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Abstract 
 

 

In this thesis project, two novel machine learning strategies were investigated to predict tumor 

response to neoadjuvant chemotherapy (NAC) at pre-treatment using quantitative ultrasound 

(QUS) multi-parametric images. The ultrasound data for analytical development and evaluation of 

the methodologies investigated in this project were acquired from 181 patients diagnosed with 

locally advanced breast cancer (LABC) and planned for NAC followed by surgery. The QUS 

multi-parametric images were generated using spectral analyses on the raw ultrasound 

radiofrequency (RF) data acquired before starting the NAC. In the first machine learning approach 

investigated in this project, distinct intra-tumor regions were identified within the parametric maps 

using a hidden Markov random field (HMRF) and its expectation-maximization (EM) algorithm. 

Several hand-crafted features characterizing the tumor, intra-tumor regions, and the tumor margin 

were extracted from different parametric images. A multi-step feature selection procedure was 

applied to construct a QUS biomarker for response prediction. Evaluation results on an 

independent test set indicated that the developed biomarker using the characteristics of intra-tumor 

regions and tumor margin in conjunction with a decision tree model with adaptive boosting 

(AdaBoost) as the classifier could predict the treatment response of patients at pre-treatment with 

an accuracy of 85.4% and an area under the receiver operating characteristic (ROC) curve (AUC) 

of 0.89. In the second machine learning approach investigated in this project, two deep 

convolutional neural network (DCNN) architectures including the residual network (ResNet) and 

residual attention network (RAN) were explored for extracting optimal feature maps from the 

parametric images, with a fully connected network for response prediction. Results demonstrated 
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that the developed model with the RAN architecture to extract feature maps from the expanded 

parametric images of the tumor core and margin had a superior performance with an accuracy of 

0.88 and an AUC of 0.86 on the independent test set. Also, survival analysis demonstrated a 

statistically significant difference between survival curves of the two response cohorts identified 

at pre-treatment based on both the conventional machine learning method and the deep learning 

model. Obtained results in this study demonstrated a great promise of QUS multi-parametric 

imaging integrated with both unsupervised learning methods in identifying distinct breast cancer 

intra-tumor regions and traditional classification techniques, as well as deep convolutional neural 

networks in predicting tumor response to NAC prior to start of treatment. 
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Chapter 1  
 

Introduction 
 

1.1. Breast Cancer 

1.1.1. Breast Cancer, Diagnosis and Treatment 

Breast cancer is the most frequent cancer and the leading cause of cancer-related death among 

women [1]. In the United States, one in 8 women will be diagnosed with breast cancer in her 

lifetime, and about 25% of all new cancer cases diagnosed among women annually is breast cancer 

[2], [3]. Breast cancer can be detected through screening using different imaging modalities 

including x-ray mammography, ultrasound, and magnetic resonance imaging (MRI). The gold 

standard approach for breast cancer diagnosis is histopathological assessment of biopsy specimens. 

Once a cancer diagnosis is confirmed, the stage and condition of the disease will be determined 

using diagnostic information from imaging, histopathology, and other clinical examinations, and 

an appropriate treatment process would be prescribed, accordingly. 

A crucial part of planning an effective treatment for each patient is cancer staging which is defined 

as the process of examining the condition and properties of the breast tumor and checking whether 

the cancer has spread to the other part of body. The breast cancer stage is determined based on 

multiple factors including the size and location of the primary tumor, and degree of cancer spread. 

The most common system used for staging tumor is TNM system [4]. In the TNM staging system, 

three characteristics of disease which TNM stands for, determine the stage: 

T: Tumor (The size and extend of the tumor) 

N: Lymph Node (The number, size and location of the lymph nodes where cancer has spread) 
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M: Metastasis (Checking the spread of cancer to other parts of body) 

The tumor grading system is another system used to assess tumor condition and it shows how 

quickly a breast tumor is likely to grow and spread. In this system cancer cells are examined to 

determine how similar they are to normal cells and how fast they grow compared to normal cells 

[5]. 

Also, breast cancer cells are tested to see if they have certain proteins including the estrogen or 

progesterone receptors. Breast cancer cells may have one, both, or none of these receptors that 

attach to the estrogen and progesterone hormones, and signal the cells to grow [6]. Breast cancers 

that have estrogen receptors are called ER-positive (ER+). Breast cancers with progesterone 

receptors are called PR-positive (PR+). Based on the hormone receptor status, hormone therapy 

can be used to either lower the hormone levels or stop them from acting on breast cancer cells [7]. 

Also, breast cells are tested to check the level of human epidermal growth factor receptor 2 (HER2) 

protein on breast tumor cells. HER2 is a growth-promoting protein on the breast cells, and breast 

cancer cells with higher than normal levels of HER2 are called HER2-positive. The cancer cells 

identified as HER-positive tend to grow and spread faster than other breast cancers, and they are 

much more likely to respond to treatment with drugs that target the HER2 protein [8].  

After examining and staging breast cancer the treatment process will be planned and prescribed by 

clinicians. In general, there are five treatment options for breast cancer patients including surgery, 

radiation therapy, hormone therapy, chemotherapy, and targeted therapy, and mostly a 

combination of these treatments are prescribed for patients [9]. Some treatments including 

radiation therapy and targeted therapy are local and they target only the area around the tumor, and 

other treatments like chemotherapy and hormone therapy are systemic which target the cancerous 

cells in whole body with anti-cancer agents. 
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Chemotherapy is a drug treatment used to destroy cancer cells or slow down the growth of disease 

cells [10]. Chemotherapy is offered to most patients based on the cancer stage and tumor 

examination in conjunction with other treatment methods such as hormonal and targeted therapies 

[11]. Also, chemotherapy can be used prior to surgical resection with the goal of making the tumor 

operable, or shrinking and down-staging it before surgery, and in this case it is called neoadjuvant 

chemotherapy (NAC). 

Another treatment option for breast cancer is radiation therapy that uses high-energy radiation 

beams to destroy cancer cells [9]. Radiation therapy is considered as a local treatment and only 

affects cells in the part of the body that is treated with radiation. Also, it can be used to eliminate 

any remaining cancer cells that remain in the breast area after the surgery in order to reduce the 

risk of cancer recurring or metastasis [12]. 

Hormone therapy is another type of treatment for breast cancer patients [9]. Glands such as gonads 

and adrenals produce hormones like estrogen and progesterone to help body regulation. However, 

sometimes these hormones can cause cancer cells to grow and spread faster. In this case, the 

pathologist will examine the breast cancer cells to determine if they have certain receptors that 

feed on estrogen or progesterone, stimulating their growth. If the cancer cells have these receptors, 

the doctor may prescribe hormone therapy drugs, such as blockers or inhibitors in order to destroy 

cancer cells or reduce their growth by removing their supply of hormones. 

Targeted therapy is a relatively new treatment option for breast cancer [13]. The targeted drugs 

administrated in this treatment can attack specifically the breast cancer cells with minimal harm to 

normal cells. Breast cancer targeted therapy uses drugs that target specific parts of cancer cells, 

such as proteins or genes that help cancers grow and spread, in specific ways like blocking the 
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action of an growth-promoting protein like HER2 that stimulates the growth of breast cancer cells 

[13]. 

1.1.2. Locally Advanced Breast Cancer (LABC) 

LABC is an aggressive type of breast cancer and includes tumors with a size of greater than 5 cm, 

extensive regional lymph node involvement, or direct involvement of the skin or underlying chest 

wall [14]. Up to 20% of patients diagnosed with breast cancer annually present with LABC [15]. 

These patients suffer from poor prognosis, high risk of cancer relapse, and low survival rates. 

In the past, mastectomy, adjuvant chemotherapy, and post mastectomy radiotherapy were the 

standard treatment for operable LABC patients [16]. Currently, neoadjuvant chemotherapy has 

become the preferred method of treatment for operable LABC in order to downstage the disease 

and shrink the tumor before surgery. Moreover, neoadjuvant chemotherapy is used for inoperable 

breast cancer to make the disease operable.  

Whereas LABC response to NAC has demonstrated high correlations with overall survival [17], 

about 30% of LABC tumors do not respond to NAC and approximately 10-20% of them show a 

complete pathological response [15]. Response of LABC tumors to NAC is currently evaluated at 

the end of the several months of chemotherapy based on changes in tumors dimensions using 

anatomical imaging as well as histopathology on surgical specimens [14]. Early prediction of 

LABC tumors response to NAC can facilitate adjusting standard treatments for individual patients. 

There have been several studies that showed treatment modification and switching to more 

effective treatment procedure can improve disease-free survival [18], [19]. A personalized 

paradigm for LABC treatment is expected to improve patient response to neoadjuvant therapies, 

to spare patients from unnecessary side effect of ineffective treatment, and to improve their overall 

survival and quality of life. 
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In biological studies, it has been shown that immunohistochemical markers such as Ki-67, human 

epithelial growth factor receptor 2 (HER2) and circulating tumor nucleosomes could be correlated 

to the likelihood of breast tumors response to NAC prior to the start of treatment [20]–[22]. A 

number of other studies have demonstrated that circulating tumors DNA and RNA-integrity 

measurements [23] as well as functional imaging methods including diffuse optical imaging (DOI) 

[24], MRI [25] and positron emission tomography (PET) [26] have the potential of predicting the 

treatment response early after the start of chemotherapy. These methods are associated with a 

number of limitations. Assessing for molecular, genomic and proteomic markers requires invasive 

acquisition of tissue samples that is not always feasible or practical, and needs processing 

equipment that is not always accessible. The functional imaging methods mentioned above are 

relatively expensive, require long scan times, and usually need injection of contrast agent that 

restrict their application in therapy response prediction/monitoring. 

 

1.2. Imaging in Breast Cancer Management 
 

Different imaging modalities are used in breast cancer management for disease detection, 

characterization and staging, and therapy outcome evaluation. Each of these modalities has its own 

advantages and limitations that make them appropriate for different applications. In this section, 

several modalities including MRI, mammography, PET and ultrasound imaging that are routinely 

applied in breast cancer management are described. 

In MRI, a strong static magnetic field is applied to make hydrogen protons in the body aligning 

with the field. By emitting a radiofrequency pulse, the hydrogen protons are stimulated and spin 

out of equilibrium, straining against the pull of the magnetic field. Subsequently, when the 
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radiofrequency field is turned off, the receiver coils detect the energy released as the protons 

realign with the magnetic field. The time it takes for the protons to realign with the magnetic field, 

as well as the amount of energy released, is dependent on the environment and chemical 

characterization. Physicians can identify differences between various types of tissues based on 

these magnetic properties. For breast imaging often gadolinium contrast enhanced MRI is used to 

detect tumors which has a high sensitivity for the detection of breast cancer [27].  

MRI plays an important role in breast cancer screening and diagnosis [28], [29]. Moreover, the 

potential of MRI in therapy response prediction has been investigated in several studies [30]–[32]. 

It has been shown that features derived from intra-tumor regions on magnetic resonance (MR) 

images of the breast cancer could be used for chemotherapy response prediction [33]. Also, it has 

been demonstrated that texture features extracted from MR images carry valuable information for 

response prediction [34]. Nevertheless, MRI has some limitations that should be considered while 

being used. People with implants particularly those containing ferromagnetic materials should not 

enter an MRI machine. Also, injection of imaging contrast agents may have adverse side effects 

in some cases [35]. 

X-ray mammography is commonly used for breast cancer screening [28], [36]. In mammography, 

after securing patient’s breast within two compression plates, an x-ray machine emits a burst of x-

rays that pass through the breast and received by a detector located on the opposite side. The 

produced images are called mammograms. On a mammogram, low density tissues such as fat, 

seem semi-transparent and darker, while areas of dense tissue like connective tissue or tumors look 

brighter. In some cases, mammograms are hard to interpret. For instance, dense breasts are more 

difficult to image and assess for tumor diagnosis [37]. In some cases that mammograms are not 

accurate enough other image modalities should be used for tumor screening [38]. 
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PET is a nuclear medicine imaging technique to obtain 3D functional images of body. In PET 

imaging, a radionuclide contrast agent is injected to body that emits pairs of γ photons through β+ 

radioactive decay. The γ photons are received and detected by the machine to generate the PET 

images. The radionuclides used in PET scans are made by attaching a radioactive atom to chemical 

substances that are used naturally by the particular organ or tissue during its metabolic process. 

PET scan can provide information about the chemical functions and metabolism inside the organs 

and tissues. Since the tumors have higher levels of metabolism compared to normal tissue, there 

is a good contrast between tumor and normal tissues in PET images. Potential of PET images for 

screening and diagnosing breast cancer have been explored in few studies [39], [40]. Also, PET 

scans have been used to predict treatment response in some cancer studies [26], [41], [42]. It should 

be considered that PET is very expensive, and its image resolution is not high. Furthermore, the 

patient is subjected to radiation exposure that may cause health risks. 

Another imaging technique which is used for detecting breast lesions and cancer screening is 

ultrasound [28]. In order to produce ultrasound B-mode (brightness-mode) image, ultrasound 

pulses are produced by a transducer, which can both emit ultrasound pulses and detect the 

ultrasound echoes reflected back. As emitted ultrasound waves passes through tissues with 

different acoustic properties (echogenicity), partial energy of ultrasound pulses is reflected back 

to the probe in form of ultrasound echoes. Since the speed, direction, and distance the ultrasound 

pulses travel differ depending on the tissues micro-structure they run through, a computer can 

represent sonographic information of tissues as a two-dimensional image known as B-mode on the 

screen, while the brightness is controlled by the strength of the echo received from the tissue. For 

instance, the skin is highly reflective and appears as a bright line in the image, and fatty tissues 

cause low-level echoes and appear dark in the image. Also, by moving the transducer over the 
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breast, continuous real-time images can be captured. Ultrasound imaging can be used for other 

imaging applications including Doppler imaging [43] and elastography [44]. Ultrasound imaging 

has many advantages that make it a favorable modality for tumor screening and therapy response 

evaluation [45]. It is a safe, relatively inexpensive, portable, and rapid imaging modality that does 

not need injection of imaging contrast agents.  

 

1.3. Quantitative Ultrasound 
 

Quantitative ultrasound (QUS) techniques have been developed to derive quantitative measures 

that are independent of instrument and imaging parameters and with a lower level of operator 

dependence for tissue characterization applications [46]. The QUS techniques can be used in 

conjunction with sliding window analysis to generate color-coded parametric images that represent 

the underlying tissue characteristics [47]. The contrast in QUS parametric images is principally 

based on the underlying tissue’s biophysical properties, and can give richer and more robust 

information about tissue micro-structure compared to the conventional B-mode images. Since 

different tissues consists of components with various shapes, spatial organization, and mechanical 

properties, QUS methods aim to estimate these properties using appropriate models and theory of 

how ultrasound interacts with soft tissues. 

Initial studies on QUS developed basic theories to process ultrasound signals to obtain QUS 

parameters describing soft tissue properties and remove system dependence. In particular, Lizzi et 

al. [48] and Insana et al. [49] introduced QUS methods based on the backscatter coefficient. In 

addition, other QUS studies were performed which relied on measurement approaches not directly 

related to the backscatter coefficients. Some of these studies include using scanning acoustic 
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microscopy [50], inverse and forward scattering models of ultrasound tomography [51], and also 

envelope-statistics modeling and quantification [52]. QUS techniques have been used in several 

tissue characterization applications including prostate cancer diagnosis and characterization 

[53][54], monitoring chronic remodeling in liver tissue [55] and breast mass characterization [56]. 

Moreover, QUS has been used for monitoring tumor response to cancer treatments including 

radiation therapy [57], chemotherapy [58] and ultrasound-stimulated microbubble therapy [59]. In 

particular, these studies have demonstrated the association of QUS parameters and histology in 

different tissue characterization applications [46]. 

In order to estimate the QUS spectral and backscatter parameters, the mean power spectrum can 

be acquired by averaging the square magnitude of the fast Fourier transform (FFT) of window 

𝑒𝑠(𝑡, 𝑥𝑖) through ultrasound radiofrequency (RF) lines, where 𝑒𝑠(𝑡, 𝑥𝑖) is defined as Hanning-

gated RF echo segment as a function of time and lateral position. Next, the average power spectrum 

is normalized using the average power spectrum of a reference phantom with known attenuation 

coefficient within window 𝑒𝑝(𝑡, 𝑥𝑖) to remove the effects of system transfer functions and 

transducer beam-forming [60], [61]. The calculation of normalized power spectrum can be written 

as following: 

𝑃(𝑓) = 𝑙𝑜𝑔
Σ𝑖|𝐹𝐹𝑇(𝑒𝑠(𝑡, 𝑥𝑖))|

2

Σ𝑖 |𝐹𝐹𝑇 (𝑒𝑝(𝑡, 𝑥𝑖))|
2           (1.1) 

In the next step, through a linear regression analysis, the best fit line to the normalized power 

spectrum will be acquired within the -6 dB bandwidth centered at the transducer center frequency. 

The -6 dB bandwidth is estimated from the power spectrum of the reference phantom. Spectral 

slope (SS) and spectral intercept (SI) are the slope and extrapolated 0-MHz intercept of the line of 
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best fit, and midband fit (MBF) is the value of the line-approximated power spectrum at the center 

of the -6 dB frequency bandwidth (fc). Therefore, SS, SI and MBF can be written as following: 

𝑃(𝑓) = 𝑆𝑆 ∗ 𝑓 + 𝑆𝐼          (1.2) 

𝑀𝐵𝐹 = 𝑃(𝑓𝑐)                     (1.3) 

The backscatter parameters including the effective scatterer diameter (ESD) and effective acoustic 

concentration (EAC) can be estimated by fitting a form factor model (e.g. spherical Gaussian 

model)  to the backscatter coefficient (BSC) [62], [63]. BSC could be acquired as following: 

𝜎𝑠(𝑓) = 𝑃(𝑓)𝜎𝑝(𝑓)𝑒4(𝛼𝑠−𝛼𝑝)(𝑅+
Δ𝑧
2

)          (1.4) 

where subscripts s and p indicate sample and reference phantom, respectively. 𝛼 is the attenuation 

coefficient, Δ𝑧 is the gate length, and R is the distance between the transducer and the proximal 

surface of the gate. The BSC of the reference phantom (𝜎𝑝) can be calculated by setting it as the 

sample in Equation (1.4) and setting the reference as another phantom characterized previously. 

It has been demonstrated that QUS parametric images including those of MBF, SS and SI can be 

used for tissue characterization [64], [65]. Also, it has been shown that QUS parameters such as 

ESD and EAC can be related to the microscopic histological characteristics of the underlying tissue 

[66]. For example, it has been demonstrated that ESD is related to the average size of cellular 

structures in a study on two tumor phenotypes grown in animal models [56]. Another study by 

Banihashemi et al. suggested that there is a correlation between changes in the QUS parameters 

including MBF and SS and the histological variations in size of cell nuclei due to apoptosis [67]. 

Different Studies on QUS parametric maps of 58 and 30 patients have shown that QUS parameters 

including the MBF, SS, SI, and ESD have the potential of predicting breast tumor histopathology 
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responses to chemotherapy within few weeks after the therapy initiation [68][69]. Also, several 

studies demonstrated that textural features of QUS parametric maps which quantify the spatial 

relationship between local acoustic properties within the tissue, could be used for breast tumor 

characterization and response prediction [70][71][72]. Sannachi et al. have demonstrated that QUS 

in conjunction with textural analysis and molecular features could be applied to predict breast 

tumor response to chemotherapy early after treatment initiation [73]. A recent study demonstrated 

that the features extracted from the tumor margin in addition to the tumor core in QUS parametric 

maps of 56 patients could be used for chemotherapy response prediction at pre-treatment [74]. 

Byra et al. have demonstrated that segmented quantitative ultrasound maps could be utilized for 

distinguishing malignant versus benign lesions of breast [75]. In the chapter 2 of this thesis, we 

have adapted, for the first time, advanced clustering methods to segment intra-tumor regions in 

QUS multi-parametric images to quantify heterogeneity within the tumor for therapy response 

prediction.  

 

1.4. Conventional Machine Learning Techniques for Medical Image 

Analysis and Classification 

1.4.1. Image Processing and Segmentation Methods for Feature Extraction 

An initial step in processing imaging data to use conventional machine learning methods for image 

classification is extracting appropriate features. These hand-crafted features should be defined in 

specific ways that represent important properties of the images. In classifying QUS parametric 

images, the mean value and signal to noise ratio (SNR) of the parametric image within a region of 

interest (ROI) are among the features that have been used for different tissue characterization 

applications [75], [76]. The SNR is acquired by calculating the ratio of the average pixel value to 

the standard deviation of pixel values within the ROI, as a measure of spatial heterogeneity [77]. 
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In some studies on QUS, the features were acquired using texture analysis on parametric images 

[70], [73]. In order to acquire textural features, spatial distribution of QUS parameters in 

parametric maps can be quantified using statistical approaches including those based on the gray-

level co-occurrence matrix (GLCM) [78]. A GLCM represents the angular relationship between 

neighboring pixels as well as their distances in an image. From a GLCM, different texture features 

such as contrast, correlation, homogeneity, and energy can be derived to quantify spatial patterns 

of heterogeneity in an image. 

Another possible approach to characterize spatial heterogeneity in an image, e.g. a QUS parametric 

map, is to identify its distinct regions using segmentation methods [75]. Two popular clustering-

based segmentation methods that can be utilized in this task include the k-means [79], and the 

Gaussian mixture model (GMM). These methods have been used in different applications in 

medical image segmentation [80], [81]. Also, k-means is commonly used as an initialization step 

in more complicated algorithms such as the hidden Markov random field-expectation 

maximization (HMRF-EM) (described in section 1.4.2). Concisely, the k-means clustering 

algorithms is as follows: 

1. Determine the number of clusters k. 

2. Initialize centroids by first shuffling the dataset and then randomly selecting k data points 

for the centroids without replacement. 

3. Keep iterating the following steps until a stopping criterion is reached: 

 Compute the sum of the squared distance between data points and all centroids. 

 Assign each data point to the closest cluster (centroid). 

 Update the centroids for the clusters by taking the average of the all data points that 

belong to each cluster. 
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1.4.2. Hidden Markov Random Field - Expectation Maximization (HMRF-EM) 

The HMRF-EM is an unsupervised classification method originally proposed for segmentation of 

brain MR images [82]. This method has been used for segmentation in several medical imaging 

analysis applications [83][84][85]. 

In HMRF-EM algorithm, for segmenting an image 𝑥 =  (𝑥1, . . . , 𝑥𝑁 ) where each 𝑥𝑖 is the 

intensity of a pixel, we intend to find a configuration of labels 𝑦 =  (𝑦1, . . . , 𝑦𝑁 ) where 𝑦𝑖  ∈  𝐿 

and L is the set of all possible labels with maximum a posteriori probability (MAP) estimation. 

Based on the MAP criteria, the estimated labels Y* should satisfy: 

𝑌∗  = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 {𝑃(𝑋|𝑌, 𝜃)𝑃(𝑌)}          (1.5) 

Where the prior probability 𝑃(𝑌) is a Gibbs distribution and 𝜃 is representative of multivariate 

Gaussian distribution parameters which is obtained by the EM algorithm. Using joint likelihood 

probability, 𝑃(𝑋|𝑌, 𝜃) can be computed as: 

𝑃(𝑋|𝑌, 𝜃) = ∏ 𝑃(𝑥𝑖|𝑌, 𝜃)

𝑖

=  ∏ 𝑃(𝑥𝑖|𝑦𝑖, 𝜃𝑖)

𝑖

                 (1.6) 

Where 𝑃(𝑥𝑖|𝑦𝑖, 𝜃𝑖) is a multivariate Gaussian distribution with parameters 𝜃𝑥𝑖
= (𝜇𝑖, Σ𝑖), such that 

𝜇𝑖 is the mean and Σ𝑖 is the precision matrix of the distribution. 

In order to find the intended labels, the following algorithm is followed [83]. First, the initial 

parameters and labels were estimated by applying a k-means algorithm on the image. Then, the 

following steps are performed iteratively until a stopping criterion is reached: 

1. Compute the likelihood distribution 𝑃𝑡(𝑥𝑖|𝑦𝑖, 𝜃𝑖) in iteration t starting from 𝑡 = 1. 

2. Use the current parameter set 𝜃𝑡 to estimate the labels by the MAP estimation algorithm 

[83]. 
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3. Calculate the posterior distribution 𝑃𝑡(𝑙|𝑥𝑖) for all the l ∈ L and all pixels 𝑥𝑖 

utilizing the Bayesian rule. 

4. Compute the updated parameter set 𝜃𝑡+1 with calculated posterior distribution 𝑃𝑡(𝑙|𝑥𝑖). 

 

1.4.3. Conventional Machine Learning Methods for Image Classification 

During the past decades, several conventional machine learning methods have been introduced for  

classification using handcrafted features including those derived from medical images [86]. 

Different classification methods including the random forest [87], support vector machine (SVM) 

[88], and decision tree with adaptive boosting (AdaBoost) [89] showed decent performance in 

different applications in medical imaging analysis [86], [90].  

In SVM algorithm, the goal is to find the hyperplane which separates the data into classes in an 

optimal way. First, closest points to the classifier hyperplane from both the classes are identified. 

These points are called support vectors. Then, the distance between the hyperplane and the support 

vectors would be computed. This distance is called the margin, and objective of the algorithm is 

to maximize the margin. The hyperplane for which the margin is maximum is the optimal 

hyperplane. Also SVM algorithms use a set of mathematical functions that are defined as the 

kernel. The function of kernel is to take data as input and transform it into another dimension which 

the data is more separable [91]. 

Random forest is another conventional machine learning method used for classification. Random 

forest builds multiple decision trees and fuses their output to get a more accurate and stable 

prediction. In random forest instead of searching for the most important feature while splitting a 

node, it searches for the best feature among a random subset of features which help model to avoid 

overfitting [91]. 
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Adaboost uses the idea that a single classifier may not be able to accurately predict the class of an 

object, but when multiple weak classifiers are grouped with each one learning from the others' 

wrongly classified objects, one strong model can be built. In Adaboost model a sequence of weak 

learners are fitted on different weighted training data. It starts by predicting over the initial dataset 

and giving equal weight to each observation. If prediction is incorrect using the first learner, then 

the weight to observation which has been predicted incorrectly will increase. Also, each classifier 

is assigned with a weight based on the accuracy of the classifier, which means classifier with higher 

accuracy has more weight. Being an iterative process, it continues to add learner(s) until a limit is 

reached in the maximum iteration level or accuracy [91]. 

Larkin et al. [92] adapted the SVM model to classify whether a T2-weighted MRI image represents 

a treated tumor. Another study showed application of SVM in differentiating between “pre-” and 

“post-treatment” texton-based features acquired from QUS parametric images of preclinical data 

[93]. In a recent study, Tadayyon et al. [94] used SVM and KNN as classifier for chemotherapy 

response prediction prior to start of treatment on QUS images. Another study by Sannachi et al. 

[95], explored conventional machine learning methods including SVM and KNN for therapy 

response prediction early after the start of treatment using textural features acquired from QUS 

images. Moghadas-Dastjerdi et al. [96] have recently investigated different machine learning 

methods including SVM, random forest and Adaboost with decision tree as a weak learner for 

chemotherapy response prediction using CT images. 
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1.5. Deep Learning in Medical Image Analysis 
 

Conventional machine learning methods like SVM and random forest use handcrafted features that 

should be extracted from medical images and processed to be used for classification. These 

methods use algorithms to learn from the extracted features and make informed decisions based 

on what they have learned. Therefore, appropriately defining distinctive features for each specific 

application is crucial in achieving a good performance in image classification with such models. 

On the other hand, deep learning methods, and specifically deep convolutional neural networks 

(DCNN), use a different approach to address image classification problems. As it is depicted in 

Figure 1.1, in these models the input image is sent through different processing layers, and the 

network layers hierarchically determines the specific features of the image that are appropriate for 

classification. The feature sets are optimized iteratively through the network training process [97].  

The main advantage of deep learning methods is that they do not necessarily need structured 

features to classify image data. The DCNN models require minimal human intervention, as 

multilevel layers in the network ultimately learn from their own mistakes. However, since features 

are emerged from the data, a considerably large dataset would be required to let the model learn 

important features from the samples. 

 

Figure 1.1. A convolutional neural network consists of convolutional layers and fully connected layers. 
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By introducing the AlexNet model in 2012, Krizhevsky et al. [98] showed that DCNNs can be 

highly effective in classifying high resolution images. DCNNs are able to successfully capture the 

spatial and temporal dependencies in an image through the application of relevant filters. The 

convolutional architecture showed significant performance on the image datasets with lower 

number of parameters involved and reusability of weights [99], [100].  

During the last few years which DCNNs have shown promise in different tasks, several models 

including the residual networks (ResNet) [101], inception network [102], and the residual attention 

network (RAN) [103] have been introduced to improve the performance of deep learning models 

in image classification. The ResNet was introduced by He et al. [101] with a new concept to 

facilitate training the networks that are substantially deeper than those used previously. There has 

been some studies that argued adding more layer is crucial for improving the classification 

performance [99], [102]. But in practice, adding more layer to very deep neural networks can cause 

overfitting and reducing the performance of classification [104]. The core idea of ResNet is to 

introduce a so-called “identity shortcut connection” that skips one or more layers as is shown in 

Figure 1.2. The authors demonstrated that by using this architecture, stacking more layers will not 

degrade the network performance, because the network is able to skip the unnecessary layers, and 

the resulting architecture would perform better in classification tasks. 
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Figure 1.2. Residual unit. 

The novelty incorporated in the RAN model was incorporating an attention module that is shown 

in Figure 1.3. The attention module in RAN consists of two branches - a “trunk” branch T(x) that 

is composed of two consecutive residual modules, and a mask branch M(x). The mask branch 

operates by down sampling an input patch using average pooling, passing through a residual 

module, down sampling again, computing another residual connection, and then finally 

upsampling to the original size using a bilinear interpolation and computing a sigmoid activation. 

The final output of this module can be written as: 

𝐹(𝑥) =  (1 + 𝑀(𝑥)) ∗  𝑇(𝑥)        (1.7)  

Adding one to the trunk operation allows for the trunk branch computation to pass through, where 

the mask branch works to suppress noise in the trunk branch, allowing for easier detection of 

important features. Therefore, only important features pass through the attention module. 
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Figure 1.3. Attention unit. 

The deep neural networks have recently been investigated in different applications of medical 

image analysis [105], [106]. A few studies have been conducted on adapting DCNNs for breast 

cancer therapy response prediction in breast cancer patients using MRI [107], [108]. Sloun et al. 

have recently reviewed different applications of deep learning on ultrasound imaging [109]. Byra 

et al. demonstrated the potential of convolutional neural networks for breast lesion classification 

using QUS Nakagami parametric images [110]. To the best of our knowledge no previous study 

has investigated the performance of applying DCNNs on QUS multi-parametric imaging for pre-

treatment prediction of breast cancer response to NAC. 
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1.6. Contribution and Thesis Organization 
 

In the recent years, few studies have been performed on analyzing QUS parametric images of 

breast tumors to predict therapy response prior to the start of treatment [74], [94]. These studies 

have focused on conventional machine learning methods with features derived from the parametric 

images of the entire tumor core and margin. In those studies, performance of QUS parameters for 

response prediction was assessed using a leave-one-patient-out cross-validation approach due to 

the relatively small cohorts applied and no independent test set were used for evaluation.  

In this research, we have investigated different machine learning strategies to analyze QUS 

parametric images for prediction of LABC response to NAC at pre-treatment. Specifically, we 

investigated QUS parametric maps generated for more than 180 LABC patients using the 

ultrasound data acquired prior to their NAC. The obtained dataset were separated into separate 

training set and test set in order to have more robust and accurate evaluation. The proposed models 

were assessed using different criteria including accuracy, sensitivity, specificity, and area under 

the receiver operating characteristic (ROC) curve (AUC). Sensitivity (true positive rate) in this 

project refers to the ratio of the non-responses that was predicted as non-responder by the model. 

Similarly, specificity (true negative rate) refers to the ratio of the responders that was truly 

predicted by the model. 

For response prediction, we explored two different approaches to analyze these parametric maps 

within the tumor core and its margin. In the first approach presented in Chapter 2 of this thesis, 

distinct intra-tumor regions were segmented within the parametric maps using a hidden Markov 

random field (HMRF) and its expectation-maximization (EM) algorithm. In the next step, 

quantitative features were extracted from the segmented intra-tumor regions. After feature 
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selection, AdaBoost was adapted and investigated in conjunction with the selected features for 

response prediction. We showed that AdaBoost has the best performance with an accuracy of 

84.9% and an AUC of 0.89. For comparison, Adaboost predicted the treatment response with lower 

accuracy of 76.4% using features extracted from the unsegmented core and margin. Further, long-

term survival analyses indicated that the patients predicted by the developed model as responders 

had a significantly better survival compared to the non-responders. 

In the second approach presented in Chapter 3 of this thesis, we adapted and analyzed a number 

of different DCNN architectures for response prediction at pre-treatment using the QUS parametric 

maps. The main DCNN architectures investigated include the ResNet [101] and RAN [103] in 

conjunction with a fully connected neural network for response prediction. Potential of these 

architectures have been demonstrated in several applications in medical image classification [111], 

[112] that can possibly be extended to image-guided therapy response prediction [113]. Further, 

in a series of experiments we performed as a pilot study to find the best candidate models for 

response prediction, ResNet and RAN demonstrated superior performance in comparison to other 

well-known architectures including the Inception and Inception-ResNet [114], [115]. The results 

indicated the feature maps extracted from parametric maps of the core and margin using RAN 

architecture can predict the therapy response with accuracy of 87.5% and AUC of 0.86. Also, 

survival analysis indicated that there is a significant difference between survival curves of 

responders and non-responders identified based on both the model prediction at pre-treatment, and 

clinical criteria at post-treatment. 

In Chapter 4 of the thesis, the acquired results are discussed and a number of future directions for 

extending this project are suggested. 
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Chapter 2  
 

Characterizing Intra-Tumor Regions on Quantitative Ultrasound 

Parametric Images to Predict Chemotherapy Response at Pre-

Treatment* 

 

2.1. Introduction 
 

Breast Cancer is the most frequent malignancy and the leading cause of cancer-related death 

among women [1], [2]. In 2018 more than 2 million new breast cancer cases were diagnosed, and 

more than 0.6 million people died from it [3]. Up to 20% of breast cancer patients are diagnosed 

with  locally advanced breast cancer (LABC) that often presents as tumors greater than 5 cm in 

size, possibly with regional lymph node, skin and/or chest wall involvement [4], [5]. LABC 

patients have a high risk of relapse and metastasis, with a 5-year survival rate of around 55% [5]. 

The standard treatments for LABC patients include a combination of neoadjuvant chemotherapy 

(NAC), followed by surgery, and if required, adjuvant radiation and/or hormonal therapies [4], [6]. 

Response to NAC has demonstrated a high correlation to the patient survival [6]–[8]. However up 

to 40% of LABC patients do not respond to NAC, and complete pathological response is limited 

to only 10-30% of the patients [4], [5], [9]–[12]. Current methods for evaluating response to NAC 

are based on changes in tumor size in routine physical examination or anatomical imaging. 

However, changes in tumor size may require many weeks to months of therapy to be detectable, 

and in some cases, it is not evident despite a pathological response to NAC [13]. Post-surgical 

histopathology is the standard approach to determine tumor pathological response to NAC [7], [8], 

[14], [15]. However, at that point the window to adjust the NAC or switch to a salvage treatment 

                                                           
* The material presented in this chapter has been published in Scientific Reports (2021). 
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is already closed. Prediction of LABC response to NAC before or early after the start of treatment 

can facilitate changing ineffective treatments to more effective ones. A personalized treatment 

strategy for LABC patients is expected to improve the rate of response to neoadjuvant therapies, 

and the overall survival and quality of life of the patients. 

Genetic approaches have recently been investigated for prediction of cancer response to treatment 

[16]. Specifically, analysis of circulating tumor DNA has shown promise in evaluation of breast 

cancer response to therapy [17], [18]. Whereas such methods provide crucial scientific insights, 

they are invasive, relatively expensive, and require time-consuming analyses for quantification of 

circulating tumor DNA and gene sequencing. For monitoring and evaluating breast cancer 

response to NAC, functional imaging techniques including positron emission tomography (PET) 

and magnetic resonance imaging (MRI) have been investigated and shown promise within weeks 

after the treatment initiation [19]–[21]. However, these modalities are often expensive with long 

scan times and need injection of contrast agents to detect functional changes in tumor in response 

to treatment. Adapting an imaging modality with higher availability, lower cost, and an intrinsic 

source of image contrast to predict tumor response would facilitate adoption of the developed 

methodologies in routine clinical practice. 

Ultrasound is a relatively inexpensive and portable imaging modality with a high spatial resolution 

and short imaging time that does not require injection of exogenous contrast agents. Quantitative 

ultrasound (QUS) techniques examine the frequency dependence of the radiofrequency (RF) signal 

backscattered from the underlying tissue to extract parameters that quantify tissue physical 

properties, and can be used to characterize tissue micro-structure [22]. Specifically, efficacy of the 

QUS parameters derived from the analysis of normalized power spectrum of RF signal, including 

mid-band fit (MBF), spectral slope (SS), spectral 0-MHz intercept (SI), effective scatterer diameter 
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(ESD) and effective acoustic concentration (EAC) have been demonstrated in detecting and 

characterizing different abnormalities including prostate and breast cancer, intraocular tumors and 

cardiovascular disease [23]–[28]. 

A number of previous studies have demonstrated that changes in QUS spectral parameters after 

the start of treatment could be used to detect tumor cell death [29], and monitor breast cancer 

responses to chemotherapy [30]–[32]. Also, it has been demonstrated that compared to the QUS 

mean-value parameters,  alterations in the textural characteristics of QUS spectral parametric maps 

have higher correlations to histological tumor cell death in response to chemotherapy [33], and 

could be used to predict LABC tumor response to NAC as early as one week after starting the 

treatment [34], [35]. Textural measures of the QUS parametric maps quantify the spatial 

relationship between local acoustic properties within the tumor and their early alterations after 

treatment initiation could characterize changes in response-related intra-tumor heterogeneity [35]. 

Sannachi et al. showed that a combination of QUS spectral and, textural parameters and molecular 

features of tumor could predict the LABC tumor response with high sensitivity and specificity 

[36]. In a recent study, Tadayyon et al. have demonstrated that a combination of QUS parameters 

derived from the tumor core and margin could be applied to characterize the responsiveness of 

LABC tumors to NAC before starting the treatment [37]. In particular, their study highlighted the 

importance of spatial heterogeneity within tumor core and margin in characterizing tumor 

aggressiveness and predicting its likelihood of response to standard chemotherapy at pre-

treatment. 

Imaging-based characterization of distinct intra-tumor regions has been shown efficacious for  

characterizing malignancies and predicting their therapy outcome [38]–[40]. Previous studies have 

investigated the potential of imaging tumor habitats in characterizing the lung cancer [41], head 
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and neck cancer [42], and the breast cancer [43] and demonstrated that the characteristics of such 

habitats can be associated with the treatment response and patient survival. Intra-tumor regions 

evident on imaging can be linked to differential tumor biology and micro-structure, including 

clusters of heterogenous cancer cells, activated molecular pathways, calcification foci, hypoxic or 

necrotic/apoptotic areas, and regions with different perfusion and metabolic activities [27], [35], 

[44]–[46]. A study by Byra et al. has demonstrated that features of intra-tumor regions identified 

using QUS maps of homodyned K distribution parameters could be used to differentiate benign 

and malignant breast lesions [40]. Another study by Wu et al. has showed the potential of 

characterizing intra-tumor regions on MRI in predicting pathological response of breast tumors to 

chemotherapy [47]. Despite its demonstrated potential for tissue characterization in various 

diagnostic and prognostic applications, to our knowledge, no previous work has applied QUS 

parametric imaging to quantify distinct intra-tumor regions for therapy response prediction. 

This study investigated the efficacy of QUS spectral multi-parametric imaging in characterizing 

LABC intra-tumor regions to predict tumor response to NAC before the start of treatment. QUS 

spectral parametric images were generated using the ultrasound data acquired from 181 LABC 

patients at pre-treatment. The dataset was randomly partitioned into a training set (70%) and an 

independent test set (30%). A hidden Markov random field (HMRF) expectation maximization 

(EM) algorithm was applied to identify distinct intra-tumor regions on QUS multi-parametric 

images [48]. Several features were extracted from the segmented regions on different parametric 

maps within the tumor core and margin to characterize each tumor. The features were analyzed 

using a multi-step feature ranking and selection process to construct an optimal QUS biomarker 

consisting of four features for response prediction. For comparison, the features extracted from the 

unsegmented tumor core and margin were also analyzed and applied for predicting the therapy 
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response.  A decision tree model with adaptive boosting (AdaBoost) was adapted for classifying 

patients into responders and non-responders at pre-treatment. The patient responses to NAC 

identified after their surgery using standard clinical and pathological criteria were used as the 

ground truth to evaluate the performance of prediction models. Results indicated that the model 

with the developed biomarker could predict the NAC response of patients of the independent test 

set with a sensitivity and specificity of 87% and 85%, respectively. However, the models using 

barely features extracted from the unsegmented tumor core and the tumor margin predicted the 

NAC response with lower performance and an accuracy of up to 76.4%. Kaplan-Meier survival 

analyses showed that the patients predicted as responders using the optimal QUS biomarker 

demonstrated a statistically significantly better survival compared to those predicted as non-

responders.  

 

2.2. Materials and Methods 

2.2.1. Study Protocol 

 

This study was conducted under the guidelines and regulations in accordance with institutional 

research ethics board approval from Sunnybrook Health Sciences Centre (SHSC), Toronto 

Canada. The study was open to all women who were diagnosed with LABC aged 18–85 and 

planned for NAC followed by surgery. In accord with this, 181 eligible patients were recruited for 

the study after obtaining written informed consent. A core needle biopsy was performed for all 

patients to confirm cancer diagnosis, and determine the tumor grade and histological subtype. 

Also, for each patient pre-treatment magnetic resonance (MR) images of the breast were acquired 

to determine the initial tumor size. Ultrasound data were acquired from the patients immediately 
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before the start of NAC. Ultrasound scans were performed with patients lying supine with their 

arms above their heads. Patients were followed up to 10 years after their treatment and their clinical 

data were recorded for recurrence-free survival analysis. For this study, about 30% of patients (n 

= 53) were randomly selected and separated to form an unseen independent test set, and the 

remaining patients (n = 128) were considered as the training set.  

2.2.2. Clinical and Pathological Response Evaluation 

All patients had breast surgery after completing their neoadjuvant chemotherapy. For assessing 

residual tumor size, an MRI scan of the breast was obtained right before the surgery. The surgical 

specimens were stained with hematoxylin and eosin (H&E) and prepared when possible on whole-

mount 5″ × 7″ pathology slides which were digitized using a confocal scanner (TISSUEscope, 

Huron Technologies, Waterloo, ON). All pathology samples were examined by a board-certified 

pathologist who remained blinded to the study results. Patients were categorized into two groups 

of responders and non-responders using a modified response (MR) grading system which was 

based on response evaluation criteria in solid tumors (RECIST) [49] and histopathological criteria 

[37][50]. The MR score was defined as follows: MR 1: no reduction in tumor size; MR 2: up to 

30% reduction in tumor size; MR 3: 30% to 90% reduction in tumor size or a very low residual 

tumor cellularity determined histopathologically; MR 4: more than 90% reduction in tumor; MR 

5: no evident tumor and no malignant cells identifiable in sections from the site of the tumor; only 

vascular fibroelastotic stroma remaining, often containing macrophages; nevertheless, ductal 

carcinoma in situ may be present. The patients with a MR score of 1-2 (less than 30% reduction in 

tumor size) and 3-5 (more than 30% reduction in tumor size or with very low residual tumor 

cellularity) were determined as non-responders and responders, respectively. In accordance with 

this, 138 and 43 patients were determined as responders and non-responders, respectively. 
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2.2.3. Ultrasound Data Acquisition 

Ultrasound data were obtained using an RF-enabled Sonix RP, (Ultrasonix, Vancouver, Canada) 

system utilizing an L14-5/60 transducer, operating at the center frequency of ~6 MHz, and with a 

-6 dB bandwidth range of 3–8 MHz. For each breast tumor, ultrasound RF data and B-mode images 

were acquired at four to seven image planes across the breast with approximately 1 cm intervals. 

An oncologist selected the breast region for ultrasound scanning and determined acquisition scan 

planes via a physical examination of the patient. The image size along the lateral and axial 

directions was 6 cm and 4–6 cm, respectively. The focal depth was set at the center of the tumor 

depending on the individual patient circumstances. The RF data were acquired with a sampling 

frequency of 40 MHz and digitized with 16-bit resolution. 

2.2.4. Parametric Map Generation 

For generating the QUS parametric images, the tumor core was manually outlined by experts on 

each scan plane using the associated B-mode image. In addition, the tumor margin contour was 

automatically generated with a thickness of 5 mm around the core. The parametric maps were 

generated for all imaging planes of the tumor using a sliding window analysis throughout the entire 

region of interest (tumor core and margin) with windows of size 2 mm × 2 mm and 95% overlap 

in both lateral and axial direction.  

The QUS spectral analyses were performed to derive MBF, SS, SI, ESD, EAC parameters [26], 

[27]. The power spectrum was calculated using the Fourier transform of the Hanning-gated RF 

data for every scan line within the analysis window and then averaged. A reference phantom 

technique was used to normalize the average power spectrum to remove the effects of the system 

transfer function and transducer beam-forming [46], [47]. The reference phantom was composed 

of 5 to 30 μm diameter glass beads embedded in a homogeneous background of microscopic oil 
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drop- lets in gelatin (Medical Physics Department, University of Wisconsin, USA). The 

attenuation coefficient and speed of sound parameters of the reference phantom were 0.576 

dB/MHz.cm and 1488 m/s, respectively. The attenuation coefficient estimate (ACE) of tumor was 

calculated using a spectral difference method [46], and used for attenuation correction of the 

normalized power spectrum using the point attenuation compensation method. A two-layer 

(intervening tissue and tumor) attenuation correction was performed using total attenuation 

estimation [46]. An attenuation coefficient of 1 dB/MHz.cm was assumed for intervening breast 

tissue based on ultrasound tomography measurements of the breast [48]. The  MBF, SS and SI 

parameters were estimated using a linear regression analysis within the -6 dB bandwidth of the 

transducer [26], [49], [50]. The ESD and EAC parameters were derived by fitting a spherical 

Gaussian form factor model to the estimated backscatter coefficient [51], [52]. 

2.2.5. Segmentation of Intra-Tumor Regions 

Figure 2.1 demonstrates the overall diagram of the proposed framework for segmentation of intra-

tumor regions on QUS multi-parametric images that were applied in the therapy response 

prediction model. The intra-tumor regions were identified at pixel level on QUS parametric images 

using a HMRF-EM algorithm and the tumor core parametric maps of ESD, EAC, MBF and SI as 

different data channels (described further below). The optimum number of distinct regions within 

tumors was determined using the elbow method over the samples of the training set [58]. 

Specifically, the intra-tumor segmentation was performed for different number of regions, and the 

Baysian information criterion (BIC) was estimated as the clustering quality metric. Subsequently, 
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the least number of regions associated with a low BIC (the elbow point in the plot of BIC versus 

different number of regions) was identified. Using this method, the optimum number of distinct 

intra-tumor regions on the QUS parametric maps was determined as three regions. 

A modified HMRF model was trained using an EM algorithm for segmentation of intra-tumor 

regions [48]. The HMRF-EM is an unsupervised classification method originally proposed for 

computer vision applications [59]. This method can be adapted for segmentation of multi-channel 

color images [48], and medical imaging data [48], [60]. In this work, we applied different QUS 

parametric maps as different channels of data (features) to segment intra-tumor distinct regions. 

For each pixel i (i=1, …, N), the feature set can be defined as 𝑥𝑖  =  (𝐼𝑖
𝐸𝑆𝐷 , 𝐼𝑖

𝐸𝐴𝐶 , 𝐼𝑖
𝑀𝐵𝐹 , 𝐼𝑖

𝑆𝐼). The 

goal is to infer the labels 𝑌 =  (𝑦1, 𝑦2, … , 𝑦𝑁) where 𝑦𝑖  =  {1,2,3}, for all tumor core pixels 

within a set of parametric maps 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) with maximum a posteriori probability 

(MAP) estimation. In other words, the estimated labels Y* should satisfy: 

𝑌∗  = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 {𝑃(𝑋|𝑌, 𝜃)𝑃(𝑌)}          (2.1) 

Figure 2.1. Overall diagram of the proposed framework for identification of intra-tumor regions on QUS multi-

parametric images and therapy response prediction. 
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Where the prior probability 𝑃(𝑌) is a Gibbs distribution and 𝜃 is representative of multivariate 

Gaussian distribution parameters. For the joint likelihood probability, we have: 

𝑃(𝑋|𝑌, 𝜃) = ∏ 𝑃(𝑥𝑖|𝑌, 𝜃)

𝑖

=  ∏ 𝑃(𝑥𝑖|𝑦𝑖, 𝜃𝑖)

𝑖

                 (2.2) 

Where 𝑃(𝑥𝑖|𝑦𝑖, 𝜃𝑖)  is a multivariate Gaussian distribution with parameters 𝜃𝑥𝑖
= (𝜇𝑖, Σ𝑖), such 

that 𝜇𝑖 is the mean and Σ𝑖 is the precision matrix of the distribution. The modified HMRF-EM 

algorithm was used to solve Equation (2.1). To estimate initial parameters and labels, a K-means 

algorithm was applied on the parametric maps. Then, the following steps were performed 

iteratively: 

1. Compute the likelihood distribution 𝑃𝑡(𝑥𝑖|𝑦𝑖, 𝜃𝑖) in step t. 

2. Use the current parameter set 𝜃𝑡 to estimate the labels by the MAP estimation algorithm 

[48]. 

3. Calculate the posterior distribution 𝑃𝑡(𝑙|𝑥𝑖) for all the 𝑙∈ {1,2,3} and all pixels 𝑥𝑖 

utilizing the Bayesian rule. 

4. Compute the updated parameter set 𝜃𝑡+1 with calculated posterior distribution. 

 

In this study, we performed the iteration on the whole training set for 15 times or until convergence. 

Also, we repeated the inner loop in the MAP estimation algorithm for 10 times or until 

convergence. Subsequently, the estimated Gaussian distribution parameters (θ) were used to 

determine the labels of the pixels in the parametric maps of the test set. The segmented regions 

were numbered based on the mean-value in the MBF parametric maps of the training set from the 

highest (first region) to the lowest (third region) values. The in-group proportion (IGP) criterion 

was computed at patient level using the HMRF model developed over the entire training set to 

evaluate the reproducibility of the clustering results and validate the consistency of the identified 

intra-tumor regions in both the training and independent test sets [61].  
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2.2.6. Feature Extraction and Biomarker Discovery 

A total of 56 features were extracted from the segmented intra-tumor regions and the tumor margin 

in the QUS parametric maps of ESD, EAC, MBF and SI. The extracted features included mean-

value and signal to noise ratio (SNR) of each parametric map within the tumor core (4 × 2 features), 

mean-value and SNR of each parametric map within the tumor margin (4 × 2 features), mean-

value and SNR of each parametric map within each segmented region (4 × 3 × 2 features), the 

difference between the mean-value of each two segmented regions in each parametric map (4 × 3 

features), the proportion area of each segmented region within the tumor core (3 features), and the 

relative area of the tumor margin to the core. The SNR of each region was acquired by calculating 

the ratio of the average pixel value to the standard deviation of pixel values of the region, as a 

measure of spatial heterogeneity [62]. The features were calculated for all 2D imaging planes 

associated with each tumor and subsequently averaged over the entire tumor volume. 

A multi-step feature reduction/selection process was applied to eliminate the redundant and 

irrelevant features that do not contribute to the predictive model and obtain an optimal QUS feature 

set for robust response prediction. In the first step, the features were ranked and reduced to 21 

features using the minimal-redundancy-maximal-relevance (mRMR) method [55]. In the next step, 

the final features were selected from the reduced feature set using a sequential forward selection 

(SFS) method. A 5-fold cross-validated accuracy on the training set was used as the criterion in 

the SFS method with an AdaBoost decision tree model as the classifier [59]. The SFS method 

selected four features as the optimal QUS feature set (biomarker) that was applied for training the 

response prediction model. 

Four other experiments were conducted for comparison. In the first two experiments, the features 

extracted from the entire tumor core without considering any intra-tumor regions, and the tumor 
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margin were used for response prediction. Specifically, eight features including the mean-value 

and SNR of each parametric map within the tumor core (4 × 2 features), and 16 features consisting 

of the mean-value and SNR of each parametric map within the tumor core (4 × 2 features) and the 

tumor margin (4 × 2 features) were applied in these experiments, respectively. In both cases, the 

best feature set was selected using a similar SFS method as described above. The best feature sets 

included four features in both experiments, and were separately applied for response prediction as 

described below. In the third experiment, a similar feature reduction/selection procedure was 

applied on a merged set of standard clinical features and the 56 QUS features derived from the 

intra-tumor regions and tumor margin to obtain an optimal feature set for response prediction. The 

clinical features included the initial tumor size, estrogen/progesterone receptor (ER/PR) status, 

human epidermal growth factor receptor 2 (HER2) status and the age of patient. In the fourth 

experiment, only the clinical features were used to develop a response predictive model as 

described below. 

2.2.7. Response Prediction and Risk Assessment 

To address the imbalance issue of the dataset, the minority class in the training set was 

oversampled to the size of the majority class using the synthetic minority oversampling technique 

(SMOTE) [63]. An AdaBoost decision tree model was adapted for response prediction in each 

experiment. After training each model on the oversampled training set, its performance was 

evaluated on the independent test set using the accuracy, sensitivity, specificity, and the area under 

the receiver operating characteristic (ROC) curve (AUC). 

Survival analysis was performed to assess the efficacy of the developed QUS biomarker at pre-

treatment in differentiating the LABC patient cohorts with different recurrence-free survival 

determined many years later. The Kaplan-Meier survival curves were generated for the responders 
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and non-responders identified based on the model’s prediction at pre-treatment, and at post-

treatment based on the clinical and histopathological criteria. A log-rank test was used to assess 

for statistically significant differences between the survival curves of the two patient cohorts 

(responders versus non-responders). 

 

2.3. Results 
 

The clinical and histopathological characteristics of the participating patients are provided in table 

2.1. The average age of the patients was 50.6 years. The patients had an average initial tumor size 

of 5.2 cm, and at the end of their treatment, the average residual tumor size was 2.5 cm. In terms 

of histology, 90.3% of the tumors were diagnosed with invasive ductal carcinoma, 3.4% with 

invasive lobular carcinoma, and 6.3% with invasive metaplastic carcinoma. Further, 10.6% of the 

patients were diagnosed with grade 1 tumors, 38.8% with grade 2 tumors, and 50.6% with grade 

3 tumors. At the end of the treatment, 76.2% of the patients were identified as responders, and 

23.8% as non-responder, according to the clinical and histopathological criteria. 

Figure 2.2 demonstrates QUS parametric maps of ESD, EAC, MBF and SI overlaid on ultrasound 

B-mode images acquired from representative responding and non-responding patients, 

respectively. Distinct intra-tumor regions identified using the HMRF-EM algorithm are presented 

in Figure 2.2-E. The QUS parametric maps obtained from the responding and non-responding 

patients were different in terms of mean and spatial distribution of pixel values. A considerable 

difference was observed in size, and the mean, distribution and difference of the pixel values of 

the intra-tumor segmented regions on the QUS parametric maps acquired from the responders and 

non-responders. An average and median IGP of 0.99 was obtained at patient level in both the 
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training and test sets, implying a high-level of consistency in the intra-tumor regions identified 

using the HMRF-EM model.  

Table 2.1. Patient characteristics. 

Characteristic Mean ± SD / Percentage 

Age 50.6 ± 11.5 years 

Initial Tumor Size  5.2 ± 2.7cm 

Residual Tumor size 2.5 ± 3.4cm 

Histology 
Invasive Ductal Carcinoma 90.3% 

Invasive Lobular Carcinoma 3.4% 

Invasive Metaplastic Carcinoma 6.3% 

Tumor Grade  
Grade I 10.6% 

Grade II 38.8% 

Grade III 50.6% 

Molecular Features  
ER+ 63.4% 

PR+ 54.7% 

HER2+ 34.3% 

Triple Negative 24.4% 

ER+ / PR+ / HER2+ 18.6% 

ER+ / PR+ / HER2- 33.7% 

ER- / PR- / HER2+ 10.5% 

Response  

Responders 76.2% 

Non-Responders 23.8% 

 

Figure 2.3 shows H&E stained histopathology images of the surgical specimens obtained from 

representative responding and non-responding patients. Whereas the histology images show a 

large residual tumor in the mastectomy specimen of the non-responding patient, the images 

acquired from the responding patient demonstrate the tumor bed area with chemotherapy effects 

and no residual tumor. The images also show considerable heterogeneity within the tumor (bed) 

area. 
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The multi-step feature selection process resulted in a QUS biomarker for NAC response prediction 

with four features out of 56 features including SNR of the SI parametric map within the first region 

(𝑆𝑁𝑅1
𝑆𝐼), SNR of the ESD parametric map within the tumor margin (𝑆𝑁𝑅𝑚

𝐸𝑆𝐷), difference between 

the mean-values of the EAC parametric map within the first and third regions (𝑀3−1
𝐸𝐴𝐶), and mean-

value of the MBF parametric map within the first segmented region (𝑀1
𝑀𝐵𝐹). The first and third 

regions are associated with the highest and lowest mean-values in the MBF parametric maps, 

respectively. Figure 2.4 demonstrates the box plots of the selected features for responders and non-

responders in the training set. Whereas various levels of difference can be observed in the selected 

features between the responders and non-responders, a combination of these features is expected 

to differentiate better between the response groups at pre-treatment. The impurity-based 

importance of these features in the trained AdaBoost decision tree model for response prediction 

was computed as 0.28, 0.26, 0.24, 0.22 for 𝑆𝑁𝑅1
𝑆𝐼, 𝑆𝑁𝑅𝑚

𝐸𝑆𝐷,  𝑀3−1
𝐸𝐴𝐶 , and  𝑀1

𝑀𝐵𝐹 , respectively.  

Applying a similar feature selection method on the eight features derived from the unsegmented 

tumor core resulted in four features including mean-value of the MBF and SI parametric maps 

(𝑀𝐶
𝑀𝐵𝐹and 𝑀𝐶

𝑆𝐼), and SNR of the EAC and SI parametric map (𝑆𝑁𝑅𝐶
𝐸𝐴𝐶 and 𝑆𝑁𝑅𝐶

𝑆𝐼) within the 

tumor core. In case of the 16 features derived from the unsegmented tumor core and the tumor 

margin the best feature set consisted of  mean-value of the MBF and SI parametric maps within 

the tumor core (𝑀𝐶
𝑀𝐵𝐹and 𝑀𝐶

𝑆𝐼), SNR of the SI parametric map within the tumor margin (𝑆𝑁𝑅𝑚
𝑆𝐼), 

and SNR of the EAC parametric map within the tumor core (𝑆𝑁𝑅𝐶
𝐸𝐴𝐶). Further, applying a similar 

feature reduction/selection procedure on the merged set of standard clinical features with the 56 

QUS features derived from the intra-tumor regions and tumor margin resulted in the same QUS 

features selected previously (𝑆𝑁𝑅1
𝑆𝐼, 𝑆𝑁𝑅𝑚

𝐸𝑆𝐷,  𝑀3−1
𝐸𝐴𝐶 , and  𝑀1

𝑀𝐵𝐹) with no clinical feature included 

in the optimal feature set. 
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Figure 2.2. A-D: Ultrasound B-mode images with parametric overlays of ESD (A), EAC (B), MBF (C), and SI (D) 

acquired from a representative responder and non-responder to NAC. The tumor core has been outlined with white 

dashed line. E: distinct intra-tumor regions (region 1: green, region 2: yellow, region 3: blue) segmented using the 

HMRF-EM algorithm, surrounded by the tumor margin area (red). 
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Figure 2.3. Whole mount histopathology images of mastectomy specimens acquired from representative responding 

and non-responding patients, at low (top) and high (bottom) magnifications. The scale bars represent 2 mm and 

200 µm in low and high-magnification images. 
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Figure 2.4. Box plots of the selected features including 𝑀1
𝑀𝐵𝐹 , 𝑆𝑁𝑅m

𝐸𝑆𝐷  , 𝑆𝑁𝑅1
𝑆𝐼 and 𝑀3−1

𝐸𝐴𝐶  for the responders and 

non-responders in the training set. 

Table 2.2 presents the result of response prediction on the training and independent test sets using 

the clinical features and the best feature sets obtained in different experiments. The predictive 

model with the clinical features could predict the therapy response of patients with a sensitivity, 

specificity, accuracy and AUC of 40%, 80%, 69.1%, and 0.6, respectively, on the independent test 

set. Applying the selected QUS features among those extracted from the unsegmented tumor core 

in response prediction resulted in an accuracy of 74.5%, a sensitivity of 66.6%, and a specificity 

of 77.5% on the independent test set. Incorporating the QUS features derived from the tumor 

margin increased the specificity to 80% and the accuracy to 76.4%. Applying the QUS biomarker 

consisting of the features derived from the segmented intra-tumor regions and the tumor margin 

resulted in the best performance of the response prediction model on both the training and test sets, 

with an accuracy, sensitivity, specificity, and AUC of 85.4%, 86.6%, 85.0%, and 0.89, 
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respectively, on the independent test set. Figure 2.5 demonstrates the ROC curves of the predictive 

models with different feature sets on the test set. 

 

Table 2.2. Results of response prediction on the training and independent test sets using different clinical and QUS 

feature sets. Acc: Accuracy; Sen: Sensitivity; Spec: Specificity. 

Feature Set Training Set Test Set 

 Acc Sen Spec AUC Acc Sen Spec AUC 

Clinical Features: 

Tumor Size, ER/PR, HER2, Age 
77.0% 51.9% 83.8% 0.678 69.1% 40.0% 80.0% 0.6 

Unsegmented Core: 

𝑀𝐶
𝑀𝐵𝐹, 𝑆𝑁𝑅𝐶

𝐸𝐴𝐶 , 𝑆𝑁𝑅𝐶
𝑆𝐼, 𝑀𝐶

𝑆𝐼 
81.0% 81.5% 80.8% 0.853 74.5% 66.6% 77.5% 0.79 

Unsegmented Core and Margin: 

𝑀𝐶
𝑀𝐵𝐹, 𝑆𝑁𝑅𝑚

𝑆𝐼, 𝑆𝑁𝑅𝐶
𝐸𝐴𝐶 , 𝑀𝐶

𝑆𝐼 
81.0% 77.8% 81.8% 0.86 76.4% 66.6% 80.0% 0.76 

Intra-Tumor Regions and Margin: 

𝑆𝑁𝑅1
𝑆𝐼, 𝑆𝑁𝑅𝑚

𝐸𝑆𝐷,   𝑀3−1
𝐸𝐴𝐶 , 𝑀1

𝑀𝐵𝐹 
90.5% 88.9% 91.0% 0.974 85.4% 86.6% 85.0% 0.89 

 

 

Figure 2.5. The ROC curves of the therapy response prediction models with different QUS feature sets on the 

independent test set. 
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Figure 2.6 demonstrates the ten-year recurrence-free survival curves for the responding and non-

responding patients identified based on prediction at pre-treatment using the optimal QUS 

biomarker, and at post-treatment using the clinical and pathological criteria. Statistically 

significant differences (p-value < 0.05) were observed between the survival curves of the 

histopathological response cohorts in both the training and test sets, and responders demonstrated 

a significantly higher survival rate compared to non-responders. Similar trends were observed in 

the survival curves of the response cohorts predicted at pre-treatment, with statistically significant 

differences between the long-term survival of the two cohorts in both the training and test sets.  

 

Figure 2.6. Ten-year recurrence-free survival curves for responding and non-responding patients in the training (A) 

and independent test set (B) identified at post treatment based on the clinical and histopathological criteria, and at 

pre-treatment using the developed predictive model with the optimal QUS biomarker. 
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2.4. Discussion 
 

In this study, a novel method was investigated to predict breast cancer response to NAC using the 

characteristics of distinct intra-tumor regions on QUS multi-parametric images acquired at pre-

treatment. A modified HMRF-EM algorithm was applied to segment the intra-tumor regions on 

QUS parametric images acquired from LABC patients. Several features were derived from the 

segmented QUS multi-parametric images to characterize the identified intra-tumor regions and 

tumor margin. A hybrid QUS biomarker consisting of four features were constructed through a 

multi-step feature selection process for NAC response prediction. Results indicated that the 

developed QUS biomarker in conjunction with an AdaBoost decision tree model could predict the 

response of LABC patient to NAC before starting the treatment with an accuracy of 85.4% and an 

AUC of 0.89. In comparison, applying the best features extracted from the whole tumor core and 

the tumor margin on the QUS parametric images resulted in an accuracy of 76.4% and an AUC of 

0.76. Obtained results support the idea that using characteristics of distinct intra-tumor regions 

identified on the QUS multi-parametric images can improve the accuracy of therapy response 

prediction in breast cancer. Further, the results indicate a very good potential of these QUS features 

in comparison with standard clinical factors for therapy response prediction at pre-treatment. 

Recurrence-free survival analyses were performed to evaluate the performance of the developed 

predictive model in differentiating patients in terms of long-term treatment outcomes. The ten-year 

recurrence-free survival curves obtained for the responders and non-responders identified based 

on prediction at pre-treatment were very similar to their counterparts generated for the two 

response groups identified at post-treatment using the clinical and histopathological criteria. 

Statistically significant differences were observed between the survival of the responders and non-

responders identified based on the both methods.  
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A number of recent studies has demonstrated the potential of QUS spectral and textural parameters 

to predict and monitor response of breast cancer to chemotherapy [34]–[37]. Those studies 

evaluated the efficacy of QUS parameters for therapy response evaluation using a leave-one-

patient-out cross-validation approach due to the relatively small size of their dataset. Whereas 

cross-validation approaches are commonly used in evaluating classification models when limited 

data are available, they may overestimate a model’s performance due to overfitting. The study here 

introduced a new method for analyzing the QUS multi-parametric images for response prediction 

by quantifying the properties of intra-tumor regions. The developed QUS biomarker was evaluated 

on an independent test set that was kept unseen during the biomarker discovery and predictive 

model training. The results obtained in this study extend the findings of previous studies on 

efficacy of QUS parameters for therapy response evaluation to new robust features that were 

assessed rigorously on independent data. 

The results of this study indicated that characteristics of intra-tumor regions and tumor margin 

identified on QUS parametric maps of ESD, EAC, MBF and SI could be used for predicting the 

LABC response to chemotherapy prior to start of treatment. These parametric maps provide 

complementary information regarding the tumor microstructure by quantifying the properties of 

underlying acoustic scatterers including their size, density, distribution and impedance mismatch 

[22], [23], [26]. Recent studies have demonstrated the potential of the QUS parametric maps in 

characterizing the tumor aggressiveness and its responsiveness to systemic therapies [34], [64]. 

Segmenting the distinct regions on these multi-parametric maps potentially facilitates effective 

characterization of intra-tumor heterogeneity. Among the three intra-tumor regions identified in 

this study, region one is associated with the highest MBF and EAC mean-values, and the lowest 

ESD and SI mean-values in parametric maps of the entire training set, whereas region three has 
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the highest ESD and SI mean-values, and the lowest MBF and EAC mean-values. An accurate 

interpretation of these regions in terms of tumor biology requires pre-treatment histology or 

molecular imaging. However, based on the biophysical characteristics of these regions from the 

QUS multi-parametric images, region one and three can potentially be linked to the 

necrotic/apoptotic and active tumor areas, respectively. Region two may be associated with edema 

and highly perfused regions within the active tumor. Spatial heterogeneity within tumor has 

demonstrated a crucial role in its responsiveness/resistance to anti-cancer therapies and clinical 

outcome [39]. The findings of this study are in agreement with observations of previous studies 

that show quantification of tumor heterogeneity and intra-tumor regions (habitats) on imaging is 

effective for tumor characterization and therapy outcome prediction [27], [40], [47], [65], [66], 

and encourage investigation of such methodology when co-registered multi-parametric and/or 

multi-modal imaging data are available for solid tumors. 

The optimal QUS biomarker developed through a multi-step feature selection process consists of 

four features including 𝑆𝑁𝑅1
𝑆𝐼, 𝑆𝑁𝑅𝑚

𝐸𝑆𝐷,  𝑀3−1
𝐸𝐴𝐶 , and  𝑀1

𝑀𝐵𝐹. The SNR features in the biomarker 

can be linked to spatial heterogeneity in tissue microstructure within the associated region.  𝑀3−1
𝐸𝐴𝐶  

quantifies the difference in density and impedance mismatch of acoustic scatterer in the first and 

third segmented regions that can potentially be associated with the necrotic/apoptotic and active 

tumor areas, respectively. 𝑀1
𝑀𝐵𝐹  is associated with the echogenicity of the first intra-tumor region 

and is related to the size, density and distribution of acoustic scatterers in tissue micro-structure 

[67]. The selected features imply that the four QUS parametric maps provide complementary 

information about the responsiveness of breast tumors to chemotherapy, as all the four parametric 

images have contributed to the developed biomarker with a relatively similar importance in the 

final predictive model. Further, the features derived from the distinct intra-tumor regions may 
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better characterize a tumor in terms of therapy response as the feature selection algorithm 

prioritizes those over the features derived from the entire tumor core. The second feature in the 

biomarker (𝑆𝑁𝑅𝑚
𝐸𝑆𝐷) is a measure of signal quality (homogeneity) in effective scatterer dimeters 

within the tumor margin. This is in agreement with the findings of previous studies that reported 

the importance of tumor margin characteristics in diagnostic and prognostic applications [37], [66], 

[68], [69]. Whereas the intra-tumor segmentation strategy is potentially expected to improve the 

feature robustness with respect to variations in the tumor contour, such robustness should be 

evaluated rigorously in future studies using multi-observer and/or automatically segmented tumor 

contours. Future studies may also adapt other methods  proposed for clustering tumor habitats [43] 

to identify intra-tumor regions on QUS multi-parametric images and investigate their performance 

in comparison with the HMRF-EM algorithm for tumor characterization and therapy outcome 

prediction. 

In conclusion, this study demonstrated that intra-tumor regions in LABC could effectively be 

segmented on QUS multi-parametric maps for chemotherapy response prediction. The QUS 

biomarker developed using this methodology could predict the breast tumor response to NAC with 

high sensitivity and specificity and classify patients into two cohorts with significantly different 

long-term outcomes. Predicting cancer response to chemotherapy at pre-treatment with 

demonstrated correlations to long-term survival can facilitate adoption of precision medicine for 

cancer patients. The results obtained in this study are encouraging. However, studies on larger 

patient populations are required to assess further the efficacy and robustness of the proposed 

methodology in clinic. Availability of data from larger patient cohorts will also permit stratified 

analyses across breast cancer sub-types to explore the performance of the developed models for 

different molecular and histological sub-types.  
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Chapter 3  
 

Deep Learning of Quantitative Ultrasound Multi-Parametric 

Images for Chemotherapy Response Prediction at Pre-Treatment 
 

3.1. Introduction 
 

Breast cancer is the most common cancer type and the foremost cause of cancer-related death 

among women [1], [2]. In 2020, around 2.3 million new cases of breast cancer were diagnosed 

worldwide and it caused around 0.7 million deaths among females [1]. Locally advanced breast 

cancer (LABC) is an aggressive subtype of breast cancer that includes up to 20% of new cases 

each year [3]. LABC is often identified with tumors greater than 5 cm in size and possibly with 

skin and/or chest wall involvement. Moreover, LABC includes patients diagnosed with 

inflammatory breast cancer or multiple positive axillary lymph nodes [3][4]. 

Patients diagnosed with LABC suffer from high risk of relapse and metastasis. With availability 

of different systemic and targeted regimens, neoadjuvant chemotherapy (NAC) followed by 

surgery is currently considered as the standard treatment for LABC patients [5]–[8]. In some cases, 

the surgery is followed by adjuvant radiation and/or hormonal therapies to reduce the risk of cancer 

recurrence [4][6]. Although response to NAC has demonstrated a high correlation to the patient 

survival, complete pathological response is limited to less than 30% of the patients, with about 

30% of the patient do not even partially respond to NAC [3]–[5], [9]–[14]. To determine the tumor 

pathological response to NAC, post-surgical histopathology is considered as the standard approach 

[5]–[8]. However, post-surgical evaluations cannot be used for adjusting the NAC or switching to 

salvage treatment. 
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Currently, monitoring tumor response to NAC mostly relies on physical examination or standard 

anatomical imaging to assess the changes in tumor size. The main limitation of these methods is 

that detectable changes in tumor dimensions usually become apparent after several months of 

therapy, and in some cases a measurable change may not become evident on imaging despite a 

pathological response to NAC [15]. Early prediction of tumor response to NAC can permit therapy 

adjustments, switching to more effective treatments or even salvage therapies before it is 

potentially too late for individual patients [16], [17]. A personalized strategy for LABC treatment 

is anticipated to improve tumor response to neoadjuvant therapies, spare patients from unnecessary 

side effects of ineffective treatment, and improve their overall survival and quality of life. 

Ultrasound is a portable, rapid and cost-efficient imaging modality that can be applied to 

characterize tissue physical properties without injection of any exogenous contrast agents.  In 

particular, quantitative ultrasound (QUS) techniques have been introduced to derive quantitative 

measures of tissue biophysical properties that are independent of instrument settings, with a lower 

level of dependence to the operator [18]. Quantitative ultrasound spectral analysis techniques 

examine the frequency dependence of the ultrasound radiofrequency (RF) signal backscattered 

from the underlying tissue which can be used for tissue micro-structure characterization [18]. The 

QUS parameters derived from the analysis of normalized power spectrum of RF signal including 

the mid-band fit (MBF), spectral slope (SS), spectral 0-MHz intercept (SI), effective scatterer 

diameter (ESD) and effective acoustic concentration (EAC) have shown promises in detecting and 

characterizing malignancies, examination of liver tissues and detecting cardiovascular disease 

[19]–[25].  

It has been shown that QUS spectral parameters can detect tumor cell death induced by various 

anti-cancer-therapies [26]–[29]. Also, several studies have demonstrated that the hand-crafted 
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features derived from the QUS parametric maps can be used to predict and monitor breast cancer 

response to neoadjuvant chemotherapy before or within weeks after the start of treatment, with a 

high correlations to clinical and pathological response identified at the end of treatment [30]–[33]. 

For example, it has been demonstrated that textural features of QUS spectral parametric maps have 

higher correlations to histological tumor cell death in response to chemotherapy in comparison 

with QUS mean-value parameters [34]. Further, A few studies have revealed the potential of the 

textural features of QUS parametric images in predicting LABC tumor response to NAC as early 

as one week after starting the treatment [35]–[37]. In a recent study, Tadayyon et al. have 

demonstrated that using the QUS hand-crafted features derived from both the tumor core and its 

margin could improve the performance of tumor response prediction before starting the treatment 

[38]. 

The deep learning approaches have recently been investigated in different applications of medical 

image analysis [39], [40]. Such methodologies can potentially remove the process of extracting 

carefully designed hand-crafted features from images required for conventional machine learning 

techniques. Instead, the deep learning frameworks optimize their data-driven feature maps during 

the iterative training procedure [41]. In this context, a few studies have been conducted on adapting 

deep convolutional neural networks (DCNN) for NAC therapy response prediction in breast cancer 

patients using magnetic resonance imaging (MRI) [42]–[44]. Moreover, few studies have explored 

the potential of DCNNs in analyzing ultrasound images of breast tumors for cancer classification. 

For example, Byra et al. have demonstrated the potential of convolutional neural networks for 

breast lesion classification using Nakagami parametric images [45]. To our knowledge, no 

previous study has explored the efficacy of deep learning techniques with QUS multi-parametric 

images for therapy response prediction. 
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In this study, the effectiveness of DCNN methodologies on QUS spectral multi-parametric images 

has been investigated to predict LABC response to NAC before the start of treatment. The QUS 

spectral parametric images were generated using the ultrasound data acquired from 181 LABC 

patients at pre-treatment. The patient responses to NAC were identified after their surgery using 

the standard clinical and pathological criteria, and used as the ground truth to evaluate the 

performance of the prediction models. The dataset was randomly partitioned into a training set and 

an independent test set. Different DCNN architectures including RAN [46], and ResNet [47] were 

investigated for feature extraction in the developed framework. In a set of experiments, the feature 

maps were extracted from the tumor core and the core and its margin. After averaging the features 

on different tumor cross-sections, a fully connected network was utilized for response prediction. 

Results demonstrated that the developed model with the RAN architecture for extracting feature 

maps from the expanded parametric images of the tumor core with margin had superior 

performance with an AUC of 0.86 on the independent test set. The Kaplan-Meier survival analyses 

showed that the patients predicted as the responders using this model demonstrated a significantly 

better survival rate in comparison with those predicted as non-responders. 

 

 

3.2. Materials and Methods 

3.2.1. Study Protocol 

This study was conducted in accordance with institutional research ethics board approval from 

Sunnybrook Health Sciences Centre (SHSC), Toronto Canada. The study was open to all women 

aged 18–85, diagnosed with LABC and planned for NAC followed by surgery. After obtaining 

written informed consent, 181 eligible patients were recruited for the study. A core needle biopsy 

was done for each patient to confirm the cancer diagnosis and grade the tumor. The initial tumor 
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size was determined for each patient using the magnetic resonance (MR) images of the affected 

breast. Ultrasound B-mode images and radiofrequency (RF) data were acquired from the patients 

(in supine position with arms above the head) before the start of NAC. Patients were followed up 

to 10 years after their treatment and their clinical data were recorded for survival analysis. Out of 

the 181 patients, about 30% (n = 50) were randomly selected and kept unseen as an independent 

test set, and the remaining patients (n = 131) were considered as the training set and used to develop 

and optimize the predictive models. 

3.2.2. Clinical and Pathological Response Evaluation 

In keeping with the institutional guidelines, all patients had breast surgery after completing their 

neoadjuvant chemotherapy. Before surgery, the residual tumor size was determined using MRI. 

Standard histopathology was performed on the surgical specimens to assess the pathological 

response of tumor to NAC. The specimens were stained with hematoxylin and eosin (H&E) and 

prepared when possible on whole-mount 5′′ × 7′′ pathology slides. The mounted slides were 

digitized using a confocal scanner (TISSUEscope, Huron Technologies, Waterloo, ON). A board-

certified pathologist who remained blinded to the study results examined all pathology samples. A 

modified response (MR) grading system based on response evaluation criteria in solid tumors 

(RECIST) [48] and histopathological criteria [38][49] was used to categorize the patients into two 

groups of responders and non-responders. In the MR grading system, the MR score is defined as 

follows: MR 1: no reduction in tumor size; MR 2: less than 30% reduction in tumor size; MR 3: 

between 30% and 90% reduction in tumor size or a very low residual tumor cellularity determined 

histopathologically; MR 4: more than 90% reduction in tumor; MR 5: no evident tumor and no 

malignant cells identifiable in sections from the site of the tumor (ductal carcinoma in situ may be 

present). In this study, patients with a MR score of 1-2 (less than 30% reduction in tumor size) 
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were considered as non-responders, and patients with a MR score 3-5 (more than 30% reduction 

in tumor or very low residual tumor cellularity) were determined as responders. In keeping with 

this, 138 and 43 patients were identified as responders and non-responders, respectively. 

3.2.3. Ultrasound Data Acquisition 

Ultrasound RF data were acquired utilizing an RF-enabled Sonix RP system (Ultrasonix, 

Vancouver, Canada) and an L14-5/60 transducer. The transducer operated at the center frequency 

of ~6 MHz with a -6 dB bandwidth of 3–8 MHz. The RF data were acquired with a sampling 

frequency of 40 MHz and digitized with a 16-bit resolution. For each tumor, the ultrasound data 

were acquired at four to seven image planes across the breast with approximately 1 cm intervals. 

The focal depth was set at the center of the tumor depending on the individual patient 

circumstances. The breast region for ultrasound scanning was specified by an oncologist who 

determined the acquisition scan planes via a physical examination of the patient. The image size 

along the lateral and axial directions was 6 cm and 4–6 cm, respectively. 

3.2.4. QUS Parametric Map Generation 

For generating the parametric images, QUS spectral analyses were performed in conjunction with 

a sliding window analysis (described below) to derive MBF, SI, ESD, and EAC parameters [22], 

[23]. The mean power spectrum was obtained by averaging over the Fourier transform of the 

Hanning-gated RF data calculated for every scan line of the analyzed window. The average power 

spectrum was normalized using a reference phantom method to remove the effects of the system 

transfer function and transducer beam-forming [50], [51]. The reference phantom was composed 

of 5 to 30 μm diameter glass beads embedded in a homogeneous background of microscopic oil 

droplets in gelatin (Medical Physics Department, University of Wisconsin, USA). The reference 

phantom had an attenuation coefficient of 0.576 dB/MHz.cm and a speed of sound parameter of 
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1488 m/s. The  MBF and SI parameters were estimated using a linear regression analysis within 

the -6 dB bandwidth of the transducer [22], [52], [53]. The ESD and EAC parameters were derived 

by fitting a spherical Gaussian form factor model to the estimated backscatter coefficient [54], 

[55]. 

To generate the QUS parametric maps for each tumor, the tumor core was manually outlined by 

experts on each scan plane using the associated B-mode image. The tumor margin contour was 

automatically generated with a thickness of 5 mm around the core. The parametric maps were 

generated for all imaging planes of the tumor using a sliding window analysis throughout the entire 

region of interest (tumor core and margin) with windows of size 2 mm × 2 mm and 95% overlap 

in both lateral and axial direction.  

3.2.5. Deep Learning Model 

The deep learning framework developed in this study for response prediction consisted of two 

cascaded networks. The first network was a DCNN, with several convolutional layers as its 

backbone, adapted to extract the optimal feature maps from the QUS parametric images and is 

called the feature network in this chapter. The second network was a fully-connected network 

utilizing the features extracted by the feature network for response prediction. Two main 

architectures including a modified residual network version 101 (ResNet)  [47] and a modified 

residual attention network version 56 (RAN) [46], were investigated as the backbone of the feature 

network. The second network consisted of two fully-connected layers with an input layer with the 

same size as the flatten feature vector (256), a middle layer with 100 neurons, and a softmax layer 

at the end with an output size of two to predict the probability of the response categories (responder 

versus non-responder) for each sample. Drop-out layers were added after the first and second layer 

of this network to avoid overfitting and enhance its generalization performance. The scheme of the 
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developed deep learning framework is shown in Figure 3.1. This figure demonstrates the adapted 

ResNet and RAN architectures with their residual and attention modules. The figure also depicts 

the fully connected layers applied after the feature network for optimizing the feature maps. As 

shown in the figure, the averaged optimized feature maps were subsequently used in another fully 

connected network (predictive network) adapted for response prediction (described further below). 

In the residual module applied in the ResNet architecture, the convolutional layer could be skipped 

through the identity branch. This strategy permits the very deep networks such as ResNet to avoid 

overfitting and achieve an improved performance on unseen samples. In the attention module 

applied in the RAN architecture, the trunk branch determines the information that can be passed 

through the network, whereas the mask branch determines the amount of information from the 

trunk branch that should be passed. Therefore, the module is able to pass the important information 

with higher weights and reduce the effect of less-important information in the network’s output. 

Before training the model, the parametric images were preprocessed and adjusted for the 

convolutional model. About 25% (31 patients) of the training set was randomly selected as a 

validation set to optimize the network hyperparameters. The parametric images were resampled to 

the size of 512×512 pixel. Then the pixel values in the parametric images of the training set were 

normalized to (0 1) to facilitate the training convergence. The training set normalization 

parameters were used for normalizing the validation and test sets. In order to improve the network 

training and alleviate the problem of having a relatively small training dataset, data augmentation 

was applied on the training set. For augmenting the training data, flipping horizontally and shifting 

both horizontally and vertically (maximum shift: 30% of image size) were stochastically applied. 

For training the feature network, parametric images of the training set were fed into the feature 

network while different imaging planes of each tumor were considered as independent inputs with 
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the tumor response as their output. The optimal feature maps for each imaging plane were acquired 

by feeding its corresponding parametric images into the trained feature network. The optimal 

feature maps were calculated for all 2D imaging planes associated with each tumor, flatten to a 1D 

vector, and subsequently averaged over the entire tumor volume to obtain an averaged feature 

vector with size of 256 × 1 that was used in the predictive network. The predictive network was 

trained using the averaged feature vectors associated with the patients in the training set, and 

evaluated over the independent test set for response prediction. For training the networks, the cross 

entropy was used as the loss function, with a cost weight ratio of 5:1 for non-responders to 

responders to account for the unbalance in the dataset. The Adam optimizer was used for training 

the networks [56]. The network hyperparameters including the learning rate, cost weight, number 

of epochs, and the width of hidden layers in the fully connected network were optimized using the 

validation set. Early stopping was used to avoid overfitting by monitoring the network’s 

performance on the validation set during the training process. 
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Figure 3.1. Scheme of the developed deep learning framework for response prediction, demonstrating the feature 

and predictive networks (A), The residual module (B), and the attention module (C). 

 

3.2.6. Response Prediction and Risk Assessment 

In different experiments, the QUS multi-parametric images (MBF, SI, ESD, and EAC) of the 

tumor core, as well as the core and its margin were investigated, as the inputs to the DCNN 
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framework and their performance were compared in response prediction. The deep learning 

models with different feature networks were trained and optimized using the training set. The 

performance of the optimized models was evaluated on the independent test set using the accuracy, 

sensitivity, specificity, and the ROC analysis. A prediction difference analysis (PDA) was 

performed  to visualize the importance of different regions of the input QUS parametric images to 

the network’s decision [57]. In each iteration of the modified PDA procedure applied in this study, 

a small patch (8 × 8 pixel with 50% overlap between adjacent patches) of one of the input 

parametric images was occluded (pixel values were set to zero). The absolute change in the 

model’s prediction (output probability) was then calculated compared to the case of inputting the 

original parametric images, and considered as the impact of the occluded patch on the network’s 

decision. The PDA maps were generated for each input parametric image by sliding the occluding 

patch over the image and assigning the estimated impact to its center. 

The efficacy of the developed predictive models in differentiating the LABC patients with different 

recurrence-free survival was assessed through Kaplan-Meier survival analysis. The survival curves 

were generated for the responders and non-responders identified based on each model’s prediction 

at pre-treatment, and at post-treatment based on the clinical and histopathological criteria. A long-

rank test was applied to assess for statistically significant differences between the survival curves 

of the two response cohorts obtained in each experiment. 
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3.3. Results 
 

Table 3.1 presents the clinical and histopathological characteristics of the participating patients. 

The average age of the patients was 50.6 years. The patients had an average initial tumor size of 

5.2 cm, and the average residual tumor size at the end of their treatment was 2.5 cm. Histologically, 

90.3% of the tumors were diagnosed with invasive ductal carcinoma, 3.4% with invasive lobular 

carcinoma, and 6.3% with invasive metaplastic carcinoma. Further, 10.6% of the patients were 

diagnosed with grade 1 tumors, 38.8% with grade 2 tumors, and 50.6% with grade 3 tumors. Using 

the MR grading system, 76.2% of the patients were identified as responders, and 23.8% as non-

responder at the end of the treatment. 

Figure 3.2 demonstrates QUS parametric maps of MBF, SI, ESD, and EAC overlaid on the 

ultrasound B-mode images acquired from representative responding and non-responding patients, 

respectively. As observed in these representative images, the QUS parametric maps associated 

with the responding and non-responding patients demonstrated different mean and spatial pattern 

of pixel values within the tumor core and margin. The figure also shows the PDA maps associated 

with these parametric images, visualizing the relative impact of different regions in each image to 

the network’s decision for response prediction. Figure 3.3 demonstrates H&E stained 

histopathology images of the surgical specimens obtained from representative responding and non-

responding patients.  In responding patients, minimal tumor cellularity remained within the tumor 

bed after chemotherapy, as evident in the histopathology slides. In contrast, histopathology images 

of the non-responding patients typically indicated large areas of residual disease with minimal 

chemotherapy effects.  
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Table 3.2 presents the results of response prediction in different experiments on the validation and 

independent test sets. The ROC curves associated with the validation and test sets for different 

predictive models are demonstrated in figure 3.4. Using the ResNet architecture as the model’s 

backbone to extract feature maps from the parametric images of the tumor core resulted in a 

sensitivity, specificity, and accuracy of 82.5%, 70% and 80%, respectively on the independent test 

set. Extending the input parametric images to include both the tumor core and its margin improved 

the AUC of this model from 0.77 to 0. 83.  

Table 3.1. Patient characteristics 

Characteristic Mean ± SD / Percentage 

Age 50.6 ± 11.5 years 

Histology 
Invasive Ductal Carcinoma 90.3% 

Invasive Lobular Carcinoma 3.4% 

Invasive Metaplastic Carcinoma 6.3% 

Tumor Grade  
Grade I 10.6% 

Grade II 38.8% 

Grade III 50.6% 

Molecular Features  
ER+ 63.4% 

PR+ 54.7% 

HER2+ 34.3% 

ER+ / PR+ / HER2+ 18.6% 

ER+ / PR+ / HER2- 33.7% 

ER- / PR- / HER2+ 10.5% 

ER- / PR- / HER2- 24.4% 

Tumor Size 

Initial Tumor Size  5.2 ± 2.7cm 

Residual Tumor size 2.5 ± 3.4cm 

Response  

Responders 76.2% 

Non-Responders 23.8% 
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Figure 3.2. Ultrasound B-mode images with parametric overlays and of MBF (A), SI (B), ESD (C), and EAC (D) 

acquired at pre-treatment from a representative responder and non-responder to NAC, and the associated PDA maps 

visualizing the level of impact of different regions in each parametric image on the network’s decision (model 4 in 

Table 3.2). The tumor core has been outlined with white dashed line. 

Applying the extracted features from the parametric images of the tumor core using the RAN 

architecture resulted in an accuracy of 80%, and an AUC of 0.82 on the independent test set. 

Similar to the model with the ResNet architecture as the feature extractor, the performance of this 

model improved by extending the input parametric images to include the tumor margin. In 

particular, this model resulted in the best prediction performance with a sensitivity, specificity, 

accuracy and AUC of 92.5%, 70%, 88%, and 0.86, respectively on the independent test set. All 

models demonstrated a relatively similar performance on the validation and test sets, implying a 

good generalizability of the trained models on never seen samples.  
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Figure 3.3. Histopathology images of mastectomy specimens acquired from representative responding and non-

responding patients. 

Figure 3.5 presents the ten-year recurrence-free survival curves for the responders and non-

responders identified based on the clinical and histological criteria at post treatment, and at pre-

treatment using the four predictive models presented in Tables 3.2. The survival analysis 

demonstrated a statistically significant difference (p-value = 0.030) between the survival curves of 

the responders and non-responders identified at post-treatment. Among the response cohorts 

predicted at pretreatment, the ones identified using the predictive models with the RAN as their 

feature network demonstrated a statistically significant difference or approached significance. 

Specifically, whereas the model that input the parametric images of the tumor core approached a 

significant difference (p-value = 0.058), the one with the input parametric images extended to the 

tumor margin demonstrated a statistically significant difference between the survival of the two 

predicted cohorts (p-value = 0.040). The response cohorts identified by the other two models at 

pre-treatment did not show a significant difference in survival.  
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Figure 3.4. ROC curves generated for responding and non-responding patients in the validation set and independent 

test set identified at pre-treatment using the predictive models 1-4 in Table 3.2 (A-D). 

 

Table 3.2. Results of response prediction on the validation and independent tests with different predictive models. 

Acc: Accuracy; Sen: Sensitivity; Spec: Specificity, Loss: Mean absolute error. 

Model 
Feature 

Network 

Input Parametric 

Maps 

Validation Set Test Set 

Acc Spec Sen Loss Acc Spec Sen AUC 

1 ResNet Core 77% 76% 78% 0.27 80% 82.5% 70% 0.77 

2 ResNet Core + Margin 86% 90% 78% 0.17 82% 85% 70% 0.83 

3 RAN Core 83% 86 % 78% 0.22 80% 80% 80% 0.82 

4 RAN Core + Margin 86% 90% 78% 0.16 88% 92.5% 70% 0.86 
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Figure 3.5. Ten-year recurrence-free survival curves for responding and non-responding patients in the independent 

test set identified at post treatment based on the clinical and histopathological criteria (A), and at pre-treatment using 

the predictive models 1-4 in table 3.2 (B-E). 

 

3.4. Discussion and Conclusion 
 

In this study, a deep learning methodology was proposed and investigated for predicting breast 

tumor response to NAC using the QUS parametric images acquired at pre-treatment. In the 



77 
 

proposed framework, a DCNN architecture was adapted to extract optimal feature maps from QUS 

multi-parametric images. The flatten feature vectors associated with different cross-sections of a 

tumor were averaged over the entire tumor volume. A fully-connected network was subsequently 

applied for response prediction, using the average feature vectors. The performance of the 

framework was investigated in a set of experiments using two different DCNN architectures 

including the ResNet and RAN as the backbone feature extractor, and the QUS parametric images 

of the tumor core, and the tumor core with margin as the input. The best performance in response 

prediction was achieved with the RAN architecture and the extended parametric images of the 

tumor core and margin, with an accuracy of 88%, a sensitivity of 92%, a specificity of 70%, and 

an AUC of 0.86 on the unseen test set. Long-term survival analyses demonstrated statistically 

significant differences between the survival of the responders and non-responders identified at pre-

treatment based on this model’s prediction, and at post-treatment based on the standard clinical 

and pathological criteria. 

A number of previous studies have investigated the potential of QUS multi-parametric imaging in 

predicting and monitoring response of breast cancer tumors to NAC [38], [58]. In those studies, 

handcrafted features such as the statistical and textural features of the QUS parametric maps were 

analyzed and applied for response prediction using traditional machine learning methods. With 

predefined hand-crafted features, the feature extraction process is easier to understand and analyze. 

But these features only carry limited information based on their definition. Further, carefully 

determining and defining optimal discriminatory features for each specific application is crucial 

in this approach but is not always feasible.  In this study, we investigated the potential of DCNN 

architectures for extracting optimal features from QUS multi-parametric images automatically 

through multiple convolutional layers. The advantage of using deep learning model for feature 
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extraction is that the model learns during the training process to extract the important information 

while considering the whole image. As the PDA maps generated for the QUS parametric images 

implied, different regions of these parametric maps contribute substantially to the model’s 

prediction, albeit with varying levels. 

It has been shown that intratumor heterogeneity is an important factor in responsiveness of tumors 

to cancer therapy, with several studies demonstrated the value of imaging-based quantitative 

features of tumor heterogeneity for response prediction [23], [59]–[62]. The results obtained in the 

study here using the DCNN feature extractors are in agreement with the observations of those 

studies. Specifically, the features maps extracted from the QUS multi-parametric images are 

computed using multiple layers of convolutional filters throughout a DCNN architecture and can 

quantify the spatial heterogeneity within multi-channels of the QUS images simultaneously. The 

results of different experiments performed in this study demonstrated that extending the input QUS 

parametric images to include the tumor margin in addition to the core enhances the performance 

of the model in response prediction. Further, whereas the PDA maps demonstrated considerable 

contribution of various regions of the QUS parametric images to the network’s decision, the impact 

of the margin areas on the model’s prediction was highlighted particularly in the MBF and EAC 

parametric images. These results are in agreement with observations of the previous studies in 

which the imaging-based characteristics of tumor margin were shown important in different 

diagnostic and prognostic applications [38], [62]–[64]. 

The RAN architecture demonstrated a better performance compared to the ResNet in deriving 

optimal feature maps from QUS parametric images for response prediction. Both architectures use 

residual modules to overcome the overfitting throughout their very deep layers. The RAN 

architecture also utilizes attention modules that potentially facilitate feature optimization. 
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Specifically, the attention module enables the network to focus on significant and influential 

regions of images while extracting the feature maps.  The observations of this study imply that the 

attention modules in the RAN architecture have been successful in identifying the important 

regions of the QUS parametric maps for response prediction. 

In conclusion, this study demonstrated that DCNN models can be adapted in the context of 

quantitative imaging for therapy response prediction. The results indicated a better performance 

of the attention-guided convolutional networks in deriving optimal quantitative features form QUS 

multi-parametric images. The deep learning models developed in this study could predict the 

survival-linked response of LABC patients to NAC before starting the treatment with a high 

sensitivity and specificity. Predicting the outcome of NAC at pre-treatment would help the 

clinicians to adjust ineffective treatment regimens for individual patients. The results obtained in 

this study are promising and encourage further investigations using other DCNN architectures with 

the data acquired from larger (multi-institutional) cohorts of patients to evaluate the robustness of 

the methodologies in clinic.   
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Chapter 4  
 

Conclusion and Future Works 
 

4.1. Discussion and Conclusion 
 

In this thesis project, two novel approaches were investigated to predict breast cancer response to 

NAC prior to start of treatment using multi-parametric QUS imaging. The required data for 

analytical development, optimization, and evaluation of the methodologies in this project were 

acquired from 181 patients diagnosed with locally advanced breast cancer and planned for NAC 

followed by surgery. The QUS multi-parametric images were generated for these patients using 

the ultrasound radiofrequency (RF) data acquired before the start of treatment. 

In the first approach, QUS multi-parametric images of the breast tumors were segmented into 3 

regions using a modified version of HMRF-EM algorithm. Several features including SNR, mean-

value, mean-value difference, and proportion area were extracted from the multi-parametric maps 

within the identified intra-tumor regions and tumor margin. After calculating the features for each 

tumor by averaging over the entire tumor volume, the derived 56 features were pruned into four 

features through a multi-step feature selection process to construct an optimal biomarker for 

response prediction. The developed biomarkers were used for response prediction using 

conventional machine learning method. The results indicated that applying AdaBoost decision tree 

model on developed features could predict the tumor response with an accuracy of 85.4% and an 

AUC of 0.89. The results demonstrated that considering characteristics of intra-tumor regions 

identified on the QUS multi-parametric images can improve the accuracy of pretreatment response 

prediction model compared to considering only characteristics of whole tumor. In addition, 

survival analysis indicated that there were statistically significant differences between the survival 
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rate of the responders and non-responders identified based on both the standard clinical criteria 

and the model predictions.   

In the second approach, the capability of deep convolutional neural networks were investigated in 

predicting breast tumor response to NAC. The developed deep learning framework comprised a 

deep convolutional network as the backbone feature extractor followed by a fully-connected 

network for response prediction. For feature extraction, different network architectures including 

the ResNet and RAN were explored. 256 features were extracted from the multi-parametric images 

at each imaging plane using the deep convolutional models. Each tumor’s features were obtained 

by averaging the feature vectors associated with its all imaging cross-sections. The average feature 

vectors were fed into the fully-connected network for response prediction. Evaluation results on 

the independent test indicated that the developed model inputting the extended parametric images 

of the tumor core and margin with the RAN as its feature extractor was able to predict the treatment 

response with an accuracy of 88%, a sensitivity of 92%, a specificity of 70%, and an AUC of 0.86. 

Also, the survival analysis showed that this model could differentiate the high-risk patients with 

relatively poor survival rate, as a statistically significant difference was observed between the 

survival curves of the patients predicted to be responder versus non-responder. 

Response to NAC has demonstrated a high correlation to the patient survival [1][2]. However, up 

to 40% of LABC patients do not respond to NAC, and complete pathological response is limited 

to only 10-30% of the patients [3]–[6]. Therefore, it is crucial to identify the patients that do not 

even show a partial response to NAC as soon as possible. Other patient stratifications to 

differentiate partial versus complete pathological response to NAC is also very important and can 

be performed in parallel with non-responder detection or as a subsequent step.  Early response 

prediction facilitates treatment adjustments for individual patients and even a switch to more 
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effective and salvage treatments before it is potentially late. Some available options of therapy 

adjustments/alteration for patients with minimal response to a standard treatment may include 

modifying the regimen, dose and/or sequence of treatment options. A personalized strategy in 

cancer treatment can potentially lead to higher treatment responsiveness, improved disease-free 

survival rates, better quality of life, and avoiding ineffective expensive treatment for patients. The 

results obtained in this study demonstrated the promising potential of QUS multi-parametric 

imaging in breast tumor response prediction when coupled with conventional machine learning 

methods and deep convolutional neural networks, and provided some ideas that can be pursued in 

future studies.  

 

4.2. Future Works 
 

In future, this study can be extended in several paths. Increasing the size of patient cohorts and 

including multi-institutional data can help to evaluate further the efficacy and robustness of the 

proposed methodologies. Also, providing more training data to the developed models can improve 

the generalizability and performance of the models. Especially deep learning models that have 

millions of parameters to be optimized requires large training datasets to achieve sufficient 

performance in real-world scenarios [7]. Therefore, incorporating larger datasets is expected to 

enhance the performance of the deep learning models developed in this project, and enable 

researchers to explore larger, more complex and potentially more powerful architectures in this 

application [8]. 

Another path of research that can be followed in future is investigating higher-order features 

including textural features of intra-tumor regions for response prediction [9], [10]. It has been 
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shown in several studies that textural features of QUS parametric images have high correlation 

with pathological outcome at the end of treatment [9], [11], [12]. Also, capability of combining 

textural features with mean-value and SNR parameters in parametric images of intra-tumor regions 

can be assessed in future studies. Also, exploring other methods for tumor segmentation and 

response classification can be considered in upcoming research [13], [14]. 

Nowadays, the field of deep learning is growing fast, and new state-of-art architectures in field of 

image processing are being introduced frequently [15], [16]. Concepts such as transformers and 

attention are getting more popular and they are transforming this field [17]. Also, stronger 

hardware and access to more powerful GPUs will enable exploiting larger and more complicated 

models. Therefore, in future these models can be explored and applied on QUS images for different 

tissue characterization applications [13]. Also, customizing the existing models for such 

applications through modifying and optimizing the network layers can be explored in future 

studies. 
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Appendix A 
 
Supplementary Figures and Tables 

 
 

 

Figure A1.1. A: schematic diagram showing different steps to calculate QUS parameters for a window sliding 

through a frame of US RF data in the process of parametric map generation; B: descriptive image of linear 

regression analysis applied on the normalized power spectrum to obtain the mid-band fit (MBF), spectral intercept 

(SI), and the spectral slope (SS) parameters. 
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Figure A1.2. Ultrasound RF data (A), B-mode images (B), and QUS parametric images of ESD (C), EAC (D), MBF 

(E), and SI (F) obtained for a representative responder and non-responder to NAC. The tumor core has been outlined 

with white dashed line on the parametric images.  
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Table A1.1. Extended table 2.2 with the positive prediction value (PPV) and negative prediction value (NPV) for 

different experiments presented in Chapter 2  

Feature Set Test Set 

 Acc Sen Spec AUC PPV NPV 

Clinical Features: 

Tumor Size, ER/PR, HER2, Age 
69.1% 40.0% 80.0% 0.6 42.9% 78.0% 

Unsegmented Core: 

𝑀𝐶
𝑀𝐵𝐹, 𝑆𝑁𝑅𝐶

𝐸𝐴𝐶 , 𝑆𝑁𝑅𝐶
𝑆𝐼, 𝑀𝐶

𝑆𝐼 
74.5% 66.6% 77.5% 0.79 52.6% 86.1% 

Unsegmented Core and Margin: 

𝑀𝐶
𝑀𝐵𝐹, 𝑆𝑁𝑅𝑚

𝑆𝐼, 𝑆𝑁𝑅𝐶
𝐸𝐴𝐶 ,  𝑀𝐶

𝑆𝐼 
76.4% 66.6% 80.0% 0.76 55.6% 86.4% 

Intra-Tumor Regions and Margin: 

𝑆𝑁𝑅1
𝑆𝐼, 𝑆𝑁𝑅𝑚

𝐸𝑆𝐷,   𝑀3−1
𝐸𝐴𝐶 ,  𝑀1

𝑀𝐵𝐹 
85.4% 86.6% 85.0% 0.89 68.4% 94.4% 

 
 
 
 

Table A1.2.  Extended table 3.2 with the positive prediction value (PPV) and negative prediction value (NPV) for 

different models presented in Chapter 3  

 
 
 

 

 

 

Model 
Feature 

Network 

Input Parametric 

Maps 

Test Set 

Acc Spec Sen AUC PPV NPV 

1 ResNet Core 80% 82.5% 70% 0.77 50% 91.7% 

2 ResNet Core + Margin 82% 85% 70% 0.83 53.8% 91.9% 

3 RAN Core 80% 80% 80% 0.82 50% 94.1% 

4 RAN Core + Margin 88% 92.5% 70% 0.86 70% 92.5% 


