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Abstract—HELICON is a novel hierarchical Reinforcement
Learning (RL) approach for orchestrating the dynamic placement
of Virtual Network Functions (VNFs) in Cloud and Edge 5G envi-
ronments. It proves capable of addressing an NP-Hard decision-
making problem with adopted RL while augmenting the current
state of the art in orchestrators with a previously unexplored
lightweight distributed and hierarchical RL approach. HELICON
can run as a fully autonomous solution or complement orches-
trators, thus bridging a significant gap in existing orchestrators,
which generally lack intelligent and dynamic adaptation capabil-
ities. Finally, our performance evaluation results over an actual
5G city testbed and use case validate that HELICON outperforms
traditional policy-based Open Source MANO and other heuristic
policies concerning single or multi-objective optimisation goals.
What is more, HELICON’s performance meets with that of node-
specific custom supervised learning models, whereas it clearly
outperforms supervised learning under dynamic conditions.

Index Terms—Network function virtualization, Software de-
fined networking, 5G mobile communication, Machine learning

I. INTRODUCTION

Network softwarisation in the fifth generation of wireless
networks (5G) is characterized by significant flexibility and
agility as a result of adopting the concepts of Software-
Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV). The former have enabled scalable vertical industry
services with strict performance requirements that need to
be addressed by MANagement and Orchestration (MANO)
systems. Nonetheless, state of the art orchestrators such as
ETSI Open Source MANO (OSM MANO) face challenges [1]
out of which the NP-Hard [2]–[4] problem of optimal Virtual
Network Function (VNF) placement remains essential.

Towards addressing this problem, we identify two main
gaps: (i) orchestrators still lack Machine Learning (ML) intel-
ligence with (ii) their majority [5] remaining rule- or heuristic-
based, focusing exclusively on system-level resources after
predefined policies. This approach neglects network dynamics
and system-wide service-level performance objectives of both
verticals and providers. To address these gaps, we propose
a Hierarchical rEinforcement LearnIng approach for OrChes-
tratiNg (HELICON) low-latent and load-balanced VNFs. Our
contributions can be briefed as:

(1) A novel distributed hierarchical RL approach.
HELICON can serve as a stand-alone online VNF placement

This work has received funding from the EU H2020 project 5GASP (project
number 101016448).

solution as well as a module-based extension, hence covering
an intelligence gap in current state of the art orchestrators.
To the best of our knowledge, HELICON constitutes a unique
Hierarchical Reinforcement Learning (HRL) effort of its kind.

(2) Tackling a difficult problem with a tunable and
lightweight Q-Learning scheme. This work completes our
prior effort [6] on optimizing either (i) end-to-end (e2e) service
delay or (ii) load balancing among Compute Nodes (CNs).
We extend our approach to a Multi-Objective Optimisation
(MOO) solution capturing both objectives above based on a
combination of Q-learning schemes with carefully designed
reward functions and a tunable optimization priority. Notably,
HELICON is accurate and lightweight by distributing predic-
tions’ load among global and local modules.

(3) Real testbed implementation and use case-driven
validation. Most studies engage into simulation-based model
evaluation over custom scenarios. Unlike that, we present
practical experimental results upon a realistic 5G Smart City
Safety (SCS) use case1 conducted over a Bristol’s 5G city
testbed2 assuming an e2e application video transcoding VNF.
Our meticulous performance evaluation against seven bench-
mark models shows that HELICON performs significantly
better compared to traditional OSM MANO policies and the
other benchmarks under different Single-Objective Optimisa-
tion (SOO) and MOO scenarios.

II. BACKGROUND AND RELATED WORK

VNF placement is highly challenging. It emerged with
modern programmable networks adopting SDN and NFV prin-
ciples. It is also related to the Cloud-vs-Edge dilemma in ad-
vanced wireless networks by considering the trade-off between
exploiting a higher Cloud processing power against a reduced
latency due to “Edge” network user proximity. Although the
efficiency of VNF placement depends on processing power
and network performance, most existing placement algorithms
consider merely local resource availability for host selections.
This provides no performance guarantees, especially for delay-
sensitive VNFs. In addition, different VNF requests may have
different objectives, possibly opposing one another such as
in the case of clustering VNFs against load balancing. This
context proves highly challenging with past literature like [2],

1www.bristol.ac.uk/engineering/research/smart/5g-demonstrations/smart-
city-safety/

2http://www.bristol.ac.uk/engineering/research/smart/5guk/



[7] discussing the NP-hard nature of the problem and its
implications on programmable networks. Optimal host selec-
tion demands accurate VNF performance predictions before
placement, dealing with hardware and software heterogeneity.

Reinforcement Learning (RL) addresses dynamic network
optimization including VNF placement without any prior
training via online learning [8]. Nevertheless, most works in
the literature explore Supervised Learning (SL) techniques
and particularly Artificial Neural Networks (ANNs), e.g. [9],
with only a few exploring RL for VNF resource management.
This is partially due to the non-trivial task of applying RL
in networking. The greatest challenges regard designing the
model itself, monitoring and feeding data to it, and the
particular complexity [10] of MOO with RL.

Mao et al. [11] show the benefits of applying Deep RL
agents to large-scale systems. Tesauro et al. [12] also demon-
strate RL benefit over other model-based approaches derived
from queuing theory. More recent studies focused either di-
rectly on RL or hybrid solutions. Chen et al. [13] optimize two
Deep RL Agents (RLAs), namely, a Short flow RLA (sRLA)
and a Long flow RLA (lRLA). Mijumbi et al. [14] also propose
a multi-agent learning algorithm for virtual network resource
management which significantly improves the acceptance ratio
and the maximum number of accepted virtual network requests
while compiling with Quality-of-Service (QoS). Vimal et
al. [15] propose a multi-objective Ant Colony Optimization
metaheuristic resource allocation algorithm.

Regarding our own work in the field, we have investigated
adapted RL for local node performance SOO w.r.t. incoming
placement requests [6]. The work there posses the basis for
MOO in the current work. We have also investigated a rich
range of different SL techniques for placing VNFs [16],
concluding that local RL placement decisions are portable.

III. SYSTEM ARCHITECTURE

As portrayed in Figure 1, HELICON applies four dif-
ferent agents in order to improve VNF placement at the
OSM MANO: (i) an application monitoring agent continu-
ously tracking application performance, (ii) a node monitoring
agent regarding CN resource utilization, (iii) a prediction
agent predicting the VNF performance and (iv) a placement
agent that places the VNF to the best location. There are
two types of models depicted in the top part of Figure 1:
(i) Local Reinforcement Learning (LRL) (ii) Global Rein-
forcement Learning (GRL). The LRL models are embedded
in each CN and produce local predictions that are sent to
the orchestration site where the GRL is deployed. The GRL
suggests a node placement in response to incoming new VNF
request. The placement suggestion can be made with either
optimization scheme: (i) a Single Objective Global Reinforce-
ment Learning optimization scheme (SO-GRL)); and (ii) a
Multi-Objective Global Reinforcement Learning optimization
scheme (MO-GRL) based on scalarizing 2 SO-GRLs.

Notice that the OSM node and the CNs are connected in
one-to-many relationship. We represent this connection as a
connected graph G = (O,C), where O is the OSM node,
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Fig. 1: High-level architecture and workflow. LRL agents integrate fully
distributedly and run fully independently in CNs.

and C = {c1, c2, .., cn} is the set of CNs connected to OSM.
CNs are also connected to end points like sensors or users in a
one-to-many fashion. CNs only receive monitoring parameters
from end devices. Each c has a resource capacity and status
regarding the Central Processor Unit (CPU), memory (RAM),
storage, and current load. We denote the CN resource capacity
and status by RSc = (RScpu

c , RSmem
c , RSdisk

c , RSload
c ).

We use A = {apl, amon, apre} as the set of embedded
agents in the system where apl is installed in O and amon, apre
are deployed in ∀c ∈ C. A set of VNF requests denoted
by F = {f1, f2, .., fn}, represents the series of request
for new VNF(s). We implement a single use case in the
test, which the resource demand is fix denoted in term of
resources and status. An additional requirement (Accepted De-
lay: AD = {ad1, ad2, .., adn}) is applied when the end-to-end
delay (ttot) is considered for GRL. Therefore, the demand Df

is represented as Df = (Dcpu
f , Dmem

f , Ddisk
f , Dload

f , Dad
f ).

In addition, we state the resource constraint on CNs since
multiple VNFs can be placed in a single node. Given nfc as
the number of instances f ∈ F instantiated on node c ∈ C,
the constraint can be written as formula (1).

∀c ∈ C :
∑
f∈F

nfcCf ≤ Cc (1)

A. Local prediction modules

Due to space restrictions, we briefly outline the local
prediction models, with the details provided in [6]. We use
two different LRLs to target two different objectives in the
context of the SCS use case, namely: (i) e2e delay and (ii)
CPU load balancing after VNF placement.

1) LRL for e2e delay: The State space (S) includes all
possible Ttot predictions. The current state s ∈ S is the
basis for three possible next states s′: (1) Less than:
PV < RV ; (2) Equal: PV = RV ; and (3) More than:
PV > RV , where Predicted Value (PV) refers to the predicted
e2e delay by the model and Real Value (RV) to the actual e2e
delay as measured after the placement. The actions set A(s)



contains actions a for increasing/decreasing Ttot by a step of
0.01. According to the SCS use case, the minimum-maximum
value we can predict for Ttot is 0-2 s. Rewards Ra(s, s

′)
are immediately obtained after executing an action leading
to s′, hence reflecting the quality of the model prediction.
Formula (2) gives immediate rewards en [0, 1] using an υ3

intensive band tolerance margin distance from a hyperplane.

Ra(s, s
′) =

{
1− |PV−RV

υ·RV |, if|PV −RV | ≤ υ ·RV ;

0, otherwise ,
(2)

We adopt the actions strategies of exploration and ex-
ploitation, with the earlier identifying an initially unknown
environment after random actions, and the latter taking actions
after a ε-greedy policy (see Formula (3)) where 0 ≤ n ≤ 1 is
pseudo-randomly generated and compared against a decaying
ε-greedy value with each consequent action. Finally, the state
s changes to s′ and a next prediction starts by creating a new
Q-table with initial state s ≡ s′ and by considering a new
tuple of the three-time samples di = {(T i

rcv, T
i
p, T

i
req)}.

a =

rand A(s), if n < ε-greedy, exploration;

arg max
a
Q(s, a), otherwise, exploitation

(3)

2) LRL for load: System load refers to the number of
CPU cores used by processes in execution or in a waiting
state. The loads of VNF requests and candidate CN hosts
are continuously monitored, allowing to calculate CNs’ load
after placement according to Formula (4), where Loadpred is
the Predicted Load (PL) after placing the VNF; LoadV NF is
the added load by the VNF; Loadnode is the candidate CN’s
current load; and Corenum is CN’s number of the CPU cores.

Loadpred =
(LoadV NF + Loadnode)

Corenum
× 100 . (4)

B. SO-GRL
A Single Objective Global Reinforcement Learning opti-

mization scheme (SO-GRL) is used to maintain Q-tables that
used by MO-GRL. It takes input from LRLs and suggests a
decision based on a single objective. The State space (S(i))
comprises all placement requests i en l = {0, 1, 2, ..., n}.
S(0) implies no VNF requests in the system, while S(n)
indicates that the system runs in full capacity. The actions
set A(s) contains actions a mapping the assignment of a
CN to a number (A(s) = {1, 2, 3, ..,m}). A(s) is complete
at the initial state S(0) because all CNs are available. CNs
with VNFs covering their full capacity keep leaving A(s)
in intermediate states until A(s) becomes empty at S(n).
Note that if SO-GRL runs with MO-GRL, then it adopts the
allocation decision by the central MO-GRL, calculates the
reward and updates its Q-table. Otherwise, for stand-alone
SO-GRL optimization, we apply the ε−greedy policy locally.
SO-GRL reward (see Formula (5) subject to constraint (1))
for Ttot Rt(s, s

′) represents the quality of the placement after
Ttot. We define an Accepted Value (AV) as the maximum Ttot
until which a VNF meets delay requirements.

Rt(s, s
′) =


1

PV AV ×ωi
, if PV ≤ AV ;

min( 1
PV AV ×ωi

, 1
PV−AV ), otherwise.

(5)

3υ is used in several SL regressors such as Support Vector Regression
(SVR). Our tests validated the use of upsilon = 10%.

where ωi is the fraction of AV of request i over the sum of
the distinct AVs categories by other requests. The reward drops
exponentially for larger PVs, with ωi tuning delay criticality
of request i relatively to the rest of the active requests’ AVs.

Rewards for load predictions are based on standard devia-
tion (stdsel), as measured after adding the PL of the selected
node to the system, relative to average load (ave(PL)).

Rl(s, s
′) =

1− stdsel

ave(PL) , if stdsel ≤ ave(PL);

max(ave(std)−stdsel

ave(std) , 0), otherwise.
(6)

The reward is designed to capture the impact of placements
on system-wide load balance. Standard deviation is by default
the most appropriate metric for assessing deviation from a
balanced state where all nodes have the same load. Last, we
divide stdsel by ave(PL) to generate rewards exponentially.

C. MO-GRL
Global Reinforcement Learning (GRL) is a high level model

that makes the final VNF placement decision based on the
Q-tables of both SO-GRLs. MO-GRL uses the same State
and Action as the SO-GRL (see Section III-B). For the action
selection, it applies the ε-greedy strategy as described in the
formula (3). MO-GRL does not have the reward function. It
gives the reward Rs(s, s

′) from the scalarization of the two Q-
values from SO-GRLs, which are normalized through dividing
the given reward by the maximum reward of the same state,
using the formula (7) and subjected to constraint (1).

Rs(s, s
′) = (ωt ·Qt(st, at)) + (ωl ·Ql(st, at)) (7)

where ωt and ωl are the coefficients of weight for LRL for
Ttot and load balance, Qt(st, at) and Ql(st, at) are normalized
Q-value for LRL for Ttot and load balance respectively.

IV. EXPERIMENTAL PLAN

The details of our city-wide testbed are described in our
prior works of [6], [16]. Regarding our evaluation plan,
it involves an analytical performance comparison against 7
benchmark models: (1) OSM: We use an orchestration scheme
traditionally used by OSM MANO notated as (i) ‘‘OSM’’.
In short, OSM considers only physical resources in accordance
with the NOVA filter scheduler4. It is a non-ML benchmark
that is based on two strategies: “filtering” and “weighting”. Fil-
ters are sets of rules defining the resources and capabilities of a
CN for hosting a VNF, whereas the weighting strategy applies
weights to all filters to define their influence on decisions. (2)-
(4) HRT: We implement three heuristic placement models: (v)
HRT(Delay), (vi) HRT(Load), and (vii) HRT (Delay;
Load). The former apply the same ranking approach as
Ben based on an intelligent RL-prediction approach known
as “Latency-aware” [17], and the current load. (5)-(7) Ben:
We use three intelligent heuristic VNF placement models with
prediction modules during MOO experiments. The first two
target a single objective, namely: (ii) Ben(Delay) tries to
minimize e2e service delay based on node-local ANN models
that are designed, trained and deployed for predicting Ttot
in their local nodes; (iii) Ben(Load) selects the CN that

4docs.openstack.org/ocata/config-reference/compute/schedulers.html



greedily minimizes load imbalances between CNs for con-
sequent requests; while (iv) Ben(Delay; Load) applies
a ranking system as a Mixed-integer linear programming
approach, combining the former two single objective bench-
marks. Moreover, all models are subject to the constraint (1).
Regarding Ben(Delay; Load), all local ANN-predicted
Ttot values are sorted and assigned with a ranking integer
it in ascending order. Likewise, all Load Balancing Score
(LBS) values are ranked with a score value il in ascending
order from best (minimum) to the worst (maximum) CPU
load imbalance. Then, we linearly scalarize the sum of the
corresponding ranking numbers i = it+ il and select the node
with the minimum scalarized value.

Regarding evaluation metrics, we adopt: (i) Ttot is the
system-wide e2e delay after all VNF requests are instantiated
at hosts. It captures the overall delay from the camera to the
selected CNs and from there to the final data consumption
nodes. A good quality of placement should yield 500ms ≤
Ttot ≤ 700ms values according to SCS steady-state perfor-
mance. (ii) LBS is the system-wide standard deviation of CPU
usage after selecting a hosting CN s. A perfect system-wide
load balance should yield LBS = 0. (iii) NS is the average
Number of Selections (NS) of a CN during a requests round.
It measures the placement frequency distribution among CNs.

A. Evaluation scenarios

1) Scenario 1: Single Objective Optimization: This sce-
nario is designed to evaluate the performance of SO-GRL for
delay and Load balance against OSM and HRT benchmarks
under varying conditions. Each VNF requires 2 CPU cores
2 GB hard disk and 2 GB of RAM. Our testbed has a total
capacity of 12 VNFs (CN1:4; CN2:4; CN3:2; CN4:2) as
specified in Sec. IV. Each incoming VNF request is assigned
randomly with one AV of either 700, 900, and 1100 ms, thus
requirements range from a very strict to an easier AV. Last, we
submit request batches of 6 and 18 VNFs to evaluate SO-GRL
when request batches are either within or over system capacity.

2) Scenario 2: Multi-Objective Optimization: We assess
the scalarization quality of the two SO-GRL Q-tables, setting
three different ratios between ωt and ωl as (i) HEL(Delay
75; Load 25) (emphasizing on minimizing Ttot); (ii)
HEL(Delay; Load) (equal 0.50:0.50 importance); and (iii)
HEL(Delay 25; Load 75) (emphasizing on minimizing
LBS). VNF requests have the most strict AV (700 ms).

V. PERFORMANCE EVALUATION

Models are exhaustively trained after 100 iterations, with
initial Q-learning parameters: <α=0.1; γ=0.9; ε−greedy= 0.5;
decay=0.97>. We present mean values and 95-percentile con-
fidence intervals. Time-transient results exhibit performance
convergence, whereas aggregate results mean performances
over 2000 repeats in steady-state after epoch 80.

A. Single Objective Optimization

1) Delay: Graph 2(a) demonstrates the system-wide Ttot
for 6 VNF batch requests. Ttot converges to 0.6 s after a first

training and learning period until epochs 46-50, HELICON,
and remains mostly ∼20 s less compared to OSM and HRT.
For 18 VNF requests (Graph 2(b)), HELICON and HRT
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Fig. 2: Transient Ttot performance comparison.

outperform OSM, demonstrating a consistent 0.9 s Ttot against
∼1.5 s by OSM. Only 12 out of the 18 requested placements
occur due to system capacity constrains, explaining why the
performances of HELICON and HRT meet. HRT may be
underlined by an already trained CN-local RL model, yet
clearly HELICON optimizes placement decisions better when
dealing with within-capacity constraints as we explain with
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Fig. 3: Average Node Selection for optimizing Ttot.

the help of Graphs 3(a) and 3(b). The latter graphs reveal an
identical allocation behavior of HELICON and HRT regarding
18 requests and a slightly different one for the case of 6 re-
quests. For HELICON, CN 1 and CN 2 are the most frequently
selected ones in both graphs. Node selection numbers are
evenly distributed between CN 1 and CN 2, as well as between
CN 3 and CN 4 because these pairs of nodes have the similar
resource capabilities leading to likewise Ttot performances.



Last, HRT’s selection of the inferior performance node CN
3 for 6 VNFs in Graph 3(a) is significant, explaining why
HELICON outperforms HRT’s delay after reaching a steady
state in Graph 2(a).

2) Load: Figure 4 shows transient load performance in
terms of LBS for the cases of 6 and 18 VNFs requests.
Notice the similarities to the performance patterns previously
observed for delay in Figure 2. For 6 VNF batch requests,
HELICON’s LBS is ∼0.3 until epoch 46, and then drops
and converges to ∼0.1 during the remainder epochs. Unlike
that, LBS remains around 0.4 for both OSM and HRT(Load)
with a more intense fluctuation in the case of OSM) during
all epochs. Regarding 18 VNF batch requests, HELICON
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Fig. 4: Transient Load performance comparison.

LBS transient values are much lower than OSM’s 0.4-0.8.
This reveals the performance merits of adding intelligence to
placements rather than using traditional orchestration methods.
Given that requests exceed system capacity, resource utiliza-
tion is 100% and a non-zero LBS denotes that OSM fails to
utilize all available resources. Unlike that, and likewise to
results in Graph 2(b), HELICON and HRT converge both to
optimal LBS. Due to intelligence, the system is not only highly
balanced, but also utilizes its full capacity.

B. Multi-Objective Optimization

Apart from mean performances in steady-state, the Graphs
of Figures and 6 show also median values for the sake of a
more accessible analysis in dense parts of the Graphs. Note
that we omit OSM results. Besides its proven poor performance
in Scenario 1, OSM’s traditional placement approach is inher-
ently incapable of targeting more than one objectives.

1) Delay-only optimization: Specifically, Graph 5(a) shows
that HELICON’s mean Ttot HEL(Delay) exhibits the same
performance as Ben(Delay) (∼500 ms). An essential con-
clusion is that HELICON manages to have at least the same
performance as an individually trained and deployed ANN
model per CN. This is highly significant: it denotes that
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Fig. 5: HELICON vs. benchmark schemes. Notice the focused scale on both
axes (x: load; y: delay) to accommodate analysis.

HELICON can meet the performance of a custom ANN model
even under static networking conditions despite the previously
identified [16] merits of SL models under such conditions.The
former comes as a result of considering system-wide per-
formance parameters, which in this case proves to be at
least as good as optimizing individualized nodes’ performance
parameters. Also, HEL(Delay) outperforms both mean and
median HRT(Delay) by 16.6%/15% (100 ms/75 ms), hence
demonstrating both a better and more stable performance
against outliers. Last, all models exhibit almost identically
poor LBS performances compared to Graph 5(b), as they all
ignore load balance in their decisions.

2) Load balancing-only optimization: HEL(Load) in
Graph 5(b) seems to slightly underperform compared
to Ben(Load). However, as HEL(Load)--Median
shows, this is only due to (significant) outliers. In fact,
HEL(Load)--Median has LBS = 0.062, which is 38% less
than for Ben(Load)--Median that accounts for ∼0.1. Re-
garding Ttot on the y-axis, both models exhibit the same per-
formance (650 ms). In addition, we observe that HEL(Load)
outperforms HRT(Load) significantly with an LBS that is al-
most x3.3 less than HRT’s. Nevertheless, inadequate decisions
w.r.t. load seem to boost delay performance for HRT revealing
a trade-off between the two optimization goals to be further
discussed next with the help of the results in Figure 6.

3) Joint Delay & Load balancing optimisation: Accord-
ing to Figure 6, for the case of equal importance be-
tween delay and Load, HEL(Delay; Load) performs bet-
ter against BEN(Delay; Load) regarding load in trade
off a higher delay cost. HEL(Delay; Load) yields
< Ttot, LBS >=<602, 0.275> whereas BEN(Delay;
Load) < Ttot, LBS >=<532, 0.335>. HRT(Delay;
Load), on the other, exhibits a much worse performance



regarding both metrics. The cases of non-equal impor-
tance between Delay and Load (denoted as HEL(Delay),
HEL(Delay 75; Load 25), HEL(Delay 25; Load
75) and HEL(Load)) have no direct equivalent bench-
marks to compare, and we present them to study the impact
of tuning the balance between Ttot and LBS. Balance changes
affect performance measurements in an anticipated way. Ob-
serving all result points from left to right in the graph, which
map to HELICON versions targeting from 100% Load and 0%
Delay up to gradually 100% Delay and 0% Load with a 25%
step, the improvement (decrease) of Ttot becomes increasingly
crucial from ∼21ms to eventually 53ms. As also expected,
Load performance becomes gradually worse (LBS increases).

475
525
575
625
675
725
775
825
875
925

0 0.1 0.2 0.3 0.4 0.5

T
to

t 
(m

s)

LBS

HEL(Delay) HEL(Delay 75;Load 25)

HEL(Delay;Load) HEL(Delay 25;Load 75)

HEL(Load) Ben(Delay;Load)

OSM

Fig. 6: HELICON against all benchmarks.

4) Dynamic network conditions: Following Graph 5(a)
conclusion that HELICON can meet with the performance
of custom trained ANN-based Ben models under static net-
working conditions, the results of Figure 7 study and reveal
the merits of HELICON under more realistically dynamic
5G network conditions where CNs may arbitrarily join or
depart. The results show that HELICON outperforms Ben
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Fig. 7: Performance against the ANN-based Ben(Delay; Load) under
dynamic conditions. +1CN indicates adding a CN while in operation.

w.r.t. both delay and load balancing. Specifically, Ben(±1%
CN) yields +10.4% delay (Ttot=657) compared to HEL(±1%
CN) (Ttot=595), and +4.6% (LBS=0.292) as opposed to
HEL(±1% CN) (LBS=0.279). Notice that median values
almost identify with means, denoting the absence of outliers.
The results align with [16], as statically trained and deployed
local ANN models cannot adapt to new conditions. However,
with HELICON, both the node-local and the top-hierarchy
models adapt online to new conditions.

VI. CONCLUSIONS AND FUTURE WORK

HELICON is a novel RL approach for orchestrating the dy-
namic placement of VNFs. It can serve as a fully autonomous
online solution or a distributed module-based extension to

current orchestrators. We tackle an NP-hard problem with a
tunable, accurate and lightweight hierarchical scheme based on
a combination of two Q-learning model schemes running at a
global or local scale. Our practical testbed evaluation shows
that HELICON outperforms OSM policy-based, other ML and
heuristic-based orchestration regarding both SOO and MOO.
For future work, we plan to explore three or more objec-
tives, and to investigate approaches besides scalarization [18].
Finally, we will study the impact of non-uniform resource
requirements per issued VNF request.
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