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Abstract: Antibiotic resistance is a global health crisis. New classes of antibiotics that can treat
drug-resistant infections are urgently needed. To communicate this message, researchers have used
antibiotic development timelines, but these are often contradictory or imprecise. We conducted a
systematic literature review to produce an antibiotic timeline that incorporates the dates of discovery,
first use, and initial reports of the emergence of resistance for the 38 classes of clinically used
antibiotics. From our timeline, we derive lessons for identifying new antibiotics that are less prone
to resistance. These include a required focus on molecules that exhibit multiple modes of action,
possess unusually long ‘resistance windows’, or those that engage cellular targets whose molecular
architectures are at least in part decoupled from evolutionary pressures. Our analysis also further
highlights the importance of safeguarding antibiotics as a mechanism for mitigating the development
of resistance. We have made our data and sources freely available so that the research community
can adapt them to their own needs.
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1. Introduction

Antibiotic resistance—bacterial infections that no longer respond to the drugs used
to treat them—is a global health crisis of growing concern [1,2]. The demand for existing
antibiotics is too high, which drives the evolution of resistance in pathogens [2–4]. The
supply of new classes of antibiotics that can treat drug-resistant infections is too low, which
leaves us with few treatment options for the most serious infections [5–7]. To communicate
the scale of the problem, researchers have used graphical timelines that show how the rate
of antibiotic discovery has slowed in recent times. These timelines are valuable tools for
science communication, but often disagree with one another and lack clarity.

In previous reviews, the definitions used for the date of the discovery of an antibiotic,
its first clinical use, and the emergence of resistance to it, either are not disclosed or lack
internal consistency. Examples include the non-disclosure of methods used to generate a
timeline for antibiotic discovery [5]; inconsistency in the definition of when an antibiotic was
introduced into the clinic [8]; not defining the “year of discovery” or “year of introduction”
categories and employing a scale with a resolution of decades [9]; and the CDC’s 2013
Antibiotic Threats Report, which includes an antibiotic resistance timeline “based on early
reports in the literature”, but with a lack of clarity as to whether this refers to in vitro,
in vivo, or clinical data [10].

We conducted a systematic literature review to produce a more precise timeline for
antibiotic discovery, introduction, and resistance. Antibiotics can be classified by their
origins, structures, and mechanisms of action. We took the 38 classes of antibiotics in
clinical use (Figure 1), as defined by Hutchings et al. [8], and consistently applied the
following definitions to them:
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1. Discovery: when a compound or extract—not merely an organism—was first reported
to have antibiotic activity. In some cases, this was decades after the compound was
first discovered or synthesized.

2. First clinical use: the first use of the antibiotic to treat a bacterial infection: in modern
terms, a phase II trial. Clinical studies of tolerance and toxicity are not included. The
approval of an antibiotic for human use is not used because several of these drugs
predate regulatory bodies.

3. Resistance: the first report of clinically isolated bacteria resistant to the antibiotic.

We hope that our timeline will be a useful resource to the antibiotic research and public
health communities. We have included our data and sources so that the timeline can be
verified, updated, and modified.
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Figure 1. Chemical structures of the 38 classes of antibiotics. (1) Arsphenamine in its (1a) triva-
lent and (1b) pentavalent forms. General chemical structures of (2) a penicillin, (3) a sulfonamide,
(4) a sulphone, (5) a polypeptide, (6) a salicylate, (7) an aminoglycoside, (8) a phenazine, (9) a ni-
trofuran, (10) a cyclic peptide, (11) a cephalosporin, (12) an amphenicol, (13) a polymyxin, (14) an
enniatin, (15) a tetracycline, (16) a diaminopyrimidine, (17) a tuberactinomycin, (18) a pleuromutilin,
(19) a macrolide, (20) a nicotinamide, (21) a streptogramin, (22) a thioisonicotinamide, (23) a gly-
copeptide, (24) a lincosamide, (25) a cycloserine, (26) an ansamycin, (27) a fusidane, (28) a nitroim-
idazole, (29) ethambutol, (30) a quinolone, (31) a phosphonate, (32) a mupirocin, (33) a lipiarmycin,
(34) a carbapenem, (35) a monobactam, (36) an oxazolidinone, (37) a lipopeptide, and (38) a diarylquinoline.

2. Results

Figure 2 emphasizes the stark reduction in the antibiotic discovery rate after the
“Golden Age”, the most prolific period of antibiotic research [11,12]. In fact, the rate of
discovery is now at its lowest since the first antibiotic, arsphenamine, was discovered
in 1909. The Golden Age is usually roughly defined as 1940–1960, beginning with the
discovery of streptomycin [8]. Extending the linear part of the sigmoidal discovery curve
in Figure 1 allows us to better define the Golden Age as 1943–1962, when streptomycin
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and the quinolones were discovered, respectively. A 2011 review in Clinical Microbiology
Reviews defined the “discovery void”, during which no new antibiotic classes have been
discovered, as starting from 1987, and several sources have repeated this claim [5,13–15].
However, the diarylquinolines were FDA-approved the year after this review, and thus this
definition requires revision [16].
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discovery is highlighted in yellow.

Figure 3 shows the discovery, first clinical use, and resistance dates for the 38 antibiotic
classes. From these dates, we can define two periods of time:

1. The development window: how long after its discovery the antibiotic was first used
in the clinic.

2. The resistance window: how long after its first use clinical resistance was reported.

There are some obvious outliers in this analysis. The antibiotics with long development
windows were either technically challenging to optimize or shelved because they were not
considered to be promising drugs until the antibiotic resistance crisis worsened [17–20].
Five new antibiotic classes have been approved for human use by the FDA in this century:
oxazolidinones (2000), lipopeptides (2003), pleuromutilins (2007), diarylquinolones (2007),
and lipiarmycins (2011). Three of these were abandoned early in their development because
of adverse side effects [16,17,21]. The diarylquinolones carry a black box warning—the
strongest warning that the FDA requires—because of their significant life-threatening side
effects [16]. The lipiarmycins and pleuromutilins were first approved for human use long
after their discovery: 36 and 56 years, respectively [17,22].

More promisingly, there are a few examples of antibiotics with unusually long re-
sistance windows, from which we can derive some lessons for designing or identifying
“resistance-proof” antibiotics [23,24].
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Figure 3. A timeline for the discovery, first clinical use of, and first report of clinical resistance to the
38 classes of antibiotics. For each antibiotic class, the orange bars are the “development windows”
and the blue bars are the “resistance windows”.

2.1. Multiple Targets

The polypeptide antibiotic tyrothricin has only been used topically, which is likely
part of the reason for its long resistance window [25]. However, even after decades of use,
no clinical resistance to the antibiotic has been seen and significant resistance cannot be
induced in vitro [25,26]. Wenzel et al. interrogated the antibiotic mechanism of tyrothricin
and found that even though its component peptides are highly similar in sequence, they
have different mechanisms of action [27]. Their combined effects are to damage DNA,
increase membrane permeability, decrease membrane fluidity, and delocalize membrane
proteins [27]. This attack on multiple fronts is difficult for bacteria to defend against
and makes tyrothricin a natural combination therapy [28]. Clinical phenazine resistance
is also extremely rare, although it has been induced in vitro [29,30]. Like tyrothricin,
these antibiotics likely have multiple mechanisms of action, which makes resistance more
difficult to evolve [31,32]. Identifying new antibiotics with multiple mechanisms of action,
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or using multiple antibiotics as combination therapies, is likely to slow the development of
resistance [28].

2.2. “Resistance-Proof” Targets

Glycopeptides such as vancomycin bind D-Ala-D-Ala residues at the ends of glycan
chains, preventing the binding of peptidoglycan biosynthetic enzymes [33]. This mode of
action targets a structural component of the cell that is not directly genetically encoded, so
it is difficult to evolve resistance by mutating the target [34]. Furthermore, glycopeptides
do not have to enter the cell to act, which means that resistance cannot evolve by reduced
permeability to or modification of the antibiotics [34]. Resistance to glycopeptides did not
arise in pathogens directly: the self-resistance genes were transferred from the producing
microorganisms to pathogens [34]. New antibiotics with similar targets are likely to be
“resistance-proof” [23].

2.3. Low Use

The long resistance window for sulfones is probably due to their main indication
as drugs for leprosy [35]. Leprosy is a neglected tropical disease and there are many
gaps in our understanding of it [36]. Furthermore, sulfones are only weakly antibacterial
against Mycobacterium leprae, which made resistance to these antibiotics more difficult to
definitively prove [37]. Enniatins are thought to act as ionophores, collapsing ion gradients
across membranes in general [38]. In vivo resistance to ionophores has been recorded
and can occur by enzymatic degradation or exclusion of the compounds from the cell [39].
Presumably, such mechanisms are also possible for the enniatins, and their limited use
due to their cytotoxicity has delayed the onset of resistance [40,41]. The most important
lesson for safeguarding antibiotics is that reducing their use will slow the development of
resistance [4].

3. Discussion

This work represents the first comprehensive and consistent timeline for antibiotic
discovery, development, and resistance. It should prove useful for communicating the
alarmingly low number of new antibiotic classes that are reaching the clinic, and we have
also shown how the data can be used to identify antibiotic classes for which resistance is
more difficult to evolve. Our findings reveal a correlation between pharmacophore novelty
and a reduced ‘development window’, and also serve to highlight the importance of priori-
tizing molecules with expanded ‘resistance windows’ to ensure the long-term safeguarding
of antibiotics. By making our data fully available, and our methods transparent, we hope
that future researchers can use and adapt our timeline for their own science communication.

4. Materials and Methods

We conducted a systematic literature review by searching the Web of Science Core
Collection and PubMed databases for the names of antibiotic classes or their first members,
and found the earliest dates of discovery, use, and resistance, defined in Section 1. Table 1
shows the data used to make these timelines, with sources for each data point.
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Table 1. The data used to generate Figures 1 and 2.

Antibiotic Class Discovery Date Clinical Use Date Resistance Date

Organoarsenics 1909 [42] 1910 [42] 1912 [43]
Penicillins 1928 [44] 1941 [45] 1945 [46]

Sulfonamides 1932 [42] 1935 [47] 1939 [48]
Sulfones 1937 [49] 1943 [50] 1963 [35]

Polypeptides 1939 [51] 1941 [52] N/A 1 [25]
Salicylates 1940 [53] 1944 [54] 1949 [55]

Aminoglycosides 1943 [56] 1946 [57] 1946 [58]
Phenazines 1943 [59] 1962 [60] 2014 [61]
Nitrofurans 1944 [62] 1946 [63] 1958 [64]
Bacitracin 1945 [65] 1948 [66] 1949 [67]

Cephalosporins 1945 [68] 1945 [68] 1967 [69]
Amphenicols 1947 [70] 1949 [71] 1950 [72]
Polymyxins 1947 [73] 1948 [74] 1960 [75]

Enniatins 1947 [76] 1968 [77] N/A 1 [78]
Tetracyclines 1948 [79] 1948 [80] 1953 [81]

Diaminopyrimidines 1948 [82] 1962 [83] 1968 [84]
Tuberactinomycins 1951 [85] 1953 [86] 1959 [87]

Pleuromutilins 1951 [88] 2006 [89] 2008 [90]
Macrolides 1952 [91] 1952 [92] 1952 [93]

Nicotinamides 1952 [94,95] 1952 [96] 1952 [97]
Streptogramins 1952 [98] 1962 [99] 1977 [100]

Thioisonicotinamides 1952 [101] 1955 [102] 1959 [101]
Glycopeptides 1955 [103] 1958 [104] 1987 [105]
Lincosamides 1955 [106] 1963 [107] 1967 [108]
Cycloserines 1955 [109] 1956 [110] 1957 [111]
Ansamycins 1957 [112] 1961 [113] 1969 [114]
Fusidanes 1958 [115–117] 1962 [118] 1966 [119]

Nitroimidazoles 1959 [120] 1962 [121] 1978 [122]
Ethambutol 1961 [123] 1962 [124] 1969 [125]
Quinolones 1962 [126] 1963 [127] 1966 [128]

Phosphonates 1969 [129] 1974 [130] 1977 [131]
Mupirocin 1971 [132] 1985 [133] 1987 [134]

Lipiarmycins 1975 [135] 2009 [136] 2019 [137]
Carbapenems 1976 [138] 1983 [139] 1986 [140]
Monobactams 1981 [141] 1984 [142] 1984 [143]

Oxazolidinones 1987 [144] 1999 [145] 2001 [146]
Lipopeptides 1987 [147] 1999 [148] 2005 [149]

Diarylquinolines 2005 [150] 2008 [151] 2014 [61]
1 Not applicable—clinical resistance is yet to be identified.
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