the two dis-

tributions. For both the standard and weighted stochastic block model, The-

orem 3 and 4 state that the asymptotic distribution for the adjacency spec-

tral embedding for community k is Normal((XB)k,Σk/n). In Section 4.3.1

we derived the following expression for the asymptotic covariance,

Σk = Ip,q∆
−1X>BΠΛkXB∆−1Ip,q,

where ∆ = X>BΠXB ∈ Rd×d is the second moment matrix, Π = diag(π) ∈
RK×K is the diagonal matrix consisting of the community assignment proba-

bilities, and Λk = diag(Ck) ∈ RK×K is the diagonal matrix consisting of the

row of the block variance matrix corresponding to community k.

The covariance term is getting smaller as the number of nodes n tends

to infinity making separating any pair of communities easier, so we want

to know how the Chernoff information improves with n. For communities

k and `, the first term in the supremum of the Chernoff information from

Example 21 is given by

nt(1− t)
2

{(XB)k − (XB)`}>Σk`(t)
−1 {(XB)k − (XB)`} ,
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where Σk`(t) = (1 − t)Σk + tΣ`. This term is linear in n, while the second

term
1

2
log

det(Σ(t))

det(Σ1)1−t det(Σ2)t

is independent of n as contributions from the top and bottom of the fraction

cancel. This motivates the following definition for the size-adjusted Chernoff

information that explains how the Chernoff information in a stochastic block

model grows as n tends to infinity.

Definition 14 (Size-adjusted Chernoff information). The size-adjusted Cher-

noff information for the adjacency spectral embedding of a stochastic block

model is

C = min
k 6=`

sup
t∈(0,1)

[
t(1− t)

2
{(XB)k − (XB)`}>Σk`(t)

−1 {(XB)k − (XB)`}
]
,

where Σk`(t) = (1− t)Σk + tΣ`.

This definition of size-adjusted Chernoff information is related to the idea

of Chernoff information ratios [56]. In this work, the authors compare the

ratio of two Chernoff information terms as n tends to infinite. By focusing on

the contribution of the term linear in n, the size-adjusted Chernoff informa-

tion captures the most relevant part for a single embedding without having

to immediately compare it against another embedding.

The following lemma shows how the expression can be simplified for the

stochastic block model. This is a new contribution to be included in a revision

for Gallagher et al. [21].

Lemma 7. For a K-community stochastic block model with full rank mean

block matrix, rank(B) = K, the size-adjusted Chernoff information is

C = min
k 6=`

sup
t∈(0,1)

[
t(1− t)

2

{
(ek − e`)

>BΠΛk`(t)
−1B(ek − e`)

}]
,

where ek ∈ RK is the standard basis vector with one in position k, and zero

elsewhere, and Λk`(t) = (1− t)Λk + tΛ`.
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This is a vast simplification when B is full rank. Rather than having to

compute the spectral embedding XB and the second moment matrix ∆, the

size-adjusted Chernoff information can be expressed directly in terms of the

block mean and variance matrices B and C. This makes the optimisation

steps in the calculation much more manageable.

Proof. If D ∈ RK×K is full rank, then for Y ∈ RK×d, the following matrix

inequality holds [46],

Y
(
Y>DY

)−1
Y> � D−1,

where M � 0 means that M is a positive semi-definite matrix. However, in

the case where D and X ∈ RK×K are full rank, then the two sides of this

inequality are equal,

X
(
X>DX

)−1
X> = D−1.

If the block mean matrix B is full rank, this implies that the adjacency

spectral embedding XB is also full rank. Since B = XBIp,qX
>
B, this means

rank(B) ≤ rank(XB) implying rank(XB) = K when rank(B) = K.

Using this matrix equality and the expression for ∆, we have

Σk`(t)
−1 =

(
Ip,q∆

−1X>BΠΛk`(t)XB∆−1Ip,q
)−1

= Ip,qX
>
BΠXB

(
X>BΠΛk`(t)XB

)−1
X>BΠXBIp,q

= Ip,qX
>
BΠΛk`(t)

−1XBIp,q

Substituting this expression into the objective function in the size-adjusted

Chernoff information gives

{(XB)k − (XB)`}>Σk`(t)
−1 {(XB)k − (XB)`}

= (ek − e`)
>XBIp,qX

>
BΠΛk`(t)

−1XBIp,qX
>
B(ek − e`)

= (ek − e`)
>BΠΛk`(t)

−1B(ek − e`),

using the expressions (XB)k− (XB)` = X>B(ek−e`) and B = XBIp,qX
>
B.
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If the block mean matrix B is not full rank, then the matrix inequality

effectively passes through the whole argument in the above proof,

Σk`(t)
−1 � Ip,qX

>
BΠΛk`(t)

−1XBIp,q,

which becomes a regular inequality when we compute the quadratic form.

We get that, for rank(B) ≤ K,

C ≤ min
k 6=`

sup
t∈(0,1)

[
t(1− t)

2

{
(ek − e`)

>BΠΛk`(t)
−1B(ek − e`)

}]
.

with equality when B is full rank.

Example 22 (Adjacency versus Laplacian spectral embedding). In this ex-

ample we use size-adjusted Chernoff information to compare the adjacency

spectral embedding and Laplacian spectral embedding of a two-community

stochastic block model. Both approaches have their advantages [57] and

depending on the model parameters one embedding may separate the two

communities better than the other [68, 10].

Consider a stochastic block model with two communities with block mean

matrix

B =

(
0.20 0.05

0.05 0.05

)
,

and a distribution F that assigns equal probability to the two communities;

π1 = 1/2 and π2 = 1/2. This is called a core-periphery network where

the nodes in community 1 form the core of the network and the nodes in

community 2 the periphery.

We generate a stochastic block model with n = 1000 nodes and Figure 5.2

shows the adjacency spectral embedding and Laplacian spectral embedding

both into d = 2 dimensions. Points are coloured according to their commu-

nity assignment Zi. The ellipses show the 95% contours of the asymptotic

Gaussian components using the asymptotic results by Rubin-Delanchy et al.

[60] for Laplacian spectral embedding.
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Figure 5.2: The embedding X̂ of a two-community weighted stochastic block

model into d = 2 dimensions for a) adjacency spectral embedding and b)

Laplacian spectral embedding. The points are coloured according to their

true community assignment Zi. The ellipses show the 95% contours of the

asymptotic Gaussian components.

In this example Laplacian spectral embedding performs slightly better

with size-adjusted Chernoff information C = 1.63 × 10−2 compared to ad-

jacency spectral embedding with size-adjusted Chernoff information C =

1.47× 10−2. A deeper analysis showing when the adjacency spectral embed-

ding or Laplacian spectral embedding is preferred for core-periphery networks

is perform in Tang and Priebe [68]. /

In the following two examples we consider two types of stochastic block

models with extra structure where it is possible to calculate the size-adjusted

Chernoff information analytically. These calculations will be useful when

we consider models motivated by real-world networks in Example 26 and

Section 5.3.
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Example 23 (Homogeneous weighted stochastic block model). Consider

a K-community weighted stochastic block model where matrix entries are

distributed according to the symmetric family of distributions {H(z1, z2) :

z1, z2 ∈ Z} given by

H(z1, z2) =

F1 if z1 = z2,

F2 if z1 6= z2.

An edge weight is distributed as F1 if both endpoints are in the same commu-

nity, and as F2 if the endpoints are in different communities. Further, assume

that the community assignment distribution F is such that a node is equally

likely to be assigned to any of the K communities, πk = 1/K. This is known

as a homogeneous stochastic block model [35], although it is also known as a

symmetric stochastic block model in other circles [1]. All the nodes behave

in the same way regarding links between and within community, one such ex-

ample being the two-community Poisson distribution stochastic block model

in Example 13.

Since every community behaves the same way, we only need to consider

one pair of communities for the size-adjusted Chernoff information; without

loss of generality, let k = 1, ` = 2. Denote the entries in the block mean

and variance matrices B and C as, for X ∼ Fi, bi = E(X) and ci = var(X),

leading to the expressions

B(e1 − e2) = (b1 − b2, b2 − b1, 0, . . . , 0)>,

Λ12(t) = diag[(1− t)c1 + tc2, tc1 + (1− t)c2, 1, . . . , 1].

Substituting these into the formula for the size-adjusted Chernoff informa-

tion, after some matrix manipulation, gives

C = sup
t∈(0,1)

[
(b1 − b2)2

2K

{
t(1− t)

(1− t)c1 + tc2
+

t(1− t)
tc1 + (1− t)c2

}]
.
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It can be shown that for c1, c2 > 0, for all t ∈ (0, 1),

t(1− t)
(1− t)c1 + tc2

+
t(1− t)

tc1 + (1− t)c2
≤ 1

c1 + c2
,

where equality is achieved when t = 1/2. Therefore, the size-adjusted Cher-

noff information is given by

C =
(b1 − b2)2

2K(c1 + c2)
.

In the Poisson distribution stochastic block model in Example 13 where b1 =

c1 = 0.5 and b2 = c2 = 0.6, the size-adjusted Chernoff information is equal

to C = 2.27× 10−3. /

Example 24 (Anomalous two-community weighted stochastic block model).

Consider a two-community weighted stochastic block model where matrix

entries are distributed according to the symmetric family of distributions

{H(z1, z2) : z1, z2 ∈ Z} given by

H(k, `) =

F1 if k = 1, ` = 1,

F2 otherwise.

An edge weight is distributed as F1 if both endpoints are in the community 1,

and F2 otherwise. We think of community 1 as an anomalous community in

the network. Let π1 be the probability a node is an anomaly corresponding to

community 1, and π2 the probability it is behaving normally corresponding

to community 2.

This time there are only two communities to consider in the Chernoff

information calculation, so let k = 1 and ` = 2. Denote the entries in the

block mean and variance matrices B and C as, for X ∼ Fi, bi = E(X) and

ci = var(X), leading to the expressions

B(e1 − e2) = (b1 − b2, 0)>,

Λ12(t) = diag[(1− t)c1 + tc2, c2].
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Substituting these into the formula for the size-adjusted Chernoff informa-

tion, after some matrix manipulation, gives

C = sup
t∈(0,1)

[
π1(b1 − b2)2

2

{
t(1− t)

(1− t)c1 + tc2

}]
.

In this case, we can find the optimal t∗ ∈ (0, 1) by differentiating the function

in the curly brackets with respect to t, although it is easier to minimise the

reciprocal of this quantity rather than maximise the quantity directly. The

optimum is achieved by t∗ =
√
c1√

c1+
√
c2

and the Chernoff information is given

by

C =
π1(b1 − b2)2

2(
√
c1 +

√
c2)2

. /

5.2 Edge weight representation

Definition 15 (Entry-wise transformation). Given a weighted adjacency

matrix A ∈ Rn×n and a real-valued function g, the entry-wise transformation

of A is the weighted adjacency matrix A′ ∈ Rn×n with entries A′ij = g(Aij).

An entry-wise transformation of a weighted generalised random dot prod-

uct graph changes the symmetric family of distributions {H(z1, z2) : z1, z2 ∈
Z}, but not the latent positions Zi. Therefore, a weighted stochastic block

model will remain a weighted stochastic block model after an entry-wise

transformation, and likewise for the weighted mixed membership stochastic

block model and zero-inflated stochastic block model if g(0) = 0.

When the weighted adjacency matrix A has block mean and variance

matrices B and C respectively, we use B′ and C′ to represent the block

mean and variance matrices of the entry-wise transformation A′. Be aware

that the matrices B′ and C′ are not the entry-wise transformations of B and

C, in general B′k` 6= g(Bk`) and C′k` 6= g(Ck`).
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Example 25 (Two-community Gaussian distribution stochastic block model

with equal means continued). In Example 18 we computed the asymptotic

distribution for the embedding X̂ of a Gaussian distribution stochastic block

model with equal means for all pairs of communities. In this example, we

showed that both communities have the same latent position, for example,

(XB)>1 = (XB)>2 = 1, leading to a size-adjusted Chernoff information equal

to zero. In this case, there is no longer a linear term in n in the Chernoff

information so it does not increase as the number of nodes in the network

tends to infinite.

By performing an entry-wise transformation of the adjacency matrix, it

is possible to distinguish the two communities. We create a new stochastic

block model A′ using the entry-wise transformation A′ij = A2
ij resulting in

edge weights with noncentral χ2 distributions. Figure 5.3 shows the asymp-

totic distribution for the resulting embedding X̂ of the transformed network

into d = 2 dimensions. Points are coloured according to their community as-

signment Zi. The ellipses show the 95% contours of the asymptotic Gaussian

components. It is now possible to distinguish between the two communities

with size-adjusted Chernoff information C = 6.01× 10−3. /

Example 26 (Two-community Poisson versus Bernoulli distribution stochas-

tic block model). Recall the two-community Poisson distribution stochastic

block model first introduced in Example 13 where the symmetric family of

distributions {H(z1, z2) : z1, z2 ∈ Z} is given by

H(z1, z2) =

Poisson(λ1) if z1 = z2,

Poisson(λ2) if z1 6= z2,

where λ1 6= λ2 and a community assignment distribution F such that π1 =

1/2 and π2 = 1/2. This is an example of a homogeneous stochastic block

model introduced in Example 23 and using the size-adjusted Chernoff in-

formation calculated in that example, this stochastic block model has size-
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Figure 5.3: The embedding X̂ of a two-community weighted stochastic block

model into d = 2 dimensions. The points are coloured according to their

true community assignment Zi. The ellipses show the 95% contours of the

asymptotic Gaussian components.

adjusted Chernoff information given by

CP =
(λ1 − λ2)2

4(λ1 + λ2)
.

However, rather than using a Poisson edge weight to model the number

of events occurring between two nodes, we could instead track whether any

event happened between those two nodes. We create a new stochastic block

model A′ using the entry-wise transformation A′ij = I(Aij > 0). If the counts

are distributed by X ∼ Poisson(λ), then a presence event is distributed as

I(X > 0) ∼ Bernoulli(1 − e−λ). This creates a symmetric Bernoulli distri-

bution stochastic block model which has size-adjusted Chernoff information
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given by

CB =
(e−λ1 − e−λ2)2

4 {e−λ1(1− e−λ1) + e−λ2(1− e−λ2)}
.

Depending on the values λ1, λ2, either the Poisson or Bernoulli representa-

tion may result in a better size-adjusted Chernoff information and, hence, a

better separation of the two communities in the adjacency spectral embed-

ding. Figure 5.4 compares the two size-adjusted Chernoff information values

by showing a heat map of the ratio CP/CB for λ1, λ2 ∈ (0, 2]. For most
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Figure 5.4: Chernoff ratio comparing the embedding of a two-community

Poisson distribution stochastic block model A and the entry-wise trans-

formed Bernoulli distribution stochastic block model A′ = I(A > 0). The

solid black line shows the boundary CP = CB.

pairs of Poisson distribution parameters, it is better to embed the network of

count values A rather than just the network of presence events A′. However,

when λ1 is small and λ2 is relatively large (or vice versa), then we get better

community separation by ignoring the count values in the matrix A losing

information about the network.
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Returning to Example 13 where λ1 = 0.5 and λ2 = 0.6, Figure 5.5 shows

the embedding X̂ for the entry-wise transformed stochastic block model A′.

Points are coloured according to their community assignment Zi. The ellipses

show the 95% contours of the asymptotic Gaussian components computed

using Theorem 3 and 4 to get the asymptotic distribution for the adjacency

spectral embedding.
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Figure 5.5: The embedding X̂ of a two-community entry-wise transformed

stochastic block model into d = 2 dimensions. The points are coloured

according to their true community assignment Zi. The ellipses show the 95%

contours of the asymptotic Gaussian components.

Compared to the embedding of Poisson distribution stochastic block model

in Figure 4.4, the two communities appear more mixed together and harder

to distinguish. The two ellipses showing the 95% contours of the asymptotic

Gaussian components overlap more for the Bernoulli distribution stochastic

block model. This is confirmed by the corresponding size-adjusted Cher-

noff information values; for the Bernoulli presence event embedding we have
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CB = 1.71 × 10−3 compared to the Poisson counts embedding having CP =

2.27× 10−3 computed at the end of Example 23. /

5.2.1 Affine transformations

The following lemma is a key result from Gallagher et al. [21] showing that

an affine entry-wise transformation of a weighted adjacency matrix does not

effect the size-adjusted Chernoff information.

Lemma 8. Let A be a weighted stochastic block model with full rank block

mean matrix B and size-adjusted Chernoff information C. For the affine

entry-wise transformation A′ij = aAij + b, if the block mean matrix B′ is full

rank, then A′ has size-adjusted Chernoff information C.

Proof. By assumption A and A′ have full rank block mean matrices, there-

fore, by Lemma 7, both stochastic block models have the same Chernoff

information if they have the same value for

(ek − e`)
>BΠΛk`(t)

−1B(ek − e`).

For an affine entry-wise transformation, the entries of the block mean and

variance matrices are given by B′k` = aBk` + b and C′k` = a2Ck`. Therefore,

B′(ek − e`) = aB(ek − e`),

Λ′k`(t)
−1 = a2Λk`(t)

−1,

where Λ′k`(t)
−1 is the equivalent version of Λk`(t)

−1 in the entry-wise trans-

formed stochastic block model. The contribution from a cancel and there

is no contribution from b, meaning the size-adjusted Chernoff information is

unaffected by affine transformation.

Insisting that the block mean matrix B′ is full rank prevents the degen-

erate case a = 0 and all the matrix entries are the same. If a 6= 0, then
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it is highly likely that the block mean matrix B′ is full rank if B is itself

full rank. Without loss of generality, consider an affine transformation with

a > 0, b > 0 on a block mean matrix B with signature (p, q). Analysis for

other affine transformations leads to slight variations of the following results.

Suppose that the ordered eigenvalues of the block mean matrix B are

given by λ1(B) < . . . < λK(B) where the first q eigenvalues are less than

zero and the last p eigenvalues are greater than zero in order to have signature

(p, q). The block mean matrix for the affine transformation is given by B′ =

aB+b11> where 1 ∈ RK is the all-one vector. This is a rank-one perturbation

of the scaled matrix aB, therefore, by Horn and Johnson [32], Corollary 4.3.9,

the eigenvalues of B′ interweave with those of B,

λk(B) ≤ λk(B
′) ≤ λk+1(B) ≤ λk+1(B

′).

Figure 5.6 shows an example of this eigenvalue behaviour. The only

eigenvalue that can change sign after affine transformation is λq(B
′). In the

example shown, λq(B
′) > 0, meaning the signature of the stochastic block

model after affine transformation is (p+ 1, q − 1). While the Chernoff infor-

mation remains unchanged for full-rank affine transformations, the signature

of the stochastic block model can be altered. However, if λq(B
′) < 0, then

the signature would have remained (p, q).

0λq−1(B) λq(B) λq+1(B) λq+2(B)

λq−1(B
′) λq(B

′) λq+1(B
′) λq+2(B

′)

. . . . . .

q negative eigenvalues of B p positive eigenvalues of B

Figure 5.6: Number line showing eigenvalues of mean block matrices close

to the origin. White nodes represent eigenvalues of B with full rank d and

signature (p, q), black nodes represent eigenvalues of B′ = aB + b11> with

signature (p+ 1, q − 1).
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5.2. Edge weight representation

The only remaining possibility is that λq(B
′) = 0, meaning that B′ is not

full rank. In this case, the affine transformation stochastic block model would

instead need to be embedded into a lower dimension and the conditions of

Lemma 8 do not hold. Since B′ is rank-deficient, the size-adjusted Chernoff

information of the affine transformation stochastic block model is less than

or equal to that of the original stochastic block model due to the comment

made after the proof of Lemma 7.

Lemma 8 has some interesting consequences for common data transfor-

mations. For example, given an unweighted stochastic block model, any

two distinct values could be used to represent edges and non-edges. In par-

ticular, a stochastic block model graph and its complement have the same

size-adjusted Chernoff information.

Another consequence regards the edge-wise regularisation of the adja-

cency matrix where a small value is added to every edge to aid clustering [4].

Usually the extra weight is scaled by the number of nodes n in the network

to create the regularised adjacency matrix,

A′ = A +
τ

n
11>.

This is an affine transformation with a = 1 and b = τ/n, so Lemma 8 states

that applying this transformation to a stochastic block model does not change

the size-adjusted Chernoff information. Therefore, for a stochastic block

model, there is no reason to use the regularised adjacency matrix according

to the size-adjusted Chernoff information.

5.2.2 Optimal transformations

Since different entry-wise transformations of stochastic block models lead to

better community separation than others this raises the question: What is

the optimal transformation of an adjacency matrix? Given the stochastic

block model structure and the edge weight distributions, it is possible to find
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the function g that maximises the size-adjusted Chernoff information. While

it may be unrealistic to assume that we know the details of a stochastic block

model before analysing it, knowing the forms of some optimal transformations

gives insight into what data transformations may be useful.

Example 27 (Homogeneous weighted stochastic block model continued).

Consider the homogeneous weighted stochastic block model described in Ex-

ample 23. Using the size-adjusted Chernoff information, the aim is to find

the function g that maximises

C[g] =
{E(g(X1))− E(g(X2))}2

2K{var(g(X1)) + var(g(X2))}
.

where Xi ∼ Fi.

Without loss of generality, we can choose a transformation such that

E(g(Xi)) = E(Xi). We can take an affine transformation of the function g to

map the means to any value, since by Lemma 8 this does not affect the size-

adjusted Chernoff information. Therefore, maximising C[g] is equivalent to

minimising the sum of the variances subject to the means being unchanged.

This optimisation task can be expressed using Lagrange multipliers,

var(g(X1)) + var(g(X2)) + λ1{E(X1)− E(g(X1))}+ λ2{E(X2)− E(g(X2))}

=

∫ [
g(x)2{f1(x) + f2(x)}+ λ1{x− g(x)}f1(x) + λ2{x− g(x)}f2(x)

]
dx

=

∫
L(x, g(x)) dx.

This can be minimised over g using the Euler-Lagrange equation of the cal-

culus of variations, although things are simpler as the function L does not

depend on the derivative g′(x). Solving ∂L
∂g

= 0 gives the solution

g(x) =
λ1f1(x) + λ2f2(x)

2(f1(x) + f2(x))
,

where λ1, λ2 are chosen so that the conditions E(g(Xi)) = E(Xi) are satisfied.

However, once again the same argument about affine transformations can be
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5.3. Example: Pairwise p-value data

used and the same size-adjusted Chernoff information is achieved by the

entry-wise transformation

h(x) =
f1(x)

f1(x) + f2(x)
,

removing the need to compute the terms λ1 and λ2. The transformation h is

a sigmoid function which depends on the ratio of the two probability density

functions. h(x) → 1 as f1(x)/f2(x) → ∞ meaning it is getting more likely

that the observation x comes from the distribution F1. Conversely, h(x)→ 0

as f1(x)/f2(x) → 0 meaning it is getting more likely that the observation x

comes from the distribution F2.

In Example 26 with Poisson distribution edge weights, converting edge

weights using the function I(Aij > 0) can be seen as an approximation

of the optimal function h that does not require knowledge of the Poisson

distribution parameters. /

5.3 Example: Pairwise p-value data

In this example, we describe a synthetic example designed to show the im-

portance of data representation for analysing a computer network. This work

was first published in Gallagher et al. [21].

Consider a computer network where packets are sent along connections

between computers and suppose we have a test statistic t for the traffic

between a pair of computers in the network. For any edge, the p-value is

the probability of obtaining a test statistic more extreme than the observed

statistic under some model,

Aij = P(T ≥ t(traffic between computers i and j)).

A low p-value may occur if the amount of traffic between a pair of computers

differs wildly compared to historic behaviour [28], occur over an unusual port

[26], or happens at an unusual time of day [56].
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The p-values are modelled using an anomalous two-community weighted

stochastic block model introduced in Example 24. A proportion π1 of com-

puters are considered to be acting anomalously and are assigned to com-

munity 1. Interactions between those computers tend to generate smaller

p-values modelled by a Beta(α, 1) distribution with α < 1. The remaining

proportion π2 of computers are considered to be acting normally and are

assigned to community 2. For any interaction involving one of these normal

computers, the p-value is modelled by a uniform distribution (equivalently,

a Beta(1, 1) distribution) corresponding to no anomalous activity.

In a practical application, not every edge in the network can be assigned

a p-value. For example, there may not be any observed traffic between two

computers, or an initial triage may suggest it is not worth running a full

test for anomalous behaviour. To model this behaviour, we assume there

is a probability ρ that any edge in the network will be present and treat

missing edges as having a p-value equal to one. All together this gives a

two-community weighted stochastic block model A of p-values where matrix

entries are distributed according to the symmetric family of distributions

{H(z1, z2) : z1, z2 ∈ Z} given by

H(k, `) =

(1− ρ)δ1 + ρBeta(α, 1) if k = 1, ` = 1,

(1− ρ)δ1 + ρBeta(1, 1) otherwise,

where δ1 is the delta distribution that places all its probability mass at one.

In this example, we discuss three different representations of this network

of p-values. The first is the affine entry-wise transformation AP
ij = 1 −Aij.

By Lemma 8, this transformation does not affect the size-adjusted Chernoff

information. It has the practical advantage of assigning the missing edges

in the network to zero, which makes it easier to use sparse versions of the

singular value decomposition algorithm for the adjacency spectral embedding

calculation. Entries in AP
ij follow a zero-inflated beta distribution since, if
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5.3. Example: Pairwise p-value data

X ∼ Beta(α, β), then 1−X ∼ Beta(β, α).

Alternatively, based on Fisher’s method for combining p-values [20], one

could consider embedding the matrix of log p-values AL
ij = − log(Aij). This

is the uniformly most powerful method of combining the p-values if they

have a Beta(α, 1) distribution with α < 1 under the alternative hypothesis

[27]. Entries in AL
ij follow a zero-inflated exponential distribution since, if

X ∼ Beta(α, 1), then − logX ∼ Exp(α).

Finally, one could decide to only consider interesting p-values less than

a chosen threshold τ ∈ (0, 1) [28]. This corresponds to the matrix with

entries AT
ij = I(Aij ≤ τ). Entries in AT

ij follow a Bernoulli distribution since,

if X ∼ Beta(α, 1), then I(X ≤ τ) ∼ Bernoulli(τα), and the zero-inflation

parameter ρ can be incorporated into the Bernoulli distribution.

Table 5.1 gives a summary of the original p-values data and the three

transformations outlined above. The edge weight distributions for the anoma-

lous weighted stochastic block models when both nodes are in the anomalous

community is shown in the right-most column. The edge weight distributions

when at least one node is behaving normally can be found be setting α = 1.

Data representation Matrix entries Anomalous distribution (α < 1)

p-values Aij (1− ρ)δ1 + ρBeta(α, 1)

1−p-values AP
ij = 1−Aij (1− ρ)δ0 + ρBeta(1, α)

log p-values AL
ij = − log(Aij) (1− ρ)δ0 + ρExp(α)

Threshold p-values AT
ij = I(Aij ≤ τ) Bernoulli(ρτα)

Table 5.1: The four different representations of the p-values network data

and the corresponding edge weight distributions for the anomalous weighted

stochastic block models when both nodes are in the anomalous community.

To show the different embeddings, we generate a weighted stochastic block
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model with n = 1000 nodes with beta distribution parameter α = 0.25,

zero-inflation probability ρ = 0.25, probability a node exhibits anomalous

behaviour π1 = 0.25, and interesting p-value threshold τ = 0.1. Figure 5.7

shows the asymptotic distribution for the four different embeddings X̂ of the

p-values matrix A, the 1−p-values matrix AP
ij, the log p-values matrix AL

ij

and the threshold p-value matrix AT
ij. Points are coloured according to their

community assignment Zi with the anomalous nodes being represented by

red triangles.

In Figures 5.7a and 5.7b the embeddings for the p-values matrix and the

1−p-values matrix appear very similar, almost mirror images of each other. It

is not surprising they have a similar overlap between the two communities as

they must have the same size-adjusted Chernoff information. Both stochastic

block models have size-adjusted Chernoff information C = 1.76× 10−3.

In Figures 5.7c and 5.7d the embeddings for the log p-values matrix and

the threshold p-values matrix visually have better separation of the two com-

munities compared to the p-values and the 1−p-values matrices. The log

p-values and threshold p-values stochastic block models have size-adjusted

Chernoff information C = 6.43 × 10−3 and C = 6.58 × 10−3 respectively, so

the threshold p-values is only slightly preferable in this example.

This example raises the question as to whether embedding the log p-

values or threshold p-values will always give better community separation

than embedding the p-values, for any choice of π1, α, ρ and τ . Each of the

transformations results in an anomalous two-community weighted stochastic

block model meaning we can use the formula for the size-adjusted Chernoff

information from Example 24,

C =
π1(b1 − b2)2

2(
√
c1 +

√
c2)2

,

where, for X ∼ Fi, bi = E(X) and ci = var(X).

The size-adjusted Chernoff information is a scalar multiple of π1 so this

90



5.3. Example: Pairwise p-value data

0.96 0.94 0.92 0.90

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
a) p-values embedding

0.45 0.40 0.35 0.30

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

b) 1 p-values embedding

1.4 1.2 1.0 0.8 0.6 0.4
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

c) log p-values embedding

0.5 0.4 0.3 0.2 0.1
0.3

0.2

0.1

0.0

0.1

0.2

0.3
d) Threshold p-values embedding

Community 1 Community 2

Figure 5.7: The embeddings X̂ of the two-community entry-wise transformed

stochastic block model into d = 2 dimensions of a) the p-values matrix A,

b) the 1−p-values matrix AP, c) the log p-values matrix AL and d) the

threshold p-value matrix AT. The points are coloured according to their

true community assignment Zi. The ellipses show the 95% contours of the

asymptotic Gaussian components.
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parameter does not effect which entry-wise transformation gives the best size-

adjusted Chernoff information. There are no parameter choices where em-

bedding the p-values is preferable to both log p-values and threshold p-values

embedding according to the size-adjusted Chernoff information; Figure 5.7

shows that it is often noticeably worse.

Having dismissed embedding p-values directly, Figure 5.8 divides the pa-

rameter space α ∈ (0, 1), ρ ∈ (0, 1) into two regions showing whether using

log p-values or threshold p-values is the better approach. In the white region,

embedding log p-values gives larger size-adjusted Chernoff information than

embedding the matrix of threshold p-values for any choice of threshold τ .

This includes many difficult cases where the beta distribution parameter α

is close to one and it is hard to distinguish anomalous p-values from those

drawn from the uniform distribution.

In the coloured region, embedding threshold p-values achieves a higher

size-adjusted Chernoff information, and the colour indicates the optimal

threshold τ . Using threshold p-values is preferable when the zero-inflation

parameter for the network ρ is close to zero, although the optimal threshold

could be as high as τ = 0.15 depending on the beta distribution parameter

α.

In conclusion, neither matrix representation completely dominates in this

example, but rather they complement each other in the two cases where it

is most difficult to find the anomalous nodes in the network. When it is

hard to distinguish anomalous edges from those with no signal, log p-values

should be used, and if the zero-inflation parameter for the network is small,

threshold p-values should be used.
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Figure 5.8: Detection of an anomalous network cluster. The parameter ρ ∈
(0, 1) controls the zero-inflation of the network (low is sparse), and α ∈ (0, 1)

controls the strength of the signal in the p-values (low is strong). In the white

region, embedding log p-values is preferred, while in the coloured region,

embedding threshold p-values is preferred, where the colour indicates the

threshold τ achieving maximal size-adjusted Chernoff information.
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Chapter 6

Dynamic networks

In this chapter, rather than embedding a single network, suppose instead

we have a time series of adjacency matrices. The goal is to create an em-

bedding for every node at every time point in a statistically consistent way.

We propose two desirable properties for such an embedding; cross-sectional

stability where nodes behaving similarly at a particular time have compara-

ble embeddings, and longitudinal stability where a node behaving similarly

at different time points have comparable embeddings. We show that an ex-

isting technique called unfolded adjacency spectral embedding has both of

these stability properties. The work was first published in Gallagher et al.

[22].

6.1 Unfolded adjacency spectral embedding

Definition 16 (Unfolded adjacency spectral embedding). Given a sequence

of T adjacency matrices A(1), . . . ,A(T ) ∈ Rn×n, compute the d-truncated

singular value decomposition of the unfolded adjacency matrix,

A =
(
A(1) | · · · | A(T )

)
= UAΣAV>A + UA,⊥ΣA,⊥V>A,⊥,

where UA ∈ O(n × d), VA ∈ O(nT × d) and ΣA ∈ Rd×d is the diagonal

matrix comprising the d largest singular values of A. Denote the left unfolded

adjacency spectral embedding of A,

X̂ = UAΣ
1/2
A ∈ Rn×d,
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and the right unfolded adjacency spectral embedding of A,

Ŷ =
(
Ŷ(1) | · · · | Ŷ(T )

)
= VAΣ

1/2
A ∈ RnT×d.

We divide the left adjacency spectral embedding into rows to represent the

global spectral embedding for each node. By writing X̂ = (X̂1 | · · · | X̂n)>,

X̂i is the global spectral embedding representation for node i across all the

graphs. We divide the right unfolded adjacency spectral embedding into rows

to represent the local spectral embedding for each node for each time period.

By writing

Ŷ(t) =
(
Ŷ

(t)
1 | · · · | Ŷ (t)

n

)>
,

Ŷ
(t)
i ∈ Rd is the unfolded adjacency spectral embedding of node i at time t.

We denote the two unfolded adjacency spectral embeddings of an arbi-

trary matrix M as XM = UMΣ
1/2
M and YM = VMΣ

1/2
M employing notation

consistent with Definition 16.

Example 28 (Dynamic two-community stochastic block model). Consider a

two-community dynamic stochastic block model over two time periods where

nodes have a fixed community assignment Zi for t = 1 and t = 2. For the

two stochastic block models, the block mean matrices are given by

B(1) =

(
0.10 0.20

0.20 0.05

)
, B(2) =

(
0.25 0.20

0.20 0.05

)
.

The difference between the two block mean matrices is that the probability

of an edge between two nodes assigned to community 1 increases for the

second stochastic block model. The nodes assigned to community 2 behave

the same in both time periods.

We generate a dynamic stochastic block model with n = 500 nodes with

community assignment π1 = 1/2 and π2 = 1/2 and perform adjacency spec-

tral embedding on the individual adjacency matrices A(1) and A(2). Fig-

ure 6.1 shows the two adjacency spectral embeddings into d = 2 dimensions.
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Points are coloured according to their community assignment Zi. The el-

lipses show the 95% contours of the asymptotic Gaussian components. In

both plots, the two communities can are easily distinguished, but it is not

obvious that nodes in community 2 are behaving the same way for t = 1 and

t = 2.
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a) Two-community dynamic stochastic
block model embedding, t = 1

0.6 0.5 0.4 0.3 0.2

b) Two-community dynamic stochastic
block model embedding, t = 2

Community 1 Community 2

Figure 6.1: The individual adjacency spectral embeddings X̂ of the two-

community dynamic stochastic block model into d = 2 dimensions for a)

t = 1 and b) t = 2. The points are coloured according to their true commu-

nity assignment Zi. The ellipses show the 95% contours of the asymptotic

Gaussian components.

Figure 6.2 shows the unfolded adjacency spectral embeddings into d = 2

dimensions, where points are coloured according to their community assign-

ment Zi. The ellipses show the 95% contours of the asymptotic Gaussian

components derived in Section 6.4.1. The two communities are distinguish-

able in both time periods, but now the embedding for community 2 has the

same distribution for both t = 1 and t = 2. This is an example of longitudinal
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stability, which is described in Section 6.5. /
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a) Two-community dynamic stochastic
block model embedding, t = 1

0.6 0.5 0.4 0.3 0.2

b) Two-community dynamic stochastic
block model embedding, t = 2

Community 1 Community 2

Figure 6.2: The right unfolded adjacency spectral embeddings Ŷ(t) of the

two-community dynamic stochastic block model into d = 2 dimensions for a)

t = 1 and b) t = 2. The points are coloured according to their true commu-

nity assignment Zi. The ellipses show the 95% contours of the asymptotic

Gaussian components.

6.2 Dynamic latent position model

We introduce the following model as a way to generate dynamic networks.

Definition 17 (Dynamic latent position model). Let Z be a sample space

and define the trajectory of a node as a sequence of latent positions,

Zi =
(
Z

(1)
i , . . . , Z

(T )
i

)
∈ ZT

with distribution F . Given a symmetric family of distributions {H(z1, z2) =

Bernoulli(f(z1, z2)) : z1, z2 ∈ Z} with function f : Z × Z → [0, 1], the
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symmetric matrices A(1), . . . ,A(T ) ∈ Rn×n are distributed as a dynamic latent

position model, if Z1, . . . , Zn
iid∼ F and, for i < j,

A
(t)
ij | Zi, Zj

ind∼ H(Z
(t)
i , Z

(t)
j ).

We restrict ourselves to Bernoulli random variables so that the output is a

sequence of unweighted graphs, but the model obviously extends to weighted

graphs for more general families of distributions.

The dynamic latent position model covers a wide range of models many

of them covered in recent reviews [39, 70]. For example, it includes dynamic

versions of the stochastic block model [75, 74, 47, 54, 38], the mixed mem-

bership stochastic block model [73, 30] and the degree-corrected stochastic

block model [45].

It appears the dynamic latent position model could be made more general

by allowing the probability function f to also depend on the time t. Given a

set of symmetric families of distributions {Ht(z1, z2) = Bernoulli(ft(z1, z2)) :

z1, z2 ∈ Z}, the symmetric matrices A(1), . . . ,A(T ) ∈ Rn×n are distributed as

A
(t)
ij | Zi, Zj

ind∼ Ht(Z
(t)
i , Z

(t)
j ).

However, Definition 17 already includes this possibility. The different func-

tions ft can be combined into a single f by creating a new sample space Z ′

where the latent positions for each t are distinct and the function f is equal

to ft in the corresponding regions of Z ′.
An important feature of the dynamic latent position model is that the

latent positions Zi ∈ ZT are independent. The latent positions Z
(t)
i ∈ Z

that make up the entries of Zi are allowed to depend on each other. In fact,

a common model for dynamic networks assumes a Markov process for the

dynamics of Z
(t)
i [64, 66]. The assumption that the latent positions Zi are

independent says that a node cannot change its behaviour based on another

node, which may be unrealistic for real-world networks. For example, in a
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computer network a virus may infect new computers by sending malware

across the network. The unfolded adjacency spectral embedding can be used

to test this independence assumption by finding causal links between the

embeddings Ŷ
(t)
i and Ŷ

(t)
j over time.

Example 29 (Two-community dynamic latent position model). Consider a

dynamic latent position model consisting of two stochastic block models each

with two-communities and mean block matrices,

B(1) =

(
0.10 0.20

0.20 0.05

)
, B(2) =

(
0.20 0.05

0.05 0.10

)
.

Unlike Example 28, nodes are allowed to change community assignment over

time according to a Markov model. At time t = 1, nodes are randomly

assigned to the two communities with probabilities P(Z(1) = 1) = 2/3 and

P(Z(1) = 2) = 1/3. At time t = 2, a node in community 1 with equal

probability stays in the same community or switches to community 2, while

a node in community 2 does not change community,

P(Z(2) = 1 | Z(1) = 1) = 1/2, P(Z(2) = 1 | Z(1) = 2) = 0,

P(Z(2) = 2 | Z(1) = 1) = 1/2, P(Z(2) = 2 | Z(1) = 2) = 1.

The adjacency matrices A(1) and A(2) are generated using this dynamic

latent position model with n = 500 nodes. Figure 6.3 shows the unfolded ad-

jacency spectral embeddings into d = 2 dimensions, where points are coloured

according to their community assignment Z
(t)
i . The ellipses show the 95%

contours of the asymptotic Gaussian components derived in Section 6.4.1.

The faint red triangles in Figure 6.3a and faint blue squares in Figure 6.3b

correspond to the nodes that change community over time, Z
(1)
i = 1 and

Z
(2)
i = 2. These nodes have the same asymptotic distribution as the other

nodes in that community at that time rather than appearing as a third cluster
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Figure 6.3: The right unfolded adjacency spectral embeddings Ŷ(t) of the

two-community dynamic stochastic block model into d = 2 dimensions for

a) t = 1 and b) t = 2. The points are coloured according to their true

community assignment Zi, where nodes that change community between

time periods are less opaque. The ellipses show the 95% contours of the

asymptotic Gaussian components.

in the embedding. This is an example of cross-sectional stability, which is

described in Section 6.5.

It is possible to rewrite this network model as a dynamic stochastic block

model with three communities that are fixed over both time periods by adding

a third community for nodes that switch between communities 1 and 2 in

the original model.

Z ′ =


1 if Z(1) = 1, Z(2) = 1,

2 if Z(1) = 2, Z(2) = 2,

3 if Z(1) = 1, Z(2) = 2,
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with community assignment probability P(Z ′ = k) = 1/3 for each of the three

communities. These new communities correspond to the possible trajectories

through the space of latent positions ZT with mean block matrices,

B′(1) =


0.10 0.20 0.10

0.20 0.05 0.20

0.10 0.20 0.10

 , B′(2) =


0.20 0.05 0.05

0.05 0.10 0.10

0.05 0.10 0.10

 . /

6.3 Multilayer random dot product graph

In this section we introduce the multilayer random dot product graph [36].

This extends the generalised random dot product graph to analyse multiple

graphs as long as they share a common set of nodes. This allows for the joint

analysis of different types of graphs together, such as directed and undirected

graphs, or the rectangular adjacency matrices of bipartite graphs.

In this work, we are interested in the simplest possible scenario where

all the graphs are undirected resulting in symmetric adjacency matrices. In

this case the definition of a multilayer random dot product graph can be

simplified.

Definition 18 (Multilayer random dot product graph). Given a set of ma-

trices Λ(t) ∈ Rd×dt , let X be a subset of Rd and Yt be a subset of Rdt such

that x>Λ(t)yt ∈ [0, 1] for all x ∈ X , yt ∈ Yt, with probability distribution F

over X ×Y1×· · ·×YT . The symmetric matrices A(t) ∈ Rn×n are distributed

as a multilayer random dot product graph, if
(
Xi, Y

(1)
i , . . . , Y

(T )
i

)
iid∼ F for

i = 1, . . . , n and, for i < j,

A
(t)
ij | Xi, Y

(t)
j

ind∼ Bernoulli(X>i Λ(t)Y
(t)
j ).

We refer to X = (X1 | · · · | Xn)> ∈ Rn×d as the global latent positions of

the multilayer random dot product graph, and similarly, Y(t) = (Y
(t)
1 | · · · |
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6.3. Multilayer random dot product graph

Y
(t)
n )> ∈ Rn×d the local latent positions at time t. The choice of notation

here intentionally mirrors that used for the unfolded adjacency spectral em-

bedding. The latent positions X and Y(t) are related to the left and right

unfolded adjacency spectral embedding X̂ and Ŷ(t) where Jones and Rubin-

Delanchy [36] proves the asymptotic behaviour of both embeddings. For

dynamic networks we are primarily interested in how the right embedding

Ŷ(t) changes over time.

To be able to use the accompanying asymptotic theory, we must show

that the dynamic latent position model in Definition 17 is an example of the

multilayer random dot product graph. In order for this to be the case, we

have to make some assumptions about the function f .

Assumption 6 (Finite eigendecomposition). The function f has finite eigen-

decomposition

f(x, y) =
D∑
i=1

λiui(x)ui(y),

with non-zero eigenvalues λi and corresponding eigenfunctions ui.

The assumption that D < ∞ is essentially stating that the adjacency

matrix A has low rank even as the number of nodes in the network tends

to infinity, a phenomenon often seen in real-world data [71]. The dynamic

versions of the stochastic block model, mixed membership stochastic block

model and degree-corrected stochastic block model all satisfy Assumption 6.

Lemma 9. The dynamic latent position model satisfying Assumption 6 is

an instance of the multilayer random dot product graph.

Sketch proof. The aim is to find maps ψ : ZT → Rd and ψt : Z → Rdt

for some d and dt such that, for the sequence of latent positions Zi =(
Z

(1)
i , . . . , Z

(T )
i

)
∈ ZT ,

f(Z
(t)
i , Z

(t)
j ) = ψ(Zi)

>Λ(t)ψt(Z
(t)
j ),
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for Λ(t) ∈ Rd×dt , then setting Xi = ψ(Zi) and Y
(t)
j = ψt(Z

(t)
j ) in Definition 18

for the multilayer random dot product graph.

Given Assumption 6, define the map φ : Z → RD component-wise using

the eigendecomposition of the function f for all z ∈ Z,

φ(z) =
(
|λ1|1/2u1(z), . . . , |λD|1/2uD(z)

)
,

so that for z1, z2 ∈ Z, f(z1, z2) = φ(z1)
>Ip,qφ(z2), where Ip,q ∈ RD×D is the

diagonal matrix consisting of the signs of the eigenvalues.

This would be enough to complete the proof except, for the random vari-

able Z =
(
Z(1), . . . , Z(T )

)
∼ F , the support of

(
φ(Z(1)), . . . , φ(Z(T ))

)
will be

a d-dimensional subspace of RDT and the support of φ(Z(t)) a dt-dimensional

subspace of RT . The asymptotic results regarding the multilayer random

dot product model require a minimal dimensionality assumption similar to

Assumptions 1 and 3 so some redundancy needs to be removed.

There exists a linear map L : RTD → Rd such that, for z = (z(1), . . . , z(T )) ∈
ZT , the map ψ : ZT → Rd defined by

ψ(z) = L({φ(z(1)) | · · · | φ(z(T ))})

is full rank. Similarly, there exists linear maps Lt : RT → Rdt such that the

maps ψt : Z → Rdt defined by

ψt(z
(t)) = Lt(φ(z(t)))

are also full rank. Using these linear maps and the eigendecomposition of

the function f , we can construct Λ(t) ∈ Rd×dt such that

f(Z
(t)
i , Z

(t)
j ) = ψ(Zi)

>Λ(t)ψt(Z
(t)
j ).

More details can be found in the Appendix of Gallagher et al. [22].
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6.4 Asymptotic results

Since the dynamic latent position network model can be written as a multi-

layer random dot product graph, Theorems 2 and 3 from Jones and Rubin-

Delanchy [36] can be applied to the dynamic latent position model to create

versions of uniform consistency and a central limit theorem for the unfolded

adjacency spectral embedding.

These theorems differ slightly in flavour to Theorem 1 and 2 for the

generalised random dot product graph. Rather than relating Y and Ŷ di-

rectly, the comparison is made through an intermediate embedding. Let

P =
(
P(1) | · · · | P(T )

)
∈ [0, 1]nT×n be the unfolded matrix of probabilities

that two nodes in the network form an edge at different times,

P
(t)
ij = E(A

(t)
ij ) = f(Z

(t)
i , Z

(t)
j ).

The unfolded adjacency matrix A is a noisy observation of the unfolded

probability matrix P.

We denote the noise-free embedding Ỹ
(t)
i ∈ Rd for each node and every

time period using the right unfolded spectral embedding of P,

Y
(t)
P =

(
Ỹ

(t)
1 | · · · | Ỹ (t)

n

)>
.

The noise-free embeddings Ỹ
(t)
i are a linear transformation of the latent po-

sitions of the multilayer random dot product graph latent positions Y
(t)
i =

ψt(Z
(t)
i ) defined using the latent positions of the dynamic latent position

model in the proof of Lemma 9 [22].

The following uniform consistency and central limit theorem connects the

spectral embedding Ŷ
(t)
i to the noise-free embedding Ỹ

(t)
i .

Theorem 5 (Unfolded adjacency spectral embedding uniform consistency).

Let A(1), . . . ,A(T ) be an instance of a dynamic latent position model satis-

fying Assumption 6. There exists a sequence of matrices W̃n ∈ O(d) such
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that

max
i∈{1,...,n}

∥∥∥W̃nŶ
(t)
i − Ỹ

(t)
i

∥∥∥ P−→ 0.

Note that the sequence W̃n is the same for each embedding. This high-

lights that the connection between the embeddings for the different time pe-

riods, an idea first discovered for the generalised random dot product graph

[2]. After applying a second orthogonal transformation, the error converges

in distribution to a fixed Gaussian distribution.

Theorem 6 (Unfolded adjacency spectral embedding central limit theorem).

Let A(1), . . . ,A(T ) be an instance of a dynamic latent position model satis-

fying Assumption 6. Given z ∈ Z, define the covariance-valued function

Σ(t)(z) = E
[
f(z, Z(t))(1− f(z, Z(t)))ψ(Z)ψ(Z)>

]
,

where Z =
(
Z(1), . . . , Z(T )

)
∼ F . Then, there exists a deterministic matrix

R ∈ Rd×d and a sequence of matrices Wn,W̃n ∈ O(d) such that, for all

y ∈ Rd,

P
(
n1/2Wn

(
W̃nŶ

(t)
i − Ỹ

(t)
i

)
≤ y | Z(t)

i = z
)
→ Φ

(
y,RΣ(t)(z)R>

)
.

In Theorem 2 for the generalised random dot product graph, the covari-

ance function depended on the second moment matrix ∆ = E(ψ(Z)ψ(Z)>).

In this version of the central limit theorem, the corresponding second moment

matrix is being absorbed into the deterministic matrix R.

6.4.1 Dynamic stochastic block model asymptotic dis-

tribution

To give one application of the asymptotic theory, we consider a dynamic

K-community stochastic block model where nodes are assigned to one com-

munity for all time periods with probability πk = P(Z = k) but with dynamic
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block mean matrices B(t) (and dynamic block variance matrices C(t)) that

change over time. One such example was outlined in Example 28, and in

Example 29 we showed a dynamic stochastic block model where the commu-

nity assignments changing over time can be redefined to fit this description.

In general, to do this one needs KT new communities for every possible la-

tent position sequence Z =
(
Z(1), . . . , Z(T )

)
but it is unlikely every possible

sequence would be present.

Using the unfolded block mean matrix B = (B(1) | · · · | B(T )) ∈ [0, 1]K×KT ,

we construct latent positions for the multilayer random dot product graph

using its unfolded adjacency spectral similar to the method in Section 3.2.1

for a single stochastic block model,

Xi = ψ(Zi) = (XB)>Zi
,

Y
(t)
i = ψt(Zi) = (Y

(t)
B )>Zi

.

In this case, the matrices Λ(t) from the multilayer random dot product graph

are equal to the identity matrix for all t since B(t) = XBY
(t)>
B . Under

this construction, there are only K possible values for the covariance-valued

function Σ(t)(z) corresponding to the local latent positions z = (Y
(t)
B )>k which

we denote Σ
(t)
k . For random variable Z =

(
Z(1), . . . , Z(T )

)
∼ F

Σ
(t)
k = Σ(t)((Y

(t)
B )>k )

= E
[
f(k, Z(t))(1− f(k, Z(t)))ψ(Z)ψ(Z)>

]
=

K∑
`=1

π`B
(t)
k`

(
1−B

(t)
k`

)
(XB)>` (XB)`

= X>BΠΛ
(t)
k XB,

where Π = diag(π) ∈ RK×K is the diagonal matrix consisting of the com-

munity assignment probabilities and Λ
(t)
k = diag((C(t))k) ∈ RK×K is the

diagonal matrix consisting of the row of the block variance matrix corre-

sponding to community k at time t. The second moment matrix, which is
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part of the R term in Theorem 6, is given by

∆ = E(ψ(Z)ψ(Z)>)

=
K∑
k=1

πk (XB)>k (XB)k

= X>BΠXB.

Writing things similarly to Section 3.3.1, there exists a sequence of ma-

trices Qn ∈ O(d) such that the points QnŶ
(t)
i have an approximate Gaussian

mixture model distribution with components Normal((Y
(t)
B )>k ,∆

−1Σ
(t)
k ∆−1/n)

with components probability πk. Since Qn is a linear transformation, the un-

folded adjacency spectral embedding Ŷ(t) also has an approximate Gaussian

mixture model distribution. This is how the asymptotic distributions shown

in Figure 6.2 and 6.3 are calculated.

6.4.2 Dynamic stochastic block model Chernoff infor-

mation

Given the asymptotic distribution for a dynamic stochastic block model de-

rived in the previous section, we can calculate the size-adjusted Chernoff

information for each time period. We now denote the time period by s to

distinguish from the variable t ∈ (0, 1) in the size-adjusted Chernoff infor-

mation

C(s) = min
k 6=`

sup
t∈(0,1)

[
t(1− t)

2

{
(Y

(s)
B )k − (Y

(s)
B )`

}>
Σ

(s)
k` (t)−1

{
(Y

(s)
B )k − (Y

(s)
B )`

}]
,

where Σ
(s)
k` (t) = (1− t)Σ(s)

k + tΣ
(s)
` .

For simplicity, assume that the right embedding XB is full rank, although

a similar calculation can be done when it is not. Substituting the mean and

covariances from the approximate Gaussian mixture model distribution into
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the objective function in the size-adjusted Chernoff information gives{
(Y

(s)
B )k − (Y

(s)
B )`

}>
Σ

(s)
k` (t)−1

{
(Y

(s)
B )k − (Y

(s)
B )`

}
= (ek − e`)

>Y
(s)
B (X>BΠXB)(X>BΠΛ

(s)
k` (t)XB)−1(X>BΠXB)Y

(s)>
B (ek − e`)

= (ek − e`)
>B(s)ΠXB(X>BΠΛ

(s)
k` (t)XB)−1X>BΠB(s)(ek − e`)

= (ek − e`)
>B(s)ΠΛ

(s)
k` (t)−1B(s)(ek − e`),

where Λ
(s)
k` (t) = (1 − t)Λ(s)

k + tΛ
(s)
` and using the first matrix equality from

the proof of Lemma 7 to make the simplification in the final equation.

Comparing this expression to Lemma 7, this is the same as the size-

adjusted Chernoff information of the standard stochastic block model A(s).

There is no benefit to analysing the dynamic stochastic block model adja-

cency matrices separately in terms of the individual size-adjusted Chernoff

information. Essentially, the unfolded adjacency spectral embedding is align-

ing the separate embeddings so they are consistent over time, as shown in

Example 28 and 29, which does not affect the size-adjusted Chernoff infor-

mation.

6.5 Dynamic embedding stability

We now provide a formal definition for two desirable properties of a dynamic

embedding. Recall that f(z1, z2), z1, z2 ∈ Z denotes the edge probability

used in the dynamic latent position model given by Definition 17.

Definition 19 (Dynamic embedding stability). Given a dynamic latent po-

sition model, let the output of a generic dynamic network embedding be

denoted as Ẑ
(t)
i . For Z =

(
Z(1), . . . , Z(T )

)
∼ F , define the following stability

properties:

1. Cross-sectional stability: For z, z′ ∈ Z, if f(z, Z(t)) = f(z′, Z(t)) with
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probability one, then Ẑ
(t)
i and Ẑ

(t)
j are asymptotically equal, with iden-

tical error distribution, conditional on Z
(t)
i = z and Z

(t)
j = z′.

2. Longitudinal stability: For z ∈ Z, if f(z, Z(t)) = f(z, Z(t′)) with prob-

ability one, then Ẑ
(t)
i and Ẑ

(t′)
i are asymptotically equal, with identical

error distribution, conditional on Z
(t)
i = z and Z

(t′)
i = z.

Example 28 demonstrates an example of longitudinal stability. The prob-

ability a node in community 2 forms an edge with the other communities is

the same for both time points since the bottom rows of B(1) and B(2) are

identical. The asymptotic distribution of community 2 appear the same in

Figure 6.2.

Example 29 shows an example of cross-sectional stability. The nodes

with new community labels Z ′ = 1 and Z ′ = 3 have the same asymptotic

distribution in Figure 6.3 at time t = 1 as both correspond to community

label Z(1) = 1. The fact that they have different behaviour at time t = 2

does not alter their distribution for time t = 1.

6.5.1 Unfolded adjacency spectral embedding stability

The following lemma is from Gallagher et al. [22] showing that unfolded

adjacency spectral embedding has both desirable stability properties.

Lemma 10. Unfolded adjacency spectral embedding demonstrates both

cross-sectional and longitudinal stability.

Proof. Since P(t) = XPY
(t)>
P , we have the following expression for the noise-

free embedding,

Ỹ
(t)
i =

(
XPX>P

)−1
X>P(P(t))i.

For Z =
(
Z(1), . . . , Z(T )

)
∼ F , suppose that f(z, Z(t)) = f(z′, Z(t′)) with

probability one for Z
(t)
i = z and Z

(t′)
j = z′. This implies that (P(t))i = (P(t′))j
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and, hence, the means of the two asymptotic distributions are equal, Ỹ
(t)
i =

Ỹ
(t′)
j . From the covariance function from Theorem 6, we have Σ(t)(z) =

Σ(t′)(z′). Since the matrices Wn,W̃n and R are independent of t, the co-

variances of the two asymptotic distributions are also equal. Therefore, the

unfolded adjacency spectral embeddings Ŷ
(t)
i and Ŷ

(t′)
j are asymptotically

equal, with identical error distribution.

Cross-sectional stability corresponds to the case t = t′, longitudinal sta-

bility to the case i = j.

6.5.2 Other dynamic network embedding stability

In this section we investigate the stability properties of other dynamic net-

work embedding algorithms. For the alternatives to unfolded adjacency spec-

tral embedding, we analyse the stability of the embeddings of the probability

matrices P(1), . . . ,P(T ). A method found to be unstable in a noise-free con-

dition is not expected to be stable when analysing the adjacency matrices

A(1), . . . ,A(T ). This argument says if an embedding algorithm is unstable

but without knowing the asymptotic distribution for an embedding, it is not

possible to say whether it is cross-sectional or longitudinal stable.

Table 6.1 gives an overview of the stability of a number of classes of

dynamic network embedding algorithms by saying where those algorithm

are provably unstable. The following subsections go through all the new

algorithms in turn, but the unfolded adjacency spectral embedding is the

only dynamic network embedding technique that we are aware of with both

cross-sectional and longitudinal stability.

Independent adjacency spectral embedding

Independent adjacency spectral embedding computes the spectral embed-

dings of the matrices A(t) separately. Embedding the individual adjacency
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Embedding method Description Instability

Unfolded adjacency Embed A = (A(1)| · · · |A(T )) None

Independent adjacency Embed A(t) Longitudinal

Omnibus Embed Ã; Ãst = (A(s) + A(t))/2 Cross-sectional

Separate embedding Embed Ā(t) =
∑

k wkA
(t−k) Both

Joint embedding See main text Both

Table 6.1: Classes of dynamic network embedding algorithms with their

cross-sectional and longitudinal stability properties.

matrices A(t) are subject to different indefinite orthogonal transformations

Q(t) ∈ O(p, q). Therefore, independent adjacency spectral embedding does

not have longitudinal stability, which can be seen in Figure 6.2 from Exam-

ple 28. However, the algorithm does exhibit cross-sectional stability. If the

rows (P(t))i and (P(t))j are equal, then they will be affected by Q(t) in the

same way.

The independent adjacency spectral embeddings can be combined over

time, for example, using a singular value decomposition of the combined em-

beddings [5]. However, these approaches produce a single embedding for each

node representing its global behaviour similar to the left unfolded adjacency

spectral embedding X̂ rather than a set of local embeddings.

Omnibus spectral embedding

The omnibus method [42] computes the spectral embedding of the matrix

Ã ∈ {0, 1/2, 1}nT×nT where the blocks of the omnibus matrix are given by

Ãst =
1

2
(A(s) + A(t)) ∈ Rn×n.

The algorithm was designed to test if multiple graphs are identically dis-

tributed rather than producing a dynamic embedding, but it has interesting
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properties making it worthy of inclusion.

Let P̃ ∈ [0, 1]nT×nT be the noise-free version of Ã with corresponding

blocks P̃st. If a node has the same probability of forming edges at times t

and t′, then the rows (P(t))i and (P(t′))i are equal. This means that the rows

of (P̃st)i and (P̃st′)i are also the same for all s, which means the two rows of

P̃ corresponding to this node at times t and t′ are the same. Therefore, the

noise-free omnibus embedding for the node are the same demonstrating lon-

gitudinal stability, but we cannot say with certainty that the noisy omnibus

embedding has longitudinal stability.

However, if two nodes have the same probability of forming edges at time

t, meaning the rows (P(t))i and (P(t))j are equal, this does not imply that

the rows of (P̃st)i and (P̃st)j are also the same for all s. Therefore, omnibus

embedding does not exhibit cross-sectional stability.

Separate spectral embedding

Separate embedding covers a collection of embedding techniques separately

applied to time-averaged matrices, Ā(t) =
∑

k wkA
(t−k) where wk are non-

negative weights. This covers a wide range of possibilities; average adjacency

matrices wk = 1/t [65, 8], exponential forgetting factors wk = (1−λ)k [17, 38],

and more complex time series models [62].

Let P̄(t) =
∑

k wkP
(t−k) be the noise-free version of the the time-averaged

adjacency matrices Ā(t). If two nodes are behaving identically at time t then

(P(t))i = (P(t))j but, in general, (P̄(t))i 6= (P̄(t))j as they depend on the past

behaviour of the two nodes which are likely different. Therefore, the methods

do not have cross-sectional stability. One counterexample is the trivial case

with w0 = 1 and wk = 0 elsewhere, reducing to the independent adjacency

spectral embedding algorithm.

Embedding the time-averaged adjacency matrices separately runs into

the same problem as independent adjacency spectral embedding. Alignment
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issues between the different time periods means that the techniques also do

not have longitudinal stability.

Joint spectral embedding

Joint embedding covers another collection of techniques where the aim is

to find an embedding that fits the observed adjacency matrices A(t), but

also has smoothly transitioning embeddings between time steps. Let Â(t) be

the estimated adjacency matrix from a generic dynamic embedding Ẑ(t), for

example, using the dynamic latent position model, Â
(t)
ij = f(Ẑ

(t)
i , Ẑ

(t)
j ). The

goal is to minimise the regularised objective function balancing these two

costs for some α ∈ [0, 1],

arg min
Ẑ(1),...,Ẑ(T )

{
α

T∑
t=1

‖A(t) − Â(t)‖2F + (1− α)
T−1∑
t=1

‖Ẑ(t+1) − Ẑ(t)‖2F

}
,

subject to a low rank constraint on the embeddings Ẑ(1), . . . , Ẑ(T ). Many

algorithms take this kind of approach for fitting models to dynamic networks

albeit with different versions of the two cost functions [15, 79, 13, 44].

Under this model, changing the behaviour of just a node at one time

point changes the embedding of that node for all other time points, which in

turn affects the embedding of all the other nodes. The smoothing over time

prevents a dynamic embedding fitted to this type of objective function from

having cross-sectional or longitudinal stability. The exception again being

the trivial case with α = 1, which reduces to the independent adjacency

spectral embedding algorithm.

All the techniques described above focus on embedding the adjacency

matrix but they can be extended to work on other representations of the

network, such as the symmetric Laplacian matrix. For example, we could

have performed independent Laplacian spectral embedding, which would also

result in cross-sectional stability for the same reason as independent adja-
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cency spectral embedding. The time-averaged adjacency matrices from sep-

arate spectral embedding can be replaced with the time-averaged symmetric

Laplacian matrices [38] and the objective function in joint spectral embed-

ding can try the model the symmetric Laplacian matrices [44].

It is currently further work to create versions of unfolded spectral embed-

ding algorithms for other matrices such as the symmetric Laplacian matrix

that have both cross-sectional and longitudinal stability.

6.6 Example: Primary school interactions

The Lyon primary school data set shows the social interactions at a French

primary school over two days in October 2009 [67]. The school consisted of

10 teachers and 232 participating students from five school years, each year

divided into two classes. Face-to-face interactions were detected when radio-

frequency identification devices worn by participants were in close proximity

over an interval of 20 seconds and recorded as a pair of anonymous identifiers

together with a timestamp. The data is available for download from the

Network Repository website1 [58].

A time series of networks was created by dividing the data into ten hour-

long windows on the two days. If at least one interaction was observed

between two people in a particular time window, an edge was created con-

necting the two nodes in the corresponding network. This results in a time

series of graphs A(1), . . . ,A(20) each with n = 242 nodes.

Figure 6.4 shows the first two dimensions of the unfolded adjacency spec-

tral embedding Ŷ (1), . . . , Ŷ (20) embedded into d̂ = 10 dimensions obtained

using profile likelihood [80]. This feels reasonable as there are ten classes in

the school.

For time windows corresponding to classroom time, such as 09:00–10:00

1https://networkrepository.com
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Figure 6.4: The first two dimensions of the right unfolded adjacency spectral

embeddings of the Lyon primary school data set Ŷ(t).
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and 15:00–16:00, the embedding forms rays of points each corresponding to

a single class. For those time periods the network follows a degree-corrected

stochastic block model with approximately the same structure for those class-

room periods, evidence of longitudinal stability. However, not all time win-

dows exhibit this structure, for instance, the different classes mix more during

lunchtimes between 12:00–14:00.

Following recommendations regarding community detection under a degree-

corrected stochastic block model [53], the unfolded adjacency spectral em-

bedding Ŷ(t) is converted into spherical coordinates θ̂(t) by projecting the

points onto the unit sphere. Figure 6.5 shows the first two dimensions of

this projection, where we can see the rays for each class being projected into

clusters of similar points.

To analyse this output, we combine the embeddings from each time period

into a single point cloud and fit a Gaussian mixture model. Since unfolded

adjacency spectral embedding has cross-sectional and longitudinal stability,

this will detect people returning to a previous behaviour in the dynamic

network. We fit a Gaussian mixture model with unequal and non-spherical

covariances for 30 clusters chosen using the Bayesian Information Criterion

and assign each student in each time period to its maximum a posteriori

cluster. Figure 6.6 shows how students in the ten different classes move

between these clusters over time.

Each class has one or two clusters unique to it, for example, the majority

of students in class 1A spend their classroom time assigned to cluster 15

or cluster 20. This highlights the importance of longitudinal stability in

unfolded adjacency spectral embedding, as we are detecting points in the

embedding returning to the same part of latent space over time. The two

clusters could represent two different styles of teaching in those time periods.

There are also instances of multiple school classes being assigned the

same cluster at the same time period, for example, on the morning of day 1,
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Figure 6.5: The first two dimensions of the right unfolded adjacency spec-

tral embedding of the Lyon primary school data set projected into spherical

coordinates θ̂(t).
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Figure 6.6: Bar chart showing the Gaussian cluster assignment of each school
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classes 5A and 5B are mainly assigned to cluster 26, perhaps suggesting some

form of joint lesson. This shows the importance of cross-sectional stability

in unfolded adjacency spectral embedding. It allows the detection of nodes

behaving similarly in a specific time window, irrespective of their behaviour

across the other time periods.
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[41] Lelarge, M., Massoulié, L., and Xu, J. (2013). Reconstruction in the la-

beled stochastic block model. In 2013 IEEE Information Theory Workshop

(ITW), pages 1–5. IEEE.

[42] Levin, K., Athreya, A., Tang, M., Lyzinski, V., Park, Y., and Priebe,

C. E. (2017). A central limit theorem for an omnibus embedding of multiple

random graphs and implications for multiscale network inference. arXiv

preprint arXiv:1705.09355.

[43] Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit

matrix factorization. Advances in neural information processing systems,

27.

[44] Liu, F., Choi, D., Xie, L., and Roeder, K. (2018). Global spectral

clustering in dynamic networks. Proceedings of the National Academy of

Sciences, 115(5):927–932.

125



Bibliography

[45] Liu, S., Wang, S., and Krishnan, R. (2014). Persistent community detec-

tion in dynamic social networks. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 78–89. Springer.

[46] Marshall, A. W. and Olkin, I. (1990). Matrix versions of the Cauchy

and Kantorovich inequalities. Aequationes Mathematicae, 40(1):89–93.

[47] Matias, C. and Miele, V. (2017). Statistical clustering of temporal net-

works through a dynamic stochastic block model. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 79(4):1119–1141.

[48] Mercer, J. (1909). Functions ofpositive and negativetypeand theircom-

mection with the theory ofintegral equations. Philos. Trinsdictions Rogyal

Soc, 209:4–415.

[49] Modell, A., Gallagher, I., Cape, J., and Rubin-Delanchy, P. (2022).

Spectral embedding and the latent geometry of multipartite networks.

arXiv preprint arXiv:2202.03945.

[50] Modell, A. and Rubin-Delanchy, P. (2021). Spectral clustering under

degree heterogeneity: a case for the random walk laplacian. arXiv preprint

arXiv:2105.00987.

[51] Nickel, C. L. M. (2008). Random dot product graphs a model for social

networks. PhD thesis, Johns Hopkins University.

[52] Nielsen, F. (2011). Chernoff information of exponential families. arXiv

preprint arXiv:1102.2684.

[53] Passino, F. S., Heard, N. A., and Rubin-Delanchy, P. (2020). Spectral

clustering on spherical coordinates under the degree-corrected stochastic

blockmodel. arXiv preprint arXiv:2011.04558.

126



Bibliography

[54] Pensky, M. and Zhang, T. (2019). Spectral clustering in the dynamic

stochastic block model. Electronic Journal of Statistics, 13(1):678–709.

[55] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learn-

ing of social representations. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

701–710.

[56] Price-Williams, M., Turcotte, M., and Heard, N. (2018). Time of day

anomaly detection. In 2018 European Intelligence and Security Informatics

Conference (EISIC), pages 1–6. IEEE.

[57] Priebe, C. E., Park, Y., Vogelstein, J. T., Conroy, J. M., Lyzinski,

V., Tang, M., Athreya, A., Cape, J., and Bridgeford, E. (2019). On a

two-truths phenomenon in spectral graph clustering. Proceedings of the

National Academy of Sciences, 116(13):5995–6000.

[58] Rossi, R. A. and Ahmed, N. K. (2015). The network data repository

with interactive graph analytics and visualization. In AAAI.

[59] Rubin-Delanchy, P. (2020). Manifold structure in graph embeddings.

Advances in Neural Information Processing Systems, 33:11687–11699.

[60] Rubin-Delanchy, P., Cape, J., Tang, M., and Priebe, C. E. (2017a). A

statistical interpretation of spectral embedding: the generalised random

dot product graph. arXiv preprint arXiv:1709.05506.

[61] Rubin-Delanchy, P., Priebe, C. E., and Tang, M. (2017b). Consistency of

adjacency spectral embedding for the mixed membership stochastic block-

model. arXiv preprint arXiv:1705.04518.

[62] Sanna Passino, F., Bertiger, A. S., Neil, J. C., and Heard, N. A. (2021).

Link prediction in dynamic networks using random dot product graphs.

Data Mining and Knowledge Discovery, 35(5):2168–2199.

127



Bibliography

[63] Sarkar, P. and Bickel, P. J. (2015). Role of normalization in spectral

clustering for stochastic blockmodels. The Annals of Statistics, 43(3):962–

990.

[64] Sarkar, P. and Moore, A. (2005). Dynamic social network analysis using

latent space models. Advances in Neural Information Processing Systems,

18.

[65] Scheinerman, E. R. and Tucker, K. (2010). Modeling graphs using dot

product representations. Computational statistics, 25(1):1–16.

[66] Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic

networks. Journal of the American Statistical Association, 110(512):1646–

1657.
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