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Abstract— Pavement surface condition rating is an essential 

part of road infrastructure maintenance and asset management, 

and it is performed manually by the data analyst. The manual 

rating requires cognitive skills built through training and 

experience, which is quantitatively challenging and time-

consuming. This paper first analyses the complexity of the 

current manual visual rating system. This paper then 

investigates the suitability and robustness of a state-of-the-art 

convolutional neural network (CNN) classifier to automate the 

pavement surface condition index (PSCI) system used to rate 

pavement surfaces in Ireland. The dataset contains 3735 images 

of flexible asphalt pavements from Irish urban and rural 

environments taken from a video camera mounted in front of a 

van. The PSCI ratings were applied by experts using a scale of 

1-10 to indicate surface conditions. The classification models are 

evaluated for different input pre-processing variations, image 

size, learning techniques, and the number of classes. Using 10 

PSCI classes, the best classifier achieved a precision of 57% and 

a recall of 58%. Adjacent combination of classes (e.g., ratings 1 

and 2 combined into a single class) to form a 5-class problem 

produced a classifier with a precision of 70% and recall of 77%. 

Given the complexity of the problem, classification using CNN 

holds promise as a first step towards an automated ranking 

system. 

Keywords—classification, pavement surface condition rating, 

PSCI rating, pavement distresses  

I. INTRODUCTION 

Pavement or road surface condition ratings are 

essential to road or pavement management systems in many 

countries, including the United States of America, the United 

Kingdom, China, Brazil, Taiwan, and Japan[1]. Pavement 

surface ratings and other measurements and information can 

help in future planning of budgets and maintenance priorities. 

The road or pavement consists of a subgrade layer at the 

bottom, then a foundation layer that consists of sub formation 

and capping. After the foundation layer, there is a subbase 

layer and then the base layer. After the base layer, there may 

be a binder course and surface course that makes the 

pavement surfacing. Visual distresses appear on the surface 

course; however, they may indicate a fault in the base or 

foundation layer (such as alligator cracking or rutting). 

According to the Transportation Information Centre at the 

University of WISCONSIN [2], pavement or road surface can 

be categorised into four general types, i.e., asphalt, concrete, 

gravel, and brick and block. Asphalt, also known as flexible 

pavement, is widely used to construct national, regional, or 

local roads across the road network of a country and has 

different sub-categories depending on its construction. 

Different countries use different standards for pavement 

ratings; a summary table is mentioned in [3]. The Irish 

Department of Transport (DoT) [4] and Road Management 

Office (RMO) have their standard known as the pavement 

surface condition index (PSCI), with associated manuals for 

carrying out pavement ratings. It is derived from the 

Pavement Surface Evaluation and Rating (PASER) [5] 

system to cater to local pavement distresses and make visual 

data collection easier for local authorities. The Irish PSCI [6] 

rating is on a scale from 1-10, similar to PASER, where 

index-1 is the lowest (surface wholly worn out or failed), and 

index-10 (no distress, new pavement) is the highest. It has 

three volumes to cover urban flexible roads, urban concrete 

roads, and rural flexible roads [7], [8]. The manual focuses 

on visual inspection through the naked eye in the field or from 

rating in the office forward view images recorded using a 

high-resolution video camera. CareerFit Plus fellowship MF. 2021 0273 funded by EI and the 

European Union's Horizon 2020 Research and Innovation Programme 
under the Marie Sokolowski-Curie Co- Grant agreement No: 847402. 

 

 
(a) 

 
                           (b)  

 
(c) 

 
                      (d) 

Figure-1: A typical camera position, captured image, and the image 

after different pre-processing steps. (a) is the picture of a typical camera 

position mounted on the video van. (b) the output of the camera with a 

rating of 10. (c) In the 3-channel processed image, the first channel is a 

segmented road, the second channel is road plus marking, the last 
channel is the original intensity image, and (d) is the RGB segmented 

pavement image. 

 

waqar.qureshi@tudublin.ie
brianmulry@pms.ie%20
mailto:davidpower@pms.ie
mailto:kfeighan@pms.ie
joemchale@pms.ie
dympna.osullivan@tudublin.ie


The PSCI rating in Ireland is done either directly by 

local authority staff or sub-contracted to private companies. 

Images are recorded with the video camera mounted on the 

front dashboard of a vehicle with a computer and GPS 

(Global Positioning System) sensor (see Figure-1(a)). Images 

are captured every approximately 5 meters, and the images 

are similar to those captured by an autonomous car (see 

Figure-1 (b). In practice, ratings are given to continuous 

stretches of roads with a similar condition, with 200 meters 

being the minimum length to have its' distinct rating. The 

main distresses found in flexible pavements are ravelling, 

bleeding, transverse and longitudinal cracks, alligator cracks, 

potholes, rutting, patching and surface breakup. When rating 

images captured by a video camera, a PSCI rating is given by 

a data analyst offline viewing images at a computer. The 

rating expert assigns a rating to the first 200 meters (~40 

images) and then will adjust the rating as the pavement 

condition noticeably changes. The visual rating of pavements 

is a two-step distress identification followed by an estimate 

of the amount of distress in the image. The manual task is 

tedious, subjective, and prone to errors. As such, the overall 

procedure then requires a quality control loop through an 

experienced rating labeller. 
 An automated rating system may be able to ensure more 
consistent and accurate ratings and as well as reduce the 
overall time required. It can be implemented using machine 
learning as object detection, segmentation, or classification 
system. This paper analyses the automating pavement rating 
as a classification problem using a state-of-the-art CNN-based 
classifier (EfficientNet V2) with real-world images. We 
compare the output with a baseline classifier (Inception V3) 
and test the classifier with different augmentations (pre-
processing) of the input images. Section III explains the image 
capture process and describes the classification problem 
methodology, including the evaluation metrics. Section-IV 
describes the results, Section-V discusses our observations, 
and we conclude in Section VI. 

II. RELATED WORK 

A guide on data collection for pavement quality 

management is presented in [9]. The guideline presents 

standard procedures and practices to obtain data for pavement 

quality assessment and management. For visual pavement 

condition assessment through images, either of two views is 

recommended, i.e., a front-mounted camera placed 

orthogonal to pavement surface normal or a back-mounted 

camera placed inline to pavement surface normal. Different 

parameters are used to gauge the quality of pavements for 

service management and maintenance records [10]. 

Pavement Condition Index, as detailed in [5], [6], [11], is 

more focused on the visual estimate of pavement distress. 

International Roughness Index (IRI) measures pavement 

roughness [12] through vehicle vibration,  and Rut Depth [10] 

measures the transverse deflection for computing the 

pavement quality index. In [13], the author measures the 

suitability of a major heavy-traffic road in Yemen for moving 

traffic loads using pavement evaluation rating PCI [11].  

Deep learning architectures have recently been applied to 

pavement condition detection and classification [14]–[31]. 

These methods can be segregated into pavement condition 

rating through classification, pavement distress object 

detection, and segmentation approaches to pavement 

cracking. Researchers in [25] and [32] have used aerial 

images through drones as input and presented a convolutional 

neural network architecture for automated pavement distress 

detection and evaluation, respectively. In [23], an automated 

smartphone-based application is proposed to detect potholes 

and cracks, accelerometer, global positioning system (GPS) 

sensor, and compass are used to record the location of the 

potholes. Recall precision and accuracy are reported for eight 

distresses, with the lowest recall recorded as 5% for lateral 

linear cracks, 65% for alligator cracking, and the highest for 

crosswalk blur and white line blur at 95%. 

Authors in [16], [33], [34] also used a smartphone to 

capture images from multiple countries and develop distress 

detectors,  based on CNN, for alligator cracks, longitudinal 

cracks, transverse cracks, and potholes. The distress objects 

are similar to [23], and the measures reported for the three 

countries are F1-Score and mean average precision. 

Pavements in different countries have different F1-Score with 

a maximum score F1-score of 52% for alligator cracking and 

a minimum F1 score of 29% reported for linear transverse 

cracking for Japanese roads.  

In [35], a CNN-based crack segmentation method is 

presented that consists of the novel architecture of five layers; 

the input layer is a line feature detector filter, followed by two 

convolutional layers and two fully connected layers to 

segment crack pixels in the 3D images of asphalt surfaces. 

The evaluation reported precision, recall and F1-score with 

an F1 score of 88%. This method is specifically for 3D data 

from the PaveVision3D laser system, which is mounted on a 

video van, viewing an orthogonal top view of the road. The 

maintenance and capital of sensing technologies used in the 

experiment are much more expensive than a camera mounted 

on the front of the vehicle. In [20], the authors presented a 

hybrid model of an object detector and segmentation for 

classifying and quantifying distress severity on pavements 

and predicted PASER indices for each patch. The images are 

collected from Google Street View maps, 70-degree wide-

angle views and 90-degree birds-eye view images. Wide-

view images are used for distress detection and birds-eye-

view images to quantify crack severity. The results from the 

hybrid model are then fed to a linear and weighted regressor 

for predicting PASER indices to road patches. They trained 

YOLO to classify nine road defects. The U-Net, which is 

based on a fully convolutional layer, is used to segment road 

cracks by quantifying the density of pixel labels as cracks. 

The results from the two models are then combined to find 

the density of crack per road pavement defect. The results are 

then fed to a linear and a weightage regressor to label each 

image a PASER index. The images used are from U.S 

pavements, and the PASER calibration set is very small. The 

road condition, distress condition, and camera views differ 

from the current practices in Ireland. The predicted PASER 

model fits with a R2 of 0.9382 or test data with a root mean 

square error of 10.45.  

The authors in [21] have presented a pavement type 

and quality classification technique. The dataset used for the 

experiments is RTK [21], caRINE [36], and KITTI [37]. It 

classifies roads into three different pavement types and three 

different ratings. The images are first cropped to focus on the 

region of interest that contains the roads. Data augmentation 

is done to increase the robustness and avoid overfitting. The 

authors used three convolutional layers, a flattening layer, 



and then two fully connected dense layers to classify the road 

types into asphalts, paved, and unpaved. The classified 

images are then further passed through another classifier to 

estimate the quality of each road, as good, regular, and bad 

for each class. The surface type accuracy is 98% for three 

types, and the classification accuracy for the three quality 

types is 98% for good asphalt and 96% for bad asphalt [21]. 

The precision of classifying the good class is 86.7%, while 

the precision of classifying the bad asphalt class is 81%. The 

number of rating indices are only three, i.e., Good, Bad, and 

Regular, and they do not relate to the existing standard rating 

system.   
Road pavement condition rating depends on the type 

of distress and its quantification, which changes (shape, size, 

and texture) with different factors, mainly environmental 

conditions and the pavement construction process. The 

environmental conditions and construction process changes 

with geographical locations. The variation in data in different 

regions is not only because of changes in shape, size, and 

texture of the distresses but also due to different imaging 

technology and sensor placement in the video van. The 

environmental condition and economic factors govern these 

variations and constraints on the use of imaging technologies. 

Therefore, smartly chosen training images are required to 

develop a deep learning-based solution, which can account 

for application domain constraints (environmental condition, 

construction processing, imaging technology, and sensor 

placement in the van) in an automated road rating system.  
On the commercial side, a few companies in the U.S 

and Japan do provide automated solutions for pavement 

condition ratings. RoadBotics [38], working locally for U.S 

roads, use a limited version of PASER[5], i.e., they rate 

pavement from 1 to 5, with 5 being the lowest rating. An 

automated rating system from Ricoh [39] estimated the 

amount and location of cracks on a 50cm x 50cm patch and 

has adopted its own rating system for Japanese roads based 

on PASER.  

A comprehensive analysis is essential to evaluate 

the classification-based convolutional deep architectures for 

automating the PSCI rating system. The first contribution of 

this research is to analyse the complexity of the current 

manual visual PSCI rating process. The second is to analyse 

the suitability, effectiveness, and robustness of state-of-the-

art image-classification deep neural networks for automated 

rating across different input variations for rating a pavement 

from 1 to 10. The image-set for evaluation is of flexible 

asphalt pavements in urban and rural environments, from 

different Irish roads across the country, using a high-

resolution camera mounted in front of a van. The images have 

been supplied by PMS (Pavement Management Services 

Ltd.), an Irish civil engineering company specialising in 

pavement evaluation with whom we are collaborating on this 

research. A state-of-the-art classification architecture 

EfficientNet V2 with different variants was evaluated along 

with an older Inception V3 for deep-features extractions. A 

dense neural network layer is added to the architecture to 

classify images into 1-10 PSCI ratings. The classification 

models were evaluated for different input pre-processing 

variations, image size, learning techniques, and classes. 

III. MATERIAL AND METHODS 

 At first, we present how the images were captured and 
labelled for supervised learning. Then the pre-processing of 
images is explained. Then we present the deep neural network 
used for classification and the evaluation criteria used for 
quantitative analysis. 

A. Dataset and Labelling 

Images of flexible asphalt pavements from urban and rural 
environments across Ireland are acquired using a camera 
mounted on the front dashboard of a video van (see Figure-
1(a)). The camera is attached to a server for recording images. 
A remote laptop accesses the server over the network to label 
each image stretch of the pavement—the server linked to the 
camera capture image every five meters. The size of each 
image is 720x576, with three channels (red, green, and blue). 
The images are labelled offline using a PSCI [6] scale of 1-10 
by two data analysts; a data analyst (DA) and an experienced 
DA. For our experiments, the images are divided into classes 
1-10 according to the PSCI ratings. Table 1 shows the total 
number of images for each class after removing images with 
moving wipers, low intensity, low contrast, and visually too 
blurry.  

TABLE I.  NO. OF IMAGES IN EACH CLASS USED FOR THE EXPERIMENT 

 

 

 

 

 

 

 

 

 

As can be seen from Table 1, the classes are imbalanced; 
however, this is representative of a real-world dataset of 
images taken from Irish roads. A total of 3537 images were 
left for the experiment, and the dataset was divided randomly 
into training (70%) and test (30%) sets. Figure 2 shows the 
manual recall distribution between the trained and 
experienced DA (taken as ground truth). The overlapping 
between the adjacent recalls is evident, especially for the 

class Original 

images 

Train 

(70%) 

Test 

(30%) 

 

1 472 330 142 

2 391 273 118 

3 344 240 104 

4 310 217 93 

5 296 207 89 

6 191 133 58 

7 360 251 109 

8 534 373 161 

9 353 247 106 

10 484 229 146 

Total 3735 2609 1126 
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central indices five, six, and seven. It is observed that extreme 
rating indices, i.e., one and ten are easier to distinguish. In 
contrast, adjacent ratings are harder visually—the difference 
in labelling between the two D.A.s highlights the complexity 
of the problem. The images in the dataset are not frames from 
a continuous video; they were selected from different stretches 
of Ireland's local and regional roads. 

B. Image Preprocessing 

 To generalise the model's performance and 

remove the background biasness, we performed some pre-

processing steps on the dataset similar to the concept 

explained in [40]. At first, we used pixel segmentation using 

the semantic segmentation CNN-based model from [41]  to 

extract roads, marks, and background pixels. The mean 

accuracy of the model is 90.1%, with 97.4% accuracy for 

pavement. The masks are used for 3-channel segmented 

pavement images. Another 3-channel image we call an 

"augmented" image is computing by combining the pavement 

segmented intensity image, the pavement plus mark pixel 

intensity image, and the original intensity image. Image 

height is cropped 250 pixels from the top and 50 pixels from 

the bottom to remove the sky and pavement pixels further 

away from the camera and pavement pixels too close to the 

camera. Thus, there are three sets of training and test images; 

the original captured image set, named "original;" the 

pavement pixel segmented set, named "segmented;" three-

channel "augmented" set. Figure-1 (b)-(d) shows the different 

3-channel images used for training. Four different variants of 

training sets are assembled for evaluations (see Table-II) 

augmented set (2609 images), original plus segmented set 

(5218 images), original set (2609 images), segmented set 

(2609 images), original plus segmented plus augmented set 

(10436) images. After cropping, the image size is 700 x 330, 

which is further resized to 512 x 512, 480 x 480, and 384 x 

384 as required by different model variants used as the 

baseline.  

C. Convolutional Neural Network Architecture 

Graphical abstract of the methodology used in our 

proposed automated rating system is shown in Figure 3. We 

selected EfficientNet V2 as a base model for computing deep 

features ( 1 x 1280). We added a fully connected dense layer 

(with l2 regularisation and softmax activation) and a dropout 

layer (with a 0.5 drop rate) for the classification. EfficientNet 

V2 is one of the state-of-the-art models [42] from Google 

Inc., with a classification accuracy of 90.2% on ImageNet-

22K with 21841 classes. This makes it a perfect candidate for 

feature extraction for our image rating problem. We 

evaluated three different versions of EfficientNet V2, i.e., 

small, medium, and extra-large, with images of 384x384, 

480x480, and 512x 512, respectively. The specific image size 

is chosen because the TensorFlow hub models are trained 

using these specific sizes as input. We used TensorFlow hub 

weights and biases to compute features from our images and 

then added a dense classification layer head to classify into 

different pavement condition ratings. The EfficientNet V2 

small, medium and x-large weights and biases used in the 

experiment were trained on ImageNet 22K and ImageNet 1K 

(1000 classes). For the sake of comparison, we also used 

Inception V3 architecture to compute deep features for a 

classifier that can take an input image size of 299 x 299; the 

weights and biases were taken from the TensorFlow hub, 

which was trained on ImageNet 1K (1000 classes). The 

Inception V3 feature extractor follows the same dense 

classification layer. 

Two types of learning methods are used - transfer learning 

and fine-tuning. To determine the best model size of 

EfficientNet V2, we used an augmented set with transfer 

learning to train the model. Then, we used the overall 

accuracy of the augmented test set as a parameter to gauge 

model size selection. The best model size of EfficientNet V2 

is then used to further evaluate the classifier by fine-tuning 

the hyperparameters on different training sets, decreasing the 

number of classes. For training, we use data augmentation 

techniques, including random vertical flip, random horizontal 

flip, random zoom up to 20%, and random contrast between 

10% and 20%. A normalisation layer is added as TensorFlow 

hub models do not contain a built-in normalisation. A 

stochastic gradient descent optimiser with a sparse 

categorical cross-entropy loss function was used for model 

training. A learning rate of 0.0001 was set for all of our 

experiments with a batch size of 8, each training was repeated 

for 300 epochs: a total of 20,190,298 trainable parameters, 

and 153,872 non-trainable parameters.   

EfficientNet V2 deep features are also compared to another 

deep feature extraction architecture, i.e., Inception V3. The 

ratings 1-10 are combined with their natural adjacent class to 

create five classes (1-5). This is based on expert knowledge 

about the PSCI acquired at PMS. Indices 1 and 2 are 

combined into one class as they usually have no surface layer 

or only traces of a surface layer. Indices 3 and 4 are combined 

as they only have potholes, alligator cracks, or deteriorated 

patches. Indices 5 and 6 are combined as they have only linear 

cracks or neat patches. Indices 7 and 8 are combined as they 

do not have potholes, cracks, or patches and only have 

ravelling and bleeding. Indices 9 and 10 are combined as they 

have minor or no ravelling or other distress. The models were 

retrained on the fused dataset for 5 classes instead of fusing 

the results for 5 classes. 

Details of different parameter choices and evaluation 

criteria are given in Table II. The last two columns are the 

code-name followed by the given model's name for each 

variant of EfficientNet V2 or Inception V3.  

D. Evaluation Criteria 

The evaluation criteria are precision, recall and F1-score 

per class, as well as precision, recall and F1-score across all 

classes computed using the equations below: 

 
FIGURE-3: Block diagram of our evaluation model. The EfficientNet 

Deep Feature extraction is followed by a fully connected Dense layer 

 



We also plot the percentage prediction of each class with 

respect to the ground truth of each class. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
1 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒𝑠 𝑖𝑛  𝑐𝑙𝑎𝑠𝑠 
2 

 

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
3 

 

IV. RESULT AND DISCUSSION 

Table III summarises all the results from different model 

variations as listed in Table II. The first row (see Table-III) 

describes the test set used to evaluate the model in the second 

row. The second row lists the model code, while the rest list 

the individual F1 score for each class, the average precision, 

recall, and F1 score. The first three columns of Table III show 

the results of average recall, precision and F-1 score for 

models' a', 'b', and 'c', trained using transfer learning on an 

augmented set for different architecture sizes and input image 

sizes. An EfficientNet with an input image size of 384x384 

has the best performance, with an F1 score of 0.46. As the 

model uses a smaller image size and is less computationally 

complex, the inference will be faster than other models. 

Therefore, we choose this model to further evaluate for other 

variations in the input and number of classes.  

Table-III compares classification models 'c' and 'd', 

based on EfficientNet V2 small architecture, which is trained 

using transfer learning, i.e., the ImageNet biases and weights 

are frozen, and only the dense classification layer is trained. 

Model 'c' uses the augmented dataset, and model 'd' uses the 

original plus segmented dataset as training. An augmented 

dataset test-set is used to test model 'c', and an original dataset 

test-set is used for model 'd'. Model 'c' shows a superior F1 

score (0.46) on average.  

Table III also shows the F-1 score of the EfficientNet V2-

based classifier for models 'e', model 'f', model i', and model 

'j', which are trained using fine-tuning, i.e., the biases and 

weighted are fine-tuned along with added classification layer. 

Model 'e' is trained on the original plus segmented set, model 

'f' on the augmented set, and model 'i’ and model ‘j’ on only 

the original and segmented set. The results show slightly 

higher performance than transfer learning models (average 

F1-score: 0.53). The result also shows that augmenting the 

original set with a segmented set performs better than using 

only one dataset. Also, the augmented dataset achieves a 

similar performance but a lower F1 score for less 

TABLE-II: The first seven columns are the model parameters variation, and the last two column is the name given to each model and the code name 
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Figure-4: EfficientNet inference F1 Score for different 

pre-processing to test image, blue is augmented, orange is 

original, and gray is segmented.
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discriminative classes 5-6, and 9-10. Table III shows the 

results of model ‘g’ (average F1-score:0.50 on the original 

test set), which is trained without using weights, for unbiased 

classes. The model does not perform as well as those that use 

weights while training for unbiased classes. Table-III 

highlights the F1-score comparison between model ‘k’ 

(average F1-Score: 0.50) that used inception v3 as deep 

features for classification vs EfficientNet V2 small size 

(average F1-score: 0.53), has better overall and in-class 

performance. 

 In summary, the model trained using all three datasets has 

higher average precision, recall, and F1-score, (see Figure-4), 

i.e., 57% precision with 58% recall and 0.57 F1-score. The 

model was tested on all test sets, i.e., original, augmented, 

and segmented test images. 

Figure 5 shows the prediction percentage of each class to the 

ground truth class. The prediction shown is of the best 

classifier, i.e., model ‘m’, that is trained using all the three 

datasets on EfficientNet V2 small as a feature detector. The 

figure clearly shows a reasonable prediction rate for class-1 

and class-10, even though images in both class 1 and class 10 

have different backgrounds. Another observation is that 

many of the images rated as 9 are predicted as 10, which is 

also evident from manual labelling comparison among 

labellers. Similarly, some images labelled as 8 are predicted 

as 9 and vice versa. Classes from 10-7 are ratings with only 

ravelling and bleeding due to chip loss and have visible 

features that may be affected by intensity variation due to 

light reflectance. Classes 5-6 rated images only have neat 

patches and linear cracks; linear cracks have a very small 

change in intensity around the affected region and might be a 

good candidate for pixel-level classification compared to 

classification. Images rated 3 to 4 have either localised 

alligator cracking, potholes, or deteriorated patches, making 

them more distinguishable to other cracks. However, it is 

difficult to segregate between 3 and 4 as the quantity of the 

distress distinguishes between the two. Images rated between 

1 and 2 usually do not have any pavement surface left and are 

easy to classify from others. One reason for poor performance 

on class-2 is that images in 2 might have no surface but a 

good intact base-layer surface.  
 

Figure-6 highlights the fact that if we merge classes 1 & 2, 3 
& 4, 5 & 6, 7 & 8, and 9 & 10, then the overall precision 
reaches 70% with a recall of 77% (the model trained on all 
three training dataset as compared to a model trained on 
Inception V3 and Efficient V2 trained on the only original and 
segmented training set). Therefore it augments our 

observations above and a natural selection for combining 
ratings for an automated classification-based rating system. 
The current experiment has highlighted the difficulty in 
manual labeling of images. Deep learning features used for 
image classification are generally good in computing global 
features such as texture, shape, and color. In the case of 
pavement rating classification, much of the texture and color 
information is background and clutter. The image-wise result 
of the EfficientNet V2 small model ‘m’ (the best model) can 
be seen at [43]; a sample of true-positive for indices 1-9 is also 
shown in Figure-6. In summary, rating classification is 
suitable for classes 1-2, 7,8,9, and 10, where the distress is not 
localised and stressed across the whole road segment. 
Distresses that are localised in nature, such as patches and 
potholes, are more suitable to be detected using object 
detection, while cracks are more suitable to be identified using 
pixel level classification. 
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Figure-6: Efficient Net vs Inception Model F1 Score bar 

for 5-class classifier. Blue is EfficientNet inference result 

for orginal image and orange are result of inception for 
original images
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Table-III: Model comparison across different input training set, 
different set of classes, and different training parameters. Small letters 

represent models code as given in Table-II. 
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CONCLUSTION 

Automated pavement rating using standard pavement 
surface condition indices with acceptable accuracy and 
robustness is still challenging despite using state-of-the-art 
convolutional network architectures showing promise on the 
benchmarks dataset. The research literature and commercial 
products promise to solve the problem; however, they are 
limited to non-standardised rating approaches and support 
limited distress detections. This paper investigates an 
automated approach to predicting PSCI ratings using a 
classification approach on real-world images. The first 
contribution of this research is to analyse the complexity of 
the current manual visual PSCI rating task. It is observed that 
extreme rating indices, i.e., one and ten are easier to 
distinguish. 

In contrast, adjacent ratings are harder visually—the 
difference in labeling between the two D.A.s highlights the 
complexity of the problem. The second is to analyse a state-
of-the-art deep neural network's suitability, effectiveness, and 
robustness for automated rating across input variations. The 
images for evaluation are of flexible asphalt pavements with 
urban and rural environments, from other Irish roads across 
the country, from a camera mounted on the front of a van as 
practiced locally. The dataset contains 3735 images, manually 
rated by the PSCI rating expert, with a natural imbalance 
between classes. The EfficientNet V2 and Inception V3 
architectures were evaluated for different input pre-processing 
variations, image size, learning techniques, and classes. 
Overall precision, recall, and per class F1-score are reported 
for quantitative evaluation. The best model for the 10-class 
PSCI rating achieved an overall recall of 58% with a precision 
of 57%, while for 5-classes, a recall of 77% with a precision 
of 70% is reported. The 10-class classifier classified class-1 
with a F1 score of 86% and class 7,8,10 with 60%, 63%, and 
68%, respectively. Figure -7 shows qualitative results of rating 
indices 1-9 for a sample of an image of each class. 

In summary, rating classification is suitable for classes 1-
2, 7,8,9, and 10, where the distress is not localised and stressed 
across the whole road segment. The simple classification 
approach is affected by the cluttered background around the 
pavement; however, a segmented pavement may lead the 
CNN to learn the global feature such as edges and line shapes. 
An augmented image resulted in a better performance in most 
of the classes. A possible way forward is to evaluate the 
performance of the best model for predicting the rating over a 
200-meter stretch of the road instead of using individual 

images and selecting the most common rating over that stretch 
as a result. In future, a hybrid approach to distress detection 
and quantification can also be evaluated; for example, 
distresses that are localised in nature, such as patches and 
potholes, are more suitable to be detected using the object 
detection approach, while cracks like alligator cracking, 
transverse cracks, and longitudinal cracks are more suited to 
be identified using pixel-level segmentation. In contrast, 
Gabor filters with a machine learning classifier can be used to 
explore surface defects such as ravelling and bleeding. 

ACKNOWLEDGEMENT 

W. S. Q would like to thank Justin Whyte for taking the time 

to rate each image as an expert and discuss his views on the 

rating given to each image during labelling. Waqar S. Qureshi 

likes to thank Enterprise Ireland (E.I.) for providing a 

research grant under Marie Curie Career Fit Plus Fellowship. 

No. M.F. 2021 0273.  

 

REFERENCES 

[1] N. S. P. Peraka and K. P. Biligiri, “Pavement asset management 

systems and technologies: A review,” Autom. Constr., vol. 119, p. 
103336, Nov. 2020, doi: 10.1016/J.AUTCON.2020.103336. 

[2] “Road pavement surface types,” Feb. 03, 2022. 

https://interpro.wisc.edu/tic/?csis-search-options=site-
search&s=paser&submit=Search (accessed Feb. 03, 2022). 

[3] W. Cao, Q. Liu, and Z. He, “Review of Pavement Defect Detection 
Methods,” IEEE Access, vol. 8, pp. 14531–14544, 2020, doi: 
10.1109/ACCESS.2020.2966881. 

[4] “Pavement Management - Road Management Office,” Feb. 03, 

2022. http://www.rmo.ie/pavement-management.html (accessed 
Feb. 03, 2022). 

[5] “PASER Asphalt Roads Pavement Surface Evaluation and Rating 

PASER Manual Asphalt Roads,” 2002. Accessed: Feb. 03, 2022. 
[Online]. Available: http://tic.engr.wisc.edu. 

[6] J. Mccarthy, L. Fitzgerald, J. Mclaughlin, B. Mulry, D. O’brien, 
and K. Dowling, “Rural Flexible Roads Manual - Pavement 

Surface Condition Index, Vol 1 of 3, Department of Transport, 
Toursim and Sports, Dublin, Ireland October 2014,” Oct. 2014. 

[7] Brian Mulry and John McCarthy, “A Simplified System for 

Assessing the Condition of Irish Regional and Local Roads,” in 
Civil Engineering Research in Ireland 2016, 2016, pp. 1–7, 

Accessed: Mar. 14, 2022. [Online]. Available: 
https://ceri2016.exordo.com/files/papers/97/final_draft/097.pdf. 

[8] Brian Mulry, Dr. Kieran Feighan, and John McCarthy, 

“Development and Implementation of a Simplified System for 
Assessing the Condition of Irish Regional and Local Roads,” in 

9th International Conference on Managing Pavement Assets, 

2015, pp. 1–17, Accessed: Mar. 14, 2022. [Online]. Available: 
https://vtechworks.lib.vt.edu/handle/10919/56413. 

[9] Fhwa, “Practical Guide for Quality Management of Pavement 
Condition Data Collection.” 

[10] A. Ragnoli, M. R. De Blasiis, and A. Di Benedetto, “Pavement 
Distress Detection Methods: A Review,” Infrastructures, 2018, 
doi: 10.3390/infrastructures3040058. 

[11] D. O. T. A. HEADQUARTERS, “PAVEMENT 

MAINTENANCE MANAGEMENT,” Technical Manual TM 5-
623, 1982. 

https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/tm5_6
23.pdf (accessed Feb. 16, 2022). 

[12] “Standard Practice for Roads and Parking Lots Pavement 

Condition Index Surveys.” https://www.astm.org/d6433-09.html 
(accessed Feb. 16, 2022). 

[13] F. M. A. Karim, K. A. H. Rubasi, and A. A. Saleh, “The Road 
Pavement Condition Index (PCI) Evaluation and Maintenance: A 

Case Study of Yemen,” Organ. Technol. Manag. Constr. an Int. 

J., vol. 8, no. 1, pp. 1446–1455, Dec. 2016, doi: 10.1515/OTMCJ-
2016-0008. 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 
(7) 

 
(8) 

 
(9) 

Figure-7: Images from classifier where the automated rating 

matches the ground-truth labels from augmented image test set 

for rating 1-9. 



[14] J. Wang, Q. Meng, P. Shang, and M. Saada, “Road surface real-
time detection based on Raspberry Pi and recurrent neural 

networks,” Trans. Inst. Meas. Control, vol. 43, no. 11, pp. 2540–
2550, Jul. 2021, doi: 10.1177/01423312211003372. 

[15] B. Prasetya, Y. C. S. Poernomo, S. Winarto, R. K. Dewanta, and 

F. M. Azhari, “Mengurangi Laju Kerusakan Jalan dengan 
Menggunakan Metode RCI (Road Condition Index) di Kabupaten 

Madiun,” J. Manaj. Teknol. Tek. Sipil, vol. 4, no. 1, pp. 104–118, 
Jul. 2021, doi: 10.30737/JURMATEKS.V4I1.1722. 

[16] D. Arya et al., “Deep learning-based road damage detection and 

classification for multiple countries,” Autom. Constr., vol. 132, p. 
103935, Dec. 2021, doi: 10.1016/J.AUTCON.2021.103935. 

[17] A. Issa, H. Samaneh, and M. Ghanim, “Predicting pavement 
condition index using artificial neural networks approach,” Ain 
Shams Eng. J., May 2021, doi: 10.1016/J.ASEJ.2021.04.033. 

[18] Q. Chen, Y. Huang, H. Sun, and W. Huang, “Pavement crack 

detection using hessian structure propagation,” Adv. Eng. 
Informatics, vol. 49, Aug. 2021, doi: 10.1016/J.AEI.2021.101303. 

[19] R. Stricker et al., “Road Surface Segmentation - Pixel-Perfect 

Distress and Object Detection for Road Assessment,” 2021 IEEE 
17th Int. Conf. Autom. Sci. Eng., pp. 1789–1796, Aug. 2021, doi: 
10.1109/CASE49439.2021.9551591. 

[20] H. Majidifard, Y. Adu-Gyamfi, and W. G. Buttlar, “Deep machine 

learning approach to develop a new asphalt pavement condition 

index,” Constr. Build. Mater., vol. 247, p. 118513, Jun. 2020, doi: 
10.1016/J.CONBUILDMAT.2020.118513. 

[21] T. Rateke, K. A. Justen, and A. Von Wangenheim, “Road Surface 

Classification with Images Captured From Low-cost Camera-

Road Traversing Knowledge (RTK) Dataset,” 
pdfs.semanticscholar.org, vol. 26, no. 3, pp. 50–64, 2019, doi: 
10.22456/2175-2745.91522. 

[22] A. Zhang et al., “Automated Pixel-Level Pavement Crack 

Detection on 3D Asphalt Surfaces with a Recurrent Neural 

Network,” Comput. Civ. Infrastruct. Eng., vol. 34, no. 3, pp. 213–
229, Mar. 2019, doi: 10.1111/MICE.12409. 

[23] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, 
“Road Damage Detection and Classification Using Deep Neural 

Networks with Smartphone Images,” Comput. Civ. Infrastruct. 

Eng., vol. 33, no. 12, pp. 1127–1141, Dec. 2018, doi: 
10.1111/MICE.12387. 

[24] Y. Li, C. Liu, Y. Shen, J. Cao, S. Yu, and Y. Du, “RoadID: A 
Dedicated Deep Convolutional Neural Network for 

Multipavement Distress Detection,” J. Transp. Eng. Part B 

Pavements, vol. 147, no. 4, p. 04021057, Dec. 2021, doi: 
10.1061/JPEODX.0000317. 

[25] Y. Jiang, S. Han, and Y. Bai, “Development of a Pavement 
Evaluation Tool Using Aerial Imagery and Deep Learning,” J. 

Transp. Eng. Part B Pavements, vol. 147, no. 3, p. 04021027, Sep. 
2021, doi: 10.1061/JPEODX.0000282. 

[26] T. Nasiruddin Khilji, L. Lopes Amaral Loures, and E. Rezazadeh 

Azar, “Distress Recognition in Unpaved Roads Using Unmanned 
Aerial Systems and Deep Learning Segmentation,” J. Comput. 

Civ. Eng., vol. 35, no. 2, p. 04020061, Mar. 2021, doi: 
10.1061/(ASCE)CP.1943-5487.0000952. 

[27] I. Hashim Abbas and M. Qadir Ismael, “Automated Pavement 

Distress Detection Using Image Processing Techniques,” Eng. 
Technol. Appl. Sci. Res., vol. 11, no. 5, pp. 7702–7708, Oct. 2021, 
doi: 10.48084/ETASR.4450. 

[28] T. Lee, Y. Yoon, C. Chun, and S. Ryu, “CNN-Based Road-Surface 

Crack Detection Model That Responds to Brightness Changes,” 

Electron. 2021, Vol. 10, Page 1402, vol. 10, no. 12, p. 1402, Jun. 
2021, doi: 10.3390/ELECTRONICS10121402. 

[29] J. Menegazzo and A. von Wangenheim, “Road surface type 
classification based on inertial sensors and machine learning: A 

comparison between classical and deep machine learning 

approaches for multi-contextual real-world scenarios,” 
Computing, vol. 103, no. 10, pp. 2143–2170, Oct. 2021, doi: 
10.1007/S00607-021-00914-0. 

[30] T. Rateke and A. von Wangenheim, “Road surface detection and 

differentiation considering surface damages,” Auton. Robots, vol. 

45, no. 2, pp. 299–312, Feb. 2021, doi: 10.1007/S10514-020-
09964-3. 

[31] S. Zhou and W. Song, “Crack segmentation through deep 
convolutional neural networks and heterogeneous image fusion,” 

Autom. Constr., vol. 125, May 2021, doi: 
10.1016/J.AUTCON.2021.103605. 

[32] J. Zhu, J. Zhong, T. Ma, X. Huang, W. Zhang, and Y. Zhou, 

“Pavement distress detection using convolutional neural networks 
with images captured via UAV,” Autom. Constr., vol. 133, p. 
103991, Jan. 2022, doi: 10.1016/J.AUTCON.2021.103991. 

[33] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, and Y. Sekimoto, 

“RDD2020: An annotated image dataset for automatic road 

damage detection using deep learning,” Data Br., vol. 36, p. 
107133, Jun. 2021, doi: 10.1016/J.DIB.2021.107133. 

[34] D. Arya et al., “Transfer Learning-based Road Damage Detection 
for Multiple Countries,” Aug. 2020, Accessed: Oct. 25, 2021. 
[Online]. Available: http://arxiv.org/abs/2008.13101. 

[35] A. Zhang et al., “Automated Pixel-Level Pavement Crack 

Detection on 3D Asphalt Surfaces Using a Deep-Learning 
Network,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 10, pp. 805–
819, Oct. 2017, doi: 10.1111/MICE.12297. 

[36] P. Y. Shinzato et al., “CaRINA dataset: An emerging-country 

urban scenario benchmark for road detection systems,” IEEE Conf. 

Intell. Transp. Syst. Proceedings, ITSC, pp. 41–46, Dec. 2016, doi: 
10.1109/ITSC.2016.7795529. 

[37] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure 
and evaluation benchmark for road detection algorithms,” in IEEE 

Conference on Intelligent Transportation Systems, Proceedings, 
ITSC, 2013, pp. 1693–1700, doi: 10.1109/ITSC.2013.6728473. 

[38] “Roadway by RoadBotics.” 

https://roadway.demo.roadbotics.com/map/wPJQ8Zc82QxFHBbs
wpYs/?assessmentType=normal (accessed Feb. 03, 2022). 

[39] “Road Surface Inspection System | Global | Ricoh.” 
https://www.ricoh.com/technology/tech/104_road_surface_monit
oring (accessed Feb. 03, 2022). 

[40] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, 

and W. Brendel, “IMAGENET-TRAINED CNNS ARE BIASED 

TOWARDS TEXTURE; INCREASING SHAPE BIAS 
IMPROVES ACCURACY AND ROBUSTNESS,” 2019. 
[Online]. Available: https://github.com/rgeirhos/texture-vs-shape. 

[41] “road-segmentation-adas-0001 - OpenVINO Toolkit.” 

https://docs.openvino.ai/2018_R5/_docs_Transportation_segment

ation_curbs_release1_caffe_desc_road_segmentation_adas_0001.
html (accessed Feb. 10, 2022). 

[42] “ImageNet Benchmark (Image Classification) | Papers With 
Code.” https://paperswithcode.com/sota/image-classification-on-

imagenet?tag_filter=104%2C171%2C105 (accessed Feb. 21, 
2022). 

[43] W. S. Qureshi and (Technological University Dublin), 

“EfficientNet V2 Model ‘M’ test dataset qualitative results,” 2022. 
https://tinyurl.com/yc2hs7wn (accessed Mar. 14, 2022). 

 

 


	Learning pavement surface condition ratings through visual cues using a deep learning classification approach.
	Recommended Citation
	Authors

	Paper Title (use style: paper title)

