

ASME ES-SHTC 2022

16th International Conference on Energy Sustainability Summer Heat Transfer Conference

CONFERENCE JULY 11–13

Monolithic Porous Structures of Ca-Mn-Based Perovskites for Thermochemical Energy Conversion

<u>Mathias Pein</u>, Christos Agrafiotis, Martin Roeb, Christian Sattler DLR – German Aerospace Center, Institute of Future Fuels

Motivation – Perovskites in thermochemical cycles

Motivation - CaMnO₃ as storage material

- $\Delta H = 161 \text{ kJ/mol}^{1}$
- Significant reduction in air >760°C
- Cheap, abundant, non-toxic components
- Scalable production (solid state synthesis)
- Is considered as candidate for thermochemical energy storage
 - >0.8 kJ/kg·K of storage capacity for Sr-doped CaMnO₃²

Motivation – Open porous structures in TCES

Allows for higher mass flows of HTF compared to

packed bed reactors

- No moving hot solids
- 50 kWh_{th} reactor built in previous project
- Co₃O₄ coated on Cordierite honeycombs
- Monolithic structures from stoichiometric oxides were not stable
- Thermal expansion / contraction causing too much stress

S. Tescari, A. Singh, C. Agrafiotis, L. de Oliveira, S. Breuer, B. Schlögl-Knothe, M. Roeb, C. Sattler, Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant, Applied Energy, Volume 189, 2017

Cyclic thermal expansion

ergy Sustainability

Fabrication of monolithic foams via replica method

The American Society of Mechanical Engineers ® ASME®

Microstructure of CaMnO₃-specimen

- Struts are $\approx 100 \mu m$ thick
- Struts appear hollow to some degree
- Smooth surface

- Triangular form of struts
- Sharp edges

nergy Sustainability

- Samples withstand pressure load of approx. 1 bar
- Easy to handle and stackable
- No deformation upon cycling
- Scalability tested up to 10x10x5cm block ٠

Pein et al. "Reticulated Porous Perovskite Structures for Thermochemical Solar Energy Storage", Advanced Energy Materials (2022), p. 2102882. DOI: https://doi.org/10.1002/aenm.202102882.

Cyclic stability

after

before

- Stable thermodynamics over 46 cycles 300-1100°C
- No deformation of the foam sample

Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", Advanced Energy Materials (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

High temperature phase transition

<u>Source:</u> Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", *Advanced Energy Materials* (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

٠

٠

expansion coefficient $\alpha_{cubic} > \alpha_{orthorhombic}$ • Cubic phase has lower formation energy of

PT leads to lattice expansion

TGA/DSC phase transition

Phase transition (PT) fully reversible in air

Heat effects and weight loss/gain at T_{pt}

Cubic phase exhibits greater thermal

oxygen vacancies

- Foam and powder exhibit identical
 - thermodynamic behavior

<u>Source:</u> Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", *Advanced Energy Materials* (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

Outlook: Influence of A-site Sr-substitution in Ca_{1-x}Sr_xMnO₃

Increasing Sr-content

- Phase transition *orthorhombic* <-> *cubic* shifts towards lower temperatures
- Heat effects of phase transition get smaller and eventually vanish ($x \ge 0.2$)
- Oxygen vacancy formation energy reduced
- Faster oxidation kinetics
- Small amounts of Sr-content stabilize thermal expansion/contraction at reduced p(O₂)

Outlook 2: Oxygen Pumping with foam specimen

- Sr-substituted CaMnO3-Specimen with 0%, 5% and 10% Sr-content tested in lab scale demonstrator
- Oxygen purposefully pumped from reference chamber in Temp.-swing operation
- \approx 2-fold increase in $\Delta\delta$ of reference material CeO₂
- Experimental campaign ongoing

<u>O₂-pumping reactor:</u>		Reference reactor	
$T_{Red}^{\underline{-}}$:	800°C	T _{Red:} :	1500°C
T _{ox} :	700°C	T _{ox} :	1000°C

Operating total pressure: 10⁻⁵ bar

Conclusion

- Mechanically stable open porous monilithic foams from CaMnO₃
- Foams exhibit identical thermodynamic behavior as powder
 - <u>No ageing observed over 46 cycles</u>
- Fully reversible thermal expansion and contraction between 300-1100°C under air
- A-site Sr-substitution: production successfully transferred
 - Lowers T_{pt} and reduces heat effects
 - Reduced mechanical stress during thermal cycling around T_{pt}
- Foam specimen proven to work in oxygen pumping demonstrator reactor

Thank you for your attention

Further information:

Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", Advanced Energy Materials (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

gy Sustainability

Thanks to all colleagues for contributing to this work

Porosity of CaMnO₃-specimen

<u>Source:</u> Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", *Advanced Energy Materials* (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

Energy Sustainability rence Π Summer 6t

