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Abstract

The aim of this study was to determine the effects of a pin‐to‐plate cold

atmospheric plasma (CAP) on U‐251 MG three‐dimensional (3D) glio-

blastoma spheroids under different conditions. 3D tumorspheres showed

higher resistance to the CAP treatment compared to 2D monolayer cells. A

single CAP treatment was able to induce cytotoxicity, while multiple CAP

treatments augmented this effect. CAP was also able to induce cytotoxicity

throughout the tumoursphere, and we identified that reactive oxygen species

(ROS) plays a major role, while H2O2 plays a partial role in CAP‐induced
cytotoxicity in tumour-

spheres. We conclude that

ROS‐dependent cytotoxi-

city is induced uniformly

throughout glioblastoma

and epidermoid tumour-

spheres by direct CAP

treatment.

KEYWORD S

3D tumourspheres, cold atmospheric plasma, cytotoxicity, epidermoid, glioblastoma,
reactive oxygen and nitrogen species, ROS dependent
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1 | INTRODUCTION

Glioblastoma multiforme (GBM) is a WHO grade IV astro-
cytoma, which is the most common and aggressive malig-
nant primary brain tumor in adults. It has a low survival rate
of less than 1 year for most patients and only about 5%
survive beyond 5 years.[1–3] The existing standard therapy for
GBM consists of surgical resection followed by radiation and
chemotherapy.[3,4] However, the treatment and better out-
comes for GBM are hampered by poor prognosis, high in-
vasiveness, high resistance to chemotherapy, and the
inability to traverse the blood‐brain barrier.[1,3] Therefore, it
is critical to identify novel technologies for efficacious in vivo
glioblastoma diagnosis, prognosis, and treatment.

Plasma discharges can be classified as thermal or non‐
thermal plasma, with a further classification of cold atmo-
spheric plasma (CAP) used to distinguish non‐thermal
plasmas, which are sufficiently low in temperature to al-
low their use in biological applications. CAP is a partially
ionized gas that contains charged particles, reactive oxygen,
and nitrogen species (RONS) (including hydroxyl, hydrogen
peroxide, superoxide, hydroxyl radical, singlet oxygen, ozone,
nitric oxide, nitrogen dioxide, dinitrogen tetroxide, nitrogen
trioxide, nitrous oxide, and peroxynitrite), excited atoms,
electrons, free radicals, UV photons, and electromagnetic
fields.[5,6] Devices that generate CAP can be divided into:
direct‐discharge (i.e., dielectric barrier discharge (DBD), pin
to plate system) and indirect‐discharge (i.e., plasma jets,
pens, and torches).[5,7] CAP‐induced cancer cellular cyto-
toxicity has been demonstrated previously by using different
devices, such as plasma jet,[8–12] micro‐sized devices,[13]

DBDs[14,15], and corona discharges. Previous studies have
reported both direct and indirect CAP treatment efficacies in
inducing anticancer effects (in numerous cancer types,
such as pancreatic,[8] lung,[9,10] squamous cell carcinoma,[11]

brain,[13] and so forth) in in vitro[8,9,11] and antitumor effects
in vivo.[11–13]

Increasingly CAP is being explored as a novel therapeutic
method for cancer treatment due to the fact that it operates
at atmospheric pressure and near room temperature while
having low power requirements.[16] Researchers have re-
ported successful clinical applications of CAP to treat squa-
mous cell carcinoma patients. Tumor reductions were
reported by CAP treatment, along with increased tumor
decontamination and reductions in tumor mass.[17] The trial
demonstrates CAP's clinical utility in cancer treatment.

The chemical components such as reactive oxygen and
nitrogen species (RONS) generated in plasma are found to
induce biological effects, including structural damage to li-
pids in cell membranes, breakage of DNA, oxidization of
proteins, initiation of different signaling pathways, and in-
duced apoptosis.[5,6] Elevated levels of RONS are already
produced in cancer cells compared to healthy cells and CAP

can further increase such RONS to cytotoxic levels. While
our understanding of the biological and chemical effects of
CAP on cancer cells is expanding, several gaps remain, for
example, the effects of CAP on cells growing in a three‐
dimensional (3D) lattice. 3D cell culture models are bene-
ficial for bridging the gap between in vitro cell cultures and
in vivo responses by more closely mimicking the natural in
vivo environment, shape, tissue stiffness, stresses, and cel-
lular response while overcoming expenses and ethical con-
siderations of animal models.[18–20] In comparison to 2D cell
cultures, the addition of the third dimension in 3D cell
culture affects the spatial organization of cell surface re-
ceptors that interact with other cells and imposes physical
limits on cells. Spheroids' unique cyto‐architecture simulates
in vivo cellular topology, gene expression, metabolism, pro-
liferation, oxygenation, nutrient uptake, waste excretion, and
drug uptake while allowing cell–ECM connections and sig-
naling to be maintained, hence regulating molecular pro-
cesses and cellular phenotypes. ECM elements can also
interact with cell surface receptors, including integrins and
receptor tyrosine kinases. Integrin‐growth factor receptor
crosstalk controls downstream cell signaling and growth
factor‐induced biological activities, primarily proliferation
and invasion. Furthermore, 3D tumorsphere cell–cell inter-
actions are essential for juxtacrine signaling, where mole-
cules travel directly between cells via gap junctions or other
structures without being secreted into the extracellular en-
vironment. These receptor and juxtacrine signaling compo-
nents modify a range of intracellular signaling pathways and
in turn how cancer cells respond to their environment.[21,22]

However, due to higher aggressiveness and treatment
resistance in GBM, there is a need to find an alternative
to existing treatments by developing innovative ap-
proaches such as cold plasma technology.

In the present study, we used an in vitro 3D tumor
spheroid model to better model the effects of CAP on
glioblastoma cells.[23]

2 | MATERIALS AND METHODS

2.1 | Chemicals

All chemicals used in this study were supplied by Sigma‐
Aldrich—Merck Group unless stated otherwise.

2.2 | 2D cell culture

The human glioblastoma multiforme cell line (U‐251 MG,
formerly known as U‐373MG‐CD14) was a gift fromMichael
Carty (Trinity College Dublin) and the human epidermoid
carcinoma (A431) were purchased from an ATCC European

2 of 15 | WANIGASEKARA ET AL.
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Distributor (LGC Standards). The absence of mycoplasma
was checked by using a MycoAlert PLUS Mycoplasma De-
tection kit (Lonza). Cells were maintained in Dulbecco's
modified Eagle medium (DMEM)‐high glucose supple-
mented with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin. Cells were maintained in a humidified
incubator containing 5% CO2 atmosphere at 37°C in a TC
flask T25, standard for adherent cells (Sarstedt). Cells were
routinely subcultured when 80% confluence was reached
using 0.25% w/v Trypsin‐EDTA solution.

2.3 | 3D cell culture

U‐251 MG human glioblastoma multiforme (Figure 1c) and
A431 human epidermoid carcinoma cells were used to
generate tumor spheroids. Single‐cell suspensions (with de-
sired seeding density) were seeded into Nunclon™ Sphera™
96‐well‐low attachment plates (Thermo Fisher Scientific) in

DMEM‐high glucose supplemented with 10% FBS and 1%
penicillin/streptomycin. The low attachment plates were
centrifuged at 1250 rpm for 5min for U‐251 MG cells and
4000 rpm for 10min for A431 cells followed by incubation
(37°C, 5% CO2, 95% humidity).[24] Tumor spheroids forma-
tion was observed within 3 and 4 days for A431 and U‐251
MG (Figure 1d), respectively. Tumor spheroid formation was
visually confirmed daily using an Optika XDS‐2 trinocular
inverse microscope equipped with a Camera ISH500, and
their mean diameters were analyzed using “ImageJ version
1.53.e” software. For growth analysis, varying numbers of
U‐251 MG cells (ranging from 2000 to 40 000 cells/ml) were
seeded in the abovementioned Nunclon™ Sphera™ 96‐well‐
low attachment plates for 14 days. Fresh media were added
every third day by replenishing old media in each well
without disturbing the tumorspheroids. The spheroid for-
mation and growth were monitored daily by using an in-
verted phase‐contrast microscope, and the sizes of the
spheroids were measured as explained above for at least

FIGURE 1 Development of U‐251 MG human glioblastoma astrocytoma 3D in vitro cell culture model. Growth kinetics analysis of
U‐251 MG spheroids at increasing seeding density in low attachment plate method (a) with serum medium. (b) Without serum medium.
(c) Image of U‐251 MG 2D cells in T75 flask taken using an optical microscope. (d) Image of U‐251 MG 3D tumourspheres in low‐adhesion
Nunclon™ Sphera™ flat‐bottom culture plate taken using an optical microscope

WANIGASEKARA ET AL. | 3 of 15
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three independent experiments. Larger tumorsphere growth
was observed when grown in DMEM high glucose media
with 10% FBS compared to media without FBS. According to
the initial seeding density, growth medium composition, and
incubation time, the tumoursphere diameters varied from
100 to 650 µm. The largest tumourspheres were observed
with 10 000, 15 000, and 20 000 cells/ml initial seeding den-
sities. It was also observed that exponential growth (Log) was
achieved within the initial 4 days of growth, after which the
growth curve became stationary, followed by a second
growth phase after 7 days of incubation due to an increased
number of dead cells inside the tumoursphere core
(Figure 1). Two‐way analysis of variance (ANOVA) de-
monstrated that there is a significant difference in tumour-
sphere (grown in serum medium) diameter between each
initial seeding densities as shown in Figure 1a. However,
there was no significant difference between diameters at Day
4, 5, and 6 in 10 000, 15 000, and 20 000 cells/ml seeding
densities. In Figure 1b, there was no significant difference in
tumoursphere (grown in without serum medium) diameter
between the 10 000 and 20 000 cells/ml initial seeding den-
sities. A full description of Tukey's multiple comparisons test
is provided in the Supporting Information Sections (D1
and D2).

2.4 | Pin to plate system

A pin to plate electrode design was employed to gen-
erate a large volume atmospheric discharge. The re-
actor consisted of 88 slightly convex pins attached to
stainless steel electrode (150 × 200 mm), paired with a
flat stainless steel ground plate (200 × 250 mm) pow-
ered by an AC power supply (Leap100, PlasmaLeap
Technologies). The schematic and image of the pin‐to‐
plate device demonstrating the position of the micro-
plates for cell treatment is shown in Figure S1. This
Leap100 power supply has a discharge voltage up to
80 kV (p‐p), resonance frequency from 30 to 125 kHz,
discharge frequency from 100 to 3000 Hz, and power
from 50 to 700 W. The air gap between the pin elec-
trodes and the ground plate serves as the sample
treatment area, with all samples in this study being
placed in the center. All the samples were treated at a
resonant frequency of 55.51 kHz, with a discharge
frequency of 1000 Hz and duty cycle of 73 µs, while the
discharge gap was kept at 40 mm. The pin to plate
system configurations, electrical characterization, and
optical diagnostics were previously detailed by Scally
et al.[25] Cells were treated for a time range of 0−320 s.
The electrodes/sample treatment area was covered in a
fitted container to minimize escape of CAP‐generated
reactive species into the general environment.

2.5 | Cell viability assay

Cell viability was analyzed using Alamar Blue™ cell viability
reagent (Thermo Fisher Scientific). U‐251 MG and A431
cells were seeded at a density of 1 × 104 cells/well (100 µl
culture medium/well) into flat‐bottom 96‐well plates (Sar-
stedt, Ltd.) and were seeded at a density of 1 × 104 cells/well
(200 µl culture medium/well) into Nunclon™ Sphera™ 96‐
Well ‐low attachment plates (Thermo Fisher Scientific), re-
spectively, for 2D and 3D cell culture. Cells were incubated
overnight at 37°C in a humidified atmosphere. DMEM
media without sodium pyruvate supplemented with 10%
FBS and 1% penicillin/streptomycin, DMEM media supple-
mented with 0.11 g/L sodium pyruvate with 10% FBS, and
1% penicillin/streptomycin and DMEMmedia supplemented
with 0.11 g/L sodium pyruvate with 1% penicillin/strepto-
mycin and without 10% FBS were used in this study as
indicated.

In the 2D cell culture, after 24 h incubation, 70%–80%
confluence was checked, 75 µl of media was removed,
leaving 25 µl of media for treatment in each well. In the
tumorsphere culture, after 3 days of incubation for A431 and
4 days incubation for U‐251 MG, 175 µl of media was re-
moved, leaving 25 µl of media for treatment in each well,
unless otherwise specified. Cells/tumourspheres were then
treated with direct plasma exposure at six different time
points (0, 20, 50, 100, 160, and 320 s) using a discharge
voltage of 46 kV, frequency of 1000Hz, and using a duty
cycle of 73 µs. 75 μl (for 2D) and 175 µl (for 3D) of fresh
culture media was added immediately following CAP treat-
ment and incubated at 37℃ using 5% CO2 for 24, 48, 72, and
96 h. Dimethyl sulfoxide (DMSO) (20%) was used as a po-
sitive control. Single or multiple CAP treatments were car-
ried out for the tumourspheres, where multiple treatments
are a combination of three individual treatments with a 24 h
incubation gap between each treatment.

After the post treatment incubation, tumourspheres were
washed with sterile phosphate‐buffered saline (PBS), trypsi-
nized using 0.25% w/v trypsin–EDTA solution, and in-
cubated for 3 h at 37°C with a 10% Alamar Blue™ solution.
Fluorescence was measured using an excitation wavelength
of 530 nm and an emission wavelength of 590 nm with a
Varioskan Lux multi‐plate reader (Thermo Scientific). All
experiments consisted of at least three independent tests
with a minimum of 30 replicates per experiment.

2.6 | Live/dead cell staining using
propidium iodide (PI)

After CAP treatment the well media was immediately re-
plenished with the plates incubated at 37°C with 5% CO2 for
24, 48, 72, and 96 h. For PI staining, the media was removed

4 of 15 | WANIGASEKARA ET AL.
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and the tumourspheres were washed with PBS and trypsi-
nized using 0.25% w/v trypsin–EDTA solution into a single‐
cell suspension. Then trypsin was inactivated and cells were
collected from each treatment point into a single centrifuge
tube for centrifugation at 250g for 5min. The supernatant
was then aspirated, and the pellet re‐suspended in 1ml
of 1× PBS. PI was then added to the cell suspension at
10 µg/ml and incubated for 1min in the dark. PI fluores-
cence was then measured using the Beckman Coulter
CytoFLEX Flow Cytometer with a blue laser (488 nm).

2.7 | PI staining and confocal imaging

Tumourspheres were seeded in a Nunclon Sphera 60mm
dish (Thermo Fisher Scientific) at a density of
1 × 105 cells/ml and incubated at 37°C using 5% CO2 for 4
days. After tumoursphere formation, the media was re-
moved, following 320 s of CAP treatment, and fresh
media was added to the dish and incubated at 37°C using
5% CO2 for 24 h. After incubation, tumourspheres were
rinsed three times with PBS and incubated with pre‐
warmed (37°C) Propidium Iodide (10 µg/ml) containing
media for 10min at 37°C. Cells were then washed once
with PBS and loaded into fresh PBS. Tumourspheres
were transferred to 35mm glass‐bottom dishes (Greiner
Bio‐One) and observed using a Zeiss LSM 510 confocal
laser scanning microscope.

2.8 | 3D rendering

Representative confocal Z‐scans of tumorspheres were
processed for 3D reconstructions and visualization of the
cell death penetration after treatment. Contrasted di-
chroic stacks of images were rendered with 3D iso-
surfaces in computerized software (Surface tool, Imaris
Bitplane) to limit the external border of the spheres.
Then, PI‐positive nuclei were detected by positive fluor-
escence voxels as individual spots (Spots tool, Imaris
Bitplane) considering the adequate threshold and re-
solution. Then, PI‐positive spots were labeled with an
undefined color code according to the 3D distance to the
border. 3D rotations of the tumorspheres and the addi-
tion of clipping planes were performed in rendering
software to show the representative stack of images.

2.9 | ROS scavenger assays

Reactive oxygen species (ROS) inhibitor N‐acetyl cysteine
(NAC) was used as a ROS scavenger. Tumourspheres
were seeded and constructed as previously described. For

the dose‐response curves, tumourspheres were incubated
for 3 h at 37°C with 4mM NAC in DMEM in the pre-
sence and absence of pyruvate. 175 μl of media was re-
moved and the tumourspheres were exposed to CAP.
Post treatment, fresh media containing 4mM of NAC
was added and the cells were incubated at 37°C using 5%
CO2 for 24, 48, 72, and 96 h. The same procedure was
carried out for the multiple CAP‐treated samples. Cell
viability was measured using the Alamar Blue™ assay.
NAC titration was performed by exposing the tumour-
spheres to a range of 0−8 mM NAC with cell viability
assessed after 96 h.

2.10 | Detecting ROS production using
H2DCFDA assay

A cell permeant nonfluorescent probe, 2,7‐dichlorodih-
ydrofluorescein diacetate (H2DCFDA) (Thermo Fisher
Scientific), was used to measure ROS generated by CAP
treatment. H2DCFDA is a chemically reduced form of
fluorescein converted to the highly fluorescent 2ʹ,7ʹ‐
dichlorofluorescein (DCF) after the cleavage of the acetate
groups by intracellular esterases and oxidation. U‐251 MG
tumourspheres were seeded in a Nunclon Sphera 60mm
dish (Thermo Fisher Scientific) at a density of 1 × 105 cells/
ml using DMEM high glucose in the absence of sodium
pyruvate and incubated at 37°C using 5% CO2 for 4 days.
Subsequently, the culture medium was removed and the
tumourspheres were washed with 1× PBS. Tumourspheres
were incubated with replenished DMEM media, without
sodium pyruvate and phenol red, containing 25μM
H2DCFDA for 1 h at 37°C. Tumourspheres were washed
with fresh medium once and then with 1× PBS and then
exposed to CAP at different time points (20, 160, and 320 s).
Following CAP treatment, tumourspheres were incubated
for 3 h at 37°C using 5% CO2. Tumourspheres were trypsi-
nized into a single cell suspension and all liquids, including
media, washing PBS, and trypsinized cell suspension were
collected and centrifuged at 1200 rpm for 5min. Cells were
re‐suspended in 1× PBS with fluorescence measured using a
Beckman Coulter CytoFLEX Flow Cytometer with a 488 nm
blue laser for excitation and FL1 standard filter for
H2DCFDA measurement.

2.11 | Hydrogen peroxide scavenger
assay

Catalase (E.C. 1.11.1.6) is an antioxidant enzyme that is
found in peroxisomes, it catalyzes the decomposition of
H2O2 to form water and molecular oxygen (2 H2O2→ 2
H2O+O2).

[26] U‐251 MG tumourspheres were seeded in

WANIGASEKARA ET AL. | 5 of 15
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Nunclon™ Sphera™ 96‐well‐low attachment plates (Thermo
Fisher Scientific) at a density of 1× 105cells/ml and in-
cubated at 37℃ using 5% CO2 for 4 days. Catalase stock
solution (1mg/ml equivalent to 2000–5000 units/ml) was
freshly prepared in 1× PBS, and diluted in fresh media
to 0.1mg/ml for inhibition of H2O2 production. After
the formation of the tumourspheres, replenished DMEM
media, without sodium pyruvate and phenol red, containing
0.1mg/ml catalase were incubated for 1 h at 37°C. CAP
treatment was performed on the samples for 160 and 320 s.
Then the fresh media with catalase was added to the dish
and incubated at 37°C using 5% CO2 for 24 h. After in-
cubation, PI staining was carried out as explained in
Section 2.6. PI fluorescence was then measured using a
Beckman Coulter CytoFLEX Flow Cytometer with a blue
laser (488 nm).

2.12 | Statistical analysis

All the experiments were replicated at least three in-
dependent times. Prism versions 9.1.0, GraphPad Soft-
wares, Inc. were used to carry out curve fitting and
statistical analysis. Dose‐response curves were measured
using nonlinear regression. Data are presented as a per-
centage and error bars of all figures were presented using
the standard error of the mean (SEM), multiple com-
parison analyzes were performed using Tukey's test un-
less otherwise stated. CytExpert software was used for
flow cytometry analysis and the mean of FITC‐A was
used to plot the reading results in columns statistics. PI
uptake studies were analyzed using two‐way ANOVA
with Tukey's post‐test.

3 | RESULTS AND DISCUSSION

3.1 | Pin‐to‐plate discharge presents
cytotoxicity toward GBM cells in a
time/dose‐dependent manner

The tumor microenvironment plays a key role in tumor
progression, metastasis, angiogenesis, cytotoxicity resistance,
and immune cell modulation.[27,28] We employed a U‐251
MG 3D cell culture model, which enabled cell–cell and
cell–ECM interactions in all three dimensions and mimicked
diffusion‐limited distribution of oxygen, nutrients, metabo-
lites, and signaling molecules common in the micro-
environment of in vivo tumors. Most of the research on the
effects of CAP on cancer cells has been investigated by using
2D monolayer cell cultures[29,30] and a growing number of
animal models.[11,13] There are also a few studies carried out
using the pin to plate design[25,29]; however, this is the first

time that we are reporting the approach for induced cyto-
toxicity in 3D tumor spheroids.

We have tested tumorsphere growth with different
seeding densities and observed tumoursphere growth
ranging from 100 to 650 µm in diameter. Our findings
correlate with the tumourspheres sizes obtained by Singh
et al.[31] We used this diffusion‐limited 3D cell culture
model to explore the diffusion of cytotoxic reactive spe-
cies throughout the tumoursphere, rate of cell death, and
effects of single and multiple CAP treatments on the
cell–cell and cell–ECM interactions.

The tumoursphere size and resistance to CAP treatment
were enhanced when tumourspheres were cultured in
media containing serum, which is in agreement with oth-
ers.[32] Previous studies from our research group demon-
strated that the optimal discharge frequency using the pin to
plate reactor was 1000Hz, producing the highest overall
RONS within the plasma. Correspondingly, the highest cy-
totoxic responses were also observed for 1000Hz.[25] We,
therefore, used a resonant frequency of 55.51 kHz with a
discharge frequency of 1000Hz and a duty cycle of 73 µs for
exploring the technology's potential for 3D cell cultures.

First, the effects of plasma discharge on the GBM tu-
mourspheres were studied under two different media com-
positions (DMEM high glucose with and without the
presence of 10% FBS). Plasma‐treated tumorspheres were
post incubated at 24, 48, and 96 h at 37℃. An IC50 of 386.3 s
(375.9± 397.1 s), 460.7 s (449.4± 472.4 s), and 769.3 s
(742.5± 797.0) were found for tumourspheres grown in a
media with serum, CAP‐treated, and post incubated at 24,
48, and 96 h, respectively. An IC50 of 82 s (80.68± 83.33 s),
172.4 s (170.3± 174.6 s), and 237.4 s (230.5± 244.5 s) were
found for tumourspheres grown in media without serum,
CAP‐treated, and post incubated at 24, 48, and 96 h, re-
spectively (Figure 2a). Two‐way ANOVA demonstrated that
there is a significant difference in viability between the doses
of CAP, different post treatment incubations, and media
used for tumorsphere growth (p<0.0001). A full description
of Tukey's multiple comparisons test is provided in the
Supporting Information Section D3. According to these re-
sults, tumourspheres grown in high glucose DMEM with
10% FBS showed higher CAP resistance (Figure 2a) and
growth rate (Figure 1a), likely more similarly reflecting the
in vivo conditions. Hence, we use media supplemented with
10% serum for all further tumourspheres to get a better re-
presentation of the in vivo effects.

Next, we compare the effects of the plasma discharge on
U‐251 MG human glioblastoma multiforme and A431 hu-
man epidermoid carcinoma (2D and 3D cells) in DMEM
high glucose with 10% FBS medium after 24 h incubation
time. An IC50 of 386.3 s (375.9± 397.1 s) and 160.4 s
(157.0± 163.9 s) were found for U‐251 MG 3D and 2D cells,
respectively and an IC50 of 125.5 s (123.2± 127.9 s) and
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50.77 s (49.67± 51.90 s) were found for A431 3D and 2D
cells, respectively (Figure 2b). Two‐way ANOVA shows that
there is a significant difference in U‐251 MG and A431 (2D
and 3D) cell viability between the doses of CAP and different
cell lines (p<0.0001). A full description of Tukey's multiple
comparisons test can be seen in the Supporting Informa-
tion Section D4. When using a single CAP treatment, U‐251
MG 3D tumorsphere displayed greater resistance to CAP
compared with the 2D cell cultures with U‐251 MG cells also
showing a higher treatment resistance compared to the A431
cell lines.

Subsequently, we determine the cytotoxic effects of a
single CAP treatment on GBM tumourspheres (in
DMEMmedia with and without sodium pyruvate). These
data confirmed that the pyruvate‐free media resulted in
greater effects. Depending on the cytotoxicity results
(Figure S2), the single plasma discharge did not induce
full cytotoxicity in the tumorspheres, even at the highest
dose at 24 h incubation (320 s, cell viability = 49.16%
–58.94% in Figure S2b).

Since the single CAP treatment was not enough to in-
duce higher cytotoxicity and halt tumor regrowth, we hy-
pothesized that the use of multiple (three consecutive daily)
CAP treatments would result in more favorable outcomes.
The two‐way ANOVA demonstrated that there is a sig-
nificant difference in viability between each dose of multiple
CAP, different post treatment incubations, and media used
for tumorsphere growth (p<0.0001). A full description of
Tukey's multiple comparisons test can be seen in the Sup-
porting Information Section D5 (Figure S2a) and D6
(Figure S2b). The differences in IC50 values and significant
difference between different media used (DMEM high glu-
cose with and without pyruvate) shows a protective effect of
sodium pyruvate. These experiments identified multiple
CAP treatments as the most successful way to induce ef-
fective cytotoxicity in the target tumourspheres.

To compare plasma effectivity toward different cell lines,
single and multiple CAP treatments of both U‐251 MG and
A431 tumourspheres were carried out. For single CAP
treatment, cell viability after 24 h was 54.33% (IC50−390.6 s)

FIGURE 2 U‐251 MG cold atmospheric plasma (CAP) treatment. (a) U‐251 MG tumoursphere single CAP treatment and post treatment
incubation at 24, 48, and 96 h [with serum media represented as a (+) and without serum media represented as (−)]. (b) U‐251 MG and
A431 3D, 2D cell cytotoxicity comparison after CAP treatment and 24 h post treatment incubation. (c) Comparison of U‐251 MG and A431
single CAP treatments with 24 and 96 h incubations. (d) Comparison of U‐251 MG and A431 multiple CAP treatment with 24 and 96 h
incubation
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and 18.22% (IC50−125.5 s) for U‐251 MG and A431 tu-
mourspheres, respectively, with the highest dose (320 s)
(Figure 2c). CAP‐treated tumourspheres incubated for a
longer time period (96 h) led to cell viability increases in both
cell lines. Cell viability with the highest dose was found to be
75.83% (IC50–777.3) and 35.46% (IC50–225.0) for U‐251 MG
and A431 tumourspheres, respectively (Figure 2c).

The kinetic response to CAP treatment over time was
markedly different. For 2D cultures, significantly more cell
death was evident 96 h after treatment compared with 24 h,
with cytotoxicity found to be ROS‐dependent.[29] Conversely,
for both U‐251 MG and A431 3D tumourspheres, the

induced cytotoxicity after 24 h was proportional to the plas-
ma dosage but was found to partially recover their RONS
damage and regrow, similar to previous reports[14] and in
contrast to cells grown in the 2D monolayer.[29] Our data
also shows that the U‐251 MG cell line is highly resistant to
single‐dose plasma treatments and is able to regrow quickly
when compared to A431. These results have important im-
plications for future animal model and human trials where
single CAP treatments may be insufficient to yield significant
benefits.

For the multiple CAP treatments and incubation at
24 h, cell viability with the highest dose was 8.22%

FIGURE 3 PI uptake in pin‐to‐plate‐treated U‐251 MG tumourspheres. PI uptake was measured by flow cytometry and used as an
indicator of cell death. Cells were treated at 240 V, 1000 Hz, and 73 μs for 0, 20, 50 100, 160, and 320 s. PI uptake was then measured 24 h
post treatment in (a) single cold atmospheric plasma (CAP) treatment, (b) multiple CAP treatments, (c) normalized PI uptake was then
measured at 24 h post single and multiple treatments and represented as a bar chart. All the data points were statistically significant except
control and 20 s treatment times. (d) Fluorescence levels of control and 320 s CAP treated, PI stained U‐251 MG tumourspheres observed by
confocal microscopy detected by 3D software. Tumoursphere cell death identified in each spot and distance to reactive oxygen species (ROS)
border shown. Distance to the ROS border is color‐coded according to the scale at the bottom. ns, not significant, *p ≤ 0.05; ****p ≤ 0.0001
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(IC50–70.59) and 0.76% (IC50−46.65) for U‐251 MG and
A431 tumourspheres, respectively (Figure 2d). With a post
treatment incubation of 96 h, cell viability was 12.82%
(IC50–77.38) and 0.59% (IC50–51.44) for U‐251 MG and
A431 tumourspheres, respectively (Figure 2d). The re-
sults confirmed that U‐251 MG human glioblastoma mul-
tiforme tumourspheres were more resistant to plasma
treatment when compared to the A431 human epidermoid
carcinoma. However, multiple CAP treatments significantly
induced cytotoxicity in tumourspheres and it was able to
fully/partially inverse tumorsphere regrowth ability in
A431/U‐251 MG, respectively. Multiple CAP doses suc-
cessfully reduced U‐251 MG tumorsphere regrowth rates.

Two‐way ANOVA demonstrated that there is a sig-
nificant difference in the viability between single and
multiple CAP doses, post treatment incubation period, and
cell line used for tumorsphere growth (p<0.0001). A full

description of Tukey's multiple comparisons test is available
in the Supporting Information Section D7 (Figure 2c) and
D8 (Figure 2d). Based on the analysis it is demonstrated
that the pin to plate device could induce tumorsphere cy-
totoxicity in a dose‐ and time‐dependent manner.

3.2 | Effect of CAP treatment on
tumorsphere cell membrane damage

PI was used to validate the pin‐to‐plate‐ induced cell
death and cytotoxicity in U‐251 MG tumourspheres.
PI is a membrane‐impermeable, fluorescent, nucleic
acid intercalating agent, allowing identification of
dead cells with compromised plasma membranes in a
population in tumourspheres. PI uptake was mea-
sured 24 h post single (Figure 3a) and multiple

FIGURE 4 U‐251 MG and A431 tumorsphere size (diameter) and cell count analysis followed by cold atmospheric plasma (CAP)
treatment. (a) U‐251 MG, (b) A431, (c) U‐251 MG tumorsphere morphological changes with CAP treatment. (d) A431
tumoursphere morphological changes with CAP treatment (converted all of the panels [c] and [d] to grayscale and applied a simple linear
brightness adjustment [+40%]). (e) U‐251 MG tumorsphere cell count change with multiple CAP treatment

WANIGASEKARA ET AL. | 9 of 15
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FIGURE 5 (See caption on next page)
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(Figure 3b) CAP treatments. The PI uptake increased
to almost 45% and 90%, respectively, following single
and multiple CAP treatments for 320 s as shown in
Figure 3c. This also proves that CAP treatment can
damage the tumoursphere's cell membrane and in-
duce cytotoxicity. This validates the Alamar blue™
assay data.

Two‐way ANOVA demonstrated that there was a
significant difference in PI uptake between control
and the 50, 100, 160, and 320 s doses (p < 0.0001),
while no significant difference was found between the
control and 20 s for both single and multiple CAP
treatment. A full description of Tukey's multiple
comparisons test can be seen in the Supporting In-
formation Section D9.

The outer layer of the spheroid is exposed to the
surrounding medium and is mainly composed of
viable, proliferating cells.[33] It is tempting to hy-
pothesize that when tumourspheres are exposed to
CAP, gas‐phase reactive species are first trapped by
the surrounding medium and then initiate chemical
reactions on the outer layer of cells, this then leads to
cell death in the outer layer of cells, resulting in
weakened cell–cell interactions and the disassembly
of the tumoursphere. It was reported that despite the
ability of RONS to penetrate throughout the entire
depth of 3D tumourspheroids, apoptosis was observed
only on the outermost layer or surface.[9] However,
this is not what occurs in our case. We used confocal
microscopy alongside a 3D reconstruction of stacked
images to build three‐dimensional maps of the treated
tumourspheres. The distance of each dead cell to the
nearest surface of the tumoursphere was calculated
and color‐coded (Figure 3d). With this analysis, ;we
demonstrated that cytotoxicity, measured by PI up-
take, increased significantly after multiple treat-
ments. Even after a single CAP treatment, we
observed a uniform distribution of dead cells
throughout the tumoursphere. These data underscore
the capacity of ROS generated by CAP to diffuse at
least 150 μm from the surface of the tumor without
limiting cytotoxicity, and that low doses of CAP
(single treatments) cause a significant disruption of
cell–cell and cell–ECM interactions throughout the
tumoursphere.

3.3 | CAP induced morphological
changes

Changes in the tumoursphere morphology induced by
CAP treatment were studied to get a better under-
standing of their mechanism of cell death. Tumoursphere
diameter was found to be significantly reduced after
the third CAP treatment (320 s) for both U‐251 MG
(Figure 4a) and A431 (Figure 4b) cell lines. Re-
presentative tumoursphere images showing the mor-
phological changes induced by 320 s CAP treatment for
U‐251 MG and A431 are shown in Figures 4c and 4d,
respectively.

Multiple CAP treatments induced significant, cumula-
tive cytotoxicity. This was manifested by spheroid shrink-
age and markedly reduced tumor regrowth ability, which
was achieved with lower overall doses of CAP. It is there-
fore likely that multiple CAP treatments over a relatively
short period of time would be necessary for clinical appli-
cations, setting constraints on approaches to deliver CAP
directly to the tumor site. Interestingly, the response of U‐
251 MG and A431 tumourspheres to multiple CAP treat-
ments was visibly different. Whereas U‐251 MG tumour-
spheres (Figure 4a) had no appreciable morphological
change after the first treatment, swelled significantly at the
second treatment, and broke apart after the third treat-
ment; A431 tumourspheres (Figure 4b) reduced in size after
the first treatment and gradually broke apart on con-
secutive treatments. Overall, the outcome was essentially
the same with enhanced cytotoxicity and inability to reform
tumourspheres after multiple treatments, but the effects
suggest that the cell‐cell and cell–ECM interactions are
different for each cell line.

Finally, to validate the above changes after multiple
CAP treatments, we calculated the number of cells in the
tumoursphere (cells/ml) accompanied by 0, 160, and
320 s CAP treatments. The number of cells in a tu-
moursphere rapidly declined during each CAP treatment
with the lowest cell number observed after a 24 h post
treatment incubation period. Subsequently, the number
of cells increased slightly for the 160 s treatment with the
overall cell amount slowly decreasing with the 320 s
treatment (Figure 4e). Interestingly, U‐251 MG tumour-
sphere diameter increased during the second CAP
treatment (Figure 4a) while reducing cell number

FIGURE 5 Reactive oxygen species production in U‐251 MG tumourspheres. 3D cells were incubated with H2DCFDA and treated at
three different doses of cold atmospheric plasma (a) 3 h post treatment cells were collected and analyzed using CytExpert software. (b) The
mean of the FITC channel was used to plot the values on columns and analyzed using one‐way ANOVA with Tukey's post‐test (Supporting
Information Section D11). All the data points were statistically significant except H2DCFDA only and 80 s treatment times. ns, not
significant (p > 0.05); *p < 0.05; ***p < 0.001; ****p < 0.0001
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(Figure 4e). It is possible that multiple CAP treatments
can weaken cell–cell and cell–ECM interactions, and due
to this, the volume of the densely arranged tumorsphere
started to increase, resulting in an increased tumorsphere
diameter. On the other hand, a higher number of cells
were dead and detached from the tumorsphere core,
which was observed as a reduction in cell number. Two‐
way ANOVA demonstrated that there was a significant
difference in the number of cells during the 24–96 h in-
cubation period (p< 0.0001). A full description of
Tukey's multiple comparison test is available in the
Supporting Information Section D10.

3.4 | ROS production in U‐251 MG
tumourspheres

We evaluated intracellular reactive oxygen species by
using H2DCFDA, a cell‐permeable probe. Analysis of the
histograms show significantly increasing levels of
intracellular‐oxidized H2DCFDA and ROS as a function
of treatment time (Figure 5a). The mean fluorescence
levels of 80, 160, and 320 s CAP‐treated tumourspheres
were increased by a factor of 1, 1.6, and 3 times, re-
spectively, compared to the negative control (Figure 5b).

3.5 | Pin‐to‐plate presents
RONS‐dependent cytotoxicity

Tumoursphere response observed in the presence and
absence of sodium pyruvate from single and multiple

CAP treatments may indicate the presence of ROS‐
dependent cytotoxic effects. The ROS‐induced cytotoxic
effect of the pin to plate system was evaluated by using
different treatment time points (0, 20, 50, 100, 160, and
320 s) with N‐acetyl‐L‐cysteine (NAC) employed as a ROS
scavenger.

The highest CAP treatment resistance was evident
in the tumourspheres treated in the high glucose
DMEM with pyruvate and NAC. The second highest
cytotoxicity resistance was observed in the high
glucose DMEM without pyruvate and with NAC. The
highest cytotoxicity was shown in tumourspheres
treated in high glucose DMEM without pyruvate or
NAC and high glucose DMEM with pyruvate and
without NAC, respectively (Figure 6). This confirms
that the cytotoxicity induced by the pin system is
mainly dependent on RONS. NAC significantly pro-
tected the target tumourspheres from CAP‐induced
cytotoxicity at each applied dose, post treatment in-
cubation period, media compositions, and single/mul-
tiple treatments (p < 0.0001), whereas sodium pyruvate
did not significantly protect against cytotoxicity. A full
description of Tukey's multiple comparisons test and
all the IC50 values and ranges are shown in the Sup-
porting Information Section (Table S1 and D12–D17).

Titration of NAC was performed to confirm the op-
timum working concentrations. Two‐way ANOVA de-
monstrated that there was no significant difference
between 2, 4, and 8mM of NAC, showing that increases
or decreases in NAC concentration of around 2–8 mM do
not change the protective effects (Figure S3 and D18 in
Supporting Information Section).

FIGURE 6 U‐251 MG single and multiple cold atmospheric plasma (CAP) treatment with and without N‐acetyl cysteine in with and
without pyruvate media. (a) Single CAP 24 h, (b) single CAP 48 h, (c) single CAP 96 h, (d) multiple CAP 24 h, (e) multiple CAP 48 h,
(f) multiple CAP 96 h incubation
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FIGURE 7 (See caption on next page)
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3.6 | Catalase as hydrogen peroxide
scavenger

PI uptake was measured 24 h after a single CAP treat-
ment (160, 320 s) and compared to PI uptake with and
without catalase (Figure 7a). Catalase reduced the PI
uptake slightly from 31% to 23% after 160 s CAP treat-
ment, while it significantly reduced cytotoxicity from 51%
to 34% after 320 s CAP treatment (Figure 7b). There was
no significant difference between 160 s with and without
catalase, while there was a significant difference between
320 s with and without catalase. According to this
experiment, catalase is able to slightly reverse the
CAP‐induced cytotoxicity, proving that hydrogen per-
oxide generated in pin to plate device contributes to the
observed tumoursphere cytotoxicity.

Plasma‐induced apoptosis in tumoursphere was pre-
viously shown to depend on H2O2, NO2

−, and NO3
− and

it is demonstrated that these diffuse longer distances
than short‐lived species, such as O2

−, OH•, and
ONOOH/ONOO−.[28,30] In our case, cell‐permeable NAC
is protective, yet catalase was unable to fully protect cells
from CAP, indicating that reactive species other than
hydrogen peroxide also play a role in the 3D tumour-
sphere model. Therefore, the response of U‐251 MG tu-
mourspheres to CAP is different from previous reports,
and indeed to U‐251 MG cells grown in 2D cultures
where we found, using the same plasma system where
CAP treatment induced predominantly H2O2‐dependent
cytotoxicity.[29] Together, our data indicate a relative re-
sistance of U‐251 MG tumourspheres to hydrogen per-
oxide during CAP‐induced cell death. Cell death may
instead be mediated by other ROS species we have pre-
viously measured in the plasma plume or media, in-
cluding OH, N2 second positive system, N2

+ first negative
system, nitrate, and ozone.[25] Alternatively, direct gen-
eration of intracellular ROS may account for some of the
cytotoxicity observed.

4 | CONCLUSION

CAP treatment can effectively induce 3D glioblastoma
tumoursphere cell death in a time‐, dose‐, treatment‐
frequency, and ROS‐dependent manner. CAP is also able

to reduce 3D glioblastoma spheroid growth and cell
proliferation and induce damage to the tumor micro-
environment. CAP generated from the pin to plate device
induces cytotoxicity throughout the tumoursphere, likely
via long‐lived RONS (H2O2, NO2

−, and NO3
−) and also

other reactive species, with multiple treatments aug-
menting this cytotoxic effect. Our results indicate the
importance of CAP‐generated long and short‐lived spe-
cies for the growth inhibition and cell cytotoxicity of solid
glioblastoma tumors, as they are necessary to achieve a
sustained reduction of 3D glioblastoma spheroids in vi-
tro. Furthermore, our results set important limitations on
the likely approach needed when translating CAP into a
clinical setting, with an approach that allows multiple
treatments favorable over a single treatment.
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