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Abstract 

Gaining value from new, emerging technologies is a major concern for information systems 
researchers and practitioners. Prior research is unanimous in its argument that organizations need 
to develop capabilities around such novel technologies in order to leverage them effectively. In this 
short paper, we focus on the cognitive analytics technology. While it has attracted significant hype, 
the returns on investment in this technology have not been very impressive. This paper uses the 
resource-based view as a theoretical lens, interviews with domain experts, and a review of the 
academic literature on cognitive analytics to conceptualize a cognitive analytics capability. We 
identify the tangible, human, and intangible resources that underpin an organization's cognitive 
analytics capability. This research can potentially contribute to the academic literature on business 
value of information technology. It can also help organizations extract maximum benefits from their 
investments in cognitive analytics technology. Future avenues of research are also discussed.  

Keywords cognitive analytics, resource-based view, organizational capability, qualitative 
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1 Introduction 

Business value of information technology (BVIT) is an integral part of the intellectual core of the 
information systems (IS) field (Kim et al. 2011). One of the critical issues addressed by this research 
stream is called the IT productivity paradox (Brynjolfsson et al. 2021). This paradox refers to the lack of 
positive relationship between firm investments in IT and productivity outcomes for the firm. 
Researchers have examined this paradox since the early 1990s, using several theoretical perspectives to 
refute the paradox by demonstrating how IT investments can have beneficial effects on firm 
performance. Among various such perspectives, the resource-based view (RBV) (Barney 1991) has 
emerged as the most popular (Wade and Hulland 2004). IT and complementary resources (tangible, 
human, and intangible) are essential for realizing appropriate returns on IT investments (Bharadwaj 
2000). 

Recent research has begun exploring the big data productivity paradox (Gupta and George 2016). With 
big data analytics (BDA) capabilities considered to be essential for realizing optimal benefits from big 
data, interest in this topic has exploded (Wamba et al. 2017). Some recent work has linked cognitive 
computing technology to big data, arguing that cognitive analytics is a promising technological avenue 
that can help leverage benefits from the big data possessed by firms (Gupta et al. 2018). However, 
cognitive analytics involves sizable investments of financial and other scarce resources. Despite the 
rising hype around cognitive analytics since 2011 and promising results in domains like healthcare 
(Behera et al. 2019), the overall scenario around returns on cognitive investments is not very 
encouraging. Present thought on cognitive analytics, derived mostly from industry reports and 
technology consultant viewpoints, regards this emerging technology as a promising opportunity while 
warning that the adoption and usage of cognitive analytics is a challenge. 

We understand from extant research that merely investing in IT (cognitive analytics in this case) is not 
likely to generate any competitive advantage for firms (Shamim et al. 2019). Rather, with the objective 
of obtaining and sustaining competitive advantage using IT, firms need to develop capabilities around 
the IT. These capabilities are developed by developing, deploying, and combining various firm-level 
assets and resources. Drawing on the RBV, such firm-level resources can be classified as tangible, 
human, and intangible. The research question that drives this paper is: 

• What are the resources that combine to form a cognitive analytics capability?

In this paper, we identify the resources that are essential for developing a cognitive analytics capability 
in firms, drawing from a review of the academic literature and in-depth interviews with domain experts. 
The identified resources are classified into tangible, human, and intangible using the RBV as the 
theoretical lens. This is based on recent research that has utilized the tenets of the RBV to conceptualize 
big data analytics capability (Gupta and George 2016) and artificial intelligence (AI) capability (Mikalef 
and Gupta 2021), among others. Also, prior research has advised scholars to utilize theoretical 
frameworks such as the RBV while examining business analytics capabilities and related maturity 
frameworks (Cosic et al. 2015). 

2 Theoretical Background 

2.1 Resource-based View (RBV) 

The resource-based view (RBV) contends that firms can obtain a sustained competitive advantage by 
selecting (picking) and controlling resources that possess four characteristics – value, rarity, 
inimitability, and non-substitutability (Barney 1991). Beginning with Mata et al. (1995), IS researchers 
have widely used the RBV to examine the different kinds of IT resources that can help firms leverage 
maximum benefits from their IT investments in organizational settings (Melville et al. 2004). Despite 
many criticisms (Kraaijenbrink et al. 2010; Priem and Butler 2001), the RBV can be considered to be an 
influential and well-established theoretical perspective which can be used to examine how a variety of 
organizational resources can, in combination, ensure superior performance for firms. We adopt RBV as 
the theoretical lens for this paper following similar prior studies (Gupta and George 2016). 

The RBV provides a useful theoretical basis for meeting the objectives of this study, which is to isolate 
the resources that in combination can form a cognitive analytics capability. The key concern of the RBV 
is resource-selection and it has been used effectively in prior studies to identify the resources which are 
underpinning a particular organizational capability. RBV can help researchers and practitioners focus 
on a specific set of resources that are critical for developing a capability, and this can prove to be useful 
for managerial activities such as resource- and asset-orchestration (Sirmon et al. 2011). Specifically, in 
the examination of how to leverage business value from IT investments, the RBV can be used either as 
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a standalone theoretical lens or in combination with other theoretical perspectives such as knowledge-
based view, dynamic capabilities perspective, etc. (Mikalef et al. 2019). 

Table 1 gives an overview of prior research using RBV to examine analytics related issues. 

Table 1.  Use of RBV to examine analytics related issues 

2.2 Cognitive computing-enabled analytics 

Cognitive analytics “draws upon the cognitive computing environment to generate actionable insights 
by analysing diverse heterogeneous data sources using cognitive models that the human brain employs” 
(Gudivada et al. 2016: 169-170). Thus, to understand what cognitive analytics is, we need to first focus 
on understanding the essence of cognitive computing. 

The concept of cognitive computing (CC) is inspired by human cognitive capabilities and CC systems 
attempt to mimic human cognitive abilities (Schuetz and Venkatesh 2020). Through the coherent 
combination of various functionalities offered by multiple computing platforms (Modha et al. 2011), CC 
offers solutions to complex problems through the large-scale processing of structured, unstructured, 
and semi-structured data (Williams 2016). What makes CC systems distinct from previous technological 
advancements (which focused on making the systems more powerful) is its focus on making machines 
more human (Schuetz and Venkatesh 2020). The rising popularity of CC systems is evidenced by the 
variety of CC services offered by leading technology firms (such as IBM’s Watson, Google’s DeepMind, 
Microsoft’s Azure-based cognitive services, Amazon’s Rekognition, and Facebook’s AI Research) as well 
as other firms operating at the cutting-edge of technology (such as Clarifai, Cognitec, Kairos, and 
MetaMind). 

While CC has no universally accepted definition, Roeglinger et al. (2018: 421) synthesize various 
definitions to define CC as “an umbrella term for new problem-solving models that strive for mimicking 
the cognitive capabilities of the human mind by autonomously reasoning and learning on incomplete 
structured and unstructured contextual data, and through natural interactions with humans and 
machines”. Similarly, Chen et al. (2018: 19774) define CC as “an interdisciplinary research and 
application field which uses methods from psychology, biology, signal processing, physics, information 
theory, mathematics, and statistics in an attempt to construct machines that will have reasoning abilities 
analogous to a human brain”. 

Paper Overview 

Gupta and George 
(2016) 

Conceptualize a big data analytics capability comprising various resources 

Ghasemaghaei 
(2017) 

Big data analytics usage and its impact on distinctive value creation for firms 

Jeble et al. (2018) How big data and predictive analytics capability impacts supply chain sustainability 

Ghasemaghaei 
(2019) 

Role of structural and psychological readiness in firms gaining value from big data 
analytics 

Akter et al. (2020) Develop and operationalize a service system analytics capability 

Mikalef and 
Krogstie (2020) 

Resource-based conceptualization of big data analytics and their interplay with contextual 
factors to impact process innovation capabilities of firms 

Hossain et al. 
(2020) 

Resource-based conceptualization of customer analytics capability comprising six 
dimensions and twelve sub-dimensions 

Kristoffersen et al. 
(2021) 

Identify the business analytics related resources that must be developed and orchestrated 
by firms to create a business analytics capability for the circular economy 

Chatterjee et al. 
(2021) 

Impact of business analytics on organizational performance and business value 

Mikalef and Gupta 
(2021) 

Conceptualize an AI (artificial intelligence) capability by identifying and categorizing the 
underlying resources 



Australasian Conference on Information Systems 
2022, Melbourne 

Majhi & Mukherjee 
Cognitive Analytics Capability 

4 

CC systems represent the fourth stage of the evolution of machine capabilities to match or even better 
human capabilities, with the first three stages being (a) decision support systems (DSS), (b) expert 
systems (ES), and (c) intelligent agents (IA) (Schuetz and Venkatesh 2020). The most critical advantage 
offered by CC systems in comparison to DSS, ES, and IA is their ability to process and take advantage of 
unstructured data. The processing of unstructured data such as text, audio, and visual inputs was 
traditionally understood to be an exclusively human capability, and the capabilities of CC systems 
related to memory, reasoning, action, and perception represent a paradigmatic shift in computing (Laird 
et al. 1987). Cognitive analytics has been utilized in various domains (Majhi, Mukherjee and Anand, 
2021) such as asset performance management, smart service systems, e-government, contract renewals, 
emergency management, healthcare, procurement, and customer lifetime value. 

3 Research Methodology 

We adopt a qualitative inquiry approach centred around in-depth personal interviews to address the key 
research objective of this study, i.e., to identify the resources that need to be combined to form a 
cognitive analytics capability. In this section, we describe the procedures followed in conducting the 
qualitative inquiry in terms of sampling, data collection, and data analysis. 

To collect qualitative data for this study, we conducted 44 in-depth interviews with industry 
professionals who are conversant with cognitive analytics and its applications. Theoretical sampling 
(Eisenhardt 1989) was used to identify the participants. They were selected based on their experience 
with cognitive analytics technologies and the depth of their knowledge about this technology and its 
applications in various contexts. The participants belonged to six organizations based in India. 

Data were collected using a combination of face-to-face and in-depth telephonic interviews. The 
interviews lasted for nearly an hour on average, while ranging from 30 to 75 minutes. The initial 
interviews were unstructured, and we questioned the participants on a broad range of topics about 
cognitive analytics, including but not limited to their experiences with the implementation of cognitive 
applications, the challenges associated with the use of cognitive technologies, and the applications of 
cognitive analytics in various organizational contexts. 

We adopted thematic analysis (Braun and Clarke 2006) as the method to analyse the collected data. 
Thematic analysis broadly comprises six phases – (a) familiarization with the data, (b) generation of 
initial codes, (c) search for themes, (d) review of the themes, (e) definition and naming of the themes, 
and (f) production of the research report (Braun and Clarke 2006; Nowell et al. 2017). We familiarized 
ourselves with the collected data through repeated readings and looked for patterns and meanings that 
were explicit in the data. Then, we generated initial codes from the collected data and organized the 
codes into meaningful groups based on the convergence in their meanings. In the next step, we referred 
to relevant prior literature and the tenets of the RBV to identify themes based on the combination of 
various initial codes. At the end of this step, we arrived at a set of themes and sub-themes, which were 
named per similar concepts in prior literature. However, in cases where we could not find a match 
between an identified theme and a similar concept in existing literature, we named that particular theme 
in a manner that best reflected its meaning. Finally, we mapped the final set of themes and sub-themes 
with the corresponding data extracts of participant responses.    

Firm and size #Participants Firm description 

A, > 10000 10 IT consulting services firm, with a cognitive analytics division 

B, > 10000 12 IT consulting services firm, with a cognitive analytics division 

C, < 100 2 Entrepreneurial venture, working with cognitive technologies such 
as computer vision and NLP 

D, < 100 3 Entrepreneurial venture, working with cognitive technologies such 
as computer vision and NLP 

E, > 10000 9 Large telecommunications firm, utilizes cognitive analytics for its 
operations 

F, > 10000 8 Large oil and gas firm, utilizes cognitive analytics for its operations 

Table 2.  Details of interview participants 
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4 Findings 

The findings indicate that there are four types of tangible resources (data acquisition, data storage, 
computational technology, and basic resources), three types of human resources (technical, managerial, 
and business analysis and consulting skills), and three types of intangible resources (the relationship 
between technology and business teams, organizational culture, and trust in cognitive analytics) which 
combine to form an organizational cognitive analytics capability. 

Tangible resources can be easily bought and sold in the market, and thus are not sources of competitive 
advantage on their own. However, they play a crucial role in the development of capabilities. Continuous 
acquisition of large volumes of data (big data) is essential for facilitating effective knowledge discovery 
that is needed for improving the intelligence of the CC system. The full potential of cognitive analytics 
technology can be realized only if the organization possesses good-quality big data. Mere acquisition of 
data, however, is not enough. Pre-processing and data engineering are critical activities which help 
organize the data in the right form and format. However, once the data is acquired, the organization 
needs to be cognizant of the appropriate storage and management of the data. Most participants believed 
that, on the one hand, cognitive analytics technology is expensive and, on the other, organizations are 
uncertain about the time duration in which they will be able to see returns from their investments in 
cognitive analytics. A key side-effect of the prohibitive financial investments needed for cognitive 
analytics implementations is that firms face a major issue in selling cognitive analytics solutions to 
clients (from the point of view of IT implementation firms). 

We found three types of skills to be important in the context of cognitive analytics: technical skills, 
managerial skills, and business analysis skills. Since cognitive solutions incorporate a large number of 
technologies (such as AI, machine learning, computer vision, IoT, cloud, etc.), technical skills become 
very critical for the development of a cognitive analytics capability. Since technical skills are imitable 
and substitutable to a large extent, it is the managerial skills which may confer a competitive advantage 
to certain organizations. Also, managerial skills are essential in getting the technical human resources 
to deliver to their full potential. There is often a gap between the domain understanding of the technical 
and the managerial human resources. Thus, the bridging role of business analyst becomes extremely 
important in the context of a cognitive analytics capability. 

Although intangible resources cannot be included in the financial statements of organizations, these 
resources play the most critical role in the achievement and sustenance of competitive advantage. Most 
intangible resources are not tradable in the market and hence can act as sources of superior firm 
performance. Due to a lag between implementation and visible outcomes, business leaders may often 
question the financial viability of cutting-edge technologies such as cognitive analytics. Thus, a strong 
relationship between technology leadership and the business leadership of the organization becomes 
critical in the case of cognitive analytics. New technologies such as cognitive analytics often represent a 
significant break from business-as-usual. Decision-making based on managerial experience and 
intuition gets replaced by data-driven and evidence-based decision-making. We use the term trust in 
cognitive analytics to refer to the trust placed by the decision-maker(s) in a firm on the insights 
generated by the cognitive analytics technology solution. 

Tables 3a-3c reports the key themes that emerged from our analysis of the collected data. We have also 
included some exemplar quotes corresponding to each theme and sub-theme. We used the RBV as the 
reference theoretical framework while conducting the data analysis, and specifically used the framework 
suggested by Grant (1991) to arrive at the final list of themes. 

Table 3a reports the various types of tangible resources and cites exemplar participant quotes 
corresponding to each identified tangible resource. Similarly, Tables 3b and 3c report the same for 
human resources and intangible resources. 
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Exemplar participant quote Sub-theme Theme 

“Since we know that more the amount of good quality data I can 
push into my cognitive system, the better results it can come up 
with … we are always on the lookout to capture more and more 
relevant data. There are firms which are acquiring other firms just 
to get hold of their proprietary data” 

Data acquisition 

Tangible 
resources 

“My organization has been focused on cognitive technology right 
from the outset. However, recently we realized that something is 
missing. Focusing on cognitive was good but incomplete. We 
underestimated the importance of the cloud. Data being key for 
cognitive, it is essential to have data from beyond the on-premise 
firewall. While we still believe that cognitive is the next big thing, 
we are now equally focused on cloud” 

Data storage 

“This business intelligence and analytics has been there for a long 
period of time … you can say 10 to 15 years … what has happened 
with the advent of big data in the last 5 to 10 years … the processing 
capability of Spark and Hadoop has come in … all these facilitate 
cognitive analytics and advanced analytics in general … you can do 
a more heavy level of data processing and come out with better 
predictions and insights” 

Computational 
technology 

“Significant financial investments are needed in cognitive projects” 

“In most projects there is a lag between the systems being set up 
and us observing any value addition in terms of KPIs” 

Basic resources 
(finance, time) 

Table 3a.  Themes, sub-themes, and exemplar participant quotes – Tangible resources 

Exemplar participant quote Sub-theme Theme 

“The staffing of cognitive projects will be a combination of some people 
already working in the organization who need to be re-trained and re-
skilled, and new campus hires who need to be trained from scratch. We have 
a large budget set aside for such trainings every year. However, because the 
technology is evolving so rapidly, there are situations where the required 
skills are so paradigmatically different that I cannot reskill experienced 
folks for the same … they will be a roadblock … Here, I follow a strategy of 
hiring freshly minted grad students who do not come with any preconceived 
notions or knowledge structures … I have found that this strategy is very 
effective” 

Technical 
skills 

Human 
resources 

“From my personal experience and the experiences of my colleagues, I can 
say that a typical cognitive implementation is not linear in flow … rather it 
is extremely iterative in nature … so we use the Agile methodology to 
manage our projects … Iterations, experiments and changing the course if 
needed are essential steps on the way” 

Managerial 
skills 

“A good business analyst can be the difference between a successful 
implementation project and an unsuccessful implementation project. My 
tech resources may not understand what the end-user or the business user 
wants … analysts can bridge that gap”.  

“Cognitive and AI needs a lot of thought to even structure the problem 
properly and think of the best approach for solving the problem. Here, 
things often cannot be put into business rules easily” 

Business 
analysis 
skills 

“This is a new technology, and it is also very expensive. One needs to be 
innovative while selling this technology. Clients may not know the full 
extent of the capabilities that it provides. Hence, a good consultant is critical 
… more so in the case of cognitive analytics than in the case of any other 
technology solution” 

Consulting 
skills 

Table 3b.  Themes, sub-themes, and exemplar participant quotes – Human resources 
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Exemplar participant quote Sub-theme Theme 

“Billing is a big concern for me as far as the cognitive team is concerned 
because the KPIs [key performance indicators] and KRAs [key result 
areas] for the cognitive analytics service line have been kept the same as 
other service lines ... It is difficult to bill the cognitive team members to 
one single project for a longer duration, and they are likely to be on the 
bench for extended periods of time … if my team members stay on the 
bench for long periods of time, the senior management begins to ask 
tough and uncomfortable questions” 

Business-
technology 
relationship 

Intangible 
resources 

“My firm traditionally plays safe … so they were reluctant to go for this 
[cognitive analytics] for the longest time … while my leadership allowed 
me to go for this technology, they have not updated the metrics and other 
parameters that they use to evaluate project status and success … so there 
is a lot of undue pressure on me and my team” 

Organizational 
culture 

“Things will change because a machine is making decisions on your 
behalf. Also, you do not really know how exactly the output is getting 
generated. Initially it will be difficult to change one’s way of working, but 
because there is so much hype about how analytics is the next big thing 
and it is so great, people may be willing to accept it” 

Trust in 
cognitive 
analytics 

Table 3c.  Themes, sub-themes, and exemplar participant quotes – Intangible resources 

Figure 1: Conceptual framework 

5 Discussion and Conclusion 

In the last decade, there has been tremendous hype around big data and cognitive analytics. Firms have 
striven to look for value-creating opportunities using these emerging technologies but results thus far 
have not been very encouraging. Thus, there is a research opportunity to provide theoretically- and 
empirically grounded mechanisms through which firms can leverage the full potential of cognitive 
analytics and big data. 
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In this regard, the objective of this paper was to identify the resources that form an organizational 
cognitive analytics capability. To address this objective, this paper draws on a qualitative inquiry using 
RBV as the theoretical lens to conceptualize a cognitive analytics capability by identifying its underlying 
resources using the framework of Grant (1991). The findings indicate that there are four types of tangible 
resources (data acquisition, data storage, computational technology, and basic resources), three types 
of human resources (technical, managerial, and business analysis and consulting skills), and three types 
of intangible resources (the relationship between technology and business teams, organizational culture, 
and trust in cognitive analytics) which combine to form an organizational cognitive analytics capability. 

Going beyond the mere identification and categorizing the resources underlying the conceptualized 
cognitive analytics, our analysis of the findings also revealed the various nuances and dynamics 
surrounding these resources and their use in organizations to extract or leverage maximum value from 
the investments in the emerging cognitive analytics technology. While prior studies have used the same 
framework (Grant 1991) to categorize the resources underlying a big data analytics capability (Gupta 
and George 2016) or an artificial intelligence capability (Mikalef and Gupta 2021), the contribution of 
this paper lies in unravelling certain nuances and dynamics specific to the cognitive analytics technology 
context. 

This paper engages with a research stream that has been important for over four decades – business 
value of IT. This paper engages with the big data productivity paradox, which is a specific instance of 
the IT productivity paradox, which has been an enduring stream of information systems research for 
over three decades. Considering cognitive analytics to be an emerging approach to the leveraging of big 
data for organizational benefits, this paper uses the theoretical perspective of resource-based view to 
show how organizations can benefit from cognitive analytics and big data. Thus, it makes a novel and 
strong attempt to address and refute the big data productivity paradox, extending recent academic 
thought that cognitive analytics technology can provide a useful avenue to leverage maximum value from 
big data. In doing so, the findings of this paper add to the literature on the business value of information 
technology, specifically in this case, the business value of cognitive analytics. 

This paper also has important implications for managerial practice. By identifying complementary 
organizational resources such as human resources and intangible resources, this paper encourages 
managers to move beyond merely investing in cognitive analytics technology. Thus, it helps highlight 
the important fact that non-technical resources play an important complementary role while 
organizations and managers attempt to leverage value from a particular information and 
communication technology. By creating an organizational capability around the technology, managers 
can help their organizations achieve and sustain a competitive advantage over their competitors. It 
supports the proposition that cognitive analytics capability is not limited to the technology or the data 
(Gupta and George 2016; Ross et al. 2013). 

This paper is not free from its limitations. The first major limitation is the relatively smaller size of the 
participant sample. While we strove to obtain theoretical saturation, the relatively smaller sample size 
is also due to the objective and context of the research project. Since cognitive analytics is a niche domain 
characterized by several failures as far as industry implementations are concerned, many potential 
interviewees refused to participate in the research endeavor. Also, a lack of access to more organizations 
implementing cognitive analytics could have influenced the findings obtained from this paper. 

Since cognitive analytics is an emerging technology domain, the experience of the participants with this 
technology is likely to be limited. Thus, there might have been potential gaps in their articulation and 
description of the domain and its related issues. To address this issue, future research can think of 
participant observation as a research method. This would allow the researchers to capture potentially 
richer data.  
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