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Abstract Programming by Demonstration is reach-

ing industrial applications, which allows non-experts to

teach new tasks without manual code writing. How-

ever, a certain level of complexity, such as online de-

cision making or the definition of recovery behaviors,

still requires experts that use conventional program-

ming methods. Even though, experts cannot foresee all

possible faults in a robotic application. To encounter

this, we present a framework where user and robot col-

laboratively program a task that involves online deci-

sion making and recovery behaviors. Hereby, a task-

graph is created that represents a production task and

possible alternative behaviors. Nodes represent start,

end or decision states and links define actions for ex-

ecution. This graph can be incrementally extended by

autonomous anomaly detection, which requests the user
to add knowledge for a specific recovery action. Besides

our proposed approach, we introduce two alternative

approaches that manage recovery behavior program-

ming and compare all approaches extensively in a user

study involving 21 subjects. This study revealed the

strength of our framework and analyzed how users act

to add knowledge to the robot. Our findings proclaim

to use a framework with a task-graph based knowledge

representation and autonomous anomaly detection not

only for initiating recovery actions but particularly to

transfer those to a robot.
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Fig. 1 Interactive Programming by Demonstration (PbD)
framework for programming of task decisions and recovery
behaviors, achieved by inserting decision states (DS) into a
task-representing graph. In clock-wise order, a human pro-
vides an initial demonstration (left), the robot executes and
monitors the current action (top), the robot detects a possi-
ble anomaly (right), human and robotic agent interact about
how the new information shall be used (bottom) and either
the robot executes again or the task structure is extended.
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1 Introduction

We are heading towards an age where robot program-

ming is no longer subject to experts but requires shop

floor workers and people in daily life situations to seam-

lessly program robots. It has been shown that Learning

from Demonstration (LfD) is an intuitive technique to
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transfer task knowledge to a robot. More specifically,

Programming by Demonstration (PbD) avoids manual

code writing that is usually done by robotic experts [2].

Since we move from purely repetitive robot tasks

used in manufacturing and assembly lines towards more

adaptive, collaborative and intelligent robotic applica-

tions, there is a high demand to increase robustness and

adaptability of the robotic behavior. An exemplary sce-

nario is a workspace, which is shared between human

and robot and where the human causes uncertainties

or intentionally adapts object positions. One way to

achieve robustness is a recovery behavior, where the

robot has knowledge about how to resolve an erroneous

state. Another way is to increase the adaptability to the

environment with task decisions that are made based on

the environmental state and that enable the robot to

act in different ways. With that in mind, we are highly

motivated to transfer such knowledge to a robot in an

intuitive way, such that end users are capable of cre-

ating robot programs that include recovery behaviors

and task decisions. To give examples for these scenar-

ios, a robot could react to a failed grasp by a regrasping

action or a robot could make a decision based on a spe-

cific object property, for instance, sort objects by their

weight. Since conditions have to be monitored in an

online fashion, these scenarios are also referred to as

conditional tasks.

The goal of this work is to propose a new frame-

work for programming conditional tasks, called Collab-

orative Incremental Programming, which is confronted

with two other alternative approaches. To give a broader

overview about the methodology of the compared frame-

works, we structured it by two means, which are task

representation and teaching interaction strategy. In the

first part, we introduce two different task structures

which represent the main task and its recovery behav-

iors or alternative actions. In the second part, we com-

pare two different teaching interaction strategies that

rely either on manual or automatic detection of erro-

neous states during execution. The comparison allows

the analysis of intuitiveness and teaching efficiency for

the end-user. This was achieved by conducting a study

involving 21 users, which is evaluated by teaching and

execution metrics as well as by user ratings.

The main contribution of this work is twofold: first,

we propose a PbD task-graph learning framework that

allows intuitive transfer of task knowledge including

task decisions and recovery behaviors using a bidirec-

tional communication channel between human and robot

(see concept in Fig. 1). Second, we provide valuable in-

sights of how users employ and understand PbD using

different task representation structures and different in-

teraction methods within a user study. In comparison to

works that focus on the teacher’s efficiency (e.g. [23]),

we introduce a new programming framework and an-

alyze how end-users collaborate with the robot as an

autonomous agent via textual dialogs to achieve their

task goals.

In our experimental evaluation, we show the ad-

vantage of our newly task-graph based method over

an unstructured task representation in terms of robust

and semantically consistent action transitioning. Fur-

ther, we evaluate our anomaly detection method that

relies on the robot’s perception capabilities in compari-

son to a user-triggered anomaly detection. Our findings

suggest that end-users have a biased impression about

the robot’s sensing capabilities, even though they were

informed about them before usage.

This work gives a more detailed overview of our pre-

liminary study on collaborative programming [26] re-

garding task representations, evaluates the framework

in different applications and adds a user study in order

to reveal how people interact with different frameworks.

2 Related Work

It has been early shown that PbD is a reasonable method

for robot programming systems [14], which is also em-

ployed in our proposed framework. According to the

problem to be solved, PbD can allow non-expert users

to intuitively set up a new robotic tasks in compari-

son to manual programming. More recently, it has been

shown that PbD can be successfully combined with

other task learning methods such as human feedback

and transfer learning of similar tasks [13]. After PbD

has been established in the state of the art, researchers

came up with structured representations of tasks, for

example in the form of task-graphs [25,22,16,17,1]. In

the presence of humans, who might cause uncertain-

ties in the workspace or given a rather complex task,

the robot requires some robustness to reach the task

goal. In the work of Caccavale et al. [1], this has been

achieved by the structured task representation on a vi-

sual perception level, where only branches of the task-

graph are executed that are feasible for the robot at the

given environmental state. A collaborative robot pro-

gramming framework has been presented in [12] which

uses augmented reality projections and a touch-enabled

table to intuitively parameterize an existing robot pro-

gram. The program itself allows preprogrammed branch-

ing or cycling operations. We enable the user to pro-

gram branching operations by learning such behaviors

from scratch without predefined skills, objects and envi-

ronmental conditions. As the environment is not always

fully observable and properties such as forces cannot be
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observed beforehand, we present a reactive task-graph-

based framework that encounters unknown states with

recovery behaviors that can be defined by the user.

2.1 Task Decisions

Several works have shown a sequential programming

paradigm, where the robot executes a sequence of ac-

tions or skills in order to achieve the task [6,18,24].

However, a fixed sequence of actions is not able to solve

conditional tasks, since it does not include replanning or

decision making on the task level. Therefore, we intro-

duced in a prior work [5] how intuitively task decisions

can be programmed by demonstration, termed as Se-

quential Batch Programming (SBP). Compared to this

work, we substantially changed the way of task encod-

ing and user interaction to allow a robust execution that

is able to cope with unseen task faults. Although re-

planning of a robotic task during execution is possible,

it requires a goal definition and world representation for

the planner to work. We instead use the demonstrations

itself to transfer the decision making strategy to the

robot, which directly learns the required actions from

the user. With that strategy, we enable both the defi-

nition of task decisions and recovery behaviors within

the same framework.

2.2 Fault detection and recovery

In the context of fault detection and recovery, a vari-

ety of methods and applications have been presented.

First, considering only fault detection, a method based

on force data to train a Support Vector Machine has

been applied to detect failures during assembly of a

shield onto a counterpart [21]. In Pastor et al. [20],

task outcome of failure or success is predicted by a

statistical model of previous sensor signals. A Hidden

Markov model (HMM) approach has been used to clas-

sify abnormalities in the force domain of an assembly

task [3]. Also based on HMM, a multi-modal abnor-

mality detection has been presented in [19] that mon-

itors forces, vision and sound during execution. Kha-

lastchi et al. presented a data-driven anomaly detection

approach based on dimensionality reduction of sensor

data, pattern recognition and a threshold on the Ma-

halanobis distance [10] and extensively evaluates this

approach later on [9]. These approaches have in com-

mon that they are able to detect abnormal states or

faults but are not designed to recover from them auto-

matically. [4] proposed the derivation of recovery behav-

iors from geometric models of the task at hand. We do

not require a geometric, predefined task model within

our learning framework but extract the recovery ac-

tions directly from the user’s demonstrations. [17] pre-

sented the construction of a finite state machine from

a number of human demonstrations. Possible recovery

behaviors were only considered, if the human pressed

a button during execution. In contrast, our presented

system decides autonomously when a demonstration is

required via anomaly detection. Further, they provide

the pose of all task relevant objects to the robot, which

is hard to realize in practical applications. In [11], low

confidence task regions based on a probabilistic model

were exploited to improve the robot’s spatial generaliza-

tion capabilities for unseen object locations. Although

no anomaly detection is performed online, the robot’s

knowledge about known motions is analyzed offline in

order to request additional user demonstrations that

could prevent future execution errors. In both [17] and

[11], the force domain is not considered in the task def-

inition process. Since we put a high emphasis on ano-

maly detection including the force/torque domain, we

enable our framework to react to environmental prop-

erties that cannot be observed visually.

2.3 Sequential Batch Programming (SBP)

SBP is based on the framework presented in [5], where

the teaching and execution are split up in two distinct

phases. First, the teacher successively demonstrates all

different task solutions, which are independently stored

in a solution pool (see Fig. 2a). Whenever an anomaly

is detected during the execution of a task solution, the

system switches to the state within an alternative solu-

tion that minimizes the error between the current sen-

sor values and all alternative solution states. This error

metric is computed by the Mahalanobis distance, that

incorporates a confidence bound around each solution.

The confidence bound is obtained by encoding multi-

ple demonstrations per solution in a Gaussian Mixture

Model (GMM).

2.4 User-triggered Incremental Programming (UIP)

UIP is inspired by the framework presented in [22] that

suggests a robot state automaton which is able to ob-

serve environmental conditions and to branch into dif-

ferent states during execution. We adapted this ap-

proach in a way to only create graph-nodes where a

decision state is required in order to obtain a task-graph

(see Fig. 2b). Ordinary robot states within a trajectory

are not represented as graph nodes, which allows to vi-

sually represent the task-graph with only the significant

decision states. Similar to the approach we present, a
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task-representing graph is incrementally constructed in

a combined teaching- and execution phase. The differ-

ence is, that with UIP, the teacher has to detect anoma-

lies during execution of the task and needs to decide if

and when a new demonstration is needed. A decision

state can be inserted by manually triggering a button

or controlling a GUI. In contrast, we tackle this prob-

lem by autonomous anomaly detection to remove this

burden from the user.

3 Background: Programming of Recovery

Behaviors by Demonstration

3.1 Requirements

We argue that a task decision and recovery behavior

programming framework requires the following proper-

ties:

(i) an anomaly detection mechanism (Sec. 4.2),

(ii) an extendable knowledge representation allowing

to learn from the user and environment (Sec. 4.3),

(iii) adaptability and refinement of robotic actions to

increase robustness (Sec. 4.3, and

(iv) an adaptive system to react during task execution

(Sec. 4.4).

According to that, we developed the approach of Col-

laborative Incremental programming (CIP) and com-

pare it with two other approaches we have developed

in this domain, namely Sequential Batch Programming

(SBP) and User-triggered Incremental Programming

(UIP).

3.2 Task Representations

We evaluate different task representations in this work

that allow reactive behaviors that are required for fault

recovery or conditional tasks. We clarify that fault re-

covery and conditional tasks are closely related, be-

cause they require (a) monitoring of the execution, (b)

branching from the nominal execution flow, and (c)

multiple actions for each decision and recovery behav-

ior. In the following, two fundamental task representa-

tions are considered.

3.2.1 Solution Pool

This task representation has been introduced in our

previous work [5] and represents a storage of multiple

actions, so called solutions (Fig. 2a). In the solution

pool, no branching states are specified, which enables

transitioning between solutions at any time during ex-

ecution.

(a) Solution pool with nom-
inal solution (middle ar-
row) and possible transi-
tions (dashed lines) to alter-
native solutions.

(b) Task-Graph where
links represent actions
and nodes represent de-
cision states.

Fig. 2 A task representation that incorporates recovery be-
haviors can be defined as solution pool, where multiple so-
lution actions exist in parallel (a) or as task-graph, which
arranges the actions as links and decision states as nodes (b).

3.2.2 Task-Graph

In this work, we make use of a structured task-graph

(Fig. 2b), that employs specified decision states, which

are the graph’s nodes. The links represent the robotic

actions that either lead to the next decision state or to

a designated termination of the task. Later in this doc-

ument, we explain how this representation can be gen-

erated incrementally in an interactive scheme involving

user and robot.

3.3 Fault State Detection Mechanisms

In the presence of possible task faults, the end user

wants the robot to handle such situations autonomously.

In reality, it might not be always clear to the robot what

is exactly a fault or erroneous state. However, a user

might have capabilities that the robot has not in or-

der to identify such states. Therefore, we consider both

manual and autonomous detection mechanisms in this

work.

3.3.1 Manual Fault State Detection

It has been shown that users are able to manually iden-

tify states where the robot shall make a decision about

its next action in a specific environmental state [17,22].

This can be achieved by letting the user observe the

task execution and by providing manual user feedback,

e.g. via a button or GUI.

3.3.2 Autonomous Anomaly Detection

This detection scheme removes the burden from the

user to observe the task execution and react accord-

ingly. It enables detection of abnormal states in absence

of the user and of newly occurred situations that could
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not be foreseen at programming time. In contrast to the

identification of low confidence task regions to improve

the robot’s spatial generalization capabilities [11], we

focus on the identification of anomalies that can oc-

cur in the position and force domain. We introduced

our anomaly detection scheme in our previous works

[5] and [26], which is based on a probabilistic action

encoding and a statistical outlier detection using the

Mahalanobis distance. The next section introduces all

parts of our methodology in depth.

4 Collaborative Incremental Programming

Our proposed approach of Collaborative Incremental

Programming (CIP) combines the task-graph program-

ming with an autonomous fault detection scheme that

requests new user demonstrations in unknown regions

of the input space. This enables the robot to decide

ad-hoc when new information is required in order to

extend the task-graph with decision states and possible

recovery behaviors.

4.1 Probabilistic Action Encoding

We request the user to only demonstrate a new behav-

ior once, in order to add a new action. Since the dy-

namics of the kinesthetic demonstration differ slightly

from the robot execution, we record also a robotic rep-

etition of the given demo. Variations between user and

robot performance are introduced by small uncertain-

ties in the environment that are possibly introduced

by the user, who sets the objects back to their origi-
nal positions. This shall enable the anomaly detection

to handle task-specific uncertainties that are possibly

caused by uncertain object locations. Additionally, the

anomaly detection shall be robust to system-specific un-

certainties as they are caused by the robot controller

due to limited tracking performance and variations in

dynamics, depending on the stiffness parameters of the

impedance controller. The obtained trajectory samples

of the task are used to encode this action and deter-

mine the regions of variance around the nominal tra-

jectory. An example of these variance regions can be

seen in Fig. 3a. Hereby, low variance regions lead to a

more sensitive anomaly detection. In parts with more

variability, higher deviations are accepted during the

execution, which increases the overall robustness. We

make use of the robot’s own proprioceptive sensing ca-

pabilities, where we use a force-torque sensor at the

end-effector, the Cartesian pose and the signals from

the gripper, which are the distance between the gripper

fingers and the status informing if an object is grasped

t

m

(a) Normal execution.

1

0 start 1 end

(b) Initial graph after first ac-
tion encoding.

t

m

(c) Anomaly detection.

2

0 start 1 end

(d) Robot stops execution at
abnormal state.

t

m

(e) Demonstration of new ac-
tion.

3

0 start

1 end

2 DS

(f) Insertion of a decision state
(DS) by splitting the current
action.

(g) Splitting up action s1 at
tα.

4

0 start

1 end

2 DS

3 end

(h) Insertion of an alternative
action starting at the decision
state.

Fig. 3 States while creating a task-graph by monitoring the
execution and by reacting to anomalies.

or not, evaluated by the grasping force. An external

vision system is not required in our approach, which

performs well in partially structured production envi-

ronments and hence is independent from object visibil-

ity or lighting conditions.

A data sample at time t is given as

xt = [p,o,f , τ , g, h]T ∈ R15,

consisting of the end-effector’s Cartesian position p =

[x, y, z] and orientation in unit quaternions o = [qw, qx,

qy, qz], force f = [fx, fy, fz] and torque τ = [τx, τy, τz],
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as well as the gripper finger distance g and grasp sta-

tus h ∈ {−1, 0, 1}. The grasp status is defined as fol-

lows: h = −1 for no object in gripper, h = 0 for grip-

per closing or opening, and h = 1 for object in grip-

per. We choose these state variables since they were

offered from the gripper hardware interface. The data

is recorded at a frequency of 1 kH and is downsam-

pled to 50 Hz to reduce the computational effort in

learning. The recorded data from user demonstration

XUdem = [xU,1, ...,xU,NU
] ∈ R15×NU and robot repeti-

tion XRrep = [xR,1, ...,xR,NR ] ∈ R15×NR with respec-

tive sample length NU and NR is collected for each new

demonstration.

Similar to [5], we first apply dynamic time warping

(DTW) to align the two sensor sequences on a com-

mon time axis and equalize their length N . In a pre-

ceding step, the data is standardized dimension-wise

with the z-transformation by subtracting the mean and

dividing by the standard deviation. This assures that

each dimension contributes equally to the dynamic time

warping error. After warping the data, the standardiza-

tion is undone by applying the inverse z-transformation

dimension-wise.

In the next step, Expectation Maximization (EM)

is used to learn a multivariate, time-based Gaussian

Mixture model (GMM) for the input matrix

Gs =

[
n n

XU XR

]
∈ R16×2N (1)

for an action s and a time vector n = [1, ..., N ]. The

variables XU and XR refer to demonstrated and re-

peated trajectories respectively, where possible scenar-

ios are explained in detail in Sec. 4.3. The model com-

plexity is chosen such that the number of model compo-

nents k is proportional to the temporal length N of the

demonstrated time series data. In the experiments, we

chose to add one model component per second of the

time series, which has shown to be a reasonable trade

off between model accuracy and smoothing of demon-

strated motions. The EM algorithm is then initialized

using k-means clustering with a number of k clusters.

From here, we obtain a model M = GMM(Gs) that

can be used to reproduce a trajectory. Gaussian Mix-

ture Regression (GMR) is applied to reproduce a gen-

eralized trajectory

Ys = [µ1, ...,µN ] ∈ R15×N

with an associated sequence of covariance matrices

Zs = [Σ1, ...,ΣN ] ∈ R15×15×N .

These results allow the execution of the mean trajectory

with a controller and to monitor the execution within

a confidence area that is derived from the covariance

matrices.

 

 Robot

MonitoringExecution

Scheduler

command:
confidence:

measurementcommand

trajectory error events

stop request

,

Fig. 4 System components for realtime execution and mon-
itoring. Solid connections are realtime-capable up to 1 kHz,
dashed connections are slow asynchronous connections.

4.2 On-Line Anomaly Detection

The system design for on-line anomaly detection is shown

in Fig. 4. The main goal is to monitor the execution and

detect new situations that are not known to the system.

Hereby, sensor modalities are introduced to distinguish

also the source of error. These modalities are

1. the robot pose (p,o),

2. the wrench (f , τ ), and

3. the gripper opening g and grasp status h.

For each of these modalities, the system constantly com-

pares the commanded and measured values to detect

abnormal states. Therefore, not only new situations can

be detected but also a possible error source can be as-

signed, e.g. an abnormal state resulting from external

forces. In each time step t of the execution, the devi-

ation between the measurement mi,t and commanded

state µi,t of a modality i is quantified using the Maha-

lanobis distance

DM(i,t) =
√

(mi,t − µi,t)TΣ−1i,t (mi,t − µi,t) . (2)

By defining a custom anomaly threshold εi for each

modality of an action s, this metric leads to a higher

error sensitivity in time steps where the execution needs

to be precise, indicated by small values of the reduced

covariance matrixΣi,t. During the execution, all modal-

ities are monitored in parallel. If any DM(i,t) exceeds its

action and modality specific anomaly threshold εi for e

consecutive time steps, an anomaly is detected.

Our approach does not rely on manual error thresh-

old tuning but is automatically parameterized from the

training data. We compute an anomaly threshold εi for

each modality of an action, based on the recorded tri-

als of the user demonstration U and robot repetition R.

After encoding a new demonstration in a GMM, we de-

termine the highest occurring Mahalanobis distance for

deviations between the samples xd,i,t of each demon-

stration d ∈ {U, R} belonging to one action and the
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associated mean µi,t by

D̃M(d,i) = max
t∈[1,N ]

√
(md,i,t − µi,t)TΣ−1i,t (md,i,t − µi,t).

(3)

Then, the maximum distance over all trials is extracted

with

εi = max
d∈{U,R}

D̃M(d,i) (4)

and used as modality specific error threshold.

4.3 Collaborative and Incremental Graph Construction

We use a task-graph to structure the available robotic

actions and possible decision states on an abstract level

(such as shown in Fig. 3h). This graph is incrementally

built by gaining task knowledge from user demonstra-

tions. The graph’s nodes represent system states that

can be of type start, end, and decision state (DS) that

is explained later on.

In order to construct a new task, a user triggers a

demonstration phase and provides an initial task demon-

stration. A robotic action is extracted from this demon-

stration as explained in Sec. 4.1 (Fig. 3a). Next, a start

and end state is added to the beginning and end of this

action. The result can be seen in Fig 3b, which allows

an execution of that simple task.

If an anomaly is detected during execution, as ex-

plained in Sec. 4.2, the robot stops at the unseen state

(Fig. 3c and Fig. 3d). The system now queries the user

to choose from the following options. The detected sit-

uation shall be handled by a new action in future exe-

cutions (Graph Extension), or must be incorporated as

refinement for the current action (Action Refinement).

These two options are explained subsequently.

Graph Extension: If the user selects to add a new ac-

tion that should resolve the current situation, the robot

switches to a demonstration phase and waits for the

user input. The robot configuration is still at the abnor-

mal state and can now be changed by the user via kines-

thetic teaching. We assume that an anomaly has been

detected beforehand at timestep tanomaly. In the fol-

lowing, a user demonstration XUdem is recorded. This

data is appended to the time-series M that is recorded

during the interval [tα; tanomaly], resulting in X̃Udem =

[M ,XUdem]. After finishing the demonstration, the user

is requested by the system to restore the environment to

the state before the demonstration, which means that

manipulated object locations are set back to the be-

ginning. Now, the robot moves to the configuration at

time step tα and repeats the extended user demonstra-

tion X̃Udem. The two time-series from user and robot

are then probabilistically encoded and saved as action

s2.

Finally, a new decision state is inserted into the

graph, splitting up action s1 into two actions before

and after the anomaly, depicted s1A and s1B respec-

tively (see Fig. 3g and Fig. 3h). The actions s1B and s2
are then appended to the newly inserted decision state.

In detail, action s1 is split at time step

tα = tthresh + αe , (5)

where tthresh is the time step in which the error metric

DM(i,t) first exceeds the anomaly threshold εi. The pa-

rameter e is the number of consecutive time steps for

which DM(i,t) > εi until an anomaly is triggered. The

scaling factor α (0 < α < 1) places the decision state

in between time step tthresh and tanomaly.

An early and smooth transition from action s1A
to its successor without following a possibly erroneous

strategy too long, requires a minimal α. This means

that the decision state would be placed close to the

timestep tthresh. However, making a robust decision re-

quires a long enough sequence of unambiguous sen-

sor readings that can be assigned to a specific action,

pushing the decision state towards tanomaly and thereby

α→ 1. Furthermore, the decision for the subsequent ac-

tion must be made before tanomaly is reached during ex-

ecution of action s1A, otherwise the anomaly detection

would wrongly identify a new situation for the scenario

handled by s2 (see Fig. 3h). Preliminary experiments

have shown that setting the number of error samples

e = 30 (corresponding to 30/50 Hz = 0.6 s) and the

scaling factor α = 1/3 is a good compromise between

robustness and delay in decision-making.

Action refinement: In case the user wants to refine the

action s, during which the anomaly was detected, its

encoded trajectory Ys with associated sequence of co-

variance matrices Zs is adjusted by new data. Hereby,

an existing action becomes capable of handling more

diverse conditions such that the robot learns which fea-

tures are important to observe and which regions of the

state space do not require a tight monitoring and error

handling. For instance, a sorting task for geometrically

different objects, that ignores the object weight can be

achieved by refining the actions that handle the differ-

ent geometries. In that case, the refinement leads to

actions, where the monitoring becomes invariant to the

object weights and therefore avoids false-positive force

anomaly detection in future task executions. Such an

example is later on evaluated in the experiments sec-

tion. A trial of the new setup is either acquired by a user
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demonstration in a user-refine mode or by the robot in

auto-refine mode.

In user-refine mode, a manual demonstration offers

the possibility to adjust the full trajectory of the correc-

tion, which directly starts at the anomaly configuration.

In comparison, the auto-refine mode lets the robot au-

tonomously continue the execution after the anomaly

has been detected until the end of the action. Since we

know already that a new situation shall be incorporated

into the action encoding, the anomaly detection is dis-

abled for the remainder of the execution. For both pos-

sible modes, the recorded time-seriesXRref is appended

to the time-series M of the action before the anomaly,

resulting in a stacked matrix X̃Rref = [M ,XRref]. This

data is used together with the initial user demonstra-

tion XUdem and robot repetition XRrep of that ac-

tion for a new probabilistic encoding, as described in

Sec. 4.1. Finally, the task-graph is updated with the

new action model.

4.4 Task Execution

Our main goal is the efficient combination of teaching

and execution phases, that switch ad-hoc according to

changes in environmental conditions. After an initial

task demonstration, an execution phase can immedi-

ately follow to start the production. It is seamlessly

possible to add knowledge at any time to the task-

graph. Either, the user can intentionally add knowledge

for known situations from the beginning, or the system

just comes back to the user at any time, for instance

after unforeseen faults occurred during production. The

task-graph enables the robot to reproduce any demon-

strated task, but furthermore, allows to adapt to envi-

ronmental states by exploiting known decision states.

This allows a fundamental extension to a simple se-

quential task execution, which is namely the selection

of the appropriate action based on the current sensor

readings. Conditional tasks allow, for instance, sorting

by object properties, or selection of recovery behaviors

at erroneous states.

The task-graph structures the available actions on

a high level, while the actions themselves are encoded

probabilistically on a low level, enabling their realtime

monitoring. Decision states are automatically inserted

at critical state transitions of the task, which simpli-

fies the decision process for a specific state, but also

eliminates perceptual aliasing and thereby the risk of

deciding for a wrong action. Since decision states are

known after the first anomaly occurred, the system can

evaluate the measurements in an early state and avoid

unnecessary robot movements.

Our approach identifies the sensor modality that

contributed most to the anomaly, where only relevant

sensor values are considered to select the subsequent

action in a decision state. In the following, an exam-

ple is used to explain the action selection in a decision

state, referred to Fig. 3h. The robot starts with the first

action s1A. If no anomaly is detected during the execu-

tion, the robot reaches the first decision state (DS), in

which the subsequent action ŝ is determined by

ŝ = argmin
s

(‖mDS − µs,0‖) . (6)

mDS is the measured state of of a modality in the deci-

sion state and µs,0 is the sample of the same modality

at the first time step of an encoded action. In our exam-

ple, the action ŝ that is executed next is selected from

{s1B, s2}, which are all actions that are attached to the

decision state. In contrast to the anomaly detection,

we use the Euclidean distance metric here, because the

Mahalanobis distance favors actions with high uncer-

tainty, expressed by large values in the covariance ma-

trix that lead to very small errors in the first time step.

With our proposed scheme, the robot always chooses

an action that minimizes the error to the current en-

vironmental state and keeps on monitoring that action

to detect possible future anomalies.

5 Experiments

Our experiment shows a scenario where a user transfers

a sorting task to a robot by adding knowledge incremen-

tally1. Hereby, the system queries only three demon-

strations from the user by interacting via the GUI. If

the robot detects an anomaly during task execution, the

user can either demonstrate a new action that solves

this unique situation or refine the current action by in-

corporating the new conditions into the expected out-

come of that action. With this experiment we want to

demonstrate both the action refinement and the task-

graph extension capabilities of our approach allowing

the robot to ignore irrelevant features and to learn rel-

evant features of a task.

5.1 Experimental Setup

As seen in Fig. 5, a DLR LWR IV is mounted on a linear

axis and equipped with a “Robotiq 85” 2-finger gripper

as well as a FT-sensor measuring the forces and torques

1 The accompanying multimedia material contains a video
of this experiment (video 1).



Collaborative Programming of Robotic Task Decisions and Recovery Behaviors 9

       Buttons to: 

start/stop     operate 

user demo    gripper

DLR LWR 4

GUI on 

a tablet

Fig. 5 Experimental setup where a conveyor belt (blue in
the bottom left) delivers new parts to a pick location, from
where they can be sorted.

acting on the end-effector. The robot is impedance con-

trolled with a control frequency of 1 kHz and parame-

terized with constant stiffness- and damping coefficients

ktrans = 1200 N/m, krot = 100 Nm/rad and dm = 0.3

Ns/m respectively. Pedals and a tablet displaying a GUI

allow the user to interact with the GUI while guiding

the robot at the same time. The pedals are used to open

or close the gripper and to start or stop the demonstra-

tion recording when using kinesthetic teaching in grav-

ity compensation. The GUI guides the user through the

teaching process and requests input from the user when

the task definition requires it. A conveyor belt standing

perpendicular to the table transports boxes with sup-

plies for an assembly task to a determined place in the

working space. These boxes have to be placed in a part

storage on the table in front of the user.

5.2 Geometry-based Sorting Task

The goal of the task is to program the robot to distin-

guish the different boxes based only on their geometry

in order to place the supplies at a specific spot in the

part storage where the user expects them. Specifically,

the weight of the boxes should not be considered when

deciding for the final position of a box. Analogously,

sorting of objects by their weight can be achieved with

similar means, as realized in a previous work [5]. We

assume that boxes of equal dimensions always contain

the same kind of pieces but do not always contain the

same number of pieces and therefore differ in weight.

First, the user provides an initial demonstration, where

the robot picks up a box with supplies from the start

position on the conveyor belt and places it in its des-

ignated spot in the part storage (Fig. 6d). After the

user demonstration, the box is again placed in the start

position on the conveyor belt so that the robot can re-

peat the demonstrated sequence. As seen in Fig. 6a-c,

these two demonstrations are used to learn a model of

the action, which is then executed by the robot. During

manipulation of a box with a different weight, the robot

detects an anomaly caused by an unexpected force fz
exerted in z-direction (Fig. 6e). Since deviating weights

of boxes are not considered important features of the

task, the user decides to refine the current action in or-

der to incorporate the new condition into the expected

trajectory for that action. The refinement is shown in

Fig. 6h and carried out completely by the robot, contin-

uing the learned motion and placing the box in its des-

ignated spot. However, when the robot detects a differ-

ent box geometry during gripping (Fig. 6i), the user can

demonstrate a new action, placing the box in another

spot of the part storage (Fig. 6l). This user demonstra-

tion is then again repeated by the robot and encoded

into a probabilistic model of the new action, shown in

Fig. 6j.

5.3 Results

We have shown that with our approach the robot can

learn important features (box geometry), while consid-

ering deviations of other features (box weight) irrele-

vant for specific actions of a task. As seen in Fig. 6g,

refining the learned model with an example of a lighter

box adjusts the expected value of fz and the variance

σfz as well as the force anomaly threshold εf for this

action (acc. to Eq. (3) and (4)). Following Sec. 4.2,

this leads to a less sensitive force anomaly detection

in future executions of this action. This allows to ma-

nipulate boxes with a wide range of different weights

without triggering a false positive anomaly detection.

At the same time, the robot can still learn additional

actions for new situations. As seen in Fig. 6i and 6l, a

detected gripper finger distance anomaly when grasping

a different box gives the user the opportunity to demon-

strate a new action that places this box at another goal

position. At the time step of grasping a box, a new de-

cision state is inserted into the task-graph (Fig. 6j) in

which the robot decides for the subsequently executed

action based on the measured gripper finger distance

(see Fig. 6k, Sec. 4.3 and Sec. 4.4).

6 User Study for Approach Comparison

In order to evaluate the intuitiveness and user friend-

liness of CIP, a user study is conducted2, in which it

2 The accompanying multimedia material contains a video
of the experiments in the user study (video 2).
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Fig. 6 Experimental results of the box sorting task with action refinement and graph extension.

is compared with two other frameworks, SBP and UIP

that were introduced in the related work (Sec. 2). The

task executions, generated with the different program-

ming frameworks are finally compared by their perfor-

mance in reaching the task goals.

6.1 Materials and Study Design

6.1.1 Sample

21 participants (19 male and 2 female) were recruited

from the German Aerospace Center (Age = 25.24 ±

7.03 years, ranging from 21 - 56). All participants have

a background in different technical fields, but not nec-

essarily in robotics.

6.1.2 Setup

We use the same setup as described in the previous

experiments section. For all robotic tasks in the user

study, we use the same object, an aluminum block visi-

ble in Fig.7 (6.8 cm x 4 cm x 2 cm) in different setups.
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6.1.3 Procedure

Participants are informed about the aim of the study

and the procedure. In an introduction, the robot’s sens-

ing capabilities are explained, specifically highlighting

that no vision-based monitoring of the environment is

used. After up to five minutes to familiarize with han-

dling the robot and operating the pedals, the experi-

mental tasks are explained. Each participant watches

a short instruction video explaining each method and

then teaches both tasks for all three methods. The order

of teaching each task with each method was permuted

among all subjects using a Latin square design [7]. Af-

ter programming with one method is completed, the

NASA-TLX [8] and the Questionnaire for Measuring

the Subjective Consequences of Intuitive Use (QUESI)

[15] are filled out by the participants. With the end of

the experiment, an overall evaluation of the methods

takes place, where the participants rate intuitiveness

and efficiency on a 7-point Likert-type scale followed

by a semi-structured interview.

6.1.4 Data Analysis

Nominal scaled successful completions were analyzed by

means of Cochran’s Q test and McNemar post hoc tests

in case of significant differences between methods. For

questionnaire items, a repeated measures ANOVA was

calculated. In case of violation of sphericity (Mauchly’s

sphericity test), Huynh-Feldt (> .75) or Greenhouse-

Geisser (< .75) corrections were made. Post hoc tests

with Bonferroni correction were performed to identify

which methods differ significantly.

6.2 Compared Methods

Table 1 provides an overview of the PbD approaches

that are compared in the user study, which all use the

same sensory input but no visual perception to make

task decisions. The approaches were initially described

in the related work sections (Sec. 2.3 and Sec. 2.4) and

are briefly explained in the following.

Sequential Batch Programming (SBP) is based on

the framework presented in [5], where the teaching and

execution phases are separated. First, the teacher suc-

cessively demonstrates all task solutions which the robot

shall be able to handle, and stores these independently

in a solution pool. If an anomaly occurs during task

execution, the system switches to the state within an

alternative solution that minimizes the error between

current measurement and all alternative solution states.

Collaborative Incremental Programming (CIP) is our

proposed PbD approach that combines anomaly detec-

Table 1 Overview of Compared Frameworks

Properties

Methods
Sequential
Batch
Progr.
(SBP)

Collaborative
Incremental
Progr.
(CIP)
(ours)

User-
trigger.
Incremental
Progr.
(UIP)

task repre-
sentation

teaching-
interaction

unidirec-
tional

bidirec-
tional

unidirec-
tional

incremen-
tally
extendable

8 4 4

online
decision
making

4 4 4

autonomous
anomaly
detection for
program-
ming

8 4 8

tion with collaborative programming to account for new

task conditions. Compared to SBP, the decision state

is explicitly programmed by collaboration between user

and robotic agent. Therefore, arbitrary switching states

that do not guarantee a successful transition are avoided.

User-Triggered Incremental Programming (UIP) is

inspired by the framework presented in [22], where sim-

ilar to CIP, a task-representing graph is incrementally

constructed in a combined teaching and execution phase.

The difference between these methods is that the teacher

has to detect anomalies with UIP during execution of

the task and needs to decide if and when a new skill
demonstration is needed.

6.3 Hypothesis

In this study, we want to verify the following hypothe-

ses:

– H1 (based on objective metrics): Using CIP with its

collaborative programming concept and autonomous

anomaly detection results in a significant increase in

successful task completions,

– compared to SBP (hypothesis H1.1), and

– compared to UIP (hypothesis H1.2).

– H2 (based on subjective ratings): A significant in-

crease in programming intuitiveness is achieved by

CIP with its collaborative programming scheme,

– compared to SBP, which uses a training phase to

collect all demonstrations in the beginning (hy-

pothesis H2.1), and
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Fig. 7 Initial and final setups of task 1 (left) and task 2
(right) with each two different environmental conditions
(Cond. 1 and Cond. 2).

– compared to UIP, which requires the user to trig-

ger the insertion of decision states manually (hy-

pothesis H2.2).

– H3 (based on subjective ratings): A significant de-

crease in workload is achieved by CIP,

– compared to SBP (hypothesis H3.1), and

– compared to UIP (hypothesis H3.2).

6.4 Experimental Tasks

We designed two different tasks, namely task 1: Reori-

entation and task 2: Contact-based Sorting. Their initial

and final setup is shown in Fig. 7. In task 1, the robot

shall manipulate an object from an initial location to a

target. The object’s long edge shall be aligned with a

mark on the table at the target. In addition, the object

can be rotated by 90◦ in the start location such that the

gripper can grasp it over its short edge. This requires a

reorientation of the object before placing it in the tar-

get location. A step-wise description is shown in Fig. 8

and Fig. 9. In task 2, the robot shall fill a part storage

starting with target I. If target I is occupied, the object

shall be placed on target II. The manipulation steps as

well as the generation of the task-graph are shown in

Fig. 12.

6.5 Results

Methods were evaluated using objective performance

data and subjective user feedback in post-experimental

questionnaires and the interview.

6.5.1 Objective Data

Successful Completions: A binary metric was used to

determine if a learned task can be successfully executed

in order to reach the task goal as described in the ex-

perimental task description. This allows to compute the

success rate of executions for each method, as shown in

Fig. 14. Cochran’s Q test indicated significant differ-

ences between the conditions for task 1 (p < .001) as

start0 end1
s1

1

2

start0 end1
s1

start0 end1
s2

2

start0 end1
s1

start0 end1
s

Execution:

targetstart

SBP

Fig. 8 Task 1: Reorientation, SBP: In step (1), the user
demonstrates a pick and place action s1. In step (2), the user
extends the solution pool with a second action s2, in which
the object gets rotated by 90◦ before placing it in the target
location. During execution of the nominal solution s1, the
rotated object in the start location causes an anomaly, that
triggers a transition to the alternative solution. The bottom
row illustrates an example of a failed execution, where the
robot decides for a wrong entry point of the alternative and
skips the reorientation part of s2.

start target
end3

s2

1

3

s1Bs1A
end1

DS2start0

s1
start0 end1

s1Bs1A
end1

DS2start0

2

UIP

start target

CIP

Fig. 9 Task 1: Reorientation, CIP and UIP: In step (1), the
user demonstrates a pick and place action s1. Step (2) shows
the updated graph after first execution where an anomaly
leads to inserting decision state (DS) and splitting s1 into
s1A and s1B . The DS is created by the anomaly detection
algorithm in CIP and by the user manually in UIP. In step (3),
the user adds a new action s2 that accounts for the anomaly
and properly rotates the object before placing it.

well as for task 2 (p < .001). McNemar post hoc tests

revealed significant differences between SBP and CIP

(p < .05) and CIP and UIP (p < .001) for task 1. For

task 2, significant differences could be found for SBP

versus UIP (p < .001) as well as CIP versus UIP (p <

.001).

H1.1 does not hold for task 1 (8) but holds for

task 2 (X) such that there are significantly more suc-

cessful task completions by using the collaborative pro-

gramming scheme of CIP compared to the collection

of demonstrations in a batch, used in SBP. This could
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(a) CIP: Autonomous ano-
maly detection when grasp-
ing object.

(b) UIP: Example for an
incorrect user-triggered ano-
maly before grasping object.

Fig. 10 Correct (a) and wrong (b) robot configuration to
provide an alternative action for solving a new situation. Due
to the user’s influence on the anomaly detection, a configura-
tion in which the robot can’t sense the anomaly is more likely
with UIP.
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I

II
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SBP
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2

2

Fig. 11 Task 2: Contact-based Sorting, SBP: The user suc-
cessively demonstrates two pick and place actions in step (1)
and (2). In demonstration of action s2, the object is placed in
target location II, if target location I is occupied by another
object. The bottom row shows the execution of the nomi-
nal solution s1, where an unexpected contact force triggers
a transition to s2 while approaching target location I. The
robot interpolates to the entry state of the alternative solu-
tion and places the object in location II.

be explained by the importance of right timing in task

1 (Reorientation), where it was critical for SBP to find

the precise entry point in the alternative solution, which

could lead to failed grasps and an unsuccessful task out-

come. In task 2, this timing issue was less critical as

the recovery behavior did not grasp the object again,

but just executed an action with different trajectory

while the gripper remained closed.H1.2 holds for both

tasks (X) with significantly more successful task com-

pletions by using the autonomous anomaly detection of

CIP in favor of a manual anomaly detection in UIP.

Due to this discrepancy in the success rates, we ana-

lyzed where exactly the decision states were inserted in

these approaches.

end3
s2

1

3

s1Bs1A
end1

DS2start0

s1
start0 end1

s1Bs1A
end1

DS2start0

2

start target

I

II

I

II

I

II

start target

I

II

I

II

I

II

UIPCIP

Fig. 12 Task 2: Contact-based Sorting, CIP and UIP: Step
(1) shows the initial demonstration of a pick and place action
s1. Step (2) shows the updated graph after first execution
where an anomaly leads to decision state (DS) insertion and
splitting of s1 into s1A and s1B . The DS is created by the
anomaly detection algorithm in CIP and by the user manually
in UIP. In step (3), the user added a new action s2 that
recovers from the anomaly.

Decision State Insertion: The timestep where the ano-

maly is detected defines where the decision state is in-

serted in the task-graph. This is critical for selecting

the appropriate action from the task-graph during exe-

cution. This timestep reflects a specific position of the

end effector. In both tasks, the position of the end effec-

tor at the decision state is the main constraint to allow

force sensing or grasp status identification of an object.

To analyze this further, we derive a ground truth for

the position of a decision state for each task. Hereby,

we store the end effector position of all decision states

from successful task executions of both CIP and UIP.

Next, we compute the mean over all stored positions.

This serves as ground truth, which can be considered

as a near optimal solution to solve the task. Finally,

we compute the distance dEE,C between the end effec-

tor position of each decision state and the ground truth

and show these values as green marks in Fig. 15. With

CIP (left column), the automatically identified decision

states lie close to the ground truth while with UIP,

these were manually inserted and show larger errors.

These errors lead to decision states, that are not phys-

ically grounded because the targeted sensor signal is

not present in that state. Imagine that a user manually

triggers a decision state that should decide about the

weight of an object before the robot actually grasped

it, which makes it impossible to sense such property.

6.5.2 Subjective Data

QUESI ratings: As reported in Fig. 17, users rated the

intuitive use of SBP best, followed by CIP, except for

“perceived achievement of goals”, where CIP reached
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Task 1: Reorientation Task 2: Contact-based Sorting

SBP

1 2

1

2

(a) At timestep (1), the robot detects an unexpected griper
opening that triggers switching to an alternative action. The
robot chooses a wrong entry timestep in the alternative ac-
tion, thus skipping the reorientation part, which leads to an
unsuccessful task execution (2).

1 2

1

2

(b) When trying to place the object in the occupied target
location I, the robot senses an unexpected force in z-direction
(1) that triggers switching to an alternative action. The robot
transitions to a correct entry timestep in the alternative ac-
tion, adjusting the end effector’s y-position (2) before suc-
cessfully placing the object in target location II.

CIP

1 2

1

2

(c) When grasping the object, the robot decides for the sub-
sequent action s2 in the decision state (1) based on the mea-
sured gripper opening. Using action s2, the robot rotates the
object before successfully placing it in the goal location (2).

1 2

1

2

(d) When trying to place the object in the occupied target
location I, the robot senses a contact force in z-direction in
the decision state (1) and decides for the subsequent action
s2. Using action s2, the robot adjusts the end effector’s y-
position (2) before successfully placing the object in target
location II.

UIP

1 2

1

2

(e) In the decision state (1), the next action is chosen before
grasping the object, at a time step in which the robot does
not interact with the environment and thus cannot sense a
difference between action s1B and s2. The robot selects the
unsuited action s1B for this situation, which leads to an un-
successful task execution (2).

21

1

2

(f) In the decision state (1), the next action is chosen before
the object in target location I can be detected by a contact
force in z-direction. The robot selects the unsuited action
s1B for this situation and tries to place the object in the
occupied target location (2), thus leading to an unsuccessful
task execution.

Fig. 13 Exemplary executions from the user study experiments.
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Fig. 14 Successful completions of the different tasks for all
three methods in percent.*, p < .05; **, p < .01; ***, p <
.001.
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Fig. 15 Each plot shows the probability density (blue curve)
for the computed distances between decision state position
and ground truth. These distances are marked by the green
samples on the x-axis. The left column displays the automat-
ically detected decision states by CIP, while the right column
shows the manually triggered decision states by UIP. Auto-
matically detected states (left column) lie notably closer to
the ground truth.

SBP CIP UIP

*

S
co
re

4.5 4.8 5.8

Fig. 16 NASA-TLX workload

the highest score. UIP was rated worst for all scales.

A repeated measures ANOVA showed that statistically

significant differences occurred for the subscales “Sub-

jective Mental Workload” (F(1.37, 27.39) = 5.36; p <

.05), “Perceived Effort of Learning” (F(1.38, 27.67) =

5.39; p < .05) and “Familiarity” (F(2, 40) = 4.09; p

< .05). Post-hoc comparisons showed that SBP scored

higher for those items than UIP (“Subjective Mental

Workload”: p < .001; “Perceived Effort of Learning”: p

< .05; “Familiarity”: p < .05) (see Fig. 17).

SBP CIP UIP

S
co
re

Fig. 17 Scores for QUESI (error bars indicate 95% confi-
dence intervals).*, p < .05; **, p < .01; ***, p < .001.
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Fig. 18 Scores for overall evaluation. p < .05; **, p < .01;
***, p < .001.

Workload: NASA-TLX overall score (see Fig. 16) re-

vealed a significant ANOVA main effect (F(2, 40) =

4.30; p < .05). With post-hoc comparisons we found

a significant lower workload for SBP (M = 4.48; SD =

2.21) compared to UIP (M = 5.82; SD = 2.79; p < .05).

No significant difference was evident comparing CIP (M

= 4.81; SD = 2.29) to any other method.

H3.1 suggests that the programming workload is

reduced by CIP in comparison with SBP andH3.2 sug-

gests the same effect for the comparison of CIP with

UIP. Both hypotheses were rejected, instead we only

see a significant difference between SBP and UIP. That

SBP shows the smallest workload rating could be ex-

plained by a minimum of required human-robot interac-

tions, where all knowledge is transferred sequentially in

the teaching phase before the robot executes the task.

Overall Evaluation: The user ratings for the following

two items are shown in Fig. 18. Intuitiveness of the

method (“The method was easy to use and intuitive”).

CIP (M = 6.29; SD = 1.35) and SBP (M = 6.00; SD =

1.10) were more intuitive than UIP (M = 4.95; SD =

1.69). This is supported by a significant ANOVA main

effect (F(2, 40) = 4.89; p < .05), where CIP and UIP

significantly differ (p < .05). Conventional level of sig-

nificance for the difference between SBP and UIP was

not reached (p = .053).
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H2.1 that suggests a higher intuitiveness of CIP

compared to SBP in programming a task is supported

by the overall QUESI ratings but without statistically

significant effect (Fig. 17 very left). In contrast, H2.1

holds for the comparison of CIP with UIP (X) and

shows a significantly higher intuitiveness in program-

ming a task.

Efficiency of the method (“I could solve the given

tasks efficiently with the method”). Subjects rated CIP

(M = 6.43; SD = 0.98) as most efficient, followed by

SBP (M = 6.24; SD = 1.09). UIP (M = 5.52; SD = .47)

was slightly less efficient. However, this is not supported

by a significant ANOVA effect.

6.6 Discussion

6.6.1 Objective Data

The results from the performance evaluation show, that

only programs created with CIP reliably solved both

experimental tasks.

Due to the different abilities of the user and the

robot to perceive the environment (e.g. vision), UIP

cannot guarantee that the robot will be able to measure

abnormal values when the user identifies a new situa-

tion and demonstrates an alternative behavior. As seen

in Fig. 10b, during the experiments, many subjects did

not wait with a demonstration until the robot senses

the transition condition for the second sub-task. When

programming the Reorientation task, 13 participants

demonstrated a new action before the robot closed the

gripper to grasp the turned object. For the contact-

based sorting task, even 16 subjects did not wait until

the robot could detect an object in the target loca-

tion. With CIP, however, a deviation in sensor values is

a requirement for detecting new situations. Thereby a

measurable difference between the programmed transi-

tion conditions for every action of a decision state can

be guaranteed. This leads to a successful transition to

the appropriate successor action when reproducing the

situation, because the measured sensor values reflect a

programmed condition for action transitioning.

With SBP, a transition between actions is triggered

when an anomaly is detected during the task execution.

The time step of an action with the closest sensor val-

ues to the anomaly state is chosen as an entry point

to continue the task. Since all time steps of all actions

are potential candidates for the entry point, the ap-

proach is prone to perceptual aliasing, that causes tran-

sitions to wrong actions or entry points. Furthermore,

the interpolation to the entry point does not guarantee

a collision-free trajectory. In CIP, a transition between

actions only happens in decision states. This limits the

number of possible successor actions to the intended

ones for a situation and thereby avoids perceptual alias-

ing and wrong transitions. This guarantees a success-

ful transition between actions when reproducing known

situations.

6.6.2 Subjective Data

From analyzing the questionnaires and the responses

in the interviews can be concluded, that SBP is an eas-

ily usable and intuitive framework for programming a-

priori known tasks and conditions. However, compared

to SBP, CIP has the advantage that overlapping parts

of actions can be reused between different scenarios

and complex tasks can be incrementally generated. For

tasks with several different decisions and actions, it is

difficult to predict all scenarios and to demonstrate the

corresponding behavior prior to the execution. We ar-

gue, that for more complex tasks, the advantages of

CIP can be fully exploited, since the user does not have

to anticipate or detect new situations, but can demon-

strate new actions when anomalies are detected during

the execution. Furthermore, the combined teaching and

execution of CIP gives the users the opportunity to in-

stantly verify the result of their demonstrations.

From analysis of the NASA-TLX sub-categories can

be seen, that CIP especially reduces the user’s mental

workload when programming a task, compared to UIP.

CIP reached in this sub-category a score of 6.2, com-

pared to 8.5 for UIP. This is in accordance with the re-

sults from the guided interviews, where 19 of 21 partic-

ipants mentioned as advantages of CIP, that the robot

autonomously detects new situations and that the user

does not have to pay constant attention. Whereas the

negative aspects for UIP, related to an increased need

for attention and mental demand, were mentioned 17

times. The increased intuitiveness of CIP over UIP was

confirmed by the overall evaluation of the methods. As

mentioned 11 times in the interviews, deciding for the

right moment to stop the task execution of UIP in or-

der to add a new action is not intuitive for the user.

This decision requires a deeper understanding of the

principle behind the method. As seen in Fig. 10, by

eliminating the user’s influence on that decision, the

robot automatically stops the task execution when an

anomaly can be sensed by the robot, which significantly

improves the task performance.
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Fig. 19 Shift of intuitiveness and efficiency scores before
and after users have seen the robot’s execution, i.e. a nega-
tive sign means that users have downgraded their ratings on
average compared to their first ratings.

6.7 Post-Experiment User Ratings

In a final evaluation, we consulted five subjects3 again

to obtain their ratings for the intuitiveness and effi-

ciency of each of the programming approaches. Since we

have their ratings from before seeing the execution, we

are able to compare their scores from before and after

they have seen the execution of their own programmed

tasks. Fig. 19 shows the results of the comparison. We

can see that for both alternative approaches, the in-

tuitiveness and efficiency dropped noticeable, while for

our approach the intuitiveness remained the same (no

change) and the efficiency increased by 0.2 points on

the Likert-type scale. That supports the assumption,

that due to the additional feedback loop in CIP, the

participants have a better understanding of the robot’s

changing task knowledge when teaching a task com-

pared to SBP.

This concludes that our framework is more trans-

parent to the user in terms of what the system has

learned and what the robot is expected to do in the

task execution. In relation to that, [23] proposed an

objective metric to evaluate the teacher’s efficiency in

robot learning, given a specific feedback channel, e.g. by

observing the robot’s execution performance. We con-

cluded from the success rate that our method performed

best but the efficiency was still rated by the users, which

is a subjective measure. Hence, analyzing the effect of

different task representations used as feedback channel

in terms of the teaching efficiency could aid developers

to create better user interfaces.

7 Conclusion and Future Work

We presented a framework that allows non-experts to

intuitively program conditional tasks that enables the

3 The robot’s execution success was evaluated in absence
of the 21 users. After that, we were able to contact again five
subjects from the original group for this analysis.

robot to make decisions ad-hoc during task execution.

Hereby, the complete task structure is transferred by

demonstration involving sensor readings of motion, force

and grasp status and no predefined symbols or objects

are required. We have demonstrated that task decisions

can be effectively transferred by our interactive pro-

gramming scheme, where the robot asks for user in-

put in unknown environmental situations. An on-line

anomaly detection reduces the user’s workload by just

querying necessary information and guarantees a func-

tioning task model, since transitions to specific actions

are only allowed within a decision state. This enables

the user to scale the complexity of a task over time

without cumbersome reprogramming of the whole task.

We compared our framework experimentally with

two alternative approaches in a user study, which lets

us draw the conclusion that Collaborative Incremental

Programming is the approach which users rated as most

intuitive to use to transfer knowledge to the system

and the one that is reliable in handling decisions during

execution according to its success rate.

As a limitation, we state that the anomaly detec-

tion halts the robot motion in order to query the user,

which could be infeasible for highly dynamic tasks. Fur-

ther, the reusability of the knowledge represented as

task-graph could be improved in the future as only

the branching at decision states is considered, but not

merging states or the recurrence of actions.

In this work, we stressed on the discrepancies in

human and robot perception, since humans use vision

but not every robotic system does so. In the future, we

would like to consider a vision system as an additional

sensor source given the fact that some anomalies can

be observed visually before object interaction and some

cannot, such as interaction forces.
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