

Stennett, H. L., Back, C., & Race, P. R. (Accepted/In press). Derivation of A Precise and Consistent Timeline for Antibiotic Development. Antibiotics, 11(9), 1-12. [1237]. <https://doi.org/10.3390/antibiotics11091237>

Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): [10.3390/antibiotics11091237](https://doi.org/10.3390/antibiotics11091237)

[Link to publication record in Explore Bristol Research](https://research-information.bris.ac.uk/en/publications/9308e376-cb8d-48ed-90ad-cb496afd051e) PDF-document

This is the final published version of the article (version of record). It first appeared online via MDPI at https://doi.org/10.3390/antibiotics11091237.Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Perspective **Derivation of a Precise and Consistent Timeline for Antibiotic Development**

Henry L. Stennett 1,2 [,](https://orcid.org/0000-0001-6555-1872) Catherine R. Back [1](https://orcid.org/0000-0002-9835-9171) and Paul R. Race 1,2,[*](https://orcid.org/0000-0003-0184-5630)

- ¹ School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- ² BrisSynBio Synthetic Biology Research Centre, Tyndall Avenue, Bristol BS8 1TQ, UK

***** Correspondence: paul.race@bristol.ac.uk

Abstract: Antibiotic resistance is a global health crisis. New classes of antibiotics that can treat drug-resistant infections are urgently needed. To communicate this message, researchers have used antibiotic development timelines, but these are often contradictory or imprecise. We conducted a systematic literature review to produce an antibiotic timeline that incorporates the dates of discovery, first use, and initial reports of the emergence of resistance for the 38 classes of clinically used antibiotics. From our timeline, we derive lessons for identifying new antibiotics that are less prone to resistance. These include a required focus on molecules that exhibit multiple modes of action, possess unusually long 'resistance windows', or those that engage cellular targets whose molecular architectures are at least in part decoupled from evolutionary pressures. Our analysis also further highlights the importance of safeguarding antibiotics as a mechanism for mitigating the development of resistance. We have made our data and sources freely available so that the research community can adapt them to their own needs.

Keywords: antibiotic; timeline; discovery; clinical; resistance; development

Citation: Stennett, H.L.; Back, C.R.; Race, P.R. Derivation of a Precise and Consistent Timeline for Antibiotic Development. *Antibiotics* **2022**, *11*, 1237. [https://doi.org/10.3390/](https://doi.org/10.3390/antibiotics11091237) [antibiotics11091237](https://doi.org/10.3390/antibiotics11091237)

Academic Editor: Eleftherios E. Mylonakis

Received: 26 August 2022 Accepted: 8 September 2022 Published: 12 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

1. Introduction

Antibiotic resistance—bacterial infections that no longer respond to the drugs used to treat them—is a global health crisis of growing concern [\[1,](#page-8-0)[2\]](#page-8-1). The demand for existing antibiotics is too high, which drives the evolution of resistance in pathogens [\[2](#page-8-1)[–4\]](#page-8-2). The supply of new classes of antibiotics that can treat drug-resistant infections is too low, which leaves us with few treatment options for the most serious infections [\[5](#page-8-3)[–7\]](#page-8-4). To communicate the scale of the problem, researchers have used graphical timelines that show how the rate of antibiotic discovery has slowed in recent times. These timelines are valuable tools for science communication, but often disagree with one another and lack clarity.

In previous reviews, the definitions used for the date of the discovery of an antibiotic, its first clinical use, and the emergence of resistance to it, either are not disclosed or lack internal consistency. Examples include the non-disclosure of methods used to generate a timeline for antibiotic discovery [\[5\]](#page-8-3); inconsistency in the definition of when an antibiotic was introduced into the clinic [\[8\]](#page-8-5); not defining the "year of discovery" or "year of introduction" categories and employing a scale with a resolution of decades [\[9\]](#page-8-6); and the CDC's 2013 Antibiotic Threats Report, which includes an antibiotic resistance timeline "based on early reports in the literature", but with a lack of clarity as to whether this refers to in vitro, in vivo, or clinical data [\[10\]](#page-8-7).

We conducted a systematic literature review to produce a more precise timeline for antibiotic discovery, introduction, and resistance. Antibiotics can be classified by their origins, structures, and mechanisms of action. We took the 38 classes of antibiotics in clinical use (Figure [1\)](#page-3-0), as defined by Hutchings et al. [\[8\]](#page-8-5), and consistently applied the following definitions to them:

- 1. **Discovery:** when a compound or extract—not merely an organism—was first reported to have antibiotic activity. In some cases, this was decades after the compound was first discovered or synthesized.
- 2. First clinical use: the first use of the antibiotic to treat a bacterial infection: in modern terms, a phase II trial. Clinical studies of tolerance and toxicity are not included. The approval of an antibiotic for human use is not used because several of these drugs included. The approximation of an antibiotic for an antibiotic for an antibiotic for human use is not used because several of an antibiotic for human use is not used because several in the several several several several i
- 3. Resistance: the first report of clinically isolated bacteria resistant to the antibiotic.

We hope that our timeline will be a useful resource to the antibiotic research and public we health communities. We have included our data and sources so that the timeline can be health communities. We have included our data and sources so that the timeline can be verified, updated, and modified.

Figure 1. *Cont.*

OR $NH₂$ Ŕ. lactone (cyclic) two cyclic depsipeptides 20 18 22 19 21 OF OR. $R₂$ H_O OH $H₀$ Ω R. B_3 Ö Ŕ. ÒR, where the peptide is cyclic and glycosylated cyclic (hydro)quinone 23 24 25 26 χ, HО Ω Ω ∩L $\mathcal{O}R_3$ $R₂O$ R, `N
H Ŕ. OН where X_2 is F for 31 the fluroquinolones Ĥ 27 28 29 30 R ϵ HC H_O R_{2} Ω Ō 33 32 $R₅O$ OR. $\overline{\mathsf{O}}\mathsf{R}_4$ $R₂$ $X_{R_1}^{R_2}$ where R1 is a fatty acyl tail and the peptide is cyclic 34 35 36 37 38

Figure 1. Chemical structures of the 38 classes of antibiotics. (1) Arsphenamine in its (1a) trivalent and (1b) pentavalent forms. General chemical structures of (2) a penicillin, (3) a sulfonamide, (4) a sulphone, (5) a polypeptide, (6) a salicylate, (7) an aminoglycoside, (8) a phenazine, (9) a nitrofuran, (10) a cyclic peptide, (11) a cephalosporin, (12) an amphenicol, (13) a polymyxin, (14) an enniatin, (15) a tetracycline, (16) a diaminopyrimidine, (17) a tuberactinomycin, (18) a pleuromutilin, (19) a macrolide dependence, (20) a macrolide primaride, (21) a theoretical grammatic dependence of (20) and (20) and (20) (19) a macrolide, (20) a nicotinamide, (21) a streptogramin, (22) a thioisonicotinamide, (23) a glycopeptide, (24) a lincosamide, (25) a cycloserine, (26) an ansamycin, (27) a fusidane, (28) a nitroimidazole, (29) ethambutol, (30) a quinolone, (31) a phosphonate, (32) a mupirocin, (33) a lipiarmycin, rylquinoline. (**34**) a carbapenem, (**35**) a monobactam, (**36**) an oxazolidinone, (**37**) a lipopeptide, and (**38**) a diarylquinoline.

2. Results 2. Results

Figure 2 emphasizes the stark reduction in the antibiotic discovery rate after the Figure [2](#page-4-0) emphasizes the stark reduction in the antibiotic discovery rate after the "Golden Age", the most prolific period of antibiotic research $[11,12]$ $[11,12]$ $[11,12]$. In fact, the rate of discovery is now at its lowest since the first antibiotic, arsphenamine, was discovered discovery is now at its lowest since the first antibiotic, arsphenamine, was discovered in 1909. The Golden Age is usually roughly defined as 1940–1960, beginning with the discovery of streptomycin [8]. Extending the linear part of the sigmoidal discovery curve discovery of streptomycin [\[8\]](#page-8-5). Extending the linear part of the sigmoidal discovery curve
in Figure 1 allows us to better define the Golden Age as 1943–1962, when streptomycin

and the quinolones were discovered, respectively. A 2011 review in *Clinical Microbiology Reviews* defined the "discovery void", during which no new antibiotic classes have been discovered, as starting from 1987, and several sources have repeated this claim [\[5,](#page-8-3)[13](#page-8-10)[–15\]](#page-8-11). However, the diarylquinolines were FDA-approved the year after this review, and thus this definition requires revision [\[16\]](#page-8-12).

Figure 2. The cumulative discovery of the 38 classes of clinically used antibiotics. The Golden Age of discovery is highlighted in yellow.

classes. From these dates, we can define two periods of time: Figure [3](#page-5-0) shows the discovery, first clinical use, and resistance dates for the 38 antibiotic

- 1. The development window: how long after its discovery the antibiotic was first used 1. **The development window:** how long after its discovery the antibiotic was first in the clinic.
- 2. The resistance window: how long after its first use clinical resistance was reported.

There are some obvious outliers in this analysis. The antibiotics with long development windows were either technically challenging to optimize or shelved because they were not considered to be promising drugs until the antibiotic resistance crisis worsened [\[17](#page-8-13)[–20\]](#page-8-14). Five new antibiotic classes have been approved for human use by the FDA in this century: oxazolidinones (2000), lipopeptides (2003), pleuromutilins (2007), diarylquinolones (2007), and lipiarmycins (2011). Three of these were abandoned early in their development because ϵ for development because or aaverse side eneed [10,17]. The dairy iquinoscities darry a stated solventing the strongest warning that the FDA requires—because of their significant life-threatening side effects [\[16\]](#page-8-12). The lipiarmycins and pleuromutilins were first approved for human use long after their discovery: 36 and 56 years, respectively [[17,](#page-8-13)22]. of adverse side effects [\[16,](#page-8-12)[17,](#page-8-13)[21\]](#page-8-15). The diarylquinolones carry a black box warning—the

More promisingly, there are a few examples of antibiotics with unusually long resistance windows, from which we can derive some lessons for designing or identifying "resistance-proof" antibiotics $[23,24]$ $[23,24]$.

Figure 3. A timeline for the discovery, first clinical use of, and first report of clinical resistance to the $\frac{1}{2}$ 38 classes of antibiotics. For each antibiotic class, the orange bars are the "development windows" and the blue bars are the "resistance windows".

T_{min} the polyperide antibiotic tyrothrocen used to μ *2.1. Multiple Targets*

The polypeptide antibiotic tyrothricin has only been used topically, which is likely part of the reason for its long resistance window [\[25\]](#page-8-19). However, even after decades of use, no clinical resistance to the antibiotic has been seen and significant resistance cannot be induced in vitro [\[25,](#page-8-19)[26\]](#page-8-20). Wenzel et al. interrogated the antibiotic mechanism of tyrothricin and found that even though its component peptides are highly similar in sequence, they have different mechanisms of action [\[27\]](#page-8-21). Their combined effects are to damage DNA, increase membrane permeability, decrease membrane fluidity, and delocalize membrane increase membrane in the m proteins [\[27\]](#page-8-21). This attack on multiple fronts is difficult for bacteria to defend against and makes tyrothricin a natural combination therapy [\[28\]](#page-8-22). Clinical phenazine resistance
in and makes tyrothricin a natural combination therapy [28]. Clinical phenazine resistance is also extremely rare, although it has been induced in vitro $[29,30]$ $[29,30]$. Like tyrothricin, difficult to evolve [\[31,](#page-8-25)[32\]](#page-8-26). Identifying new antibiotics with multiple mechanisms of action, these antibiotics likely have multiple mechanisms of action, which makes resistance more

or using multiple antibiotics as combination therapies, is likely to slow the development of resistance [\[28\]](#page-8-22).

2.2. "Resistance-Proof" Targets

Glycopeptides such as vancomycin bind D-Ala-D-Ala residues at the ends of glycan chains, preventing the binding of peptidoglycan biosynthetic enzymes [\[33\]](#page-9-0). This mode of action targets a structural component of the cell that is not directly genetically encoded, so it is difficult to evolve resistance by mutating the target [\[34\]](#page-9-1). Furthermore, glycopeptides do not have to enter the cell to act, which means that resistance cannot evolve by reduced permeability to or modification of the antibiotics [\[34\]](#page-9-1). Resistance to glycopeptides did not arise in pathogens directly: the self-resistance genes were transferred from the producing microorganisms to pathogens [\[34\]](#page-9-1). New antibiotics with similar targets are likely to be "resistance-proof" [\[23\]](#page-8-17).

2.3. Low Use

The long resistance window for sulfones is probably due to their main indication as drugs for leprosy [\[35\]](#page-9-2). Leprosy is a neglected tropical disease and there are many gaps in our understanding of it [\[36\]](#page-9-3). Furthermore, sulfones are only weakly antibacterial against *Mycobacterium leprae*, which made resistance to these antibiotics more difficult to definitively prove [\[37\]](#page-9-4). Enniatins are thought to act as ionophores, collapsing ion gradients across membranes in general [\[38\]](#page-9-5). In vivo resistance to ionophores has been recorded and can occur by enzymatic degradation or exclusion of the compounds from the cell [\[39\]](#page-9-6). Presumably, such mechanisms are also possible for the enniatins, and their limited use due to their cytotoxicity has delayed the onset of resistance $[40,41]$ $[40,41]$. The most important lesson for safeguarding antibiotics is that reducing their use will slow the development of resistance [\[4\]](#page-8-2).

3. Discussion

This work represents the first comprehensive and consistent timeline for antibiotic discovery, development, and resistance. It should prove useful for communicating the alarmingly low number of new antibiotic classes that are reaching the clinic, and we have also shown how the data can be used to identify antibiotic classes for which resistance is more difficult to evolve. Our findings reveal a correlation between pharmacophore novelty and a reduced 'development window', and also serve to highlight the importance of prioritizing molecules with expanded 'resistance windows' to ensure the long-term safeguarding of antibiotics. By making our data fully available, and our methods transparent, we hope that future researchers can use and adapt our timeline for their own science communication.

4. Materials and Methods

We conducted a systematic literature review by searching the Web of Science Core Collection and PubMed databases for the names of antibiotic classes or their first members, and found the earliest dates of discovery, use, and resistance, defined in Section [1.](#page-1-0) Table [1](#page-7-0) shows the data used to make these timelines, with sources for each data point.

Antibiotic Class	Discovery Date	Clinical Use Date	Resistance Date
Organoarsenics	1909 [42]	1910 [42]	1912 [43]
Penicillins	1928 [44]	1941 [45]	1945 [46]
Sulfonamides	1932 [42]	1935 [47]	1939 [48]
Sulfones	1937 [49]	1943 [50]	1963 [35]
Polypeptides	1939 [51]	1941 [52]	$N/A1$ [25]
Salicylates	1940 [53]	1944 [54]	1949 [55]
Aminoglycosides	1943 [56]	1946 [57]	1946 [58]
Phenazines	1943 [59]	1962 [60]	2014 [61]
Nitrofurans	1944 [62]	1946 [63]	1958 [64]
Bacitracin	1945 [65]	1948 [66]	1949 [67]
Cephalosporins	1945 [68]	1945 [68]	1967 [69]
Amphenicols	1947 [70]	1949 [71]	1950 [72]
Polymyxins	1947 [73]	1948 [74]	1960 [75]
Enniatins	1947 [76]	1968 [77]	$N/A1$ [78]
Tetracyclines	1948 [79]	1948 [80]	1953 [81]
Diaminopyrimidines	1948 [82]	1962 [83]	1968 [84]
Tuberactinomycins	1951 [85]	1953 [86]	1959 [87]
Pleuromutilins	1951 [88]	2006 [89]	2008 [90]
Macrolides	1952 [91]	1952 [92]	1952 [93]
Nicotinamides	1952 [94,95]	1952 [96]	1952 [97]
Streptogramins	1952 [98]	1962 [99]	1977 [100]
Thioisonicotinamides	1952 [101]	1955 [102]	1959 [101]
Glycopeptides	1955 [103]	1958 [104]	1987 [105]
Lincosamides	1955 [106]	1963 [107]	1967 [108]
Cycloserines	1955 [109]	1956 [110]	1957 [111]
Ansamycins	1957 [112]	1961 [113]	1969 [114]
Fusidanes	1958 [115-117]	1962 [118]	1966 [119]
Nitroimidazoles	1959 [120]	1962 [121]	1978 [122]
Ethambutol	1961 [123]	1962 [124]	1969 [125]
Quinolones	1962 [126]	1963 [127]	1966 [128]
Phosphonates	1969 [129]	1974 [130]	1977 [131]
Mupirocin	1971 [132]	1985 [133]	1987 [134]
Lipiarmycins	1975 [135]	2009 [136]	2019 [137]
Carbapenems	1976 [138]	1983 [139]	1986 [140]
Monobactams	1981 [141]	1984 [142]	1984 [143]
Oxazolidinones	1987 [144]	1999 [145]	2001 [146]
Lipopeptides	1987 [147]	1999 [148]	2005 [149]
Diarylquinolines	2005 [150]	2008 [151]	2014 [61]

Table 1. The data used to generate Figures [1](#page-3-0) and [2.](#page-4-0)

÷.

 $\frac{1}{1}$ Not applicable—clinical resistance is yet to be identified.

Author Contributions: Conceptualization, H.L.S., C.R.B. and P.R.R.; investigation, H.L.S.; writing original draft preparation, H.L.S.; writing—review and editing, C.R.B. and P.R.R.; visualization, H.L.S.; supervision, P.R.R.; funding acquisition, P.R.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by BBSRC grants BB/T001968/1 and BB/L01386X/1, MRF grant MRF-131-0005-RG-RACE-C0853, and through the award of a PhD studentship to H.L.S. from the EPSRC Centre for Doctoral Training in Synthetic Biology (EP/L016494/1) and Dstl.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. *J. Antibiot.* **2017**, *70*, 520–526. [\[CrossRef\]](http://doi.org/10.1038/ja.2017.30)
- 2. Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. *Pharm. Ther.* **2015**, *40*, 277–283.
- 3. Klein, E.Y.; van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. *Proc. Natl. Acad. Sci. USA* **2018**, *115*, E3463–E3470. [\[CrossRef\]](http://doi.org/10.1073/pnas.1717295115) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/29581252)
- 4. zur Wiesch, P.A.; Kouyos, R.; Engelstadter, J.; Regoes, R.R.; Bonhoeffer, S. Population biological principles of drug-resistance evolution in infectious diseases. *Lancet Infect. Dis.* **2011**, *11*, 236–247. [\[CrossRef\]](http://doi.org/10.1016/S1473-3099(10)70264-4)
- 5. Silver, L.L. Challenges of antibacterial discovery. *Clin. Microbiol. Rev.* **2011**, *24*, 71–109. [\[CrossRef\]](http://doi.org/10.1128/CMR.00030-10) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/21233508)
- 6. Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. *Clin. Infect. Dis.* **2009**, *48*, 1–12. [\[CrossRef\]](http://doi.org/10.1086/595011)
- 7. Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. *Nat. Rev. Microbiol.* **2019**, *18*, 275–285. [\[CrossRef\]](http://doi.org/10.1038/s41579-019-0288-0)
- 8. Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. *Curr. Opin. Microbiol.* **2019**, *51*, 72–80. [\[CrossRef\]](http://doi.org/10.1016/j.mib.2019.10.008)
- 9. Lewis, K. The science of antibiotic discovery. *Cell* **2020**, *181*, 29–45. [\[CrossRef\]](http://doi.org/10.1016/j.cell.2020.02.056)
- 10. CDC. *Antibiotic Resistance Threats in the United States*; U.S. Department for Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013.
- 11. Shen, B. A new golden age of natural products drug discovery. *Cell* **2015**, *163*, 1300. [\[CrossRef\]](http://doi.org/10.1016/j.cell.2015.11.031)
- 12. Wright, G.D. Unlocking the potential of natural products in drug discovery. *Microb. Biotechnol.* **2019**, *12*, 55–57. [\[CrossRef\]](http://doi.org/10.1111/1751-7915.13351) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30565871)
- 13. Few Antibiotics under Development—How Did We End up Here?—ReAct. Available online: [https://www.reactgroup.org/](https://www.reactgroup.org/toolbox/understand/how-did-we-end-up-here/few-antibiotics-under-development) [toolbox/understand/how-did-we-end-up-here/few-antibiotics-under-development](https://www.reactgroup.org/toolbox/understand/how-did-we-end-up-here/few-antibiotics-under-development) (accessed on 29 October 2021).
- 14. Plackett, B. Why big pharma has abandoned antibiotics. *Nature* **2020**, *586*, S50–S52. [\[CrossRef\]](http://doi.org/10.1038/d41586-020-02884-3)
- 15. Nelson, D.W.; Moore, J.E.; Rao, J.R. Antimicrobial resistance (AMR): Significance to food quality and safety. *Food Qual. Saf.* **2019**, *3*, 15–22. [\[CrossRef\]](http://doi.org/10.1093/fqsafe/fyz003)
- 16. Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. *Int. J. Appl. Basic Med. Res.* **2013**, *3*, 1–2. [\[CrossRef\]](http://doi.org/10.4103/2229-516X.112228) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/23776831)
- 17. Novak, R. Are pleuromutilin antibiotics finally fit for human use? *Ann. N. Y. Acad. Sci.* **2011**, *1241*, 71–81. [\[CrossRef\]](http://doi.org/10.1111/j.1749-6632.2011.06219.x) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/22191527)
- 18. Nation, R.L.; Li, J. Colistin in the 21st Century. *Curr. Opin. Infect. Dis.* **2009**, *22*, 535. [\[CrossRef\]](http://doi.org/10.1097/QCO.0b013e328332e672)
- 19. Theuretzbacher, U.; van Bambeke, F.; Cantón, R.; Giske, C.G.; Mouton, J.W.; Nation, R.L.; Paul, M.; Turnidge, J.D.; Kahlmeter, G. Reviving old antibiotics. *J. Antimicrob. Chemother.* **2015**, *70*, 2177–2181. [\[CrossRef\]](http://doi.org/10.1093/jac/dkv157)
- 20. Bergen, P.J.; Landersdorfer, C.B.; Lee, H.J.; Li, J.; Nation, R.L. 'Old' antibiotics for emerging multidrug-resistant bacteria. *Curr. Opin. Infect. Dis.* **2012**, *25*, 626–633. [\[CrossRef\]](http://doi.org/10.1097/QCO.0b013e328358afe5)
- 21. Tally, F.P.; DeBruin, M.F. Development of daptomycin for Gram-positive infections. *J. Antimicrob. Chemother.* **2000**, *46*, 523–526. [\[CrossRef\]](http://doi.org/10.1093/jac/46.4.523)
- 22. McAlpine, J.B. The ups and downs of drug discovery: The early history of Fidaxomicin. *J. Antibiot.* **2017**, *70*, 492–494. [\[CrossRef\]](http://doi.org/10.1038/ja.2016.157)
- 23. Wu, Z.C.; Boger, D.L. Maxamycins: Durable antibiotics derived by rational redesign of vancomycin. *Acc. Chem. Res.* **2020**, *53*, 2587–2599. [\[CrossRef\]](http://doi.org/10.1021/acs.accounts.0c00569) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33138354)
- 24. Oldfield, E.; Feng, X. Resistance-resistant antibiotics. *Trends Pharmacol. Sci.* **2014**, *35*, 664–674. [\[CrossRef\]](http://doi.org/10.1016/j.tips.2014.10.007) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/25458541)
- 25. Lang, C.; Staiger, C. Tyrothricin—An underrated agent for the treatment of bacterial skin infections and superficial wounds? *Pharmazie* **2016**, *71*, 299–305. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/27455547)
- 26. Stauss-Grabo, M.; Atiye, S.; Kretschmar, M. Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with Gram-positive bacteria and *Candida* spp. *Pharmazie* **2014**, *69*, 838–841. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/25985581)
- 27. Wenzel, M.; Rautenbach, M.; Voslo, J.A.; Siersma, T.; Aisenbrey, C.H.M.; Zaitseva, E.; Laubscher, W.E.; van Rensburg, W.; Behrends, J.C.; Bechinger, B.; et al. The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. *mBio* **2018**, *9*, e00802–e00818. [\[CrossRef\]](http://doi.org/10.1128/mBio.00802-18) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30301848)
- 28. Coates, A.R.M.; Hu, Y.; Holt, J.; Yeh, P. Antibiotic combination therapy against resistant bacterial infections: Synergy, rejuvenation and resistance reduction. *Expert Rev. Anti-Infect. Ther.* **2020**, *18*, 5–15. [\[CrossRef\]](http://doi.org/10.1080/14787210.2020.1705155)
- 29. Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* **2014**, *58*, 2979–2981. [\[CrossRef\]](http://doi.org/10.1128/AAC.00037-14)
- 30. Fu, T.; Cai, Z.; Yue, Z.; Yang, H.; Fang, B.; Zhang, X.; Fan, Z.; Pan, X.; Yang, F.; Jin, Y.; et al. Evolution of resistance to phenazine antibiotics in *Staphylococcus aureus* and its role during coinfection with *Pseudomonas aeruginosa*. *ACS Infect. Dis.* **2021**, *7*, 636–649. [\[CrossRef\]](http://doi.org/10.1021/acsinfecdis.0c00837)
- 31. Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. *J. Antimicrob. Chemother.* **2012**, *67*, 290–298. [\[CrossRef\]](http://doi.org/10.1093/jac/dkr444)
- 32. Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. *Bioorg. Med. Chem.* **2017**, *25*, 6149–6166. [\[CrossRef\]](http://doi.org/10.1016/j.bmc.2017.01.002)
- 33. Barna, J.C.; Williams, D.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. *Annu. Rev. Microbiol.* **1984**, *38*, 339–357. [\[CrossRef\]](http://doi.org/10.1146/annurev.mi.38.100184.002011)
- 34. Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. *Chem. Rev.* **2005**, *105*, 425–448. [\[CrossRef\]](http://doi.org/10.1021/cr030103a) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/15700951)
- 35. Pearson, J.M.; Rees, R.J.; Waters, M.F. Sulphone resistance in leprosy. A review of one hundred proven clinical cases. *Lancet* **1975**, *2*, 69–72. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(75)90508-5)
- 36. Molyneux, D. Neglected tropical diseases. *Community Eye Health* **2013**, *26*, 21–24. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/24023397)
- 37. Prasad, P.V.S.; Kaviarasan, P.K. Leprosy therapy, past and present: Can we hope to eliminate it? *Indian J. Dermatol.* **2010**, *55*, 316–324. [\[CrossRef\]](http://doi.org/10.4103/0019-5154.74528) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/21430881)
- 38. Bakker, E.P. Ionophore Antibiotics. In *Mechanism of Action of Antibacterial Agents*, 2nd ed.; Hahn, F.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1979; Volume 5, pp. 67–97.
- 39. Russell, J.B.; Houlihan, A.J. Ionophore resistance of ruminal bacteria and its potential impact on human health. *FEMS Microbiol. Rev.* **2003**, *27*, 65–74. [\[CrossRef\]](http://doi.org/10.1016/S0168-6445(03)00019-6)
- 40. Olleik, H.; Nicoletti, C.; Lafond, M.; Courvoisier-Dezord, E.; Xue, P.; Hijazi, A.; Baydoun, E.; Perrier, J.; Maresca, M. Comparative structure-activity analysis of the antimicrobial activity, cytotoxicity, and mechanism of action of the fungal cyclohexadepsipeptides enniatins and beauvericin. *Toxins* **2019**, *11*, 514. [\[CrossRef\]](http://doi.org/10.3390/toxins11090514)
- 41. German-Fattal, M. Fusafungine, an antimicrobial with anti-inflammatory properties in respiratory tract infections. *Clin. Drug Investig.* **2001**, *21*, 653–670. [\[CrossRef\]](http://doi.org/10.2165/00044011-200121090-00007)
- 42. Rubin, R.P. A brief history of great discoveries in pharmacology: In celebration of the centennial anniversary of the founding of the American Society of Pharmacology and Experimental Therapeutics. *Pharmacol. Rev.* **2007**, *59*, 289–359. [\[CrossRef\]](http://doi.org/10.1124/pr.107.70102)
- 43. Williams, K. The introduction of 'chemotherapy' using arsphenamine—The first magic bullet. *J. R. Soc. Med.* **2009**, *102*, 343. [\[CrossRef\]](http://doi.org/10.1258/jrsm.2009.09k036)
- 44. Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881–1955): Discoverer of penicillin. *Singap. Med. J.* **2015**, *56*, 366. [\[CrossRef\]](http://doi.org/10.11622/smedj.2015105) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/26243971)
- 45. Fletcher, C. First clinical use of penicillin. *Br. Med. J.* **1984**, *289*, 1721. [\[CrossRef\]](http://doi.org/10.1136/bmj.289.6460.1721) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/6440620)
- 46. Plough, H.H. Penicillin resistance of *Staphylococcus aureus* and its clinical implications. *Am. J. Clin. Pathol.* **1945**, *15*, 446–451. [\[CrossRef\]](http://doi.org/10.1093/ajcp/15.10.446)
- 47. Domagk, G. Chemotherapie der bakteriellen infektionen. *Angew. Chem.* **1935**, *48*, 657–667. [\[CrossRef\]](http://doi.org/10.1002/ange.19350484202)
- 48. Maclean, I.; Rogers, K.; Fleming, A. M. & B. 693 and pneumococci. *Lancet* **1939**, *233*, 562–568.
- 49. Wozel, G. The story of sulfones in tropical medicine and dermatology. *Int. J. Dermatol.* **1989**, *28*, 17–21. [\[CrossRef\]](http://doi.org/10.1111/j.1365-4362.1989.tb01301.x)
- 50. Faget, G.H.; Pogge, R.C.; Johansen, F.A.; Dinan, J.F.; Prejean, B.M.; Eccles, C.G. The promin treatment of leprosy. A progress report. *Public Health Rep.* **1943**, *58*, 1729. [\[CrossRef\]](http://doi.org/10.2307/4584691)
- 51. Dubos, R.J. Studies on a bactericidal agent extracted from a soil *Bacillus*: I. Preparation of the agent. Its activity *in vitro*. *J. Exp. Med.* **1939**, *70*, 1–10. [\[CrossRef\]](http://doi.org/10.1084/jem.70.1.1)
- 52. Herrell, W.E.; Heilman, D. Experimental and clinical studies on gramicidin. *J. Clin. Investig.* **1941**, *20*, 583. [\[CrossRef\]](http://doi.org/10.1172/JCI101251)
- 53. Bernheim, F. The effect of salicylate on the oxygen uptake of the tubercle bacillus. *Science* **1940**, *92*, 204. [\[CrossRef\]](http://doi.org/10.1126/science.92.2383.204.a)
- 54. Lehmann, J. Para-aminosalicylic acid in the treatment of tuberculosis. *Lancet* **1946**, *1*, 15–16. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(46)91185-3)
- 55. A Medical Research Council Investigation. Treatment of pulmonary tuberculosis with streptomycin and para-amino-salicylic acid. *Br. Med. J.* **1950**, *2*, 1073–1085. [\[CrossRef\]](http://doi.org/10.1136/bmj.2.4688.1073)
- 56. Rawlins, M. The disputed discovery of streptomycin. *Lancet* **2012**, *380*, 207. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(12)61202-1)
- 57. Crofton, J. The MRC randomized trial of streptomycin and its legacy: A view from the clinical front line. *J. R. Soc. Med.* **2006**, *99*, 531. [\[CrossRef\]](http://doi.org/10.1177/014107680609901017) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/17021304)
- 58. Finland, M.; Murray, R. Development of streptomycin resistance during treatment. *J. Am. Med. Assoc.* **1946**, *132*, 16–21. [\[CrossRef\]](http://doi.org/10.1001/jama.1946.02870360018005) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/20995215)
- 59. Carr, C.J.; Vivian, D.L.; Krantz, J.C. A contribution to the pharmacology of phenazine and certain of its derivatives. *J. Pharmacol. Exp. Ther.* **1943**, *77*, 215–219.
- 60. Browne, S.G.; Hogerzeil, L.M. "B 663" in the treatment of leprosy. Preliminary report of a pilot trial. *Lepr. Rev.* **1962**, *33*, 6–10. [\[CrossRef\]](http://doi.org/10.5935/0305-7518.19620002)
- 61. Andries, K.; Villellas, C.; Coeck, N.; Thys, K.; Gevers, T.; Vranckx, L.; Lounis, N.; de Jong, B.C.; Koul, A. Acquired Resistance of *Mycobacterium tuberculosis* to bedaquiline. *PLoS ONE* **2014**, *9*, e102135. [\[CrossRef\]](http://doi.org/10.1371/journal.pone.0102135)
- 62. Dodd, M.C.; Stillman, W.B.; Roys, M.; Crosby, C. The in vitro bacteriostatic action of some simple furan derivatives. *J. Pharmacol. Exp. Ther.* **1944**, *82*, 11–18.
- 63. Dodd, M.C.; Hartmann, F.W.; Ward, W.C. The local application of nitrofuran compounds with special reference to use on wounds. *Surg. Gynecol. Obstet.* **1946**, *83*, 73–82.
- 64. Lutz, A.; Witz, M.; Schaeffer, A. Recherches sur l'évolution de la résistance de germes du genre proteus aux antibiotiques usuels de 1950 à 1958; l'action *in vitro* de la novobiocine, de la kanamycine, de la nitrofurantoine, et des sulfamides. *Ann. Inst. Pasteur* **1958**, *95*, 413–423.
- 65. Johnson, B.A.; Anker, H.; Meleney, F.L. Bacitracin: A new antibiotic produced by a member of the *B. subtilis* group. *Science* **1945**, *102*, 376–377. [\[CrossRef\]](http://doi.org/10.1126/science.102.2650.376) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/17770204)
- 66. Nguyen, R.; Khanna, N.R.; Safadi, A.O.; Sun, Y. Bacitracin Topical. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA, 2021.
- 67. Stone, J.L. Induced resistance to bacitracin in cultures of *Staphylococcus aureus*. *J. Infect. Dis.* **1949**, *85*, 91–96. [\[CrossRef\]](http://doi.org/10.1093/infdis/85.1.91)
- 68. Abraham, E.P. A glimpse of the early history of the cephalosporins. *Rev. Infect. Dis.* **1979**, *1*, 99–105. [\[CrossRef\]](http://doi.org/10.1093/clinids/1.1.99) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/400942)
- 69. Bastin, R.; Worms, R.; Acar, J.F. Clinical incidence of heterogenous resistance of *Staphylococcus* to penicillin and cephalosporin. *Pathol. Biol.* **1967**, *15*, 1205–1211. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/4867326)
- 70. Ehrlich, J.; Bartz, Q.R.; Smith, R.M.; Joslyn, D.A.; Burkholder, P.R. Chloromycetin, a new antibiotic from a soil actinomycete. *Science* **1947**, *106*, 417. [\[CrossRef\]](http://doi.org/10.1126/science.106.2757.417)
- 71. Smadel, J.E. Clinical use of the antibiotic chloramphenicol (chloromycetin®). *J. Am. Med. Assoc.* **1950**, *142*, 315–318. [\[CrossRef\]](http://doi.org/10.1001/jama.1950.02910230017004)
- 72. Colquhoun, J.; Weetch, R.S. Resistance to chloramphenicol developing during treatment of typhoid fever. *Lancet* **1950**, *256*, 621–623. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(50)91585-6)
- 73. Ainsworth, G.C.; Brown, A.M.; Brownlee, G. 'Aerosporin', an antibiotic produced by *Bacillus aerosporus* Greer. *Nature* **1947**, *160*, 263. [\[CrossRef\]](http://doi.org/10.1038/160263a0)
- 74. Schoenbach, E.B.; Bryer, M.S. Polymyxin; A note on experimental and clinical investigations. *J. Am. Med. Assoc.* **1948**, *136*, 1096–1098. [\[CrossRef\]](http://doi.org/10.1001/jama.1948.02890340022007)
- 75. Hirsch, H.A.; McCarthy, C.G.; Finland, M. Polymyxin B and colistin: Activity, resistance and crossresistance in vitro. *Proc. Soc. Exp. Biol. Med.* **1960**, *103*, 338–342. [\[CrossRef\]](http://doi.org/10.3181/00379727-103-25511) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14401972)
- 76. Gaumann, E.; Roth, S. Enniatin, a new antibiotic that works against mycobacteria. *Experientia* **1947**, *3*, 202–203. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/20254435)
- 77. Piquet, J.J.; Hequet, B.; Decroix, G. Value of the use of locabiotal pressurise in rhinosinus pathology in children. *Lille Méd.* **1968**, *14*, S497–S499.
- 78. German-Fattal, M. Fusafungine. An antimicrobial agent for the local treatment of respiratory tract infections. *Clin. Drug Investig.* **1996**, *12*, 308–317. [\[CrossRef\]](http://doi.org/10.2165/00044011-199612060-00004)
- 79. Duggar, B.M. Aureomycin: A product of the continuing search for new antibiotics. *Ann. N. Y. Acad. Sci.* **1948**, *51*, 177–181. [\[CrossRef\]](http://doi.org/10.1111/j.1749-6632.1948.tb27262.x) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/18112227)
- 80. Ross, S.; Burke, F.G. Aureomycin; preliminary report of a clinical trial. *Clin. Proc. Child. Hosp. Dist. Columbia* **1948**, *4*, 315–331.
- 81. Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiol. Mol. Biol. Rev.* **2001**, *65*, 232. [\[CrossRef\]](http://doi.org/10.1128/MMBR.65.2.232-260.2001)
- 82. Hitchings, G.H.; Elion, G.B. Pyrimidine derivatives as antagonists of pteroylglutamic acid. *J. Biol. Chem.* **1948**, *174*, 765. [\[CrossRef\]](http://doi.org/10.1016/S0021-9258(18)57361-0)
- 83. Noall, E.W.P.; Sewards, H.F.G.; Waterworth, P.M. Successful treatment of a case of *Proteus* septicaemia. *Br. Med. J.* **1962**, *2*, 1101. [\[CrossRef\]](http://doi.org/10.1136/bmj.2.5312.1101)
- 84. Darrell, J.H.; Garrod, L.P.; Waterworth, P.M. Trimethoprim: Laboratory and clinical studies. *J. Clin. Pathol.* **1968**, *21*, 202. [\[CrossRef\]](http://doi.org/10.1136/jcp.21.2.202)
- 85. Finlay, A.C.; Hobby, G.L.; Hochstein, F.; Lees, T.M.; Lenert, T.F.; Means, J.A.; P'an, S.Y.; Regna, P.P.; Routien, J.B.; Sobin, B.A.; et al. Viomycin, a new antibiotic active against mycobacteria. *Am. Rev. Tuberc.* **1951**, *63*, 1–3. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14799783)
- 86. Hackney, R.; King, E.; Marshall, E.; Harden, A.; Payne, H. Clinical observations on viomycin sulphate in the treatment of tuberculosis. *Dis. Chest* **1953**, *24*, 591–600. [\[CrossRef\]](http://doi.org/10.1378/chest.24.6.591) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/13107556)
- 87. Tsukamura, M. Drug-resistance test for kanamycin and cross resistance problem in *Mycobacterium tuberculosis* with special reference to kanamycin, streptomycin, and viomycin. *J. Antibiot.* **1959**, *12*, 189–191.
- 88. Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic Substances from Basidiomycetes: VIII. Pleurotus Multilus (Fr.) Sacc. and Pleurotus Passeckerianus Pilat. *Proc. Natl. Acad. Sci. USA* **1951**, *37*, 570–574. [\[CrossRef\]](http://doi.org/10.1073/pnas.37.9.570)
- 89. Parish, L.C.; Jorizzo, J.L.; Breton, J.J.; Hirman, J.W.; Scangarella, N.E.; Shawar, R.M.; White, S.M.; SB275833/032 Study Team. Topical retapamulin ointment (1%, wt./wt.) twice daily for 5 days versus oral cephalexin twice daily for 10 days in the treatment of secondarily infected dermatitis: Results of a randomized controlled trial. *J. Am. Acad. Dermatol.* **2006**, *55*, 1003–1013. [\[CrossRef\]](http://doi.org/10.1016/j.jaad.2006.08.058) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/17097398)
- 90. Gentry, D.R.; McCloskey, L.; Gwynn, M.N.; Rittenhouse, S.F.; Scangarella, N.; Shawar, R.; Holmes, D.J. Genetic characterization of VgaABC proteins conferring reduced susceptibility to pleuromutilins in *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **2008**, *52*, 4507–4509. [\[CrossRef\]](http://doi.org/10.1128/AAC.00915-08)
- 91. Erythromycin. *Br. Med. J.* **1952**, *2*, 1085–1086. [\[CrossRef\]](http://doi.org/10.1136/bmj.2.4793.1085)
- 92. Haight, T.H.; Finland, M. Laboratory and clinical studies on erythromycin. *N. Engl. J. Med.* **1952**, *247*, 227–232. [\[CrossRef\]](http://doi.org/10.1056/NEJM195208142470701)
- 93. Haight, T.H.; Finland, M. Resistance of bacteria to erythromycin. *Exp. Biol. Med.* **1952**, *81*, 183–188. [\[CrossRef\]](http://doi.org/10.3181/00379727-81-19816) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/13047352)
- 94. Fox, H.H. The chemical attack on tuberculosis. *Trans. N. Y. Acad. Sci.* **1953**, *15*, 234–242. [\[CrossRef\]](http://doi.org/10.1111/j.2164-0947.1953.tb01314.x)
- 95. Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. *Am. Rev. Tuberc.* **1952**, *65*, 357–364. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14903503)
- 96. Clark, C.M.; Elmendorf, D.F.; Cawthon, W.U.; Muschenheim, C.; McDermott, W. Isoniazid (isonicotinic acid hydrazide) in the treatment of miliary and meningeal tuberculosis. *Am. Rev. Tuberc.* **1952**, *66*, 391–415. [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/12986175)
- 97. Nash, J.C.; Grosfeld, W. Isoniazid and iproniazid resistance in pulmonary tuberculosis. *J. Am. Med. Assoc.* **1952**, *150*, 813.
- 98. Mast, Y.; Wohlleben, W. Streptogramins—Two are better than one! *Int. J. Med. Microbiol.* **2014**, *304*, 44–50. [\[CrossRef\]](http://doi.org/10.1016/j.ijmm.2013.08.008) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/24119565)
- 99. Jolles, G.; Terlain, B.; Thomas, J.P. Metabolic investigations on pristinamycin. *Nature* **1965**, *207*, 199–200. [\[CrossRef\]](http://doi.org/10.1038/207199a0)
- 100. Dublanchet, A.; Soussy, C.J.; Squinazi, F.; Duval, J. Resistance to streptogramin antibiotics in *Staphylococcus aureus*. *Ann. Microbiol.* **1977**, *128A*, 277–287.
- 101. Rist, N.; Grumbach, F.; Libermann, D. Experiments on the antituberculous activity of alpha-ethylthioisonicotinamide. *Am. Rev. Tuberc.* **1959**, *79*, 1–5.
- 102. Robson, J.M.; Sullivan, F.M. Antituberculosis drugs. *Pharmacol. Rev.* **1963**, *15*, 169–223.
- 103. Fairbrother, R.W.; Williams, B.L. Two new antibiotics: Antibacterial activity of novobiocin and vancomycin. *Lancet* **1956**, *268*, 1177–1179. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(56)90052-6)
- 104. Geraci, J.E.; Heilman, F.R.; Nichols, D.R.; Wellman, W.E. Antibiotic therapy of bacterial endocarditis. VII. Vancomycin for acute micrococcal endocarditis; preliminary report. *Proc. Staff Meet. Mayo Clin.* **1958**, *33*, 172–181.
- 105. Courvalin, P. Vancomycin resistance in Gram-positive cocci. *Clin. Infect. Dis.* **2006**, *42*, S25–S34. [\[CrossRef\]](http://doi.org/10.1086/491711) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/16323116)
- 106. De Boer, C.; Dietz, A.; Wilkins, J.R.; Lewis, C.N.; Savage, G.M. Celesticetin—A new, crystalline antibiotic. I. Biologic studies of celesticetin. In *Antibiotics Annual*, 6th ed.; Welch, H., Marti-Ibanez, F., Eds.; Interscience Publishers: Chichester, UK, 1955; pp. 831–836.
- 107. Schaffer, L.; Finkelstein, J.; Hohn, A.; Lees, T.M.; Lenert, T.F.; Means, J.A.; P'an, S.Y.; Regna, P.P.; Routien, J.B.; Sobin, B.A.; et al. Lincomycin—A new antibiotic: Studies in children carrying β-hemolytic streptococci in association with acute pharyngitis, tonsillitis, or both. *Clin. Pediatrics* **1963**, *2*, 642–645. [\[CrossRef\]](http://doi.org/10.1177/000992286300201110) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14079244)
- 108. Desmyter, J. Lincomycin resistance of erythromycin-resistant cocci. *N. Engl. J. Med.* **1968**, *278*, 967.
- 109. Epstein, I.G.; Nair, K.G.; Boyd, L.J. Cycloserine, a new antibiotic, in the treatment of human pulmonary tuberculosis: A preliminary report. *Antibiot. Med. Clin. Ther.* **1955**, *1*, 80–93.
- 110. Epstein, I.G.; Nair, K.G.; Boyd, L.J. The treatment of human pulmonary tuberculosis with cycloserine: Progress report. *Dis. Chest* **1956**, *29*, 241–257. [\[CrossRef\]](http://doi.org/10.1378/chest.29.3.241)
- 111. Storey, P.B.; Mclean, R.L. A current appraisal of cycloserine. *Antibiot. Med. Clin. Ther.* **1957**, *4*, 223–232.
- 112. Sensi, P. History of the development of rifampin. *Rev. Infect. Dis.* **1983**, *5*, S402–S406. [\[CrossRef\]](http://doi.org/10.1093/clinids/5.Supplement_3.S402)
- 113. Kontomichalou, P.; Papadakis, Z.; Daikos, G. Rifamycin SV: Clinical and laboratory experience. *Chemotherapy* **1963**, *7*, 357–364. [\[CrossRef\]](http://doi.org/10.1159/000220144)
- 114. Manten, A.; van Wijngaarden, L.J. Development of drug resistance to rifampicin. *Chemotherapy* **1969**, *14*, 93–100. [\[CrossRef\]](http://doi.org/10.1159/000220615) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/4979978)
- 115. Van Dijck, P.J.; De Somer, P. Ramycin: A new antibiotic. *J. Gen. Microbiol.* **1958**, *18*, 377–381. [\[CrossRef\]](http://doi.org/10.1099/00221287-18-2-377)
- 116. Godtfredsen, W.O.; Jahnsen, S.; Lorck, H.; Roholt, K.; Tybring, L. Fusidic acid: A new antibiotic. *Nature* **1962**, *193*, 987. [\[CrossRef\]](http://doi.org/10.1038/193987a0) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/13899435)
- 117. Vanderhaeghe, H.; van Dijck, P.; De Somer, P. Identity of ramycin with fusidic acid. *Nature* **1965**, *205*, 710–711. [\[CrossRef\]](http://doi.org/10.1038/205710a0) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14287421)
- 118. Newman, R.L.; Bhat, K.M.; Hackney, R.; Robinson, C.; Stewart, G.T. Fusidic acid: Laboratory and clinical assessment. *Br. Med. J.* **1962**, *2*, 1645. [\[CrossRef\]](http://doi.org/10.1136/bmj.2.5320.1645) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/13938269)
- 119. Evans, R.J.; Waterworth, P.M. Naturally-occurring fusidic acid resistance in staphylococci and its linkage to other resistances. *J. Clin. Pathol.* **1966**, *19*, 555. [\[CrossRef\]](http://doi.org/10.1136/jcp.19.6.555) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/5928604)
- 120. Cosar, C.; Julou, L. The activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (R. P. 8823) against experimental *Trichomonas vaginalis* infections. *Ann. Inst. Pasteur* **1959**, *96*, 238–241.
- 121. Shinn, D.L.S. Metronidazole in acute ulcerative gingivitis. *Lancet* **1962**, *279*, 1191. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(62)92243-2)
- 122. Ingham, H.R.; Eaton, S.; Venables, C.W.; Adams, P.C. *Bacteroides fragilis* resistant to metronidazole after long-term therapy. *Lancet* **1978**, *1*, 214. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(78)90655-4)
- 123. Thomas, J.P.; Baughn, C.O.; Wilkinson, R.G.; Shepherd, R.G. A new synthetic compound with antituberculous activity in mice: Ethambutol (dextro-2,2'-(ethylenediimino)-di-l-butanol). Am. Rev. Respir. Dis. 1961, 83, 891-893.
- 124. Carr, R.E.; Henkind, P. Ocular manifestations of ethambutol, toxic amblyopia after administration of an experimental antituberculous drug. *Arch. Ophthalmol.* **1962**, *67*, 566–571. [\[CrossRef\]](http://doi.org/10.1001/archopht.1962.00960020566009)
- 125. Hobby, G.L.; Johnson, P.M.; Boytar-Papirnyik, V.; Wilber, J. Primary drug resistance: A continuing study of tubercle bacilli in a veteran population within the United States. VI. Initial observations on the incidence of resistance to rifampin and ethambutol. *Am. Rev. Respir. Dis.* **1969**, *99*, 777–779.
- 126. Lesher, G.Y.; Froelich, E.J.; Gruett, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-naphthyridine derivatives. A new class of chemotherapeutic agents. *J. Med. Pharm. Chem.* **1962**, *91*, 1063–1065. [\[CrossRef\]](http://doi.org/10.1021/jm01240a021) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14056431)
- 127. Barlow, A.M. Nalidixic acid in infections of urinary tract. *Br. Med. J.* **1963**, *2*, 1308. [\[CrossRef\]](http://doi.org/10.1136/bmj.2.5368.1308) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/14058206)
- 128. Ronald, A.R.; Turck, M.; Petersdorf, R.G. A critical evaluation of nalidixic acid in urinary-tract infections. *N. Engl. J. Med.* **1966**, *275*, 1081–1089. [\[CrossRef\]](http://doi.org/10.1056/NEJM196611172752001)
- 129. Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. *Science* **1969**, *166*, 122–123. [\[CrossRef\]](http://doi.org/10.1126/science.166.3901.122) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/5809587)
- 130. Lagunero, R.L.; Menéndez, M.L. Urinary tract infections treated with phosphonomycin (author's translation). *Folia Clin. Int.* **1974**, *24*, 130–148.
- 131. Courtieu, A.L.; Drugeon, H.; Billaudel, S. Susceptibility to fosfomycin of hospital strains isolated in Nantes (France). Frequency of mutation to resistance. *Chemotherapy* **1977**, *23*, 25–36. [\[CrossRef\]](http://doi.org/10.1159/000222023)
- 132. Fuller, A.T.; Mellows, G.; Woolford, M.; Banks, G.T.; Barrow, K.D.; Chain, E.B. Pseudomonic acid: An antibiotic produced by *Pseudomonas fluorescens*. *Nature* **1971**, *234*, 416–417. [\[CrossRef\]](http://doi.org/10.1038/234416a0) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/5003547)
- 133. Lever, L.R.; Leigh, D.A.; Wilkinson, J.D. A double-blind study to assess the effectiveness of mupirocin in the treatment of infected eczema. *Br. J. Dermatol.* **1985**, *113*, 35–36. [\[CrossRef\]](http://doi.org/10.1111/j.1365-2133.1985.tb12999.x)
- 134. Rahman, M.; Noble, W.C.; Cookson, B.; Baird, D.; Coia, J. Mupirocin-resistant *Staphylococcus aureus*. *Lancet* **1987**, *330*, 387–388. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(87)92398-1)
- 135. Coronelli, C.; White, R.J.; Lancini, G.C.; Parenti, F. Lipiarmycin, a new antibiotic from *Actinoplanes*. II. Isolation, chemical, biological and biochemical characterization. *J. Antibiot.* **1975**, *28*, 253–259. [\[CrossRef\]](http://doi.org/10.7164/antibiotics.28.253)
- 136. Citron, D.M.; Babakhani, F.; Goldstein, E.J.C.; Nagaro, K.; Sambol, S.; Sears, P.; Shue, Y.-K.; Gerding, D.N. Typing and susceptibility of bacterial isolates from the fidaxomicin (OPT-80) phase II study for *C. difficile* infection. *Anaerobe* **2009**, *15*, 234–236. [\[CrossRef\]](http://doi.org/10.1016/j.anaerobe.2009.09.005) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/19755166)
- 137. Schwanbeck, J.; Riedel, T.; Laukien, F.; Schober, I.; Oehmig, I.; Zimmermann, O.; Overmann, J.; Groß, U.; Zautner, A.E.; Bohne, W. Characterization of a clinical *Clostridioides difficile* isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in *rpoB*. *J. Antimicrob. Chemother.* **2019**, *74*, 6–10. [\[CrossRef\]](http://doi.org/10.1093/jac/dky375) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30247587)
- 138. Baker, F.; Cama, L.D.; Christensen, B.G.; Leanza, W.J.; Shih, D.H.; Wildonger, K.J. Thienamycin, imipenem and new members of the carbapenem class of β-lactam antibiotics. In *IUPHAR 9th International Congress of Pharmacology London 1984*; Paton, W., Mitchell, J., Turner, P., Eds.; Palgrave Macmillan: London, UK, 1984; pp. 105–109.
- 139. Eron, L.J.; Hixon, D.L.; Park, C.H.; Goldenberg, R.I.; Poretz, D.M. Imipenem versus moxalactam in the treatment of serious infections. *Antimicrob. Agents Chemother.* **1983**, *24*, 841. [\[CrossRef\]](http://doi.org/10.1128/AAC.24.6.841)
- 140. Quinn, J.P.; Dudek, E.J.; DiVincenzo, C.A.; Lucks, D.A.; Lerner, S.A. Emergence of resistance to imipenem during therapy for *Pseudomonas aeruginosa* infections. *J. Infect. Dis.* **1986**, *154*, 289–294. [\[CrossRef\]](http://doi.org/10.1093/infdis/154.2.289)
- 141. Percival, A.; Thomas, E.; Hart, C.A.; Karayiannis, P. *In-vitro* activity of monobactam, SQ 26,776, against Gram-negative bacteria. *J. Antimicrob. Chemother.* **1981**, *8*, 49–55. [\[CrossRef\]](http://doi.org/10.1093/jac/8.suppl_E.49)
- 142. Giamarellou, H.; Galanakis, N.; Douzinas, E.; Petrikkos, G.; El Messidi, M.; Papoulias, G.; Daikos, G.K. Evaluation of aztreonam in difficult-to-treat infections with prolonged posttreatment follow-up. *Antimicrob. Agents Chemother.* **1984**, *26*, 245–249. [\[CrossRef\]](http://doi.org/10.1128/AAC.26.2.245) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/6541453)
- 143. Dworzack, D.L.; Bartelt, M.A.; Bailey, R.T.; Fitzgibbons, R.J.; Reich, J.W.; Picetti, G.D. Emergence of resistance to aztreonam. *Clin. Pharm.* **1984**, *3*, 467–470.
- 144. Slee, A.M.; Wuonola, M.A.; McRipley, R.J.; Zajac, I.; Zawada, M.J.; Bartholomew, P.T.; Gregory, W.A.; Forbes, M. Oxazolidinones, a new class of synthetic antibacterial agents: In vitro and in vivo activities of DuP 105 and DuP 721. *Antimicrob. Agents Chemother.* **1987**, *31*, 1791–1797. [\[CrossRef\]](http://doi.org/10.1128/AAC.31.11.1791)
- 145. Riedl, B.; Endermann, R. Recent developments with oxazolidinone antibiotics. *Expert Opin. Ther. Pat.* **1999**, *9*, 625–633. [\[CrossRef\]](http://doi.org/10.1517/13543776.9.5.625)
- 146. Tsiodras, S.; Gold, H.S.; Sakoulas, G.; Eliopoulos, G.M.; Wennersten, C.; Venkataraman, L.; Moellering, R.C.; Ferraro, M.J. Linezolid resistance in a clinical isolate of *Staphylococcus aureus*. *Lancet* **2001**, *358*, 207–208. [\[CrossRef\]](http://doi.org/10.1016/S0140-6736(01)05410-1)
- 147. Ehlert, F.; Neu, H.C. *In vitro* activity of LY146032 (daptomycin), a new peptolide. *Eur. J. Clin. Microbiol.* **1987**, *6*, 84–90. [\[CrossRef\]](http://doi.org/10.1007/BF02097208) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/3032611)
- 148. Tally, F.P.; Zeckel, M.; Wasilewski, M.M.; Carini, C.; Berman, C.L.; Drusano, G.L.; Oleson, F.B. Daptomycin: A novel agent for Gram-positive infections. *Expert Opin. Investig. Drugs* **1999**, *8*, 1223–1238. [\[CrossRef\]](http://doi.org/10.1517/13543784.8.8.1223)
- 149. Lewis, J.S.; Owens, A.; Cadena, J.; Sabol, K.; Patterson, J.E.; Jorgensen, J.H. Emergence of daptomycin resistance in *Enterococcus faecium* during daptomycin therapy. *Antimicrob. Agents Chemother.* **2005**, *49*, 1664–1665.
- 150. Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.-M.; Winkler, H.; van Gestel, F.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A diarylquinoline drug active on the ATP synthase of *Mycobacterium tuberculosis*. *Science* **2005**, *307*, 223–227. [\[CrossRef\]](http://doi.org/10.1126/science.1106753) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/15591164)
- 151. Rustomjee, R.; Diacon, A.H.; Allen, J.; Venter, A.; Reddy, C.; Patientia, R.F.; Mthiyane, T.C.P.; de Marez, T.; van Heeswijk, R.; Kerstens, R.; et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. *Antimicrob. Agents Chemother.* **2008**, *52*, 2831. [\[CrossRef\]](http://doi.org/10.1128/AAC.01204-07) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/18505852)