

Effect of aescin on β -cell physiology in fructose fed rat model

Salahuddin Shaikh¹, Farheen Malik², Arsalan Ahmed Uqaili³, Navaid Kazi⁴, Farzana Rahim⁵, Summaya Qazi⁶

^{1,5}Lecturer, Department of physiology, ²Lecturer, Department of pharmacology
 ³Assistant Professor, Department of physiology, ⁴Assistant Professor, Department of physiology
 ⁶Assistant Professor, Department of Biochemistry

(Isra University, Hyderabad)

	(Isra University, Hyderabad)					
Author`s	A B S T R A C T					
Contribution	Objective: To determine the effects of Aescin on blood glucose homeostasis in					
^{2,5} Drafting the work or revising it	fructose fed Diabetic albino Wistar rats					
ritically for important intellectual	Methodology: This Quasi Experimental study was conducted at the Department					
ontent, ³ Final approval of the	of Physiology from July 2018 to January 2019. Sixty albino (Wistar) rats were					
ersion to be published ⁶ Acquisition, analysis, or	equally divided into five groups according to diet as; Group A (normal diet) at					
nterpretation of data for the work	Group B (Fructose 10 g/kg/day) and all the other experimental groups wer					
unding Source: None						
Conflict of Interest: None	given Fructose (10 g/kg/day) with the administration of aescin as; Group C (
Received: November 02, 2019	mg/kg/day), Group D (1.8 mg/kg/day) and Group E (3.6 mg/kg/day). After four					
Accepted: March 28, 2020	weeks body weight was calculated and blood samples were taken from al					
Address of Correspondent	animals to assess the blood glucose level and serum insulin level. All the data					
Dr Arsalan Ahmed Uqaili	was recorded in self-made proforma.					
Department of physiology Isra University, Hyderabad drarsalan311@gmail.com	Results: Mean of blood glucose in control group A (165.0±14.29 mg/dL) was					
	significantly lower in contrast to experimental groups B, C and D (357.17±21.73					
	246.08±21.73 and 235.67±25.73 respectively); p-0.001, while the mear					
	difference was insignificant as compared to experimental group E (194.0±22.16					
	mg/dl); p=0.078. Serum insulin level was significantly lower in experimenta					
	group B (17.45± 5.17) as compared to control group A (16.88± 4.78); p-0.001					
	while Aescin administered groups C and D showed serum insulin level (19.05±					
	5.81 and 25.08± 2.42 respectively) almost equal to control group A; p-0.092					
	Mean serum insulin level in Aescin (3.6 mg/kg/day) administrated group E was					
	significantly higher (29.10 \pm 1.64 IU/L) as compared control and othe					
	experimental groups; p-0.001.					
	Conclusion: The Aescin showed exerts ameliorating effects on glucose					
	homeostasis in fructose fed Diabetic albino Wistar rats. By Aescir					
	administration, serum insulin level can be increases to control the diabetes.					
	Keywords: Aescin, Fructose, Glucose Homeostasis, Insulin.					
Cita this articla as Shaikh S Mali	κ F, Uqaili AA, Kazi N, Rahim F, Qazi S. Effect of aescin on β-cell physiology in fructose					

Cite this article as: Shaikh S, Malik F, Uqaili AA, Kazi N, Rahim F, Qazi S. Effect of aescin on β -cell physiology in fructose fed rat model. Ann Pak Inst Med Sci. 2020; 16(1): 15-19.

Introduction

The use of refined sugar in the diet is on rise in this modern age. Refined sugar is a product of sugar cane that contains sucrose. Sucrose has glucose and fructose in equal ratio. Both sugars are ketohexose, and essential for cell metabolism. Fructose is being consumed in large quantities in the form of sugar cane. Fructose consumption increases the risk of metabolic and cardiovascular diseases. Fructose is an isomer of glucose that is metabolized in the liver, particularly.¹

Hyperglycemia, hyperuricemia, hyperlipidemia and dyslipidemia, and non-alcoholic fatty liver diseases (NAFLD) have been reported in experimental rat model studies using chronic fructose rich diet.²⁻⁴ Systemic hypertension was observed in the fructose fed experimental rat animals, and the pathogenesis was speculated as early renal damage caused by nitro-

oxidative stress.⁵ A study reported that the inhibition of Nitric-oxide synthase (nNOS) induces systemic hypertension through sympathetic stimulation in metabolic syndrome.⁶ Similar observations have been reported in streptozotocin (STZ)-induced diabetic rat model.⁶ Currently, the Diabetes mellitus (DM) is multiplying in the World, especially in developing countries like Pakistan. Now the DM ranks 4th noncommunicable disease (NCDs) that cause deaths; hence the problem needs attention for new preventive measures. DM accounts for 1.5 million global deaths each year.⁷

The estimated prevalence of DM is 9% among adults (aged ≥ 18 years) in the World, as reported in 2014.⁸ The International Diabetes Federation (IDF) reported that 382 million people (aged 40-59 years) are suffering from DM across the World. It is further estimated that a 55% rise will account for an increase of 532 million diabetics by the year 2035. 80% of Diabetic subjects are living in low and middle-income countries. Approximately 175 million people are undiagnosed. In the United States, 548 million dollars were expended on the health of diabetics in 2013⁽⁹⁾. However, Pakistan is the sixth populous country with a population of 184.35 million,¹⁰ the true prevalence of Diabetes is lacking in Pakistan. A survey conducted by Diabetes Association of Pakistan (DAP) and WHO reported a prevalence of DM around 6.39-16.5%.11 International Contrary to this, the Diabetes Federation reported a 6.8% prevalence of DM (population aged 20- 79 years) in 2014, in Pakistan, which means that 6.9 million cases of diabetes were present in Pakistan, in 2014.12 However, by 2035, around 12.8 million diabetics have been estimated for Pakistan.¹³

With this alarmingly rising burden of DM, there is a need of evaluating new agents and herbs for their efficacy of controlling the blood glucose levels and regulatory effects on β -cell secretory physiology. One such agent under evaluation in the present research is called as Aescin, which is a mixture of saponins derived from Aesculus hippocastanum (commonly called the horse chestnut). Medicinal properties of Aesculus hippocastanum are attributed to the aescin, which is an active compound of horse chestnut. A study¹⁴ reported that aescin is an anti-inflammatory, veno-toner, and vasculo- protective agent. Previous studies reported that aescin is an effective therapy for chronic venous insufficiency.14, 15 Moreover, two international studies reported that saponin-containing plants increase the production of insulin secretion from the pancreas and glucose utilization by the tissues.¹⁶ Therefore this study

has been planned to assess the effects of Aescin on blood glucose homeostasis in fructose fed Diabetic albino Wistar rats. The present research is of clinical importance so that effective newer drug molecules may be made available to tackle the diabetes epidemic.

Methodology

This Quasi Experimental study was conducted at the Department of Physiology at Isra Medical University Hospital Hyderabad, including the animal department of Zarai University Tando Jam. from July 2018 to January 2019 after taking permission from institutional ethical committee.

Inclusion criteria: sixty healthy albino (Wistar) male rats, with body weight between 150 to 250 grams

Exclusion criteria: Suffered (physically inactive) albino rats, body weight >250 grams and female rats

Animals were equally divided into five groups as;

Group A: Animals were put on a normal diet

Group B: Animals were put on Fructose (10 g/kg/day)

Group C: Animals were given Fructose (10 g/kg/day)+ Aescin (0.9 mg/kg/day)

Group D: Animals were given Fructose (10 g/kg/day)+ Aescin (1.8 mg/kg/day)

Group E: Animals were put on Fructose (10 g/kg/day)+ Aescin (3.6 mg/kg/day)

Aescin was smashed into powder, mixed in chow diet and given for 4 weeks.

After four weeks the body weight of rats was calculated by electronic weight machine. Bodyweight was noted in the proforma. Blood samples were taken from all animals to assess the blood glucose level and serum insulin level. Blood samples were drawn through a cardiac puncture after cervical dislocation of the rats and sera were isolated from the clotted blood by centrifugation. Sera were used to determine the blood glucose and serum insulin levels. Blood Glucose was estimated by glucose oxidase method on Hitachi Roche Diagnostics Chemistry Analyzer and serum insulin was detected by ELISA kit assay method. All the data was recorded in self-made proforma. Data was analyzed by SPSS version 20.

Results

Body weight of control (group A) and experimental groups B, C, D and were compared. Mean of body weight in the groups' A, B, C, D, and E was noted as 231.75 ± 11.48 , 389.75 ± 10.87 , 306.25 ± 9.52 , 285.50 ± 8.01

and 265.83 ± 12.34 grams respectively. Weight gain was found high in group B. While, Group E, treated with high dose aescin, showed significantly less rise in body weight. These findings show that the aescin has antiobesity effects as shown in table I.

The mean \pm SD of blood glucose in control group A was $165.0\pm 14.29 \text{ mg/dL}$. While experimental groups B, C, D, and E showed blood glucose levels of 357.17 ± 21.73 , 246.08 ± 21.73 , 235.67 ± 25.73 , and $194.0\pm 22.16 \text{ mg/dl}$ respectively (Fischer's ratio value 126.59, P=0.008). High dose Aescin treated animals (group E) showed a significant decrease in blood glucose levels as compared to control group A and experimental groups B, C, and D (P>0.05). Low dose Aescin (0.9 mg/kg) treated group C animals had high mean blood glucose levels as compared to positive control group B (not treated with aescin). Findings have been shown in table II.

Table 1: Bodyweight (grams) at the end of the experiment (n=60)

Study groups	Body weight (p- value	
A vs B	231.75 <u>+</u> 12.74	3.89 <u>+</u> 68.23	0.000
A vs C	231.75 <u>+</u> 12.74	3.06 <u>+</u> 46.61	0.000
A vs D	231.75 <u>+</u> 12.74	2.85 <u>+</u> 40.35	0.016
A vs E	231.75 <u>+</u> 12.74	2.65 <u>+</u> 42.34	0.256

A=Group A. Control Rats

B= Group B. Fructose (10 g/kg/day)

C=Group C. Fructose (10 g/kg/day)+ Aescin (0.9 mg/kg/day)

D=Group D. Fructose (10 g/kg/day)+ Aescin (1.8 mg/kg/day) $\Gamma = G$

E=Group E. Fructose (10 g/kg/day)+ Aescin (3.6 mg/kg/day)

 Table II: Blood Glucose (mg/dl) comparison among animal groups (n=60)

Study groups	Blood Gl (Me	p- value	
A vs B	1.65 <u>+</u> 8.70	389.75 <u>+</u> 54.61	0.000
A vs C	1.65 <u>+</u> 8.70	2.46 <u>+</u> 30.42	0.000
A vs D	1.65 <u>+</u> 8.70	2.35 <u>+</u> 13.25	0.000
A vs E	1.65 <u>+</u> 8.70	1.93+37.61	0.134

A=Group A. Control Rats

B= Group B. Fructose (10 g/kg/day)

C=Group C. Fructose (10 g/kg/day)+ Aescin (0.9 mg/kg/day)

D=Group D. Fructose (10 g/kg/day)+ Aescin (1.8 mg/kg/day) $E=C_{max}$ E. Fructose (10 g/kg/day)+ Aescin (2.6 mg/kg/day)

E=Group E. Fructose (10 g/kg/day)+ Aescin (3.6 mg/kg/day)

The mean \pm SD of serum insulin in control group-A and in experimental groups (B, C, D, and E) was found as 16.88 ± 4.78 , 17.45 ± 5.17 , 19.05 ± 5.81 , 25.08 ± 2.42 and 29.10 ± 1.64 IU/L respectively (Fischer's ratio value 18.66, P=0.0001). Aescin treated animal groups C, D and E showed a significant rise in insulin secretion as compared to positive control group B. The observation may be interpreted as: aescin stimulates the β - cell functioning because insulin secretion is an exclusive function of these cells. Table III

Table III: Serum insulin (IU/L) comparison among animal groups (n=60)

Insulin level	Mean <u>+</u> STD Deviation		p-value
insuin level	gre		
A VS B	1.45 <u>+</u> 0.55	0.31 <u>+</u> 0.39	0.000
A VS C	1.45 <u>+</u> 0.55	1.74 <u>+</u> 0.56	0.490
A VS D	1.45 <u>+</u> 0.55	1.63 <u>+</u> 0.29	0.846
A VS E	1.45 <u>+</u> 0.55	2.18 <u>+</u> 0.55	0.009

A=Group A. Control Rats

B= Group B. Fructose (10 g/kg/day)

C=Group C. Fructose (10 g/kg/day)+ Aescin (0.9 mg/kg/day) D=Group D. Fructose (10 g/kg/day)+ Aescin (1.8 mg/kg/day)

E=Group E. Fructose (10 g/kg/day)+ Aescin (3.6 mg/kg/day)

Discussion

The present study is the first research in our setup on aescin, which exerts positive effects on blood glucose homeostasis and histology of β-cell of Pancreatic Islets (Islets of Langerhans). The present study found protective effects of aescin against the fructose induced DM in rat model. The fructose is a commonly used sugar in the manufacturing of soft drinks and sweets. The use of soft drinks is on the rise throughout the World. This has resulted in metabolic disorders, which is a rising health problem. Fructose consumption is associated with metabolic disorders such as obesity, insulin resistance, and diabetes mellitus, dyslipidemia, elevated serum triglycerides. cholesterol, LDL-cholesterol and Dyslipidemia is a risk factor for cardiovascular disease.^{17,18} High fructose consumption results in insulin resistance/hyperinsulinemia. Chances of liver steatosis, lipogenesis, obesity, type 2 DM, systemic hypertension, dyslipidemia, and coronary artery disease are increased by a high fructose diet. European Food Safety Authority [EFSA] stated that the use of fructose is preferred over glucose and sucrose alone in diabetics; because the fructose causes less rise in the post-prandial blood glucose levels. Moreover, fructose intake increases the risk of insulin resistance, dyslipidemia, and visceral obesity. 17,18

In this study, the highest body weight gain was observed in group B (389.75 ± 10.87 grams), this finding is in agreement with previous studies.¹⁹⁻²¹ The reason is clear because fructose increases body weight and adiposity. The increase in the body was found high in positive (control group B). While the Aescin treated animals revealed less rise in body weight and thus shows antiobesity effects of Aescin and this finding is in accordance to previous studies.^{20,21} The present study suggests that the physiological mechanism of how aescin affects body weight negatively needs further studies. Aescin administration in groups C, D and E showed amelioration of the blood glucose levels, the findings are in agreement with previous studies.^{22,23}

In this study, a high dose treated Aescin animal (group E) revealed significant blood glucose lowering compared to control and experimental groups B, C, and D (P>0.05). Low dose Aescin (0.9 mg/kg) treated group C animals had high mean blood glucose levels as compared to control group B (not treated with aescin). The findings are in agreement with previous studies,^{21,24,25} and these previous studies have reported statistically significant glucose lowering effects (P<0.05). However, findings are inconsistent with one study²⁵ that reported that aescin has glucose lowering potential, statistically insignificant (P >0.05). The contradictory finding of the above study is most probably because of the sub-optimal dose of aescin, as they have used low dose aescin therapy for short duration.

Gulcan Avci et al²⁶ conducted a study on Aescin as an anti-hyperglycemic agent and reported that blood glucose and serum insulin both showed positive effects, which is in favor of the present study, where Aescin treated animal showed a rise in insulin secretion as compared to a positive control (group B). A search of the literature shows no other studies on the effect of aescin on insulin secretion. The present study is the second study that is reporting on the effects of aescin on insulin secretion.

Conclusion

The Aescin showed exerts ameliorating effects on glucose homeostasis in fructose fed Diabetic albino Wistar rats. By Aescin administration, serum insulin level may increase and thus diabetes can be controlled. More brief large sample size experimental studies are required on this objective.

References

- Tappy L, Rosset R. Fructose metabolism from a functional perspective: implications for athletes. Sports Med. 2017; 47: 23-32.
- Yoo SY, Ahn H, Park YK. High Dietary Fructose Intake on Cardiovascular Disease Related Parameters in Growing Rats. Nutrients. 2017; 9(1): 11. https://doi.org/10.3390/nu9010011
- Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Yusof MR, Suhaimi HF. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014; 2014:263897. https://doi.org/10.1155/2014/263897

- Spruss A, Kanuri G, Uebel K, Bischoff SC, Bergheim I. Role of the inducible nitric oxide synthase in the onset of fructose-induced steatosis in mice. Antioxid Redox Signal. 2011; 14:2121-2135.
- Cosenzi A, Bernobich E, Bonavita M, Gris F, Odoni G, Bellini G. Role of nitric oxide in the early renal changes induced by high fructose diet in rats. Kidney Blood Press Res .2002; 25:363-9.
- Wu KL, Chao YM, Tsay SJ, Chen CH, Chan SH, Dovinova I, et al. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome. Hypertension. 2014; 64:815-824.
- 7. Sherin A. National diabetes action plan of Pakistan: Need and challenges. Khyber Med Univ J. 2015;7(1): 1-2.
- Khan MA, Sultan SM, Nazli R, Akhtar T, Khan MA, Sher N, et al. Depression among patients with type-II diabetes mellitus. J Coll Physicians Surg Pak. 2014; 24(10):770-771.
- Shera AS, Rafique G, Khuwaja IA, Baqai S, Khan IA, King H. Pakistan National Diabetes Survey. Prevalence of glucose intolerance and associated factors in North West at Frontier Province (NWFP) of Pakistan. J Pak Med Assoc. 1999; 49(9):206–211.
- Nadeem A, Mumtaz S, Naveed AK, Aslam M, Siddiqui A, Lodhi GM. Pattern of dyslipidaemia and impact of increasing age and duration of type 2diabetes mellitus on dyslipidaemia, insulin levels and insulin resistance. J Pak Med Assoc. 2015; 65: 928-32
- Frier BM, Fisher M. Diabetes Mellitus. In: Colledge NR, Walker BR, Ralston SH, editors. Davidson's Principles and Practice of Medicine. 25th ed. Edinburg: Churchill Livingstone .2016; 795–834.
- 12. Khan MA, Sultan SM, Nazli R, Akhtar T, Khan MA, Sher N, et al. Depression among patients with type-II diabetes mellitus. J Coll Physicians Surg Pak. 2014; 24:770-771.
- National Institute of Health. Public Health Service Policy on Human Care and Use of Laboratory Animals, Revised. 2015. <u>www.url.nih.pak.com</u>
- Tian RH, Zhu MY, Yang S, Wang ZQ, Zhang ZS, Wan CF, et al. Effects of aescin on testicular repairmen in rats with experimentally induced varicocele. Andrologica. 2013; 46: 504–12
- Sirtori CR. Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacological Research.2001; 44 (3): 183–193.
- Avci G, Küçükkurt I, Küpeli Akkol E, Yeşilada E. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet. Pharmaceutical biology. 2010;48(3):247-252.
- Pittler MH, Ernst E. Horse chestnut seed extract for chronic venous insufficiency. The Cochrane Database of Systematic Reviews 2012; 11: CD003230. ISSN 1469-493X.
- Sirtori CR. Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacol Res. 2011; 44 (3): 183–193.
- 19. Amr AA, Elshazly SM. Ursodeoxycholic acid ameliorates fructose-induced metabolic syndrome in rats. PLoS One. 2014; 9:e106993.
- 20. Ang BRG, Yu GF. The Role of Fructose in Type 2 Diabetes and Other Metabolic Diseases. J Nutr Food Sci. 2018; 8(1): 659. doi: 10.4172/2155-9600.1000659

- Domanski D, Zegrocka-Stendel O, Perzanowska A, Dutkiewicz M, Kowalewska M, Grabowska I, et al. (2016) Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications. PLoS ONE. 2016; 11(10): e0164365. doi:10.1371/journal.pone.0164365.
- Persson IAL, Persson K. Horse chestnut (Aesculus hippocastanum L.) Recent Prog Med Plants. 2010; 28: 159–171.
- 23. Morton MJ, Main MJ. Use of escin as a perforating agent on the Ion Works quattro automated electrophysiology platform. J Biomol Screen. 2013; 18(1): 128–134.
- 24. Tsuzuki JK, Svidzinski TI, Shinobu CS et al. Antifungal activity of the extracts and saponins from Sapindus saponaria L. An Acad Bras Cienc 2007; 79: 577–83.
- 25. Coleman JJ, Okoli I, Tegos GP et al. Characterization of plant derived saponin natural products against Candida albicans. ACS Chem Biol 2010; 5: 321–32.
- 26. Gülcan Avcı, Ismail Küçükkurt, Esra Küpeli Akkol, Erdem Yeşilad. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet. Pharm Biol. 2010; 48(3): 247–252. https://doi.org/10.3109/13880200903085466