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Abstract

Reconstructed Discontinuous Galerkin (rDG) methods aim to provide a unified framework between Discon-
tinuous Galerkin (DG) and finite volume (FV) methods. This unification leads to a new family of spatial
discretization schemes from order three upwards. The first of these new schemes is the rDG(P1P2) method,
which represents the solution on each element as linear functions while reconstructing quadratic contribu-
tions to compute the fluxes inside the element and over the faces. For the rDG(P1P2) method, two differ-
ent reconstruction methods were implemented. The first of these reconstruction methods is a least-squares
based reconstruction. For this reconstruction, an inverse distance weighting was introduced to improve the
discretization error in anisotropic mesh regions, as well as an extended reconstruction stencil variant, which
aims to stabilise the reconstruction on simplicial meshes. The inclusion of an inverse distance weighting was
found to be beneficial for high Reynolds number flows on the example of the two-dimensional zero pres-
sure gradient flat plate. As a second method, a variational reconstruction method was implemented. For the
variational reconstruction rDG methods it was shown that they can offer significantly reduced discretization
errors compared to DG methods for smooth flows. It was shown on the example of a method of manufactured
solutions, that all implemented methods reach their designed order of accuracy and can provide lower spatial
discretization errors than a DG method of a comparable order on regular and randomly perturbed hexahedral
meshes as well as on tetrahedral meshes. The rDG methods was applied to several two and three-dimensional
RANS test cases. For these test cases, a stronger influence of the Reynolds number on the discretization error
of rDG methods was found compared to the weaker influence observed for DG methods. For all test-cases, it
was shown that rDG methods converge faster on the same mesh, however, yield a higher absolute error, due
to the lower number of degrees of freedom compared to native DG methods.
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1
Introduction

Current methods for computational fluid dynamics (CFD) for industrial applications are almost exclusively
based on second-order finite volume schemes. These methods are very well-researched and have been ap-
plied to an extensive range of applications. With ever-increasing computational power, the possibility for
methods of order higher than two increases significantly and there has been a significant effort in imple-
menting these methods into industrial applications. The need for higher-order spatial discretization tech-
niques has been laid out explicitly in the "CFD Vision 2030 Study" by NASA [44]. The usage of higher-order
methods can be beneficial for scale-resolving simulations such as Large Eddy Simulations (LES), which are
becoming ever more relevant in an industrial context. Even though there exist frameworks for constructing
higher-order methods on unstructured grids, such as Galerkin spectral methods and higher-order finite vol-
ume schemes, their use for industrial applications remains limited. Due to the inherently higher coupling
between the degrees of freedom in higher-order methods, the resulting numerical systems are significantly
stiffer than lower-order methods and often less robust and harder to use.

Recently a novel method emerged as a hybrid version between second or higher-order finite volume
methods and discontinuous Galerkin (DG) methods. The formulation is based directly on a DG method
framework, however, during the solution process, higher-order moments of the solution are reconstructed
similar to second and higher-order finite volume methods. The reconstructed discontinuous Galerkin (rDG)
method aims to reduce the computational work needed for higher-order methods while keeping the advan-
tageous properties of higher-order DG methods.

This thesis will evaluate the applicability of these rDG methods for high Reynolds number RANS simula-
tions. For this, two different reconstruction techniques have been implemented. These are a least-squares
reconstruction method and a more novel variational reconstruction method. For the least-squares recon-
struction method, two extensions are proposed. The first extension employs an inverse-distance weighting
to improve the reconstruction in highly anisotropic mesh regions such as boundary layers. Furthermore, an
extended reconstruction stencil using a vertex-based neighbourhood is adapted from finite volume methods,
to stabilise the method on simplicial meshes.

As variational reconstruction rDG methods have been found to be very hard to converge for complex flow
problems in the context of a fully implicit solver. A simplification to the reconstruction process is proposed
to allow convergence of the variational-reconstruction-based rDG method for high Reynolds number flows.
The effect on accuracy of this simplification is examined.

The research objective is formulated as:

Evaluate the applicability of higher-order compact reconstructed discontinuous Galerkin (rDG)
discretizations for High Reynolds number RANS flows using least-squares reconstruction and variational

reconstruction.

The thesis will first introduce the modal DG formulation for the Euler and RANS equations in chapter 2. In
chapter 3, the reconstructed DG method and the two reconstruction procedures used are introduced. At the
end of this chapter, the research questions for this Thesis will be formulated. The non-linear solution process
will be introduced in chapter 4.

In chapter 5, first, the implementation of the methods will be verified utilising the method of manufac-
tured solutions. This tool will also be used to assess the influence of the diffusive flux treatment in rDG

1



2 1. Introduction

methods compared to native DG methods. Chapter 6 will then compare rDG methods to native DG methods
on the example of different test cases in two and three dimensions. Finally, chapter 7 will then summarise the
results of chapters 5 and 6 and aims to answer the research questions established at the end of chapter 3.

The rDG methods of interest are integrated into the flow solver CODA. CODA is the computational fluid
dynamics (CFD) software being developed as part of a collaboration between the French Aerospace Lab ON-
ERA, the German Aerospace Center (DLR), Airbus, and their European research partners. CODA is jointly
owned by ONERA, DLR and Airbus.



2
Discontinuous Galerkin discretization of

the RANS equations

The Discontinuous Galerkin (DG) method was first proposed by Reed and Hill [42] for the solution of the
neutron transport equation. The method was later applied to the solution of the Euler equations [6], the
compressible Navier-Stokes equations [5], and the Reynolds-averaged Navier-Stokes equations [10]. This
chapter will first explain the governing Euler and Reynolds-averaged Navier-Stokes equations in section 2.1.
In section 2.2, the DG formulation using orthonormal basis functions will be described. Sections 2.3 and 2.4
introduce the numerical fluxes used in the work.

2.1. Governing equations
This section will lay out the governing equations, and explicitly state the exact closures, which are used to
close the system of equations in this study.

2.1.1. Euler equations
The Euler equations describe the behaviour of a compressible fluid with no viscosity. They are a simplifica-
tion of the Navier-Stokes equations and are purely hyperbolic. Due to the hyperbolic nature of the equations,
they require no special treatment in DG discretizations and thus can be used to study the effect of the modi-
fications in the discretization without the influence of viscous treatments laid out in section 2.4. The system
of equations is shown in equation 2.1.

∇·FC (u) = ∂u

∂t
, (2.1)

where FC (u) is the vector of convective fluxes, with the vector of conservative variables

u =


ρ

ρv1

ρv2

ρv3

ρE

 , (2.2)

where ρ is the density of the fluid, vi is the velocity of the fluid in the coordinate direction i and E is the
specific total energy of the fluid. In this study, the ideal gas law is used to close the system of equations.

2.1.2. Reynolds averaged Navier Stokes equations
The Reynolds averaged Navier Stokes (RANS) equations include the Euler equations, as well as diffusive
fluxes, due to viscosity (eq. 2.3). The equations are furthermore Reynolds averaged, such that u = ū+u′,
where ū is the steady state component, and u′ represents the fluctuating component of u. The RANS equa-
tions are then formulated for the time-averaged component ū, which will be represented by u in the rest of
this work, for simplicity’s sake. The influence of u′ is modelled using an appropriate turbulence model

3



4 2. Discontinuous Galerkin discretization of the RANS equations

∇·FC (u)−∇·FV (u,∇u) = ∂u

∂t
, (2.3)

The state vector and convective fluxes are unchanged from the Euler equations. However, an additional vis-
cous flux term , is present. The diffusive flux FV (u,∇u)depends on the viscosity of the fluid µ. To calculate
the spatially varying viscosity of the fluid, Sutherland’s Law is used [47].

Spalart-Allmaras turbulence model The Spalart-Allmaras (SA) one-equation turbulence model was for-
mulated by Spalart and Allmaras [45] and has since been widely used for external aerodynamic flows and in
the latest Higher-Order workshops 1. The model is used in its negative formulation for this study, which aims
to address issues on under-resolved grids. In comparison to the baseline SA model, it shall "be passive to the
original model in well-resolved flowfields and should produce negligible differences in most cases." [3]. The
SA model, introduces an additional transport PDE for the transported turbulence variable ν̃ to eq. 2.3. The
transport equation including the additional transport equation can be formulated as

∇·FC (u)−∇·FV (u,∇u)−S(u,∇u) = ∂u

∂t
(2.4)

with a vector of conserved variables

u =



ρ

ρv1

ρv2

ρv3

ρE
ρν̃

 (2.5)

Compared to equation 2.3, an additional source term S is present in the equation, which only acts on the
production of ρν̃. The exact definition for the fluxes of the turbulent variable equation can be found in [45]
and [3].

2.2. Orthornormal basis DG formulation
To find a solution to the aforementioned PDEs, the equations need to be discretized in space and time. For
the spatial discretization, an orthonormal basis discontinuous Galerkin method is used in this study [32].

Consider the domain Ω with boundary Γ, covered by a conformal mesh. The solution of the PDE is de-
fined on each element, using element-local polynomials up to a total degree of k for a method of order k +1.
The basis functions ϕ j ∈ PM

j are chosen such that 〈ϕi ,ϕ j 〉 = δi j , where δi j is the Kronecker delta. This or-

thonormal basis is formulated in physical space and centred on the centroid of the element [8]. This basis
spans the same polynomial space as the Taylor basis used by Luo et al. [38, 33]. Compared to a Taylor basis,
the mass matrix of this orthonormal basis is the identity matrix and thus results in a well-conditioned linear
system [8]. This choice of basis furthermore enables the use of agglomeration-based multigrid methods to
accelerate the solution process[7]. The numerical solution uh on the element i is given by

ui
h =∑

j
w i

jϕ
i
j (2.6)

The goal of the DG method is to find a numerical solution uh , which satisfies the PDE of interest in a weak
sense under appropriate test functions ψ. The test functions ψ used are the same as the basis functions ϕ of
the method. To simplify the expressions, the time derivative of the equation is dropped.∑

i

∫
Ωi

ψ
(
∇·FC

(
ui

h

)
−∇·FV

(
ui

h ,∇ui
h

))
dΩ=∑

i

∫
Ωi

ψS
(
ui

h ,∇ui
h

)
dΩ (2.7)

This can be simplified by using integration by parts to yield the following.∑
i

∫
Γi
ψ

(
FC

(
ui

h

)
−FV

(
ui

h ,∇ui
h

))
dΓ−∑

i

∫
Ωi

∇ψ ·
(
FC

(
ui

h

)
−FV

(
ui

h ,∇ui
h

))
dΩ=∑

i

∫
Ωi

ψS
(
ui

h ,∇ui
h

)
dΩ,

(2.8)
where Γi is the boundary of element i , including both boundary and inner faces. As the state at the element
boundaries is discontinuous, proper numerical fluxes F C and F V have to be defined.

1https://how5.cenaero.be/
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2.3. Inviscid flux computation
To ensure the stability of the convective fluxes, Roe upwinding is used [28]. For this, the convective numerical
flux at the integration point in question is calculated as

F C = 1

2

(
FC (

u+
h

)+FC (
u−

h

)−|ARoe |
(
w+

h −w−
h

))
. (2.9)

The superscripts + and − indicate the different sides of the face of interest. As Roe’s method has no way of
distinguishing between compressive and expansive shocks, the method itself admits nonphysical solutions.
To alleviate this nonphysical destruction of entropy, Harten introduced an entropy fix to the method [23]. The
strength of this entropy fix is controlled by the entropy fix fraction parameter. This entropy fix fraction is kept
at 10% of the maximum eigenvalue for all test cases.

2.4. Viscous flux computation
From equation 2.7 it can be seen that the computation of viscous fluxes involves the gradient of the state
in addition to the state itself. To obtain the derivative of the state, the basis functions of the elements can
be differentiated. These element-local derivatives of the basis functions will, however, be of a lower order
than the state itself. For a DG(P1) method, the gradients would only be represented as a constant over the
element. Since for a second-order method, a second-order gradient is needed on each element and each
face, the resulting method would not be second order. Furthermore, such a naive treatment of viscous effects
would not take into account the discontinuities of the solution over the element faces. To alleviate this special
viscous treatments are used in DG methods. There are several approaches proposed in literature to deal
with viscous problems in DG methods, such as the local discontinuous Galerkin (LDG) method [15] and the
symmetric interior penalty (SIPG) method [24]. In the present code, the BR1 [5] and BR2 [9] schemes by Bassi
and Rebay are used.

2.4.1. BR1 scheme
The BR1 scheme was first proposed by Bassi and Rebay in [5] for the solution of the Navier-Stokes equations.
In the scheme, a local lifting operator r is defined for every face σ of the element Ωσ. The lifting contribution
is defined in the space of the basis functions of the element. For the computation of the lifting operator the
jump over the face [[uh]] = u+

h n++u−
h n− is introduced.∫

Ωσ

rσ ([[uh]]σ) ·ψdx =−
∫
σ

ψ

2
· [[uh]]σdσ (2.10)

for all test functions, ψ is defined on the element. The local lifting operators of all faces of an element are
then used to define a global lifting operator for the element.

R ([[uh]]) =
∑
σ∈Σ

rσ ([[uh]]) (2.11)

This global lifting operator provides an additional gradient component for the computation of fluxes over the
faces and inside the element.

FV (uh ,∇uh +R ([[u]])) (2.12)

As the computation of the flux over a face includes all faces of both cells, the BR1 scheme is not compact, as
second-order neighbours of the element are involved in the computation [10]. This non-compact property
leads to stiffer numerical systems, as well as requiring additional computational effort in deriving the exact
Jacobian matrix of the scheme. Furthermore, Arnold et al. show, that the BR1 scheme is not uncondition-
ally stable for purely elliptic problems [4]. These properties make the scheme itself undesirable in external
aerodynamics, and its use remains limited.

2.4.2. BR2 scheme
A modification to the BR1 scheme yields the second scheme of Bassi and Rebay (BR2), which was first pro-
posed in [6, 9]. This scheme is similar to the previously mentioned BR1 scheme in the sense, that a local lifting
operator is defined on each face, as well as the summation of these local lifting contributions to a global lift-
ing for the cell. The differences however arise in the usage of these lifting operators. In the BR2 scheme, only
the local lifting contribution of a face (eq. 2.10) is used for the flux computation over the face. For the inner-
element flux computation, the global lifting operator is used as in the BR1 scheme, as can be seen in equation
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2.12. With this modification, only the neighbouring elements of a face are used for the flux evaluation over
the face, resulting in a compact method.

To emulate the missing influences of the other faces on the flux computation using the local lifting con-
tribution, a penalty parameter η has been introduced by Brezzi et al. [11].

FV (
uh ,∇uh +ηrσ ([[uh]])

)
for faces (2.13)

The standard value for η arising from the previous justification is the number of faces of the cell. Brezzi et
al. show, that this method is stable for all η ≥ n f , where n f is the number of faces of the element [11]. In
the original BR1 formulation, faces only contribute to the additional gradient in the direction of their normal
vector. Thus, it can be argued, that η= 2 is a reasonable choice for regular hexahedral meshes. The influence
of this penalty parameter on the error behaviour of the method will be discussed in section 5.4.2.

The BR2 scheme has been shown to be more stable than the BR1 scheme [4] and its Jacobian can be
formulated using only the direct neighbours of the cell. Due to these properties, the scheme has been widely
used for external aerodynamics [34, 7] and will be used for the remainder of the document unless specifically
mentioned otherwise. A more detailed analysis of viscous schemes for DG methods can be found in [1, 2] by
Alhawwary et al.



3
Reconstructed Discontinuous Galerkin

The reconstructed discontinuous Galerkin (rDG) method was first proposed by Dumbser et al. [19, 18] as DG
PM PN methods for hyperbolic equations. The method has since been applied to compressible flows in [16]
by Dumbser et al. The method has been further adapted by Luo et al. in [38, 39, 36, 34, 37], which introduce
the term reconstructed discontinuous Galerkin method, in this study.

This chapter aims to introduce the rDG method as well as two different reconstruction techniques. Fur-
thermore, a clear distinction is made between existing approaches in the literature and novel extensions to
the methods. Finally, a short review of test cases to which rDG methods have successfully been applied will
be given.

The general formulation of the method will be presented in section 3.1, along with the viscous treat-
ment in rDG methods. Two different reconstruction approaches will be introduced in section 3.3. Finally, an
overview of test cases, to which the rDG method has successfully been applied will be presented in section
3.4.

3.1. Preliminaries
The reconstructed discontinuous Galerkin method aims to unify higher-order finite volume methods and
discontinuous Galerkin methods [19], thus both methods are represented in the limits of the method. A
rDG(P0 PN ) method is equivalent to a higher-order finite volume method of order N +1, while the methods
belonging to the family of rDG(PM PM ) are classical discontinuous Galerkin methods of order M+1. However,
all methods that do not fall onto these limits are novel methods [19]. A visualisation of the distribution of
these methods can be seen in figure 3.1.

As in discontinuous Galerkin methods, the solution is represented using element-local polynomials of up
to degree N for a method of order N +1. The basis functions used are the same as previously described in
section 2.2 {

ϕ j
}=PM (3.1)

Similar to finite volume methods, a higher order state is reconstructed from the represented state uh using
element-local polynomials up to order N , for N > M .{

ϕ jR

}=PN (3.2)

The reconstructed solution can then be defined by a linear combination of these extended basis functions.

ui
R =∑

j
v i

jϕ
i
jR

(3.3)

To efficiently increase the order of the numerical solution, the basis shall be nested, such that only the
additional degrees of freedom need to be calculated and the underlying degrees of freedom do not change
[19, 18]. The orthonormal modal basis by Bassi et al. [6], which is used in this study, satisfies this requirement.{

ϕ j
}⊂ {

ϕ jR

}
(3.4)

7
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Figure 3.1: "Classification of the proposed PN PM schemes. The leftmost branch (N = 0) coincides with standard finite volume schemes
and the rightmost branch (N = M) with classical DG schemes. From third-order on, there is a new class of intermediate schemes in
between those branches." Figure adapted from [19]

The reconstructed state ui
R in the element i is then used in place of the represented state to compute the

fluxes and sources in the discretization such that equation 2.7 is modified to yield∑
i

∫
Ωi

ψ
(
∇·FC

(
ui

R

)
−∇·FV

(
ui

R ,∇ui
R

))
dΩ=∑

i

∫
Ωi

ψS
(
ui

R ,∇ui
R

)
dΩ (3.5)

An example of such a reconstructed state compared to the exact analytical solution and the underlying DG
representation can be found for the example of an rDG(P1P2) method in figure 3.2. The example utilises a
least-squares reconstruction, which will be explained in detail in section 3.3.1 It should be noted that the
test functions are the same as for the underlying DG method, and thus the resulting numerical system is of
the same size as of the underlying DG method [16]. As the order of accuracy depends on the reconstructed
state, this however, results in a smaller numerical system for the same order of accuracy than for a native DG
method. Dumbser et al. showed in [18], that the linear stability limit for rDG methods depends solely on the
underlying DG method and not on the order of the reconstruction. This decrease in the size of the numerical
system for a given order and the increased stability margin may lead to a decrease in computational effort
compared to native DG methods.

Furthermore, it can be argued that to properly solve equation 3.5 numerically, one must be able to in-
tegrate polynomials of degree N + M exactly [35]. This degree of integration will not exactly integrate the
numerical fluxes which depend on a non-linear combination of the conserved variables. However, every de-
gree lower can be expected to not yield the correct solution even for linear fluxes. In comparison to this, a
discontinuous Galerkin method with comparable order of accuracy needs to at least integrate polynomials of
degree 2∗M exactly [35]. If the integration is done using the optimal Gauss-Legendre quadrature, the nodes
needed for a subset of rDG methods are shown in figure 3.3. From the figure it can be seen that increasing
the order of all DG methods by 1 does not increase the number of Gauss points needed, which can be proven
by looking at the expression for the exactly integrated polynomial degree for the number of nodes used in the
Gauss quadrature p = 2n−1. As 2∗M is always even, the Gauss-Legendre rule used is of one order higher than
the minimum degree needed. When comparing the number of integration points needed for rDG methods,
it can be seen that they are always less than the number of points needed for a DG method of the same order.
For the evaluation of the residual, the solution needs to be computed at each integration point. Thus, fewer
evaluations of the basis functions are needed, reducing the computational effort.

3.2. Viscous flux computation in reconstructed DG methods
Even though the reconstruction in rDG methods provides a coupling between discontinuous elements, the
analytical element-wise derivative is still one order lower than required for an order M + 1 method. Thus,
the viscous treatments mentioned above need to be used. For this, the lifting operator is formulated in the
space of reconstructed polynomials. For this, in equation 2.10, the test functions are chosen as the basis
functions of the reconstructed polynomial state. This approach was introduced by Luo et al. [38] and treats
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Figure 3.2: Comparison of the discretization for a sine wave between a DG(P1) (blue) and a rDG(P1P2) method (red). The exact sine
wave is shown in black.

Figure 3.3: Number of Gauss quadrature points needed in 1 dimension for a selection of rDG methods
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both reconstructed and underlying degrees of freedom the same. Furthermore, this approach does not yield
the same viscous fluxes for a method using a no-op or constant reconstruction, where the additional degrees
of freedom are kept to zero. Both of these factors may affect the accuracy of the viscous treatment compared
to native DG methods.

3.3. Reconstruction methods
The reconstructed solution is formed by applying a reconstruction operator R to the numerical solution u .
In general, the reconstruction shall be conservative, such that

v i
j = w i

j ; ∀i ∈ {1,2, . . . , N } . (3.6)

This ensures all represented degrees of freedom are preserved in the reconstructed state. Applying this con-
dition to an rDG(PM PM ) method yields a reconstruction operator which is the identity matrix, and thus
recovers the underlying DG method.

3.3.1. Least-squares Reconstruction
In the original papers by Dumbser et al. [19, 18, 16] a least-squares reconstruction technique is introduced,
which is based on solving a local constrained least-squares problem on each cell. For the reconstruction, the
basis functions of cell i are extended over the whole Stencil Si , which includes ne Elements. The condition is
formulated such that the reconstructed state of cell i is indistinguishable from the solution on the elements
of the stencil in a weak sense, for all test functions ϕ j . This can be formulated as

〈ϕi
jR

,ui
R〉Ek

= 〈ϕi
jR

,u j 〉
Ek

; ∀Ek ∈ Si , (3.7)

This reconstruction is well-posed, if the Stencil Si contains at least LN
LM

elements, where LN and LM are the
number of degrees of freedom per element for the reconstructed and represented solution respectively [19,
18]. This limit is purely theoretical based on the well-posedness of the reconstruction problem. In practice,
a higher number of elements is desirable for the accuracy and stability of the method [19, 37]. From this
relationship, it can be seen that the number of stencil elements needed for methods with N > 0, is signifi-
cantly lower than for a comparable higher-order finite volume method. For the stencil, two different choices
are considered. The standard least-squares reconstruction method utilises a compact stencil, which only in-
cludes the von Neumann neighbourhood of the cell of interest [38, 39, 34]. This choice of stencil suffers from
the same linear instability on tetrahedral meshes as encountered in second-order finite volume methods [22].
This linear instability can be resolved by using weighted essentially non-oscillatory (WENO) schemes [35, 52].
These schemes use the reconstructed polynomials of adjacent cells as biased stencils. The weighting of these
stencils is done by evaluation of an oscillation indicator proposed by Dumbser [17]. Due to their high non-
linearity, WENO schemes are hard to differentiate exactly and lead to stiff numerical systems. This leads to
stalling convergence for even simple test cases, as shown by Xia et al. [51] and Liu et al. [31, 30].

Extended Stencil Another solution to the linear instability of a face-based neighbourhood stencil is to in-
clude more cells in the stencil. For this, all cells sharing a vertex with the cell of interest are included in
the stencil. This increases the number of elements in the stencil and increases the number of directions
from which information is included. A comparison between the extended stencil and the compact stencil
variant can be seen in figure 3.4. Extension of the stencil might also increase the accuracy of least-squares
based finite volume methods in cell-centred codes compared to vertex-centred codes, as has been noted by
Schwöppe and Diskin in [43].

Boundary Conditions From equation 3.7, it can be seen that the state needs to be defined in all cells of
the stencil. This poses a problem for cells which include a boundary face. The boundary conditions on the
equation are imposed such that the exterior state at the boundary faces is known. However, as higher-order
methods generally need curved meshes to reach their designed order of accuracy [6], no general formulation
for a ghost cell can be found. To avoid this problem, equation 3.7 is reformulated on boundary faces to

aΓi 〈ϕi
jR

,ui
R〉Ek

= aΓi 〈ϕi
jR

,u j 〉
Γi

, (3.8)
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(a) (b)

Figure 3.4: (a) Comapct face-based stencil on the example of a structured triangular mesh. (b) Extended node-based stencil on the
example of a structured triangular mesh. From [43]

where Γi is the boundary face of cell i . In order to make this consistent with previous formulation, a factor

aΓi =
Vi

AΓi

is introduced, where Vi is the volume of cell i and AΓi is the area of the boundary face Γi .

Normal equation formulation To solve the over-constrained system arising from equation 3.7, a least-
squares method is used. For this a cost function f i is formulated for each cell i , where vi

a = {
v i

n

}
for NDOF <

n ≤ MDOF is the vector of additional reconstructed states

f i (vi
a) =

ne∑
k=0

(
〈ϕi

jR
,ui

R〉Ek
−〈ϕi

jR
,u j 〉

Ek

)2
. (3.9)

This can be split up to yield

f i (vi
a) =

ne∑
k=0

(
〈ϕi

jR
,ui 〉

Ek
+〈ϕi

jR
,

MDOF∑
n=NDOF +1

v i
nϕnR 〉

Ek

−〈ϕi
jR

,u j 〉
Ek

)2

. (3.10)

From this it can be seen that only the middle inner product is dependent on va , while all other terms depend
on the represented known state. To solve this least-squares problem, the minimum of f needs to be found.
For this the derivative of f with respect to va needs to be found. This leads to a linear system Ava = b for each
cell of size MDOF −NDOF . The matrix A of the system is solely dependent on the mesh metric and can thus
be constructed and inverted once. The vector b collects all terms, which depend on the current represented
state.

Inverse distance weighting Mavriplis [40] shows that the least-squares formulation for finite volume meshes
can be inexact in regions with highly anisotropic cells, such as in boundary layers. He proposes an inverse
distance weighting in the least-squares formulation, and shows that this method can reconstruct gradients
with higher accuracy in boundary layers. This can be adapted to rDG methods, by introducing a weighting
term into equation 3.9.

f i (vi
a) =

ne∑
k=0

wk
i

(
〈ϕi

jR
,ui

R〉Ek
−〈ϕi

jR
,u j 〉

Ek

)2
, (3.11)

where wk
i is the weighting for cell k for the reconstruction in cell i . The weighting is calculated such, that cells

closer to the original cell receive a higher weighting than cells further away. The formulation for the weighting
function is chosen as

wk
i = 1

||xi −xk ||n
, (3.12)

where n is an exponent greater or equal to 0 and xi is the centroid of element i . If it is 0, no inverse distance
weighting is performed. An exponent of 1 yields the most accurate solutions for finite volume methods.[40]
The influence of this weighting on the stiffness of the reconstruction problems can be found in Appendix A.

3.3.2. Variational Reconstruction
Variational reconstruction was first introduced for k-exact finite volume methods. In this technique, the goal
is to find the coefficients of the reconstructed solution such that some cost function over the domain is min-
imised. The cost function chosen to be minimized in [50] is the total interfacial jump integration (IJF), which
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is a measure of the discontinuity of each spatial derivative over the element interfaces. The total interfa-
cial jump integration is defined as the sum of all interfacial jumps I f . The Interfacial jump integration for a
rDG(P1P2) method in two dimensions for a Taylor DG method is given in equation 3.13, where dl r is the dis-
tance between the cell centroids and ur

R and ul
R are the right and left hand reconstructed states respectively

[53].

I f =
1

dl r

∫
f

2∑
m=0

m∑
n=0

(
1

m!

∂mul
R

∂xn∂ym−n d m
lr − 1

m!

∂mur
R

∂xn∂ym−n d m
lr

)2

dΓ. (3.13)

I =∑
I f . (3.14)

The goal of the method is then to minimize I with respect to the additional reconstructed states. This leads
to a global linear system of the form Ax = b, where A is dependent only on the mesh and x is the column
vector of all additional degrees of freedom for a conservative variable. The right-hand side b is a function of u
and thus changes for every non-linear iteration. Wang et al. [50], show that the resulting matrix is symmetric
and positive definite and as such is not only solvable but enables the use of more specialised linear solvers
such as the conjugate gradient (CG) method. The linear system does not need to be solved exactly at each
non-linear iteration and an approximate solution is sufficient as the reconstruction converges in parallel to
the non-linear flow problem.

As the method only involves integrals over boundaries, the treatment of boundary conditions is simplified
compared to the least-squares reconstruction. Furthermore, the method involves only direct face neighbours
for the construction of the linear system and thus the method can be classified as compact even though the
stencil of the method is the entire mesh implicitly [13]. This implicit global stencil removes the linear instabil-
ity present in the least-squares reconstruction [29]. Wang et al. [50] show that for the one-dimensional case
of an FV method for the linear advection equation, variational reconstruction (VR) offers superior spectral
properties compared to a compact least squares (CLS) reconstruction of comparable order.

Convergence strategies for complex flows This global linear reconstruction problem needs to be solved
completely at the end of the non-linear iteration process to yield its formal order of accuracy. However, as
the non-linear flow problem and the linear reconstruction problem are only weakly coupled to preserve the
advantageous properties of rDG methods, this can lead to diverging behaviour. For complex test cases, it is
furthermore not possible to solve the linear reconstruction problem exactly at every iteration, as this leads to a
very stiff numerical system. To deal with this, the linear reconstruction problem is only solved partially at each
non-linear iteration starting from a zero vector. This approach avoids the divergence problems encountered if
the non-linear problem changes faster than the linear reconstruction problem. A drawback of this approach,
however, is that the method is not formally of the correct order.

3.4. State of the art
To formulate research questions, that achieve the previously defined research objective, the state of the art
for rDG methods will be laid out in sections 3.4.1 and 3.4.2. Afterwards, the research questions for this study
are defined.

3.4.1. Least-squares Reconstruction
In [38, 39, 34, 35, 37], Luo et al. show that the least squares reconstruction technique can reach the expected
order of accuracy and performs better in terms of error per degree of freedom for the Euler equations for two-
dimensional test cases on purely hexahedral grids. Cheng et al. show in [14], that the accuracy of rDG meth-
ods deteriorates on hybrid two-dimensional grids for the Euler equations. They furthermore show that the
least-squares rDG method does not perform as well as a native DG method for low Reynolds number viscous
flows. However, they show that the rDG method can run significantly faster than a higher-order DG method
on the same grid. Liu et al. [31, 30] apply the least-squares reconstruction method to two-dimensional airfoil
flows at a Reynolds number of 104 and show that the method converges, although no comparisons to other
higher-order methods are given. In [30] the authors try to compute a three-dimensional Hemisphere test-
case, at a moderate Reynolds number of 3.5×105. However, the residual could not be reduced from DG(P1)
initial solution.
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3.4.2. Variational Reconstruction
Li et al. [29] show that it performs similar to least-squares reconstruction in terms of error. In later papers by
Cheng et al. [13], this is confirmed for the inviscid flow over the smooth bump. They furthermore show that
variational reconstruction performs similar to least-squares reconstruction for low Reynolds number flows
(Re = 100) in two dimensions. However, both methods perform worse than a DG method of comparable
order in terms of error per degree of freedom. Zhang et al. [53] apply variational reconstruction to the zero
pressure gradient flat plate, for which it performs marginally better than the least-squares reconstruction.
However, all rDG methods were found to perform worse than a third-order DG method in terms of degrees of
freedom.

3.4.3. Research questions
In previous papers, the performance of rDG methods decreases for viscous flows compared to inviscid flows.
As in RANS simulations, large viscous contributions to the solution can be found in boundary layers, the
effect of the viscous treatment on the accuracy of rDG methods is subject of the first research question.

RQ1: How does the viscous treatment affect the discretization error and linear stability of rDG methods?

In section 3.3.1, an inverse-distance weighting was adapted from finite volume methods. As meshes used
for RANS simulations often exhibit highly anisotropic regions in boundary layers, the effect of this inverse
distance weighting for anisotropic boundary layer meshes will be evaluated for the second research question

RQ2: To which extent can invers-distance weighting in least-squares reconstruction decrease the spatial
discretization error of rDG methods in highly anisotropic mesh regions, such as boundary layers?

The third research question aims to answer the main topic of the research objective. For this, the two
different rDG methods will be applied to different two and three-dimensional test cases at high Reynolds
numbers.

RQ3: How do rDG methods perform in terms of error per degree of freedom and error per unit of
computational effort for High-Reynolds number flows in two and three dimensions?

The last research question aims to address the reported difficulties in convergence for rDG methods for
high Reynolds number flows. For this, the allowable simplifications in the Jacobian matrix will be evaluated
for different flow equations.

RQ4: How do simplifications in the construction of the Jacobian affect the convergence of steady-state
simulations?





4
Non-linear solution process

This chapter will explain the non-linear solver used for this study. First, the discretization of the equations
in pseudo time will be introduced in section4.1. This section will furthermore introduce the fully implicit
linearized backwards Euler method used for this study. The solution procedure for the arising linear systems
will be discussed in section 4.2. This section will furthermore introduce the linear solver stack and explain
the different approaches for approximating the Jacobian used in this thesis.

4.1. Discretization in pseudo time
In the previous chapter, the PDE was transformed into semi-discrete form:

R(u) = R = M
∂u

∂t
, (4.1)

where R is the residual vector and M is the mass matrix of the basis functions. To arrive at a converged
solution for the problem, the residual of u should be 0. For a linear operator R, this can be done by a simple
linear solution. As for the Euler and RANS-SAneg equations, however, the residual operator is not linear, the
solution to the equation needs to be found in another way. One way is to use the inherent time dependence
of the solution, to step forward in time until a steady-state solution is found. As only the steady state solution
is of interest, the order of accuracy of the time-stepping method used is irrelevant.

4.1.1. Linearized implicit Euler
In the linearized implicit Euler method, the next iteration of the solution is calculated as[

M

αi∆t
+ J

]
(ui −ui−1) = Ri , (4.2)

where J is the linearized Jacobian matrix of the residual. The pseudo timestep αi∆t is chosen locally for
each cell based on the local CFL number and a factor αi . For αi →∞, the linearized backwards Euler method
converges towards a Newton-Raphson method. The solution to this linear system does not need to be exact,
as the formal order of the time-stepping method does not incluence the final converged solution.

4.1.2. Switched evolution relaxation
The local CFL factor αi is chosen based on the non-linear residual of the cell. For this, a switched evolution
relaxation (SER) ramping devised by Mulder et al. [41] is used. The factor αi is calculated as

αi =
(
R0

Ri

)n

(4.3)

where R is some norm of the residual. The exponent n controls the speed of the ramping. One can see, that
if the Residual norm Ri approaches zero, the pseudo timestep will approach infinity and thus recover the
Newton-Raphson method. The residual norm is calculated as the L2 norm of the residual of all transport
equations. The exponent is chosen as 0.8 for all two-dimensional test cases and 0.6 for all three-dimensional
test cases.
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16 4. Non-linear solution process

4.2. Linear solution process
For the computation of the update in the linearized implicit Euler method, an approximate linear solve is
required. As the linear system to be solved is too large to be inverted directly, iterative linear solvers are used.

4.2.1. Preconditioned Krylov subspace methods
The linear system is solved using a preconditioned generalized minimum residual (GMRES) solver. The GM-
RES solver is guaranteed to converge if the matrix A is invertible. To improve the convergence behaviour
of the GMRES method, it is preconditioned using a fixed number of Block-Jacobi iterations. The number of
preconditioning iterations is chosen based on the polynomial order of the basis functions, to compensate for
the increased stiffness of the system. The number of Jacobi iterations for each order of basis functions can be
seen in table 4.1. The increase in iterations for increasing polynomial order is needed, as the stiffness of the
resulting linear systems increases with polynomial order, and thus a better preconditioner is needed.

Table 4.1: Number of Block Jacobi preconditioning steps for each polynomial order of basis functions.

Polynomial order Jacobi iterations

1 50
2 77
3 104

To allow the computation of a Block-Jacobi iteration, the diagonal of the matrix needs to be inverted. As
the diagonal is not limited to only the blocks on the diagonal of the matrix, a line-based diagonal solver is
utilised, which inverts strongly coupled blocks [49]. For the solution of the linear systems, the linear solver
library Spliss [48] is used.

4.2.2. Usage of approximate Jacobians
For the linearized backwards Euler method, the Jacobian of the Residual needs to be known. For a native
DG method using the BR2 scheme, the Jacobian only involves first-order neighbours, and can be calculated
exactly in matrix form. For an rDG method, the exact Jacobian does not only involve its direct neighbours
but also second-order neighbours, and in the case of the extended stencil, node neighbours. This makes the
construction of the exact Jacobian in matrix form very memory intensive.

For the evaluation of a GMRES iteration only the evaluation of the Jacobian with a vector and not the en-
tire Jacobian needs to be known. The matrix-vector product is equivalent to the directional derivative, and
thus only one or two, for single-sided and symmetric differencing respectively, evaluations of the residual are
needed for each GMRES iteration. Langer et al. showed in [27] that using a GMRES with the aforementioned
choice of a finite-difference Jacobian (FD-GMRES) in combination with a Gauss-Seidel preconditioner based
on an approximated Jacobian performs very well compared to an LU-SGS linear solver. The experiments in
[27] were conducted for a second-order finite volume method, using a Green-Gauss based reconstruction for
the gradients required for the viscous flux computation. The approximated Jacobian for the preconditioner
is constructed from the underlying finite volume method with no Green-Gauss reconstruction. This is com-
parable to using the compact Jacobian of the underlying DG method as a preconditioner for a GMRES linear
solver, which uses a finite-difference approximation for the directional derivative. It should however be noted
that such an approximation introduces a further parameter ϵ in the solution process, which controls the step
size for the finite difference. The determination of the optimal value for ϵ is, however, non-trivial [27]. The
need for a finite-difference operation can however be eliminated by leveraging automatic differentiation of
the residual around a state. This method provides the exact directional derivative of the residual without the
need for determination of an optimal value for ϵ.

For this study, two different Jacobians are considered. The first uses the Jacobian of the underlying DG
method as an approximated Jacobian. The second uses an exact Jacobian obtained using automatic differen-
tiation. This Jacobian is, however, not formulated in matrix form and will only provide directional derivatives
for the GMRES solver. For variational reconstruction, an automatic differentiation Jacobian is not possible,
as the linear solver used cannot to be differentiated using AD. Thus a finite-difference Jacobian needs to be
used. This, however, requires one or two evaluations of the residual, that each require a partial solve of the
underlying linear system of the reconstruction and is thus more expensive than other reconstruction meth-
ods.



5
Verification

To prove that the aforementioned variational reconstruction based and least-squares reconstruction based
rDG methods were implemented correctly and yield the expected order of accuracy as the mesh is uniformly
refined, verification of the implementation is needed. For this, the method of manufactured solutions, which
is described in section 5.1, is used. The numerical methods will then be tested using two different PDEs, to
separately assess the influence of convective and diffusive fluxes. This is done on the example of the Euler
equations in section 5.2 and the RANS-SAneg equations in section 5.3. For each of the equations, three differ-
ent meshes are used to assess the behaviour of discretization error of the methods with respect to the mesh
quality. In addition to a regular hexahedral mesh, a randomly disturbed hexahedral mesh with non-planar
faces is used. Furthermore, the methods are tested on an unstructured tetrahedral mesh.

In the final section (5.4), a closer look at the influence of the viscous treatment for rDG methods is pre-
sented. For this, two different viscous treatment schemes are compared in their absolute error magnitude.
Furthermore, the influence of a user-tunable parameter in the BR2 scheme is investigated. Finally, the linear
stability of the viscous treatment in rDG methods is investigated and compared to native DG methods.

5.1. Method of manufactured solution
The method of manufactured solutions (MMS) was first proposed by Steinberg and Roache [46] as a numer-
ical procedure to verify the correct implementation of numerical methods. This method is attractive to use
for the verification of numerical schemes, as it does not depend on the availability of analytical solutions for
the given equation and can be used to verify the discretization on arbitrary meshes.

For the MMS, a solution û of the PDE L (u) = 0 is defined on the domain Ω. However, this solution, in
general, does not satisfy the PDE. To fix this, a spatially varying source term S is defined, such that

L (û)+S = 0 (5.1)

The source term is calculated analytically, and thus independent of the discretization. It is calculated by
propagating the assumed solution û through the PDE. The solution uh obtained by solving equation 5.1 using
the numerical method of interest can then be used to evaluate the discretization error ϵ, by taking the L2 norm
of the difference between û and uh as shown in

ϵ=
∫
Ω

(û −uh)2 dΩ (5.2)

For a vector-valued state u of the PDE, this procedure is performed per component.

Order of accuracy The order of accuracy of a numerical method is a measure to describe how fast the dis-
cretization error of the scheme decreases with isotropic refinement. For a nth order accurate method, the
discretization error will reduce by a factor of kn for an increase in resolution by a factor of k in every coordi-
nate direction. In a double logarithmic plot of discretization error against the number of degrees of freedom, a
nth-order method, will appear as a straight line, with slope n. Verification is performed by confirming that the
observed order of accuracy when refining the mesh matches the designed order of accuracy of the method.
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Choice of manufactured solution Special care must be taken when choosing the manufactured solution
û, to collect and observe all error components of the numerical solution. As the discretization error can be
explained by the truncation of the Taylor series expansion, a suitable choice for the manufactured solution
should include all spatial derivatives. A common choice for such a function are the sine and cosine functions,
as they include all spatial derivatives and remain bounded between −1 and 1 over the whole domain. Using
these functions, a manufactured solution for each component ûi can be assembled as

ûi = ci + Ai ∗ sin
(
ωx

i ∗x −ϕx
i

)∗ sin
(
ω

y
i ∗ y −ϕ

y
i

)∗ sin
(
ωz

i ∗ z −ϕz
i

)
, (5.3)

where ci is a constant contribution, Ai is the amplitude of the oscillation, ωk
i is the frequency of the oscillation

in the coordinate direction k and ϕk
i is the phase change in the coordinate direction k. The values chosen for

each component are shown in table 5.1. When choosing these parameters, it is important to ensure, that the
value of ρ, ρE and ρν̃ are strictly positive over the domain, so that a physical solution exists.

Table 5.1: Parameters chosen for the manufactured solution

Component ci Ai ωx
i ϕ

y
i ω

y
i ϕ

y
i ωz

i ϕz
i

ρ 1.0 0.15 0.3 π -0.06 π 0.8 π 0.74 π 0.5 π -0.05 π

ρv1 0.2 0.02 1.0 π 0.1 π 0.3 π -0.06 π 0.8 π 0.26 π

ρv2 -0.05 -0.0015 0.6 π -0.24 π 1.0 π 0.3 π 0.6 π -0.06 π

ρv3 0.1 0.005 0.9 π 0.18 π 0.3 π 0.47 π 0.8 π -0.32 π

ρE 3.1 0.93 0.3 π 0.56 π 0.9 π -0.225 π 0.4 π 0.08 π

ρν̃ 0.01 0.001 0.2 π 0.52 π 0.3 π 0.06 π 0.5 π -0.05 π

5.2. Inviscid flows
The method of manufactured solutions is applied first to the Euler equations, to evaluate the different re-
construction schemes on pure convective problems. This step serves as a baseline for later experiments, as
the treatment of inviscid terms does not require additional lifting operators in the context of DG and rDG
schemes. The method will first be evaluated on regular hexahedral meshes. A randomly perturbed version of
these meshes will also be considered to evaluate the robustness of the numerical methods on meshes with
non-planar and non-orthogonal faces.

5.2.1. Hexahedral meshes
The method was tested on a mesh cascade of three uniformly refined hexahedral meshes. The randomly
perturbed meshes (RPM) were generated by randomly perturbing all interior nodes by up to 20% of the cell
size. This was done in a deterministic way so that all equal-sized perturbed meshes are the same between all
simulations. The results of the convergence study can be seen in figure 5.1.

From the figure it can be seen that all reconstructed DG methods reach their designed order of accu-
racy. In terms of absolute error, the standard least-squares reconstruction method performs approximately
the same, as the native DG method of the same order. This comparison is done for an equivalent number
of degrees of freedom. On the same mesh, the least-squares rDG method will perform worse than a native
DG method, due to the increased number of degrees of freedom present in the native DG method. Further-
more, it can be seen that the extended least-squares method performs worse than the standard least-squares
method in terms of absolute error. This behaviour will be further investigated in section 5.2.3. The variational
reconstruction can be seen to achieve the best performance in terms of error versus degrees of freedom and
performs better than the native higher-order DG method on the same mesh.

The dashed lines in the figure indicate the error on randomly perturbed meshes. From these it can be seen
that the variational reconstruction is the most sensitive reconstruction to disturbances in the mesh, which is
to be expected, as it is the only reconstruction method, which is based on inner face integrals. In section
5.2.4, this behaviour will be evaluated in more depth. In contrast, the standard least-squares reconstruction
reduces in accuracy by an amount similar amount to that of the native DG method. The extended least-
squares method proves to be resilient to random perturbations in the mesh, as the error does not increase
significantly on all three meshes. Even though the error increases for the considered methods on randomly
perturbed meshes, all methods retain their designed order of accuracy.
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Figure 5.1: Density Error against cube root of the number of degrees of freedom for the method of manufactured solution on a regular
and randomly perturbed hexahedral mesh for the Euler equations.

Solution visualisation To illustrate the difference between a native DG(P1) method and a rDG(P1P2) method
in terms of solution representation, a slice through the solution at x = 0 is presented in figure 5.2. It can be
seen, that the rDG(P1P2) method captures the solution better than the underlying DG method. The result of
the rDG(P1P2) method is visually very similar to the DG(P2) method.

(a) (b) (c)

Figure 5.2: Slice through the solution at x = 0 for (a) DG(P1) method, (b) a compact stencil least-squares rDG(P1P2) method and (c) a
DG(P2) method.
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5.2.2. Tetrahedral mesh
The methods was also tested on purely unstructured tetrahedral meshes generated by gmsh[21]. The meshes
were not refined by uniform splitting but were generated independently. The results can be seen in figure 5.3.

Figure 5.3: Density Error against the number of degrees of freedom for the method of manufactured solution on an unstructured tetra-
hedral mesh for the Euler equations.

From the figure, it can be seen that all methods reach their designed order of accuracy in between the
last 3 meshes of the sequence of consecutively refined meshes. Between the first and second mesh of the
cascade, a small deterioration in the order of accuracy can be observed, which might be because the coarsest
mesh is too coarse to lie in the region of asymptotic convergence. Furthermore, it should be noted that the
standard least-squares reconstruction is not stable on simplicial meshes, and thus no convergence results
are presented. This instability is known from least-squares reconstruction in finite volume methods [22]. The
least-squares method is stable when using the extended stencil variant, which also includes node neighbours
in the reconstruction problem. In terms of absolute error this extended least-squares performs similar to
a native higher-order DG method for an equivalent number of degrees of freedom. This is contrary to the
findings on the hexahedral mesh, in which the extended stencil variant performed worse compared to the
native DG method. The variational reconstruction based rDG method again outperforms the comparable
DG method in terms of absolute error per degree of freedom and can reproduce the same accuracy as a DG
method on the same grid.

5.2.3. Extended stencil on isotropic meshes
As previously noted, the absolute error for the extended least-squares reconstruction is higher compared to
the standard least-squares reconstruction. This behaviour comes from the inclusion of 20 additional ele-
ments, all of which are located further away from the cell of interest than the original cells of the stencil. To
visualise the effect of the additional cells on the reconstruction, figure 5.4 shows the absolute error of the



5.2. Inviscid flows 21

compact stencil least-squares, the extended least-squares, and an additional least-squares variant which in-
cludes only the additional elements in the stencil, due to the inclusion of node neighbours.

Figure 5.4: Density Error against cube root of the number of degrees of freedom on a regular hexahedral grid for three different stencil
choices for a least-squares reconstruction on the example of the Euler equations.

It can be seen that the extended stencil and the stencil only including the additional elements display
nearly the same error behaviour. This confirms that the additional elements provide a worse reconstruction
than only the face neighbours. As a hexahedron has 20 node neighbours and only six face neighbours, the
reconstruction from the node neighbours dominates the least-squares reconstruction problem and thus the
full extended stencil does not improve the error on pure hexahedral grids.

5.2.4. Variational reconstruction on non-planar faces
As previously noted, the discretization error in the variational reconstruction increased on the randomly per-
turbed mesh compared to the DG method. This effect is caused by the non-planar faces in the mesh. As in
the randomly perturbed mesh however, the faces are not only non-planar, but are also skewed, the effects
of skewed and non-planar faces need to be separated. For this in addition to the randomly perturbed mesh,
a purely skewed mesh is generated. For this a parallelepiped with an interior angle of 5.71◦ ≈ atan(0.1) is
meshed with a regular mesh. The inner faces of this mesh are all skewed and are all planar. As this mesh
spans a different physical domain, the absolute value of the discretization error will be slightly different com-
pared to the previous meshes. The results can be seen in figure 5.5.

It can be seen, that the purely skewed mesh, does not affect the discretization error for the DG dis-
cretization. For the rDG method no negative influence of the skewed mesh can be observed. From this it
can be concluded that the deterioration observed for variational reconstruction observed on the randomly
perturbed mesh originates from the non-planarity of faces and variational reconstruction performs well on
skewed meshes.
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Figure 5.5: Density Error against cube root of the number of degrees of freedom on a hexahedral mesh, a randomly perturbed hexahedral
mesh and a parallelepiped mesh.

5.3. Viscous flows
In the previous section, the convergence behaviour of rDG methods for purely hyperbolic PDEs was analysed.
These equations are treated naturally in DG methods and by extension in rDG methods due to the Riemann
problems arising on the element interfaces. For diffusive fluxes, the gradient of the polynomial representation
is involved, and thus special schemes are needed to treat viscous problems in the context of rDG methods.
For more details on the considered viscous treatments, refer to section 2.4. The BR2 scheme is used for the
treatment of viscous terms, with the ηBR2 penalty parameter set to the number of faces of the cell. The meshes
used in this section are the same meshes which were used in the previous section, such that the results are
comparable.

5.3.1. Hexahedral meshes
The different rDG methods are first tested on regular and randomly perturbed hexahedral meshes. For this,
the RANS-SAneg equations are solved. Even though the RANS-SAneg equations not only introduce viscous
effects but also source terms, all differences in the error behaviour are related to the viscous fluxes, as the
MMS also includes source terms in the Euler equations. The results for the hexahedral meshes can be seen in
figure 5.6.

From the figure, it can be seen that all methods reach their designed order of accuracy. The rDG methods
reach slightly higher orders of accuracy than 3. In contrast to previous results, the least-squares rDG method
results in a higher magnitude of error compared to the native DG method for a comparable number of degrees
of freedom. Furthermore, variational reconstruction does not perform as well as the higher-order DG method
on the same mesh, as was seen for the Euler equations. However, it still performs better than a native DG
method per degree of freedom.As for the Euler equations, the extended least-squares method leads to a higher
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Figure 5.6: Density Error against cube root of the number of degrees of freedom on a regular hexahedral grid and a randomly perturbed
hexahedral mesh for the RANS-SA-negative equations.

absolute error than the standard least-squares method; it is, however, less sensitive to a randomly perturbed
mesh than the other rDG methods, as well as the native DG method.

5.3.2. Tetrahedral mesh
The results for the rDG methods on tetrahedral meshes can be seen in figure 5.7. It can be seen that both
the extended least-squares and the variational reconstruction reach their designed order of accuracy. The
standard least-squares rDG method is not present, as it is not stable on simplicial meshes, as noted before in
section 5.2. As in the results for the hexahedral meshes, the least squares reconstruction performs worse than
the native DG method of comparable order for an equivalent number of degrees of freedom. The variational
reconstruction performs better than the DG method per degree of freedom. It cannot, however, reproduce
the same improvement as can be observed for the Euler equations.

This deterioration in the performance of the rDG methods for viscous flows indicates a problem in the
viscous treatment for the rDG methods. This will be investigated in the following section.

5.4. Viscous treatment in rDG methods
As seen in the previous section, the rDG methods perform worse for viscous flows compared to their perfor-
mance for inviscid flows. The cause of this change in behaviour will be investigated in this section. It will first
be investigated whether the behaviour is only present for the BR2 scheme used previously, or also for the BR1
scheme. Furthermore, as the BR2 scheme contains a user tunable parameter, its influence on the scheme will
be investigated. Finally, the difference in linear stability between native and reconstructed DG methods for
pure diffusion problems will be investigated numerically.
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Figure 5.7: Density Error against cube root of the number of degrees of freedom on a tetrahedral mesh for the RANS-SA-negative equa-
tions.

5.4.1. BR1 vs BR2 scheme
Two different viscous schemes are considered for the DG and rDG methods. These schemes are the BR1
scheme [5] and the BR2 scheme [9]. A comparison between the BR1 and BR2 schemes can be seen in figure
5.8. For the native DG method, the difference between the BR2 and BR1 schemes is very small. For the rDG
methods, however, a strong difference can be seen between the two treatments. The BR1 scheme significantly
decreases the error of the least-squares rDG method on coarse grids. The difference between both schemes
decreases when the mesh gets refined. Similar observations can be made for the variational reconstruction;
however, the decrease in error is less. When comparing the behaviour of the BR1 scheme to the MMS for
the Euler equations (fig. 5.1), it can be seen that the good behaviour seen for pure convective problems is
recovered.

5.4.2. Influence of the penalty parameter η
As the BR2 scheme, in its implemented form [11] features a user-tunable parameter η, its influence will be
investigated. The choice recommended for η by Brezzi et al. [11] is to use the number of faces of the cell
of interest. It is known that as the η increases, the viscous scheme becomes more diffusive. Thus, a second
option with η= 2 will be investigated. This choice results from the observation that η emulates the influence
of the missing faces in the local lifting. However, only faces with a normal vector n ·ni ̸= 0, where ni is the
normal vector of the face of interest, are relevant. For a regular hexahedron, this results in a value of 2 for η. It
should be noted, that this value for η is only justifiable for sufficiently regular hexahedrons, and higher values
might be necessary for highly skewed elements. The results of the parameter study can be seen in figure 5.9.

It can be seen that reducing the value of η, reduces the error for both the rDG and the DG methods. The
magnitude of change for the DG method is significantly smaller than for the rDG method. For a value of η= 2,
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Figure 5.8: Comparison of the density for the BR1 and BR2 scheme on a regular hexahedral grid for DG and rDG methods.

the difference between the rDG and DG methods almost vanishes. Furthermore, the influence of η appears
to diminish on very fine meshes.

5.4.3. Stability of viscous fluxes
The strong sensitivity to η in the case of rDG methods, as well as the stark difference in behaviour between DG
and rDG methods, suggests significant changes in the eigenvalues of discretization, leading to a difference in
linear stability for rDG methods compared to the underlying DG methods. Dumbser et al. [19], showed
that for pure convective problems, the von Neumann stability of rDG methods is solely determined by the
underlying DG method. To investigate, if this still holds for pure diffusive problems, using the BR2 scheme,
the following one-dimensional scalar PDE is used.

µ
∂2u

∂x2 = ∂u

∂t
(5.4)

The equation is discretized using a least-squares rDG method, as well as a native DG method. For both meth-
ods, the stability margin is calculated approximately using two different approaches.

Approximate eigenvalue analysis The first approach is based on a numerical approach by Hickel et al. [26].
In this approach, the eigenfunctions of the discretization are assumed to be of the form u = e i kx . This is valid
for a discretization with a circulant matrix, such as finite volume methods. For DG methods, the matrix it-
self is not circulant as each cell consists of several degrees of freedom, resulting in a block circulant matrix.
The assumed eigenmodes are then propagated through the discretization to determine their correspond-
ing eigenvalues. A comparison between the exact and assumed eigenmodes is presented in figure 5.10 of a
DG(P1) method for the linear advection equation.
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Figure 5.9: Influence of the η parameter in the BR2 scheme on the Density Error on a hexahedral grid.

From the figure it can be seen that for the lowest eigenmode, both the analytical and the assumed eigen-
vector match very well. When however moving to higher frequency eigenmodes, the discrepancy between
analytical and assumed eigenmodes grows. Thus, it can be assumed that the assumed sine waves are a good
approximation for the low-frequency eigenmodes. As the high-frequency eigenmodes are affected the most,
however, the stability limit obtained by this method may be affected significantly.

Maximum eigenvalue analysis A second approach is based on using the stability limit of the forward Euler
(FE) time-stepping method, to estimate the maximum eigenvalue of the solution. For this approach, it is
assumed that |R(λi )| >> |I (λi )| and R(λi ) ≤ 0 for i = 0,1,2, . . . . A diffusive CFL number (DCFL) is then
defined as DC F L = d t

µd x2 . The value of the DCFL, where a FE method diverges, can then be found using a

bisection search. From the result, of this bisection search, the maximum eigenvalue of the method can than
be calculated as λmax =−2/DC F L.

To make sure, this numerical approach yields the correct approach, a suitable initial condition needs to be
chosen, such that all eigenmodes of the discretization are excited. For a circulant matrix, it is known that the
eigenmodes are of the form u = e i kx . Thus, a suitable initial condition should excite all representable Fourier

modes. For the initial condition u0 = e−x2
, which satisfies this requirement is chosen. The two approaches

were verified for an FV scheme, for which the maximum eigenvalue is known analytically. The results of the
verification can be seen in

The methods were then applied to different rDG and DG discretizations. For the rDG methods, a no-
op reconstruction was chosen, such that all additional degrees of freedom were kept to zero, to isolate the
influence of the viscous BR2 treatment on the eigenvalues. The results can be seen in figure 5.11.

Comparing the rDG(P0P1) in figure 5.11b to its underlying DG method, it can be seen that the rDG method
has a nearly 4 times higher eigenvalue than the underlying method. This is due to the presence of first-
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(a) (b) (c)

Figure 5.10: (a) Comparison between the analytical and assumed first non-constant eigenmode. (b) Comparison between the 10th

analytical and assumed eigenmodes. (c) Comparison between the highest analytical and assumed eigenmodes

Table 5.2: Verification of the numerical methods for estimating the maximum eigenvalue of the discretization

λmax Error%

Analytical -4 –
Approximate Eigenvalue -3.996 0.1

Numerical stability -3.9214 1.965

order polynomials in the expression of the lifting operator. These higher-order contributions to the lifting
operator increase the eigenvalues of the discretization. However, it can also be seen that the eigenvalues of
the rDG(P0P1) method are lower than for a DG method of comparable order. This indicates that the influence
of higher-order lifting contributions for rDG methods is not as high as for native DG methods, for a constant
reconstruction rDG method. Similar observations can be made for an rDG(P1P2) method, as can be seen
in figure 5.11a. It is, however, unclear if the decrease in stability will lead to noticeably different stability
limitations for more complex test cases.

5.4.4. Further treatment of viscous terms
This section has presented the difference between the expected behaviour for the BR2 scheme in rDG meth-
ods and the observed behaviour. It furthermore presented changes to the numerical method which can re-
cover the expected behaviour or at least reduce discrepancies significantly. It was shown that the BR1 scheme
can recover the expected error behaviour of rDG methods for viscous flows. For the BR2 scheme itself, it was
shown that a η of 2 can significantly improve the error constant of the rDG methods compared to the standard
value of η, however, this change does not completely recover the expected behaviour of the rDG methods. In
further chapters, the BR2 scheme will be used nonetheless, with a value of 2 for η. This choice is motivated by
the fact, that the BR2 scheme provides significantly improved stability compared to the BR1 scheme, as the
computation of fluxes in the BR1 scheme involves second-order neighbours [10], leading to stiffer numeri-
cal systems. Furthermore, the BR2 scheme is fully differentiated in the code used, while the BR1 scheme is
not, leading to improved preconditioning for cases using the BR2 scheme compared to those using the BR1
scheme.

5.5. Conclusion
It was shown that rDG methods can reach the expected order of accuracy for viscous and inviscid flows on
hexahedral and tetrahedral meshes. Furthermore, the effect of nonplanar faces has been demonstrated on
randomly perturbed hexahedral meshes. The extended stencil did not show a significant increase in ab-
solute error due to this disturbance, while the least-squares reconstructions and variational reconstructions
showed an increase in absolute error while retaining their designed order of accuracy. In general, however, the
extended stencil least-squares performed worse than the standard least-squares and variational reconstruc-
tions on hexahedral grids, while being necessary for the convergence of least-squares reconstruction meth-
ods on tetrahedral grids. Contrary to previous observations by Cheng et al. [13], it was found that variational
reconstruction performs significantly better than both a least-squares reconstruction method and a native
DG method in terms of error per degree of freedom. From the formulation of variational reconstruction, it
can be seen that the reconstruction problem is a global problem, which imposes continuity of all represented
derivatives over the domain. As the manufactured solution is smooth over all derivatives by definition, it is
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(a) (b)

Figure 5.11: (a) Approximate Eigenvalues and Numerical Stability Limits for rDG and DG Methods up to third order. (b) Approximate
eigenvalues and numerical stability limits for rDG and DG methods up to second order.

to be expected that a variational reconstruction performs very well. Contrary to that, a least-squares recon-
struction aims to reconstruct the underlying solution of neighbouring cells, while the reconstructed degrees
of freedom on the cell are ignored.

For viscous flows, there is a deterioration in absolute error compared to inviscid flows. It was shown that
this discrepancy can be fully eliminated by using the BR1 scheme instead of the BR2 scheme. Furthermore,
a decrease in the value of η reduces the absolute error of the BR2 scheme and therefore can reduce the dis-
crepancy. The stability margins previously noted by Dumbser et al. [19] for hyperbolic problems were shown
to not be valid for viscous flows treated with the BR2 scheme. It was shown that the maximum eigenvalue for
rDG methods is larger than the one of the underlying DG method, but lower than the maximum value of a
DG of comparable order. As only the maximum eigenvalue is affected, the condition number of the matrix
increases, leading to a stiffer numerical problem.
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Results

In the previous chapter, it was shown that the numerical methods are implemented correctly and produce
the expected order of accuracy. However, the cases considered up to now are not representative of problems
in which RANS simulations are usually used. This chapter aims to move from simple inviscid flow cases in
two dimensions to complex two-dimensional and three-dimensional flows.

First general settings for the computations are laid out in section 6.1. Sections 6.2 - 6.6 will then present
different test cases in two dimensions. Finally, section 6.7 will examine rDG methods on a three-dimensional
RANS test case.

6.1. General settings
For the inviscid flow test cases, the Jacobian of the underlying DG method is used as an approximation for the
Jacobian of the rDG methods. This approximation leads to divergence for the considered viscous test cases.
Thus, the exact directional derivative is calculated using automatic differentiation. As the rDG methods are
compared to a DG method of comparable order, the computational time is compared for the computation
starting from a converged DG(P1) solution.

6.2. Smooth bump
The smooth bump case considers an inviscid flow through a channel that is disturbed by an Eulerian bump.
The Mach number of the flow is 0.5. At the inlet, a total pressure and total temperature are imposed, while
at the outflow, a static pressure boundary condition is imposed. The top and bottom walls are treated as slip
wall boundary conditions.

This test case is used to evaluate the performance of rDG methods for hyperbolic problems. To judge the
error of the solution, the integrated entropy error is recorded for every mesh.

Ser r =

√√√√√∫
Ω

(
S−S∞

S∞

)2
dV∫

Ω dV
(6.1)

This test case is also used to evaluate the effect of the partial solving of the variational reconstruction problem
as discussed in section 3.3.2. The mesh as well as an exemplary Mach number distribution can be seen in
figure 6.1. The solution was considered converged if the freestream residual was reduced by 10 orders of
magnitude. The results can be seen in figure 6.2.
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(a) (b)

Figure 6.1: (a) Finest mesh of the mesh cascade used for the smooth bump test case. (b) Mach Number distribution for the smooth bump
test case.

Figure 6.2: Integrated entropy error of different rDG methods against the number of degrees of freedom for the smooth bump test case.

It can be seen that all considered methods reach their designed order of convergence as indicated by the
black lines. The weighting inside the least-squares method does not show a significant influence on the re-
sults, which is to be expected, as the mesh is mostly isotropic. Furthermore, it can be seen that the variational
reconstruction performs better than the least-squares reconstruction.

For the variational reconstruction, two different solution approaches are evaluated. In the dashed line,
the linear reconstruction problem is solved completely at every iteration, while for the continuous line, the
linear system is only solved approximately with two symmetric Gauss-Seidel sweeps at every iteration, start-
ing from a zero vector. Even though this approach is not formally third order, it can be seen that the results
still perform better than a least-squares reconstruction. The increase in error of the approximate variational
reconstruction grows for refined meshes, which is to be expected, as the Gauss-Seidel sweeps involve a lower
fraction of the mesh in the reconstruction for larger meshes.

A further method that is evaluated is the extended least-squares method. In contrast to the previously
considered three-dimensional manufactured solution cases, in two dimensions on a hexahedral grid, the
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additional link contributions only add 4 more elements to the stencil, as can be seen in figure 6.3, which are
weighted lower than the original elements due to their further distance from the original cell. The extended
least-squares method in blue performs very well in two dimensions for the test case and can recover the
behaviour of the native DG method for the finest three meshes.

(a) (b)

Figure 6.3: (a) Compact face-based stencil on the example of a structured quadrilateral mesh. (b) Extended node-based stencil on the
example of a quadrilateral triangular mesh.

6.3. Zero pressure gradient flat plate
The second test case is used to evaluate the influence of the introduced inverse distance weighting for highly
anisotropic meshes. For this the zero pressure gradient flat plate (2DZP) from the NASA turbulence modelling
resource1 is used. The mesh used for the test case can be seen in figure 6.4. The flow enters the domain at
a Mach number of 0.2, through an inlet boundary condition with fixed total pressure and total temperature.
The flow leaves the domain at a constant static pressure. A Riemann farfield condition is imposed on the
upper end of the domain, and a no-slip adiabatic wall is imposed on the flat plate itself. The first cell, even
for the coarsest mesh, has a y+ value of 1.42 and is thus well resolved enough for all higher-order methods. To
determine the convergence of the nonlinear solution process, a residual reduction threshold of 10−10 is used
compared to the freestream residual. The CFL number for the third-order DG method had to be half the CFL
number used for rDG methods, to ensure the stability of the convergence process. Furthermore, all third-
order simulations were initialised from a second-order native DG method, to speed up the computation and
reflect best practices in the application of higher-order DG methods.

To judge the error of the solution, a reference value for CD is computed, by an extrapolation of the results
from the DG(P2) method. For this, the numerical apparent order is calculated to be 1.5 using the procedure
proposed by Celik et al. [12], which is then used to do a Richardson extrapolation to the next finest grid level.
It should be noted, that the numerical order obtained for the flat plate is not expected to match the designed
order of accuracy, as the case features a singularity at the leading edge of the flat plate. The procedure for the
DG(P2) method can be seen in table 6.1. The difference between this extrapolated reference value and the
computed values for CD can be seen in figure 6.5a.

Table 6.1: Drag Coefficients of the three finest grids for a DG(P2) method with the extrapolated value using the procedure by Celik et al.
[12]

.

Mesh Size CD ∆CD

69×49 2.860268×10−3

Measured 137×97 2.859416×10−3 8.519851×10−7

273×133 2.859115×10−3 3.014969×10−7

Extrapolated 545×385 2.858950×10−3 1.651268×10−7

The unweighted least-squares method can be seen to perform comparably to the higher-order DG method
on the two medium meshes while displaying a lower error on the finest mesh. In contrast the weighted stan-
dard least-squares and weighted extended least-squares perform better on the two medium meshes than
both the compact-stencil least-squares and the native DG(P2) method. This indicates that the introduced
weighting parameter helps to improve the reconstruction in regions of high anisotropy. Furthermore, it can

1https://turbmodels.larc.nasa.gov/flatplate.html

https://turbmodels.larc.nasa.gov/flatplate.html
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(a)

(b)

Figure 6.4: (a) Finest mesh in the mesh cascade for the flat plate test case from the NASA turbulence modelling resource. (b) Distribution
of the transported turbulent variable close to the leading edge of the plate for the flat plate test case.

(a) (b)

Figure 6.5: (a) Error of CD against the number of degrees of freedom per dimension for different discontinuous Galerkin and recon-
structed discontinuous Galerkin methods.

be seen that the extension of the stencil in the least squares method does not affect the value of CD signif-
icantly. This is to be expected, as all additional elements included in the stencil are further away than the
original elements in the stencil and thus their influence is low compared to the original stencil elements.
Both the least-squares methods and the native DG(P2) methods perform better than the second-order finite
volume code CFL3D, for which reference results are available.

On the other hand, the variational reconstruction seems to perform worse than all other considered meth-
ods for a given number of degrees of freedom. For each simulation the run time is recorded, for which the
results can be seen in figure 6.5b.

From the figure, it can be seen that the rDG methods provide a significant improvement in wall clock
time for a given level of error. It furthermore can be observed, that the introduction of an inverse distance
weighting does not significantly affect the run time of the rDG method. When comparing the weighted least-
squares with its extended version, it can be seen that the inclusion of additional stencil elements does not
negatively affect the run time for this test case. This, however, might not translate to other test cases, as the
influence of the additional elements is very low compared to the original stencil elements for large regions of
the mesh. Again visible is the increased error of the variational reconstruction, compared to that of the native
DG method and the least-squares rDG methods.
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To investigate this unexpected behaviour of the variational reconstruction, the solution on the finest mesh
is analysed. As the variational reconstruction is global in nature, as even 2 symmetric Gauss-Seidel sweeps
include fourth-order neighbours in the reconstruction, the singularity at the flat plate leading edge and its
corresponding discontinuity are suspected to affect the variational reconstruction. For this, the results of a
DG(P1) and different rDG methods are compared to the solution of a DG(P2) on the same mesh. The error ϵ
for each cell reported is calculated as

ϵ=
√∫

Ω

(
u−ur e f

)2 dΩ

V
(6.2)

where V is the volume of the cell. The distribution of the Density error in the first cell of the boundary layer
can be seen in figure 6.6.

Figure 6.6: Density error of rDG(P1P2) and DG(P1) methods against a DG(P2) solution for the flat plate test case on the finest mesh.

The flat plate starts at x = 0, where all methods exhibit the biggest error against the DG(P2) method. It
can be seen that the variational method offers the lowest error on the flat plate, which is in line with previ-
ous observations from the method of manufactured solutions and the smooth bump test case. The weighted
least-squares method features a lower error than the DG(P1) method but a larger error than the variational
reconstruction. Around the singularity, the variational reconstruction has an error 10 times higher than the
least-squares reconstruction method as well as the DG(P2) method. This confirms the problems of the vari-
ational reconstruction for singularities and explains the higher error of the variational reconstruction com-
pared to the least-squares reconstruction for the flat plate test case.

From these results, it can be concluded that the inclusion of an inverse distance weighting can improve
the quality of reconstruction for least-squares methods on highly anisotropic mesh regions. As such mesh
regions occur in many CFD applications such as boundary layers, this inverse distance weighting will be used
on all further applications in this work. Furthermore, it can be seen that variational reconstruction performs
worse than the least-squares reconstruction on test cases which feature a singularity.

6.4. Low Reynolds number airfoil
To apply the implemented rDG methods to high Reynolds number flows, first the baseline for the perfor-
mance of the implementation of the rDG methods for aerodynamic test cases needs to be established. For
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this, a NACA0012 airfoil is simulated at a Reynolds number of 5000 and an angle of attack of 1◦ at a Mach
number of 0.5. This Reynolds number falls in the range of previously computed cases for rDG methods and
can thus serve as a comparison to different applications. Although a Reynolds number of 5000 does not ne-
cessitate the use of RANS from a physical modelling perspective, it serves to enable a comparison between
the performance of high and low Reynolds number flows in the context of rDG methods. Compared to a
higher Reynolds number flow, the boundary layer in this test case is bigger compared to the thickness of the
airfoil. Furthermore, the cells in the boundary layer are more isotropic for this test case, as the wall-normal
spacing for resolving the boundary layer can be larger.

One of the meshes used can be seen together with a computed solution in figure 6.7. Quadratic elements
are used, as a linear boundary approximation will lead to a reduction in order and will introduce nonphysical
expansion fans[6].

(a) (b)

Figure 6.7: (a) Finest mesh of the mesh cascade used for the NACA0012 test case. (b) Mach number distribution of the converged third-
order solution for the NACA0012 airfoil test case.

The far field is treated with a Rieman boundary condition, while the airfoil itself is treated with an adi-
abatic no-slip boundary condition. The solution was considered converged when the density residual was
reduced by 10 orders of magnitude compared to the free-stream residual. The initial CFL number could be
kept twice as high for the rDG methods compared to the DG method. Furthermore, all simulations have been
started from a converged second-order DG method, to accelerate and stabilise the solution process. A ref-
erence value for the coefficient of drag was calculated using the previously discussed method by Celik et al.
[12] from the three finest meshes of the DG(P2) method. The resulting errors for the coefficient of drag are
shown in figure 6.8a. All least-squares rDG methods used an inverse weighting exponent of 1.0, to improve
the solution in highly anisotropic regions of the mesh.

It can be seen that all rDG methods perform similar to a higher-order DG method in terms of degrees
of freedom. The extended least-squares method performs worse than the standard least-squares method,
especially on coarse meshes. This is in line with observations from the method of manufactured solutions
and indicates that the extended stencil may involve elements which have an adverse effect on the quality
of reconstruction. Variational reconstruction performs better than the other two rDG methods on the two
medium meshes and can provide a significant improvement in terms of accuracy on the same mesh, however,
the coarsest mesh did not converge using a variational reconstruction. The recorded run-times are reported
in figure 6.8b.

In terms of wall clock time, the rDG methods perform better than the native DG methods for a comparable
level of error. Similar to the previous results, the rDG methods converge significantly faster on the same mesh
than a native DG method, which is expected due to the smaller size of the linear system in terms of block
size. However it has more nonzero blocks overall and is thus denser. Due to the similar behaviour in error
per degree of freedom, this translates to an overall improvement in wall clock time. The variational method,
however, takes a longer time to converge than least-squares rDG methods.
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(a) (b)

Figure 6.8: (a) Error of coefficient of drag against the number of degrees of freedom for the NACA0012 airfoil. (b) Error of coefficient of
drag against computational time for the NACA0012 airfoil.

6.5. High Reynolds number airfoil
We now consider the performance of rDG methods for higher Reynolds numbers. For this, the Juskowski
airfoil from the Higher-order CFD workshop 5 2 is used. The mesh was generated for a Reynolds number of 5
million and consists of quadratic hexahedrons, which can be seen in figure 6.9. From the figure it can be seen,
that the elements in the boundary layer region are skewed, which may result in problems for the least-squares
based rDG method. The flow enters the domain at a Mach number of 0.5 and an angle of attack of 1◦, so that

(a) (b)

Figure 6.9: a) Finest mesh of the mesh cascade used for the Juskowski airfoil test case. (b) Mach number distribution of the converged
third-order solution for the Juskowski airfoil test case.

the simulation is comparable to the previous test case. The chord-based Reynolds number of the flow was
set to 5.7×106. All meshes used in the simulation had a minimum y+ value of smaller than 1. The numerical
settings and convergence criteria were kept the same as in the previous test case. The results obtained can
be seen in figure 6.10. From figure 6.10a it can be seen, that the rDG methods perform significantly worse
than the native third-order DG method in terms of error per degree of freedom. It should however be noted,
that the coarsest mesh was not able to converge for the DG method. Variational reconstruction provides
better results than least-squares reconstruction methods, this confirms the observations made in section
5.2.4, which suggest that skewed meshes do not negatively impact the discretization error for variational
reconstruction based rDG methods. It was however, not able to converge on the finest mesh. In terms of

2https://how5.cenaero.be/

https://how5.cenaero.be/
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(a) (b)

Figure 6.10: (a) Coefficient of drag against the number of degrees of freedom for a Juskowski airfoil. (b) Coefficient of drag against
computational time for a Juskowski airfoil.

wall clock time, rDG methods do not offer any improvement over a higher-order DG method. Similar to
the previous test case, the rDG methods converge faster on the same mesh. However, as the rDG methods
perform significantly worse in terms of error per degree of freedom, this increase in computational speed
does not lead to an overall better performance. This deterioration in error per degree of freedom might be
influenced by significantly skewed elements in the airfoil boundary layer, which may adversely affect the
quality of reconstruction. Such adverse effects on the reconstruction by skewed elements, are known from
second-order finite volume methods.

6.6. Multi Element airfoil
This test case aims to evaluate the performance of rDG methods on more complex high Reynolds number
flows. For this, the L1T2 high-lift airfoil was chosen. The freestream Mach number for this case is 0.2 with a
Reynolds number of 5.6×106 at an angle of attack of 20.18◦. These flow conditions lead to a more complex
flow structure than previous test cases, as can be seen in figure 6.11b. The meshes used for the test case were
quadratic, however, the coarsest mesh used quartic elements, to ensure that no cells in the boundary layer
encroach on each other. The integration degree for each mesh was chosen dependent on the order of the
mesh. The medium fine mesh can be seen in figure 6.11a. The numerical settings and convergence criteria
were the same as in previous test cases. For each mesh, the runtime and coefficients of drag and lift were
recorded, which can be seen in figure 6.12.

In figure 6.12a, the drag and lift coefficients are compared to the number of degrees of freedom in the
mesh. It should be noted that the finest mesh was not converged for the DG(P2) method due to prohibitively
long computational times. Furthermore, the extended least-squares method was not able to be converged to
the required tolerance for the finest considered mesh. As for the previous Juskowski airfoil, the rDG meth-
ods can not compete with the native DG method in terms of degrees of freedom. However, the variational
reconstruction method performs the best of all considered rDG methods in terms of degrees of freedom. This
is in line with the results obtained for the previous test case. When comparing the standard and extended
least-squares methods to each other, it can be seen that the extended least-squares method produces slightly
worse results compared to the standard least-squares method.

The comparison of convergence in terms of run-time can be seen in figure 6.12b. In this comparison, the
rDG methods perform better than the native DG method. It can be seen that the variational rDG method
takes the longest time to converge of all three methods. Furthermore, the extended least-squares method
converges as fast as the standard least-squares method on all grids where it converges. It is notable, that the
native DG method even on the finest grid can not compete with the rDG methods on a finer grid in terms
of runtime. As both rDG and DG methods are initialised from a DG(P1) solution, the initial condition for
the rDG method is closer to the converged solution compared to a higher-order DG method, which includes
additional degrees of freedom. Furthermore, the linear system of the DG(P2) method was significantly more
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(a) (b)

Figure 6.11: (a) Medium mesh for the L1T2 airfoil consisting of quadratic hexahedrons. (b) DG(P2) solution of the flow around the L1T2
airfoil on the medium mesh. The jagged flow field contours do not arise from numerical artefacts, but from the projection of the solution
onto the elements as an element average.

(a) (b)

Figure 6.12: (a) Coefficient of drag in continuous lines and Coefficient of lift in dashed lines against the number of degrees of freedom
for the L1T2 airfoil for different rDG and DG methods. (b) Coefficient of drag in continuous lines and Coefficient of lift in dashed lines
against computational time for the L1T2 airfoil.

expensive to solve than the rDG methods leading to an increase in runtime. As the DG(P2) method takes a
long time to converge, the rDG methods perform better than the native DG method in terms of lift and drag
for a given runtime.

6.7. Hemisphere-cylinder
As a final test case, the Hemisphere-cylinder was selected. This case serves as a preliminary step for further
three-dimensional simulations of aircraft configurations. The geometry and the surface mesh of the body
and the symmetry plane can be seen in figure 6.13. The domain was meshed with quadratic hexahedrons
and features a minimum y+ value of 1 or lower for every mesh. Special care in the creation of the mesh
needed to be taken for the highly curved region at the front of the body. It was found that a low number of
elements in this region leads to divergence in the case of rDG but not DG methods. This limitation in terms
of mesh geometry is known from reconstruction-based finite volume methods.

The freestream Mach number of the test case is 0.6 at a diameter-based Reynolds number of 3.5× 105,
which translates to a Reynolds number of 3.5×106 based on the length of the body. To not only replicate a
simple boundary layer in three dimensions, but to also include more complex cross flow features, the body
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Figure 6.13: Finest hexahedral mesh for the Hemisphere-cylinder test case.

was also kept at an angle of attack of 5◦. The numerical settings were kept from the previous test case; how-
ever, the convergence criteria were relaxed to a freestream residual reduction of 10−8. Results for the two
meshes can be seen in figure 6.14.

It can be seen, that both considered rDG methods perform better than the underlying DG(P1) method.
Furthermore, it can be seen that for this test case, the least-squares reconstruction method performs bet-
ter than the variational method. This might be due to the approximate solving of the linear reconstruction
problem, which is used to enable convergence. As even the coarsest mesh includes 54 thousand elements,
the variational reconstruction only includes a small part of its required stencil. The least-squares method
follows the higher-order DG solution well, even on the coarse mesh. The convergence histories both in terms
of non-linear iterations and wall clock time can be seen in figure 6.15.

From figure 6.15a it can be seen that both rDG methods and native DG methods take approximately the
same number of iterations to converge from a DG(P1) solution. Furthermore, it can be seen that the num-
ber of iterations taken with the third-order methods only represents a small fraction of the total number of
iterations. In figure 6.15b, the density residual convergence is shown against the total computational time.
It can be seen that the third-order DG method takes significantly more time to converge than the three re-
constructed DG methods. This decrease in time per iteration leads to a lower computational time on the
same mesh, which has been observed for all previous test cases. For the DG method, a stark reduction in
convergence can be seen after around 180 seconds. This reduction in convergence results from the increased
stiffness of the linear system due to the increase in CFL number.



6.7. Hemisphere-cylinder 39

Figure 6.14: Coefficient of drag against the number of degrees of freedom for the Hemsiphere-cylinder test case.

(a) (b)

Figure 6.15: (a) Convergence of the density residual against the number of non-linear iterations for the Hemisphere-cylinder test-case.
(b) Convergence of the density residual against total computational time for the Hemisphere-cylinder test case.





7
Conclusion

In the previous two chapters, both implemented reconstruction methods were tested on several different
cases. This chapter now aims to answer the research questions established in chapter 3.4. First, a general
note about the spatial convergence of the rDG methods is given in section 7.1. Afterwards, sections 7.2 - 7.5
will answer the four research questions previously defined in section 3.4. Section 7.6, will summarise the
performance of rDG in terms of mesh quality aspects. Finally, in section 7.7 recommendations for future
work will be given.

7.1. Convergence of rDG methods
The designed order of accuracy of the least-squares based rDG (LS-rDG) methods and the variational rDG
(VR-rDG) method has been confirmed using the method of manufactured solutions for the Euler and the
RANS-SAneg equations on hexahedral and tetrahedral grids. Both methods have a performance which is
at least comparable to that of a native DG method of equivalent order on both hexahedral and tetrahedral
grids for purely hyperbolic problems. Contrary to previous observations by Cheng et al.[13], it was found
that the VR-rDG method performs significantly better than a native DG method in terms of error per degree
of freedom. The variational reconstruction can even match the accuracy of a higher-order DG method on
the same mesh for the Euler equations. For the RANS-SAneg equations, a slight decrease in accuracy was
observed for both rDG methods. However, the VR-rDG still performed better than a native DG method in
terms of error per degree of freedom.

7.2. Influence of the viscous flux in rDG methods
This decrease in accuracy for viscous flows has been further examined using the method of manufactured
solutions on a hexahedral grid for the RANS-SAneg equations. This degradation in accuracy was found to
occur only when using the BR2 scheme, and a switch to the BR1 scheme recovered the observations made
for purely hyperbolic problems. As the BR2 scheme includes a tunable parameter η, the influence of varying
this parameter was evaluated. It was found that a decrease in η leads to higher accuracy for rDG methods.
Furthermore, it was found that the influence of η on the discretization error of the solution is greater for
the rDG methods than for native DG methods. However, due to the higher stability and easier convergence
of the BR2 scheme compared to the BR1 scheme, the BR2 scheme was used for all further computations.
Moreover, it was found that the the viscous treatment in rDG methods increases the condition number of the
discretization matrix. This increase in condition number results in a decreased stability margin for the linear
diffusion equation compared to the underlying DG method.

7.3. Inverse distance weighting
In section 3.3.1 an inverse distance weighting was adopted from finite volume methods to the least-squares
reconstruction in rDG methods. This modification aims to weigh the influence of the elements in the recon-
struction stencil. For this, elements that are physically closer to the element for which the reconstruction
is performed are weighted higher than elements farther away. This is helpful for anisotropic mesh regions,
which are encountered in the boundary layer regions of RANS simulations. It was shown that this weighting
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can increase the accuracy of least-squares reconstruction methods on meshes featuring highly anisotropic re-
gions. For the zero pressure gradient flat plate, this inclusion of a weighting factor improved the least-squares
reconstruction method, such that the error per degree of freedom was lower than for a native DG method of
comparable order. The inverse distance weighting has been used for all two and three-dimensional RANS test
cases.

7.4. Applicability to high Reynolds number flows
Both reconstruction methods were compared to a native higher-order DG method in low and high Reynolds
number test cases. For low Reynolds numbers (Re=5000), it was found that rDG methods perform comparably
in terms of error per degree of freedom to a higher-order DG method. Due to the lower cost of convergence,
this leads to a lower error for a given computational time than a native DG method. For flows with higher
Reynolds numbers, this advantage is diminished however and all tested rDG methods performed worse per
degree of freedom than a comparable DG method. However, for very stiff numerical systems, it was found
that rDG methods can provide an improvement in computational time compared to native DG methods. The
stiffness of the numerical problem was assessed by the number of iterations needed to converge.

7.5. Jacobian approximation
For the Euler equations, it was found that the Jacobian of the underlying DG method is sufficient to ensure
the convergence of rDG methods. This approximation, however, is not sufficient for cases which include dif-
fusive terms. For such cases, the exact Jacobian of the method needs to be calculated using either automatic
differentiation or finite differences. The approximate Jacobian, however, is still sufficient as a preconditioner
for the GMRES solver using the exact Jacobian. If however, more complex turbulence models than the con-
sidered Spalart-Allmaras model are used, the resulting increase in numerical stiffness may necessitate the use
of an exact preconditioner.

7.6. Influence of mesh quality
It was found, that the discretization error of the LS-rDG method increased on a mesh with randomly per-
turbed inner vertices, which lead to non-planar and skewed faces. This increase in discretization error was
of similar magnitude as observed for the DG(P2) method. The extended stencil LS-rDG method proved more
robust to the randomly perturbed mesh, and no significant increase in discretization error was observed for
inviscid and viscous flows. The VR-rDG method exhibited a significant increase in discretization error on the
randomly perturbed mesh. This was proven to be a result of the non-planar faces, as the variational recon-
struction method showed no increase in discretization error on a skewed mesh with planar faces.

It was furthermore found that in regions of high surface curvature, the mesh needs to be sufficiently re-
solved to allow convergence of rDG methods. This is in contrast to native DG methods, which do not suffer
from this restriction.

7.7. Recommendations for future work
As rDG methods were found to be less robust than DG methods in terms of mesh resolution, an adaptive
method may be needed, to combine rDG and DG methods for higher-order simulations. Such a combination
may involve the use of DG methods in the boundary layer regions, which feature highly curved cells, and
the use of rGD methods in regions further away from the body. Such a combination would decrease the
number of degrees of freedom for a given mesh while retaining the formal order of accuracy and decreasing
computational effort.

Furthermore, the reconstruction operators may be used in the p-staging startup process of higher-order
DG methods, to gain a better initial state for the additional higher-order states. Such a higher-order prolonga-
tion may also be used in non-linear multigrid methods, to increase the rate of convergence, as has previously
been explored by Hasselbacher [25] and Fallet [20] in the context of second-order finite volume methods.
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A
Influence of the weighting on the condition

number of reconstruction

The influence of the inverse distance weighting on the stiffness of the econstruction problems is evaluated on
the exampel of the Multi-element airfoil (section 6.6). For this, the condition number of the reconstruction of
each cell is calculated as

C = λmax

λmi n
(A.1)

To identify cells in the boundary layer, the condition number is plotted against the normalised cell value.
Cells, which resolve the boundary layer, are comparatively smaller than the cells in the freestream, as can be
seen in figure 6.11a. The results can be seen in figure A.1.

Figure A.1: Condition numbers of the linear reconstruction problems against the normalized volume of the cell.

From the figure it can be seen, that the condition number of the reconstruction problem increases as the
cells become smaller only significantly for the weighted least-squares method. Furthermore, as the weighted

47
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least squares method was not observed to be more difficult or expensive to converge, it can be argued that
the condition number of the reconstruction does not solely influence the stiffness of the non-linear system.
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