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Abstract

Atoms and molecules exposed to strong fields of magnitude comparable to their internal

binding forces undergo ionization. This process sets the ground for multiple strong-field ionization

phenomena such as above threshold ionization (ati). This dissertation addresses two separate

ionization problems, the dc Stark ionization of H2O valence orbitals, 1b1, 1b2, and 3a1, within

the framework of non-Hermitian quantum mechanics, and ati for a model-helium atom as part

of a review of a previous quantitative approach based on the strong-field approximation (sfa).

Calculations of the dc ionization parameters, dc Stark shift and exponential decay rates, for

the H2O valence orbitals are carried out by solving the Schrödinger equation in the complex

domain. Two independent models are implemented in the study of static ionization of the molec-

ular orbitals (mos). In the first one, a spherical effective potential obtained from a self-consistent

calculation of H2O orbital energies is combined with an exterior complex scaling approach to

express the problem as a system of partial differential equations that is solved numerically using

a finite-element method. In the second approach, a model potential for the H2O molecule is

expanded in a basis of spherical harmonics and combined with a complex absorbing potential

that results in a complex eigenvalue problem for the Stark resonances.

The second part of this investigation is concerned with the study of ati for atoms subjected

to a strong laser field. The convergence of the ionization spectrum for a model-helium atom is

addressed in a systematic study that is carried out following Keldysh’s formalism of sfa. A gen-

eralized compact expression for the ionization amplitude that incorporates electron rescattering

into the analysis is explored as well. Additionally, a model based on the concept of quantum

paths is implemented in the numerical evaluation of the sfa transition amplitude. In this anal-

ysis, a coherent sum over all allowed quantum trajectories that render the action stationary is

carried out. This calculation allows to generate an ati spectrum that converges to the numerical

Keldysh amplitude as the number of trajectories increases.
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1 Introduction

Atomic and molecular systems exposed to strong external fields have been explored extensively.

The H2O molecule, which is of interest in this work, has served as a reference for nonlinear

molecules under strong external fields and has received considerable attention in ion-molecule

collision studies (see [99, 1010] and references therein) due to its relevance in applied fields, such as

radiation therapy. The multicentre nature of its potential makes the water molecule an attractive

and challenging problem, and diverse approximations have been implemented in order to learn

about its molecular structure as well as its interaction with external perturbations such as strong

dc fields and high-intensity laser fields [1111–1515].

High-intensity laser-atom interactions are the origin of phenomena such as ati, which reveals

that an atom may absorb many more photons than the minimum necessary for ionization [1616].

Under the effect of an intense laser field, an atom that is initially in its ground state gets ionized

at some given time followed by the ejection of an electron that interacts with the laser field once

it is promoted to the continuum and eventually rescatters to within the vicinity of the binding

potential as the external field changes direction. As a consequence of this interaction, an ati

spectrum consisting of a sequence of peaks separated by the photon energy is generated. The

study of this spectrum has been of increased interest as it reveals features that describe the

mechanism of interaction of an atom with an external field [1717, 1818].

Events of strong dc field ionization of the water molecule valence orbitals and laser-induced

ionization of atoms constitute the essence of this work. This study involves deriving an effective

potential that reproduces the symmetry properties of each mo as an initial step in the calcula-

tion of the Stark resonance parameters for the water molecule under an external static electric

field. The interaction of a strong laser field with atoms, in particular, the phenomenon of ati is

addressed within a framework that allows to uncover the underlying physics without having to
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resort to computationally demanding tools such as solving the time-dependent Schrödinger equa-

tion (tdse). A generalization of the sfa [1919] is implemented within two independent frameworks

for the case of a zero-range potential: a semi-classical approach involving quantum paths [2020]

and a numerical evaluation of the exact sfa results [2121].

Since the work of Ellison and Shull [2222], numerous theoretical studies that attempt to for-

mulate an accurate description of the H2O molecule have been reported. The self-consistent

field (scf) method introduced by Roothaan [2323], which allows to represent the Hartree-Fock (hf)

orbitals of a molecule as expansions of basis functions, has been widely implemented in the study

of the ground state and symmetry properties of H2O. Within the scf framework, the mos have

been approximated using multicentre Slater-type atomic orbitals as basis sets [2424–2727], as well as

Gaussian basis functions [2828, 2929].

Additionally, one-centre expansions were applied in order to bypass the difficulty of evaluating

multicentre integrals [11, 3030, 3131]. However, inherent to this method is the additional difficulty of

needing a more extensive set of basis functions. As an example, Moccia introduced an expansion

of the H2O mos in terms of Slater-type functions all centred at the nucleus of the oxygen atom [11].

This work, in which the author determined the expansion coefficients of a linear combination con-

sisting of 28 Slater-like functions by means of Roothaan’s scf method, obtained wave functions

that led to remarkably accurate values for the total energy of the ground state configuration of

H2O.

Solving the tdse in the study of static-field ionization rates could perhaps seem like a logical

effort that leads to highly accurate solutions. This approach has been implemented, within the

framework of Hermitian quantum mechanics, in tunnelling calculations for the helium atom [3232,

3333] in which the two-electron Schrödinger equation was solved and the results were in good

agreement with previous calculations [3434]. However, obtaining a numerical solution to the many-

body tdse, corresponding to molecular Stark resonances, remains a challenging problem even

for a small number of particles.

Time-independent approaches, which make use of a non-Hermitian formulation of quantum

mechanics by means of a complex-variable representation of the molecular Hamiltonian, have es-

tablished useful alternatives in the study of molecular static-field ionization. Within a complex-

variable framework, the Stark resonance parameters induced by an external field are associated
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with a discrete set of complex eigenvalues. Among the proposed methods, coupled-cluster (cc)

calculations of molecular strong-field ionization provided accurate results for the Stark and static-

field ionization rates of several molecules [1111]. In this work, the author combined cc methods [3535]

with complex basis functions, consisting of basis sets of atom-centred Gaussian functions with

a complex-scaled exponent, and computed molecular Stark resonances linked to complex eigen-

states of H2O for different orientations of the external dc field.

Among alternative well-established methods to compute resonance states are those of com-

plex scaling (cs) [3636] and complex absorbing potentials (caps) [3737] in which the Hamiltonian

is extended analytically into the complex plane by an artificial local potential formulated to

absorb the diverging tail of the resonance wave functions at the boundaries of a finite volume.

The resonance parameters are then obtained from the square-integrable eigenfunctions of the

modified non-Hermitian Hamiltonian with absorbing boundary conditions. Extensions of these

methods, such as the exterior complex scaling (ecs) [3838], have been introduced in studies of

ionization of molecular structures [3939, 4040], and to determine numerical solutions of the tdse for

strong-field-induced dynamics in atoms and molecules [4141–4343].

A modified exterior complex scaling approach in which the radial coordinates are gradually

continued into the complex plane, the method implemented in the current work, is introduced

with the aim of studying the field-ionization properties of the H2O valence orbitals. This method

permitted to formulate the problem of H2O static-field ionization as a system of partial differ-

ential equations (pde) in which the Stark resonance parameters were obtained via the complex

eigenenergies of the pde system. This work led to two referenced publications [4444, 4545].

In what follows, the topic of strong-field laser-atom interactions is addressed. Numerous

formulations have been introduced which aim to understand the physics behind the complicated

structure of the ati spectrum. The Keldysh theory of strong-field approximation is one of the

pioneering works that properly accounts for tunnelling ionization [1919], and produces accurate

electron spectra for ati for relatively low energies. However, the sfa in its early versions failed

to provide a comprehensive description of the ionization spectrum, in particular, to account for

the extended plateau at higher energies that was first observed in [77] for the ati spectrum of rare

gases in strong laser pulses.

Extensions of the Keldysh theory have provided a deeper understanding of laser-atom inter-
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actions and revealed the underlying mechanism that gives origin to the ati plateau: rescattering.

In order to incorporate rescattering events, subsequent models needed to allow the freed electron

to interact once more with the ion. A semiclassical three-step model which incorporates the ef-

fect of rescattering, in which the atomic potential is considered a perturbation while the electron

propagates in the laser field, [4646, 4747] was successful in revealing the complicated angular distri-

butions of the ati spectrum. Additional attempts that incorporate rescattering in the context of

the Keldysh approach were implemented by means of Coulomb-Volkov solutions [4848].

An interesting interpretation of the laser-atom interactions is the one offered by the path-

integral formulation of quantum mechanics [4949]. The concept of a quantum path that connects the

initial and final state of a system, and combines the tunnelling of an electron with its subsequent

semiclassical propagation in the laser field, has been used to explain subtle features of ati [5050].

In addition, incorporating the path-integral principles within the framework of sfa calculations,

has allowed to successfully reproduce the structure of ati spectra that can be connected with

interferences of the contributions of a finite number of quantum trajectories [2020].

This dissertation addresses two separate topics, the static-field ionization of the H2O molecule

and the phenomenon of ati within the framework of an extended sfa. Chapter 22 presents the

necessary background of the hf formulation that sets the basis for the scf calculation of the

H2O orbital energies [11] used as reference in the study of the water molecule under the effect

of an external field. Chapter 33 contains two independent studies of the dc field ionization of

the H2O valence orbitals, 1b1, 1b2, and 3a1 within the framework of non-Hermitian quantum

mechanics (nhqm). A modified exterior complex scaling and a complex absorbing potential

combined with a partial-wave expansion of a previous model potential are implemented. The

topic of laser-atom interactions is approached in Chapters 44 and 55. Chapter 44 contains a study of

convergence of the ati spectrum associated with an improved Keldysh model [2121] within the limits

of a zero-range potential in which events of direct ionization and ionization with rescattering are

treated separately. A saddle-point approximation is implemented in Chapter 55 to the problem of

evaluating the ati spectrum of a model-helium atom in a strong laser field in terms of quantum

orbits. Finally, conclusions of this work are presented in Chapter 66.

Atomic units (~ = m = −e = 4πε0 = 1) are used throughout unless otherwise indicated.
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2 Electronic Structure of H2O

This chapter presents a brief compilation of the principles of the hf formulation implemented in

problems of molecular quantum mechanics. Section 2.12.1 summarizes the Roothaan formulation

of the hf formalism, in which the hf orbitals are expressed as linear combinations of suitable

analytical functions [2323]. For molecules, the calculation of electronic wave functions is more

intricate than for atoms since it is preferable to use basis functions centred about several nuclei,

which implies the difficult task of evaluating multicentre integrals [2626, 2727]. Sec. 2.22.2 describes

a different approach that consists of using a set of basis functions all referred to one common

origin and has reported satisfactory results in calculations of scf molecular orbitals for AHn-type

molecules [11, 5151].

2.1 Variational Hartree-Fock method

As a starting point in the scf mo calculations, the N−electron hf wave function for a molecule is

written as the antisymmetrized product (ap) of N one-electron wave functions [2323]. A molecular

spin-orbital (mso) which factors into a molecular orbital, ϕ, and a spinor, η, that depends on

the space and spin coordinates of the µth electron can be defined as

ψµk = ϕi(k)(xµ, yµ, zµ)ηk(sµ), (2.1)

where the superscript µ stands for the coordinates of the µth electron and the subscripts k and

i label the different msos and mos, respectively,

The total N -electron wave function is then built up as an ap of N molecular spin-orbitals of
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the form (2.12.1) [2323]

Φ =
√
N !ψ[1

1 ψ
2

2 · · ·ψ
N ]
N = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1
1 ψ1

2 · · · ψ1
N

ψ2
1 ψ2

2 · · · ψ2
N

· · · · · · · · · · · ·

ψN1 ψN2 · · · ψNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where the superscripts [1 2 · · ·N ] indicate that one must consider all the permutations of the

sequence 1 2 · · ·N such that the Pauli exclusion principle is satisfied, that is, each mo ϕµi may

occur not more than twice (corresponding to opposite spin projections) in the ap (2.22.2). The

right-hand side of Eq. (2.22.2) is a Slater determinant of msos that is constructed by taking an

antisymmetric linear combination of products of spin-orbitals.

For a closed-shell structure, in which the ap (2.22.2) is made up of complete electron shells, the

hf method seeks the mo’s that minimize the variational energy [2323]

E = 2
∑
i

hi +
∑
i

∑
j

(2Jij −Kij). (2.3)

The first sum in Eq. (2.32.3) represents the energy of all the electrons in the field of the nuclei alone,

where hi are the nuclear-field orbital energies [2323]. The remaining sum contains the electronic

interactions, in which the Coulomb integrals Jij and exchange integrals Kij are defined by

Jij =
∫ ϕ̄µi ϕ̄

ν
jϕ

µ
i ϕ

ν
j

rµν
dvµν (2.4a)

Kij =
∫ ϕ̄µi ϕ̄

ν
jϕ

µ
j ϕ

ν
i

rµν
dvµν , (2.4b)

where the integration goes over the spatial coordinates of the µth and the νth electron.

The hf scf method looks for those molecular orbitals ϕi that minimize the variational en-

ergy (2.32.3). In an iterative process, the molecular orbitals that form the ap (2.22.2) are corrected by

an infinitesimal amount δϕi, that along with the requirement that the molecular orbitals continue

to form an orthonormal basis, leads to express the variation of the energy as [2323]

δE = 2
∑
i

∫
(δϕ̄i){H +

∑
j

(2Jj −Kj)}ϕidv + 2
∑
i

∫
(δϕi){H̄ +

∑
j

(2J̄j − K̄j)}ϕ̄idv, (2.5)

where H = −1
2∇

2 −
∑
α

1
rα is the Hamiltonian that represents the field of the nuclei alone. The

operators Jj and Kj represent the Coulomb operator and exchange operator, respectively, and
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are defined as [2323]

Jµi ϕ
µ =

(∫
ϕ̄νi ϕ

ν
i

rµν
dvν

)
ϕµ (2.6a)

Kµ
i ϕ

µ =
(∫

ϕ̄νi ϕ
ν

rµν
dvν

)
ϕµi . (2.6b)

The Coulomb operator represents the potential energy operator associated to an electron dis-

tributed in space with a density |ϕi|2. On the other hand, the exchange operator has no classical

analog. The notation Ū is used to represent the complex conjugate of the operator U .

In order for the energy (2.32.3) to reach its absolute minimum, the condition δE = 0 must be

satisfied for any choice of mos that form an orthonormal basis. This condition can be expressed

as [2323, 5252]

{H +
∑
j

(2Jj −Kj)}ϕi =
∑
j

ϕjεji, (2.7)

where εji are the elements of a Hermitian matrix obtained in the variational procedure of min-

imizing the energy (2.32.3) [2323]. Once an initial guess for the occupied mos has been introduced,

the orbital energies εi can be obtained as the energy eigenvalues of the Fock operator, F , that

satisfies

F = H +
∑
j

[2Jj −Kj ]. (2.8)

Consequently, the hf scf problem can be addressed as the problem of finding the best set of

mos that satisfy [2323, 5252]

Fϕi =
∑
j

ϕjεji. (2.9)

Without loss of generality, Eq. (2.92.9) can be expressed as the eigenvalue problem

Fϕi = εiϕi, (2.10)

where εi are the real elements of a diagonal matrix, which results from applying a unitary

transformation to the Hermitian matrix εji. The set of Eqs. (2.102.10), commonly known as hf

equations, states that the eigenfunctions of the Hermitian operator F are the set of mos that

give the best ap, while the eigenvalues εi represent the hf orbital energies [2323].

The formalism introduced by Roothaan [2323], that allows the Hartree-Fock-Roothaan orbitals

to be expressed as linear combinations of suitable analytical functions, represents a crucial de-

velopment in obtaining accurate numerical results that approximate the true hf wave functions
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of the water molecule, as well as predicting chemical properties in addition to the binding energy

of its ground state [2222, 2727, 2929, 5353, 5454]. This approach introduces a representation of the mos by

means of a linear combination of atomic orbitals (lcao) [2323]

ϕi =
b∑

s=1
csiχs. (2.11)

Given that the sum (2.112.11) is an approximation to the exact hf mos, the ap built from these mos

would be a less good approximation to the exact ap built from the hf mos. In order for the

linear combination (2.112.11) to be an exact representation of a hf mo, the basis functions χs should

form a complete set. However, in practice one is limited to a finite (and therefore incomplete)

basis set. The number of basis functions, b, as well as the proper choice of basis functions χs are

essential in order to obtain mos that resemble the hf mos with very small error [11, 5151, 5555].

The problem of obtaining the best set of mos for a closed-shell ground state consists in

finding the set of coefficients csi for which the energy of the associated ap reaches its absolute

minimum. The lcao scf procedure begins with an initial guess for the linear combination of

basis functions (2.112.11). This initial set is used to compute the Fock operator from equations (2.82.8)

to (2.6b2.6b). The matrix elements Frs

Frs ≡ 〈χr|F |χs〉 (2.12)

are then evaluated in order to determine the nontrivial solutions of the set of b simultaneous

linear equations of the form
b∑

s=1
csi(Frs − εiSrs) = 0, r = 1, 2, . . . , b

Srs ≡ 〈χr|χs〉,

(2.13)

that results from inserting the expansion (2.112.11) into the hf equations (2.102.10), and represents a

linear algebra generalized eigenvalue problem, in which the eigenvalues εi and linear coefficients csi
are to be obtained. The eigenvalues of Eq. (2.132.13), which are the roots of the secular equation [2323,

5252]

det(Frs − εiSrs) = 0, (2.14)

form an initial set of lcao orbital energies that leads to a set of coefficients csi and, consequently,

mos.
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In the process of solving the set of equations (2.102.10) one looks for the mos ϕi that minimize the

variational energy (2.32.3). Initially, one infers a set of coefficients csi, and, consequently, mos of the

form (2.112.11), that are used to compute the Fock operator F and solve the secular equation (2.142.14)

to obtain an initial set of orbital energies εi, which in turn is used to obtain an improved set

of coefficients by solving the eigenvalue problem (2.132.13). This procedure to minimize the energy

is set up carefully as an iteration until the mo coefficients converge according to an established

norm and no further improvement is observed from one evaluation to the next.

The lcao scf formalism is an approximation that leads to rather straightforward results for

the mos. This model leads to accurate approximations of the hf scf wave function provided

the basis set (2.112.11) is large enough [11, 2222, 5151, 5555]. Taking things further to achieve a complete

description of the true hf wave function is a much more complicated mathematical problem.

2.2 Self-Consistent Field Slater Orbitals

A frequently used set of basis functions in atomic and molecular hf calculations, in order to

represent molecular wave functions as linear combinations of analytical functions, is the set of

Slater-type orbitals (stos) of the form

fn,l,m(ζ; r, θ, φ) = (2ζ)n+ 1
2

[(2n)!]
1
2
rn−1e−ζrSl,m(θ, φ), (2.15)

where n, l, and m are integers indicating a basis function, while the nonlinear variational param-

eter ζ satisfies ζ ∈ < > 0. The angular part Sl,m(θ, φ) represents real spherical harmonics.

In order to converge to an exact representation of the hf orbitals, it would be necessary

to include a rather large basis of stos in an expansion of the form (2.112.11). However, previous

calculations indicate that it is possible to obtain highly accurate results by choosing conveniently

optimized basis of stos to represent atomic orbitals [5656–5858] and molecular orbitals [11, 5151, 5555].

The formalism implemented by Moccia to study the ground state of XHn molecules [11, 5151, 5555]

develops the previously introduced method of using electronic wave functions expressed by a

one-centre expansion with the centre at the X nucleus [3030, 3131]. This approach, labeled as scf

one-centre-expanded molecular orbitals [5151], permits to evaluate the ground state along with the

vibrational spectrum of this type of molecules for a given geometrical arrange.

Following the Roothaan formalism described in Sec. 2.12.1, the initial wave function is expressed

9



as an ap of molecular spin-orbitals in which each mo is built as a linear combination of Slater-

type orbitals (stos) of the form (2.152.15). The orbital exponents ζi corresponding to each basis set

were obtained by means of an optimization process closely connected with finding the geometrical

equilibrium configuration of the molecule [11, 5151]. Returning to the linear expansion for the i-th

mo ϕi introduced in Roothaan’s formalism, Eq. (2.112.11) can be expressed in terms of Slater-type

orbitals as follows

ϕi(ζ, r, θ, φ) =
b∑

s=1
csifsn,l,m(ζsi, r, θ, φ), (2.16)

where the expansion coefficients csi are evaluated within a self-consistent procedure in order

to minimize the electronic energy. The sets of (n, l,m) values indicate the size and orbital

symmetries of the basis set implemented for a given molecule.

The scf calculations for the ground state of H2O, in which the expansion centre was located

upon the oxygen nucleus [11], explored different combinations of symmetries and n values in order

to obtain the best possible linear combination available from a basis set of the form (2.152.15).

Table I in [11] shows the converged numerical results including the geometrical parameters of the

equilibrium configuration for the ground state of H2O. It emerged from these calculations, in

which the basis parameter n was fixed at values as high as 4, that very large values of n are not

needed in order to obtain rather accurate results since the converged wave functions obtained

for the mos could not be dramatically improved by simply changing the nonlinear parameters

of the stos, ζi, (2.152.15). Rather, a careful selection of an initial set for the nonlinear variational

parameters ζi for a moderate number of basis functions indicated to be crucial for improving the

radial behaviour of the wave functions for a given symmetry.

As an initial step in the one-centre scf iterative process implemented by Moccia [11, 5151, 5555],

some parameters are provided as input data. The basis functions that are identified by the three

integers n, l,m in Eq. (2.152.15) and by the orbital exponents ζ, as well as an estimate of the ex-

pansion coefficients, csi, of the mos are among these quantities. The process of variation of the

nonlinear parameter ζ reveals a strong correlation with the geometrical equilibrium configuration

of the molecule. The numerical results of the one-centre basis scf method were obtained by mod-

ifying the basis sets (2.112.11) implementing a variational method and determining the geometrical

configuration that minimizes the total energy for each set of ζ’s. The final results, indicated in
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Table I [11] for the H2O molecule, correspond to the geometrical configuration that provides the

lowest total energy among the different sets considered.

Other studies have addressed the problem of the electronic structure of H2O within the hf scf

scheme using multicentre basis functions, and achieved satisfactory total energies that approach

the converged hf energies rather well. Total energies of −75.776 a.u. and −75.741 a.u. are quoted

in Refs. [2424] and [2525], respectively, using Roothan-type scf basis functions. A compilation of

scf results that employ multicentre basis sets in hf calculations of the ground state of some

polyatomic molecules can be found in Ref. [5959]. Additionally, a series of scf calculations in a

Gaussian basis [2828] reported a total energy of −76.0421 a.u. for H2O. Many of these calculations,

however, used extensive sets of basis functions or more complicated forms of wave functions. More

advanced calculations of the H2O wave functions, in which an increasing number of multicentre

s, p, and d stos was used as basis sets, were successful in calculating physical properties, such

as the electric dipole moment and force constants, in good agreement with experiment [2626, 2727].
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3 H2O in an external electric dc field

The Stark resonance parameters, which characterize the shift and decay width of the molecular

energy levels under an external dc field, are fundamental in the study of the strong dc field

ionization of mos. In the case of the water molecule, the multicentre nature of the combined

Coulomb interactions and, consequently, the additional degrees of freedom as compared to atoms,

make the strong dc field ionization of H2O an attractive and challenging problem from the point

of view of a theoretical description. Complex variable techniques, such as ecs [3838, 4242] and

caps [3737, 4141], have been implemented in order to address the problem of molecular static-field

ionization and compute the induced Stark resonances.

The dc Stark problem for the H2O valence orbitals is addressed in this chapter within the

framework of non-Hermitian quantum mechanics [6060]. Two independent complex variable tech-

niques are implemented in order to modify the divergent outgoing wave functions into the physical

domain of square integrable wave functions. A modified ecs, in which the Hamiltonian of the

system is gradually rotated into the complex plane to obtain the resonance parameters induced

by an external dc field, is the first of these approaches. The construction of a local effective

potential, which reflects the individual properties of the orbitals, is crucial in this study. An al-

ternative analysis is based on a quadratic cap which requires successive calculations of complex

eigenvalues along a trajectory that is determined by the strength parameter of the cap. The cap

method is then combined with a correction scheme in order to eliminate the artifact introduced

in the Hamiltonian by the complex absorber.

Section 3.13.1 introduces some of the fundamental aspects of non-Hermitian quantum mechanics.

In Sec. 3.23.2, we formulate the problem with emphasis on the representation of the mos. The ecs

formalism is introduced in Secs. 3.33.3 and 3.43.4 as a crucial step in finding a numerical solution to

a spherically symmetric problem, in the case of the 1b1 and 1b2 orbitals, and the problem of a
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non-central effective potential, in the case of the 3a1 orbital. Section 3.53.5 is concerned with the

discussion of a partial-wave expansion method implemented for a model potential designed to

simulate the structure of the H2O molecule. The problem of dc-ionization of the H2O valence

orbitals is treated in terms of a cap. The Stark resonance parameters are then presented in

Sec. 3.63.6, in which the symmetry properties of the orbitals are considered independently. The

analysis presented in this chapter compiles that of [4444, 4545].

3.1 Non-Hermitian quantum mechanics

Resonance phenomena, such as atomic and molecular strong-field ionization events, have been

successfully approached within the framework of nhqm [6060]. This alternative formulation to

the standard formalism of quantum mechanics allows for a time-independent interpretation of

strong-field ionization processes and quantitative modelling of the associated ionization rates.

This is possible by means of implementing analytic continuation methods on the Hamiltonian,

from which the resonance is obtained as a solution with complex eigenvalues of the form

E = ER + iEI = ER − iΓ/2, (3.1)

in which the ionization rate, Γ, induced by the external field F0 is associated to the lifetime

of the decaying state τ via Γτ = 1, while the Stark shift under the external field is given by

the difference between the real part of the complex-valued energy and the ground state energy,

ER − E0.

Several numerical techniques have been introduced within the framework of nhqm in stud-

ies of atomic and molecular Stark resonances. These approaches implement a complex-scaled

Hamiltonian by means of a mapping operator that results in complex eigenvalues and provide

direct access to the resonant states of the Stark problem. It is the scope of this work to focus

on two of these methods to study the response of the H2O highest-energy orbitals to an external

dc-field, the concept of a cap introduced as a perturbation to the molecular Hamiltonian and a

modified ecs.

A cap is introduced as an imaginary potential which introduces an analytical continuation

of the Hamiltonian to the complex plane. This artificial perturbation of the system acts as an

effective absorber potential that suppresses the diverging tail of the resonance wave function in
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the vicinity of the edges of a numerical grid. As a result, the solutions of the modified non-

Hermitian Hamiltonian behave as square-integrable eigenstates.

In general terms, the application of a cap begins with the addition of an artificial local

potential of the form −iηW (r) to the Hamiltonian of the system, where the parameter η indicates

the strength of the cap. The function W (r), which determines the onset of the cap, has been

most commonly defined as a quadratic potential centred at some radius rc, such that the artificial

term to be included in the Hamiltonian takes the form

VCAP =


−iηc(r − rc)2 when r > rc

0 when r < rc

. (3.2)

The cap approach requires calculating sets of complex eigenvalues which form complex trajec-

tories, E(ηc). These trajectories are generated by varying the cap strength ηc. Subsequently, a

correction scheme to extrapolate to ηc = 0 is carried out in order to obtain the eigenvalues of a

complex-scaled Hamiltonian in which the perturbation introduced by the cap has been removed.

Strategies used to obtain accurate values for the resonance parameters that extrapolate the

complex trajectories to the limit of ηc = 0 include the Padé extrapolation procedure [6161], and

the Riss-Meyer iterative correction method [3737]. Combining such correction schemes with a cap

has proven to yield accurate results for the Stark resonance parameters of diatomic molecules,

such as the hydrogen molecular ion in a static electric field [6262] and a low-frequency ac field [6363].

An alternative method to divert the divergent resonance wave functions into the domain of

square integrable solutions is the ecs [3838], in which the Hamiltonian is rotated into the complex

plane at a boundary of the problem. One applies the coordinate transformation

x =


x′ if x′ < x0

eiξx′ if x′ ≥ x0

, (3.3)

in order to carry out an ecs of the x coordinate at the scaling radius x0 with scaling angle ξ < π/2.

The application of the complex scaling in an external region, which keeps the coordinates unscaled

in some range of the potential, avoids the numerical difficulties that arise when the potential has

singularities. This approach, however, imposes explicit discontinuity conditions on the wave

function and its derivatives [3939]. The method of ecs has proven to be useful in acting as a

perfect absorber of the outgoing flux when solving the tdse with strong laser fields [4242]. The
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implementation of a smooth ecs to the radial coordinates of an orbital-dependent Hamiltonian

that represents the H2O valence orbitals is one of the motivations of the current chapter.

3.2 Molecular orbital representation of H2O

The starting point for this study is the hf calculation of the H2O molecular states using a

single-center Slater orbital basis [11, 5151, 5555], applied to collision studies [6464] and compared to

experimental electron spectroscopy [6565]. Accurate descriptions of the molecular structure of H2O

have been obtained by means of the variational hf method using multicentre Slater orbitals

as basis functions [2626, 2727]. However, the direct application of these multicentre orbitals for

strong-field studies implies significant computational and methodological challenges. The exper-

imental ionization energies of H2O can be deduced from photoelectron spectroscopy, but they

are complicated by vibrational level structures and are significantly broadened; quoted values

for the three valence orbitals correspond to ionization energies of 0.68, 0.54, 0.46 for 1b2, 3a1, 1b1,

respectively [6666].

The present work is intended to study the valence mos of H2O, 1b1, 1b2 and 3a1. The wave

functions for the 1b1 and 1b2 mos, which can be approximated as the 2px and 2py oxygen orbitals,

are dominated by a single angular momentum symmetry. The 3a1 mo, on the other hand, consists

mainly of the oxygen 2s and 2pz and the hydrogen 1s atomic orbitals.

The general expression for the basis functions, introduced as a set of single-center wave

functions [11, 5151, 5555], is a Slater-type orbital as defined in Eq. (2.152.15). The expansion coefficients

and nonlinear coefficients {ζi}, determined by Roothaan’s scf method [11, 2323] introduced in

Sec. 2.22.2, are used to construct a reduced form of the radial functions that describe all the

molecular orbitals. More specifically, we are interested in using a reduced sto expansion to

construct an effective potential that describes an H2O bound state as a first step in studying the

response of the H2O valence orbitals when applying an electric dc field along the symmetry axis

(i.e., the z−axis). For the study shown in this chapter, the external dc field is oriented in the

molecular plane, which coincides with the y − z plane. Both geometries are considered, the field

pointing away from the oxygen atom along the centre line passing in between the two hydrogen

atoms, F0 > 0, and the reverse orientation, F0 < 0.

Based on their symmetry properties, independent descriptions of the valence mos of H2O
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are constructed. The dominant components of the 1b1 and 1b2 orbitals, namely the npx and

npy parts, are used to derive spherically symmetric effective orbital-dependent potentials [4444].

A similar procedure is implemented for the 3a1 orbital, in which the npz parts of the mo are

retained. Additionally, the strong asymmetry introduced by the two protons located in the y− z

plane is incorporated in the analysis by including stos of type 2s and 2pz in the orbital expansion

for the 3a1 mo. This extended sto expansion leads to a non-spherical effective potential that

contains the significant admixtures of s−type Slater orbitals in the Moccia sto expansion [11].

3.3 1b1 and 1b2 molecular orbitals

The Schrödinger equation for the bound-state problem of a mo within an effective potential

Veff(r) is expressed in spherical polar coordinates as

[−1
2( ∂

2

∂r2 + 2
r

∂

∂r
) + L̂2

2r2 + Veff(r)]Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ), (3.4)

where L̂2 is the orbital quantum momentum operator. The present study involves the construc-

tion of the effective orbital-dependent potential, Veff(r), extracted from the single-centre Moccia

wave functions [11]. This is followed by the implementation of an ecs [3838] to determine the nu-

merical solution of the problem associated with a mo in the presence of a strong electric dc field

applied along the ẑ−direction [4444]. A schematic representation of the geometry of the system

is shown in Figure 3.13.1, where the orientation of the 1b1 and 1b2 mos is indicated with respect

to the plane where the protons are located. The direction of the applied electric field along ẑ is

included as well.

As a first step in solving Eq. (3.43.4) for the H2O mos, we introduce the reduced single-centre

Moccia wave function,

ψn(r) =
∑
i

cn(ζi)fn(ζi, r), (3.5)

which approximates the mo by an eigenstate of a spherically symmetric potential. The functions

fn(ζi, r) represent the radial part of the Slater orbitals (2.152.15) with |m| = 1 for the magnetic

quantum number, in which the sto expansion is limited to 2px and 2py orbitals, respectively.

The set of expansion coefficients and non-linear coefficients in (3.53.5), indicated in Table 3.13.1,

represents a reduced selection of the expansion parameters given by Moccia for the ground state

of the water molecule [11].
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Figure 3.1: Schematic display of the 1b1 ≈ 2px (shown in yellow along the x axis) and

1b2 ≈ 2py (shown in blue along the y axis) mos. Also indicated (in green on the y − z

plane) is the location of the protons. The z axis (in red) is the direction of the external

electric field of strength F0. As indicated in the text, positive values of F0 correspond

to the external field pointing from the oxygen towards the hydrogen atoms; negative

values of F0 correspond to a field pointing from the hydrogen atoms towards the oxygen

atom.

In order to determine the effective potential corresponding to each mo, the wave function (3.53.5)

is inserted into the single-electron Schrödinger equation (3.43.4), which is then solved for V (1)
eff (r).

Afterwards, the so-called Latter correction [4444, 6767] is applied to ensure that the effective potential

converges asymptotically to −1/r, as expected in a Coulomb potential:

Veff(r) =


V

(1)
eff (r) for r < r0

−1/r for r > r0

, (3.6)

where the point r0 is determined from V
(1)

eff (r0) = −1/r0, and is found to be sufficiently large

that the original scf orbital energy used to derive V (1)
eff (r) is close to the eigenenergy of (3.43.4),

with at least two significant digits of agreement, with Veff(r) given by (3.63.6).

Figure 3.23.2 shows a comparison of the effective potential V (1)
eff (r) (solid lines), with black

representing the 1b1 mo and blue representing the 1b2 mo, derived from the Moccia wave functions

representing the 1b1 and 1b2 mos [11], and the transformed electronic potential Veff(r) (dashed

lines) after the Latter correction was implemented. The effective potentials for the 1b1 and 1b2
mos are given as the shallower and deeper curves, respectively. As Figure 3.23.2 illustrates, one

drawback of the method is that the effective potential is orbital dependent. A direct consequence
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Figure 3.2: Electronic effective potential in atomic units for the 1b1 ≈ 2px (black)

and 1b2 ≈ 2py (blue) mos of the H2O molecule. The solid lines give the potential as

derived from (3.43.4) using the scf orbitals and eigenenergies, while the dashed lines show

the potentials after the Latter correction is applied. The dot-dashed lines indicate the

eigenenergies obtained from the Moccia wave functions [11].
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Table 3.1: Expansion coefficients and nonlinear coefficients for the 1b1 and 1b2 mos of

H2O. The parameters used in our reduced sto expansion are indicated as included.

(n, l,m) ζi c1b1
nlm c1b2

nlm

(2, 1, 1) included 1.510 0.72081 –

(2, 1, 1) included 2.440 0.11532 –

(2, 1, 1) included 3.920 0.24859 –

(3, 2, 1) excluded 1.600 0.05473 –

(3, 2, 1) excluded 2.400 0.00403 –

(4, 3, 1) excluded 1.950 0.00935 –

(4, 3, 3) excluded 1.950 −0.02691 –

(2, 1,−1) included 1.510 – 0.88270

(2, 1,−1) included 2.440 – −0.07083

(2, 1,−1) included 3.920 – 0.23189

(3, 2,−1) excluded 1.600 – 0.25445

(3, 2,−1) excluded 2.400 – −0.01985

(4, 3,−1) excluded 1.950 – 0.04526

(4, 3,−3) excluded 1.950 – −0.06381

is that the value of r = r0, which sets the position in r where the Coulombic tail is imposed,

differs between the mos, being almost two times larger for the 1b2 compared to the 1b1 mo.

3.3.1 PDE approach and exterior complex scaling

This section discusses further the formalism implemented to calculate the relevant resonance

parameters in the problem of the H2O molecule exposed to a strong dc field. Having obtained

an effective potential to define the field-free Schrödinger equation (3.43.4) for an orbital obtained

in the scf method [11], we proceed with the problem of the molecule ionized by a strong dc field.

When an electric field is applied in the ẑ direction, F = F0ẑ, the separation of variables
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ansatz as applied to the Schrödinger equation (3.43.4)

Ψ(r, θ, ϕ) = Ψ(r, θ) exp(imϕ) (3.7)

leads to a pde in spherical coordinates that represents the Stark problem for an H2O orbital:

−1
2
∂2Ψ
∂r2 −

1
2r2 (cos θ

sin θ
∂Ψ
∂θ

+ ∂2Ψ
∂θ2 ) + ( m2

2r2 sin2 θ
+ Veff(r)− E + F0r cos θ)Ψ = 0. (3.8)

Here the complex eigenenergy E contains the information about the resonance position (real

part), i.e., ER and width Γ (imaginary part is −Γ/2) as indicated in Eq. (3.13.1). For the 1b1 and

1b2 mos, which are formulated as linear combinations of 2px and 2py orbitals, respectively, we

have |m| = 1 in Eq. (3.83.8). The presence of the effective potential Veff(r) makes this problem

challenging in the sense that it is not possible to obtain separable solutions like for the hydrogen

atom in which a pure Coulomb potential leads to separability in parabolic coordinates, as was

discussed in [22]. It is then necessary to generate a more general solution by solving the pde

numerically, e.g., by applying a finite-element method.

The ionization regime of the water molecule is described by means of a non-Hermitian Hamil-

tonian that reveals discrete resonance eigenvalues containing information about the quasibound

states that tunnel through the barrier or escape over the potential barrier for strong fields. Among

the different techniques implemented in the study of atomic resonances, a standard tool is the

method of complex scaling [3636, 6868, 6969] introduced in Chapter 11.

For most phenomenological potentials, such as molecules with fixed internuclear distances, a

modified method of scaling is required as an extension to cases where the potential is analytic only

outside some bounded region. In these cases, the approach of ecs [3838] is more appropriate, as

the potential needs to have analyticity properties only in the region affected by the scaling, where

one can look for solutions which decay exponentially in the asymptotic region of the potential.

Approaches of complex scaling have been widely used in scattering problems [3636, 6969], in studies

of the Stark problem for multi-electron systems [3939, 4040], as well as in tdse problems for strong

fields [4242, 4343, 7070].

For our aim of studying the field ionization properties of H2O orbitals, we implement a

modified ecs technique in which the radial coordinates are extended into the complex plane

by a phase factor, which is turned on gradually beyond some distance from the origin. This

method allows us to address the tunnelling and over-barrier ionization problem by avoiding the
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Figure 3.3: Scaling function corresponding to χs = 0.8 rad, rs = 13 a.u., and 1/∆r =

1.3 a.u.

complication of describing quasibound states with outgoing waves for r → ∞. In the present

work, the complex scaling transformation is given by

r → r exp(iχ(r)), (3.9)

where χ is defined as a function of the r coordinate with the purpose of making the scaling

gradually effective from some vicinity of r = rs on,

χ(r) = χs

1 + exp[− 1
∆r (r − rs)]

. (3.10)

For given rs one has to choose ∆r to be sufficiently small, so that the function χ(r) starts from

small values at r = 0. For large r, it converges to the value χs. Figure 3.33.3 illustrates the scaling

function χ(r) that corresponds to the set of (χs, rs,∆r) values used in the numerical calculations

of the dc Stark parameters for the H2O valence orbitals.

The set of possible values for the asymptotic scaling angle χs and the parameters rs and

∆r, which control where and how quickly the scaling is turned on, is explored in detail in order

to establish how sensitive the pde solutions are and to test the effectiveness of the complex

scaling technique to absorb the outgoing wave. Numerous tests were carried out to ensure

21



that the numerically “exact” results of Telnov [22] for atomic hydrogen orbitals including 2p are

reproduced.

In order to investigate the effects of the dc field on the H2O orbital energies it is necessary

to consider the extra terms that the ecs (3.93.9) introduces in the Schrödinger equation (3.83.8).

Additionally, we need to turn the scaling on only in the regime r > r0, as Eq. (3.63.6) indicates,

such that we have a simple Coulomb potential in the scaling region. In order to make use of

standard finite-element methods, the complex-valued wave function is separated into real and

imaginary parts, such that a system of coupled differential equations is obtained as follows [4444]:

−1
2
∂2ΨR

∂r2 −
1

2r2 (cos θ
sin θ

∂ΨR

∂θ
+ ∂2ΨR

∂θ2 )

+( m2

2r2 sin2 θ
+ V R

eff(r)c2 − V I
eff(r)s2 − ERc2 + EIs2 + F0r cos θc3)ΨR

+(−V R
eff(r)s2 − V I

eff(r)c2 + ERs2 + EIc2 − F0r cos θs3)ΨI = 0,

−1
2
∂2ΨI

∂r2 −
1

2r2 (cos θ
sin θ

∂ΨI

∂θ
+ ∂2ΨI

∂θ2 )

+( m2

2r2 sin2 θ
+ V R

eff(r)c2 − V I
eff(r)s2 − ERc2 + EIs2 + F0r cos θc3)ΨI

+(V R
eff(r)s2 + V I

eff(r)c2 − ERs2 − EIc2 + F0r cos θs3)ΨR = 0. (3.11)

The labels R and I stand for real and imaginary parts, respectively; also, the notation [ck, sk]

is introduced to represent [cos[kχ(r)], sin[kχ(r)]], respectively, with k = 2, 3 and χ(r) defined

in (3.103.10). Note that the effective potential has real and imaginary parts on account of the

coordinate transformation (3.93.9).

The pde system (3.113.11) is solved numerically on a rectangular mesh defined by the (r, θ)

coordinates, which take values in the domains ε < r < rmax and η < θ < π− η, respectively. The

parameters ε and η, that limit the coordinate ranges to avoid singularities at the origin, were

chosen to be of the order of 10−3 a.u., and the r coordinate extends to rmax = 20 a.u. In order

to find a correct set of ΨR(I)(r, θ) solutions, it is essential to impose proper boundary conditions

that ensure the wave functions vanish at the limits of the mesh. For the |m| = 1 states we impose

the condition ΨR(I)(ε, θ) = ε sin(θ) = εP 1
1 (θ), which is consistent with the assumption that at

small r = ε the lowest term in an expansion in associated Legendre polynomials dominates and

behaves like Ar2 sin(θ).

A two-parameter root search for {ER, EI} is implemented by solving the pde as if it were an
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inhomogeneous problem. We pick a location in the (r, θ) plane where the probability amplitude

is expected to be large and vary {ER, EI}, i.e., effectively the complex energy E to maximize the

amplitude.

3.4 3a1 molecular orbital

In this section we extend the approach to study the dc Stark problem for the 3a1 mo of H2O.

Given the orientation of this orbital with respect to the plane in which the two protons are located

it is deemed necessary to go beyond the spherical effective potential approximation, which was

implemented in Sec. 3.33.3 for the 1b1 and 1b2 orbitals, in order to take into account the strong

asymmetry introduced by the protons in the y−z plane and the significant admixtures of s−type

Slater orbitals in the stos [11].

The proposed method to address this problem is to define a reduced single-centre Moccia

wave function,

Ψ3a1(r, θ) =
∑
n,l

cnl0ϕnl(r, θ). (3.12)

Here the ϕnl(r, θ) are Slater orbitals with m = 0 for the magnetic quantum number, and we

limited the expansion to stos of 2s and 2pz type. The parameters are given in Table 3.23.2 and

three 2pz orbitals are mixed with three 2s-type orbitals. This set of coefficients represents a

reduced selection of the expansion parameters given by Moccia for the ground state of the water

molecule [11] also shown in Table 3.23.2.

The probability densities for the 3a1 orbital as obtained from the reduced expansion (3.123.12)

and from the Moccia self-consistent results are shown in Figures 3.4a3.4a and 3.4b3.4b, respectively. The

protons (in red) lie in the y − z plane. As Fig. 3.4a3.4a indicates, the contributions to the density

of the 2s−type states reproduce the proper dependence of the 3a1 probability density with the

polar angle θ, as the broader hump is located on the negative z−axis in the same way as in the

complete Moccia representation shown in Fig. 3.4b3.4b.

In order to illustrate the fraction of the full Moccia expansion that our reduced wave func-

tion (3.123.12) represents, the projections of the probability densities over the x− y plane are shown

as contours of constant density in Figure 3.53.5, for the height where the protons are located. From

the complete Moccia representation of the 3a1 mo (in dashed lines), one observes that the loca-
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Table 3.2: Expansion coefficients and non-linear coefficients for the 3a1 mo. The

parameters used in our reduced sto expansion are indicated as included.

(n, l,m) cnlm ζi

(1, 0, 0) excluded −0.00848 12.600

(1, 0, 0) excluded 0.08241 7.450

(2, 1, 0) included 0.79979 1.510

(2, 1, 0) included 0.00483 2.440

(2, 1, 0) included 0.24413 3.920

(2, 0, 0) included −0.30752 2.200

(2, 0, 0) included −0.04132 3.240

(2, 0, 0) included 0.14954 1.280

(3, 2, 0) excluded 0.05935 1.600

(3, 2, 0) excluded 0.00396 2.400

(3, 2, 2) excluded −0.09293 1.600

(3, 2, 2) excluded 0.01706 2.400

(4, 3, 0) excluded −0.01929 1.950

(4, 3, 2) excluded −0.06593 1.950

tion of the protons (shown as red circles) has an influence on the shape of the upper lobe in the

probability density, i.e., it introduces dependence on the azimuthal angle ϕ. In our simplified

expansion, where only l = 0, 1 and m = 0 parts were included (shown with solid lines), the

probability density misses to represent the proper azimuthal dependence that follows from the

m 6= 0 parts.

The non-spherical effective potential corresponding to the sto expansion (3.123.12), Veff(r, θ), is

obtained from the Schrödinger equation in spherical polar coordinates,[
−1

2∇
2 + Veff(r, θ)

]
Ψ3a1(r, θ) = E3a1Ψ3a1(r, θ). (3.13)

For given E3a1 and ψ3a1(r, θ), an effective potential Veff(r, θ) can be constructed from Eq. (3.133.13)

as described in Sec. 3.4.13.4.1. In order to use this potential to define a Hamiltonian for the 3a1
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(a) Simplified 3a1 orbital (b) Full Moccia 3a1 orbital

Figure 3.4: Schematic display of the 3a1 mo (shown in blue along the z axis) used to

construct Veff(r, θ). The orbital obtained from a reduced expansion in stos is shown

in (3.4a3.4a), and the complete Moccia orbital is shown in (3.4b3.4b). Also indicated (in red in

the y− z plane) is the location of the protons. The ẑ−axis is the direction along which

the external electric field of strength F0 is applied.

orbital in an electric field, an asymptotic Latter correction needs to be applied.

Other strategies for finding an effective potential could be pursued, such as using a density

functional, inserting the Moccia wave function, and then performing an azimuthal angle average.

Ultimately, one would like to extend density functional theory (dft) from finding ground-state

energies to obtaining resonance positions and widths. This might be feasible using a combination

of time-dependent dft and Floquet theory. Floquet formalism provides a solution for the peri-

odically time-dependent Hamiltonian of a system that interacts with an external electromagnetic

field. The solution to the tdse is formulated in terms of stationary states by means of a Fourier

expansion, which obey a system of time-independent coupled differential equations [6363, 7171]. The

goal of the present work is more modest: we calculate the response of an isolated mo in a simple

approximation. Recently, the problem of small molecules in a dc field has revealed the effect

of electron-electron interactions on Stark resonance parameters [4040]. It will be interesting to

observe such effects for the water molecule in future work.
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Figure 3.5: Projections of the probability densities for the 3a1 orbital on the x−y plane.

The simplified sto expansion is shown by continuous blue lines, and the full Moccia

expansion is represented by black dashed lines. The proton locations are indicated as

red circles. The chosen contour values are 0.5, 0.3, 0.2, 0.1 starting from the innermost

contour.
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3.4.1 Interpolation and Latter correction of the non-spherical effective potential

The non-central effective potential, Veff(r, θ), leads no longer to an orbital of (l,m) symmetry for

the case of the 3a1 orbital. This reflects the geometry of the problem as a consequence of the

location of the protons. The use of this more general potential implies that the so-called Latter

criterion [6767], which ensures the proper asymptotic behaviour of the potential, V (r)→ −1/r as

r →∞, is not as straightforward to implement as in the case of the spherical potential discussed

in Sec. 3.33.3, where the correction applies beyond a determined r value [4444]. In this case, the

correction must be implemented in the r− θ plane, by defining a θ−dependent boundary beyond

which the potential obtained from (3.133.13) rises above −1/r in the asymptotic region [4545].

The θ coordinate is fixed at two extreme positions, such as θ = 0 and θ = π, in order to find

the corresponding r values r0 and rπ, for which Veff(r, θ) = −1/r is satisfied, then we interpolate

between them by introducing the θ−dependent function

rmatch(θ) = r̄ − (rπ − r̄) cos θ, (3.14)

where r̄ = (r0 + rπ)/2. With this approach we redefine the effective potential to be the non-

central potential derived from the reduced Moccia wave function using Equation (3.133.13) when

r < rmatch(θ), and −1/r otherwise.

The weighted functions used to construct the Moccia orbitals [11] imply a potential difficulty

in our problem. Since these functions are not exact solutions of the Schrödinger equation but

were obtained from the variational principle by implementing a self-consistent calculation [5151],

there may be regions in the (r, θ) domain where Ψ3a1(r, θ) vanishes, whereas its second derivative

remains finite; this produces a nodal line in the electronic potential. Thus, finding a potential

for which our approximate wave function satisfies a Schrödinger equation represents an intricate

problem.

It turns out that the nodal region is so narrow that when solving the Schrödinger equation the

kinetic energy term dominates and it is possible to obtain a solution that remains close to that

obtained by the hf method [11], regardless of the fact that there is a region where the effective

potential might diverge.

The probability density exhibits two humps indicating the positions of the protons, which

is consistent with Figure 3.43.4, and the effects of the mixing with the s−state. One may argue
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Figure 3.6: Contour plots of the scaled probability density, |Ψ3a1 |2r2 sin(θ)/(2π), for

the 3a1 mo. The orbital density constructed from the reduced sto expansion is shown

in (3.6a3.6a), while the solution obtained from the non-spherical Veff(r, θ) with Latter cor-

rection is shown in (3.6b3.6b) along with a dotted line indicating where the Latter correction

acts. Starting from the innermost contours the contour values are 0.45 . . . 0.05 for the

upper density lobes and 0.2 . . . 0.05 for the lower density lobes, in steps of 0.05.

that one of the reasons this nodal region in the potential does not have a negative impact on the

results is due to the way the 3a1 orbital responds to the effective potential by avoiding this region,

its probability density being distributed as shown in Figure 3.63.6. A numerical interpolation of

Veff(r, θ) is implemented in order to ensure it continues smoothly over this problematic region.

The interpolation is achieved by collecting data from the evaluation of the potential on two

sections of the (r, θ) grid in the vicinity of the nodal line, where the potential takes on finite

values. Then, a numerical interpolation was carried out between those regions in order to obtain

a continuous function, V intp
eff (r, θ), on the two-dimensional grid. The Latter correction is applied

to the interpolated potential and the effective potential is defined as

Veff(r, θ) =


V intp

eff (r, θ) for r < rmatch(θ)

−1/r for r > rmatch(θ)
. (3.15)

Figure 3.6a3.6a shows the probability density for the 3a1 mo as a contour plot in the r− θ plane

as obtained from the reduced Moccia expansion in stos (3.123.12). Figure 3.6b3.6b shows the same

for the solution of the Schrödinger equation (3.133.13) using the interpolated Veff(r, θ), defined in

Equation (3.153.15), with the Latter correction [6767] applied in the asymptotic r−region.
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The effective potential (3.153.15) results in the probability density shown in Figure 3.6b3.6b and yields

an orbital energy of −0.5579 a.u. for the 3a1 mo, with a relative change of 0.32% in comparison

with the self-consistent result of Moccia [11] of −0.5561 a.u..

As Figure 3.6b3.6b indicates, the implementation of the Latter correction to the orbital-dependent

potential obtained from Equation (3.133.13) introduces a slight re-adjustment of the density, with

a somewhat higher probability density in the region 0 < θ < π/2. The probabilities for finding

the electron at π/2 < θ < π is 66.2% before the Latter correction is applied (Figure 3.6a3.6a) and

becomes 63.5% for the case shown in Figure 3.6b3.6b.

3.4.2 Exterior complex scaling

For our aim of computing the resonance parameters that describe the tunnelling process, a

modified ecs to the radial coordinates was implemented. As was described in Sec. 3.3.13.3.1, the

r−coordinate is extended into the complex plane by the phase function χ(r), Eq. (3.103.10), with r

replaced by r∗ = r exp[iχ(r)]. The phase function χ(r) is chosen to be very small for r values

smaller than the Latter radius r̄. It then turns on from nearly zero to reach an asymptotic value

χs at r−values just outside where the Latter correction is applied, i.e., rs > rmatch. By means

of the phase function χ(r), we are implementing a smooth exterior scaling [6060] in which the

transition from a non-scaled region to the scaled region in the complex plane occurs in a gradual

fashion. Applying such a smooth scaling is an alternative approach to the exterior scaling, and

avoids the numerical difficulties that arise when a discontinuity in the wave function and its

derivative need to be defined at the scaling radius [4242].

A non-Hermitian Hamiltonian results from considering the additional terms that the modified

complex scaling to the radial coordinates introduces in the Schrödinger equation. The complex

wave function is separated into real and imaginary parts, ΨR(I), such that the problem of describ-

ing the ionization regime of the 3a1 mo under an external dc field applied along the orientation

axis of the orbital is expressed in terms of a system of partial differential equations for the

real and imaginary parts of Ψ̃(r, θ) in spherical polar coordinates given explicitly as Eq. (3.113.11).

Schematically, the equations are extensions of the field-free Schrödinger equation (3.133.13) and
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ψ̃(r, θ) satisfies [4545][
−1

2∇
2 + Veff(r, θ)± F0z

]
Ψ̃(r, θ) = (ER − iΓ/2)Ψ̃(r, θ), (3.16)

where ER is the resonance position and Γ the width. The z−coordinate, in spherical coordinates

z = r cos θ, is also scaled into the complex plane. Compared to Eq. (3.133.13), the Hamiltonian in

Eq. (3.163.16) contains the interaction with the external field and complex scaling is responsible for

the replacement E3a1 → ER − iΓ/2; while Ψ̃(r, θ) remains square integrable.

The domains of r and θ values are restricted to the intervals ε < r < rmax and η < θ < π− η,

with typical values ε = 10−2 a.u., η = 10−2, rmax = 28 a.u. In the limit of low field strengths,

i.e., F0 = 0.05 a.u., 0.06 a.u., the value of rmax was increased to 40 a.u. in order to ensure the

outer turning points lie inside the grid, as the tunnelling barrier extends to larger r.

The problem of finding a solution of the Schrödinger equation for the 3a1 mo with contribu-

tions of 2s and 2p−type states requires a set of boundary conditions that describes the properties

of the orbital on the grid. In contrast with the numerical solutions obtained for the 1b1 and 1b2
mos of H2O [4444], Neumann boundary conditions are implemented for the angular coordinate θ in

order to obtain an eigenstate and orbital energy consistent with the variational results [11]. This

choice of boundary conditions, that the derivative with respect to θ vanishes at the limits of the

mesh (θ = 0 and θ = π), leads to solutions ΨR(I)(r, θ) with a probability density consistent with

the θ−dependence of the 3a1 orbital, as shown in Figure 3.63.6.

3.5 Partial-wave method with a complex absorbing potential

The problem of Stark resonances for the H2O molecule is treated with a partial-wave expansion

approach [7272] in which the starting point involves a three-centre model potential that was initially

introduced to simulate the structure of the water molecule in a study of ion collisions with

water molecules [7373], and was later used in numerical calculations of the tdse for proton-water

collisions [44]. The field-free problem is addressed as well in a convergence study of the orbital

energies for the three H2O valence orbitals, namely 1b1, 1b2 and 3a1, in terms of the partial wave

expansion limits. The results are contrasted with a previous calculation that includes the model

potential and Gaussian-type basis [44].

The model potential is formulated as a superposition of three spherical potentials, that rep-
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resent the oxygen atom, and the two hydrogen atoms of the water molecule at the equilibrium

configuration determined by hf calculations [44], it has the form

Vmod =VO(r) + VH(r1) + VH(r2)

VO(r) =− 8−NO
r

− NO
r

(1 + αOr) exp(−2αOr)

VH(rj) =− 1−NH
rj

− NH
rj

(1 + αHrj) exp(−2αHrj),

(3.17)

where αO = 1.602, αH = 0.617 are screening parameters, rj indicates the electron position

relative to either proton (j = 1, 2), and the electron density ‘charge parameters’ were chosen as

NO = 7.185 and NH = (9−NO)/2 = 0.9075 for three highest occupied mos of H2O.

The following ansatz in spherical polar coordinates is introduced for the wave function

Ψ(r, θ, φ) =
lmax∑
l=0

l∑
m=−l

ulm(r)
r

Y m
l (θ, φ), (3.18)

where Y m
l represents the complex-valued spherical harmonics. The numerical problem then

consists of obtaining the ulm(r) solutions by solving coupled ordinary differential equations.

The partial-wave expansion approach for the hydrogen potentials is implemented as follows.

The potential for one hydrogen atom placed on the ẑ axis with distance Rj from the oxygen core,

as indicated in the model potential (3.173.17), is expressed as an expansion in terms of Legendre

polynomials, such that for an axially symmetric O−H problem one has [7272]

VH(rj) ≈
λmax∑
λ=0

Vλ(r)Pλ(cos θ), (3.19)

where the channel potentials Vλ(r) are obtained by projecting VH(rj) onto Legendre polynomials.

The hydrogen atom is then rotated into the position consistent with the H2O geometry using the

addition theorem for spherical harmonics

Pλ(cos θ) = 4π
2λ+ 1

λ∑
µ=−λ

Y µ
λ (r̂′)Ȳ µ

λ (r̂′′), (3.20)

where cos θ = r̂′ · r̂′′. As a result, the hydrogen components of the model potential (3.173.17) are

expressed as partial-wave expansions in (r, θ, φ) coordinates. The orientations defined by θ′

correspond to one half of the opening angle, 52.2 degrees, for each hydrogen atom, respectively,

and the azimuthal angles are φ′1 = π/2 and φ′2 = 3π/2 in accordance with the geometry described
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in [11]. A truncated potential of the form [7272]

VH(r, θ, φ) =
λmax∑
λ=0

4π
2λ+ 1Vλ(r)

λ∑
µ=−λ

Y µ
λ (θ, φ)Ȳ µ

λ (θ′, φj) (3.21)

is then obtained for each hydrogen atom.

The partial-wave model potential that results from inserting the expansion (3.213.21) into the

H2O model potential introduced in (3.173.17) leads to a system of coupled radial equations of the

form [7272]

−
u′′l,m(r)

2 + l(l + 1)
2r2 ul,m(r) + VO(r)ul,m(r) +

∑
l′,m′

Rl
′,m′

l,m (r)ul′,m′(r) = εul,m(r), (3.22)

in which the matrix elements Rl
′,m′

l,m (r) contain the potentials of the hydrogen atoms as partial-

wave expansions, and are evaluated by means of Gaunt integrals [7272]. The quantum numbers

l,m satisfy l = 0, . . . , lmax, and −l ≤ m ≤ l. The reference frame used in this approach places the

oxygen atom at the origin of coordinates, hence the oxygen potential in (3.223.22), VO(r), represents

the spherically symmetric potential introduced in the model potential (3.173.17).

Once a partial-wave potential has been generated for each hydrogen atom one can proceed

to calculate the eigenvalues for the field-free problem. The computation of numerical solutions

for the coupled equations for the different (l,m) channels is carried out using Mathematica’s

ndeigensystem package, which implements a finite-element mesh to represent the coupled ordi-

nary differential equations (3.223.22).

The n−channel problem to obtain the energy eigenvalues is addressed in the following man-

ner: given a set of different initial conditions and a trial energy value, the system of coupled

equations (3.223.22) can generate n independent solutions that are propagated to a given endpoint

at large r where one can build a determinant of the solutions that is ultimately minimized in

an iterative process to find the optimal combination of solutions that leads to a zero, or small

valued, determinant. Ultimately, one wants to find the energy eigenvalue associated to the overall

solution that is bound at some outer radius, i.e., that evaluates to zero or a very small value at

large r. As the number lmax grows, the number of (l,m) channels increases noticeably and the

problem of finding a numerical solution to (3.223.22) becomes more sensitive to propagated errors,

it is necessary in theses cases to increase the working precision of the calculations.
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The dc-field ionization problem to determine the Stark resonances for the H2O valence orbitals

under an external field applied along the ẑ-direction is stated by including the external field

potential in the Schrödinger equation. The resulting equation takes the form [7272][
−1

2∇
2 + V (r, θ, φ)− F0r cos θ

]
Ψ(r, θ, φ) = EΨ(r, θ, φ), (3.23)

where V (r, θ, φ) is the model potential (3.173.17) in which the potential for each hydrogen atom

is expressed as a truncated expansion of the form (3.213.21). The energy E is complex-valued as

indicated in Eq. (3.13.1). A quadratic cap of the form (3.23.2) is applied to the system of coupled

differential equations in order to determine the complex eigenvalues that result from the effect of

the external dc field. The Stark problem presents a higher numerical challenge than the field-free

one, in this case we are looking for a solution in the complex plane and the determinant to be

minimized is a complex number, which implies that the condition of convergence to zero should

be applied to its norm.

The radius rc in (3.23.2) indicates the beginning of the region where the cap turns on. In order

to avoid oscillating outgoing waves in the numerical solutions, it is a good practice to turn the

cap on at distances where the partial-wave potential (3.213.21) has reached its simple asymptotic

form. This condition is satisfied for r > 12 a.u. with great accuracy. The parameter ηc indicates

the strength of the cap. Ideally, the parameter ηc should be a small number in order to have a

small artifact introduced to the system of equations. However, it is important to keep in mind

that when ηc → 0 numerical errors may increase. Ultimately, the artificial term introduced by

the cap needs to be removed from the results in order to obtain the resonance parameters [3737].

The complex eigenvalues that result from applying the cap (3.23.2) to the system of coupled

equations (3.233.23) are computed according to the following scheme. For a given field strength, F0,

a set of complex eigenvalues is computed for an equidistant mesh of strength parameters, e.g.,

ηc = n× 10−3 for n = 20, . . . , 70. These results are interpolated to a sixth-order polynomial as a

function of ηc, and then the optimal η value is calculated according to the Riss-Meyer correction

scheme [3737], which is implemented up to second order.

According to the Riss-Meyer scheme [3737], the effects of the cap can be removed by means of

an iterative correction scheme based on perturbation theory, in which the n-th order corrected
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energy can be expressed as a truncated Taylor expansion of the form

E(n) = E(n)(η̃) = Efb(η̃) +
n∑
j=1

(−η̃)j

j!
djEfb
dηj

∣∣∣∣∣
η=η̃

, (3.24)

where Efb stands for the finite-basis trajectory of eigenvalues obtained on the η−grid, and η̃

is the optimal value of the cap strength at which the total error of approximating the exact

resonance energy is minimal. This optimal value depends on the order of the correction scheme.

Assuming that the next higher order corrected energy is a sufficiently good approximation to the

exact resonance energy, the condition to determine the optimal η̃ can be expressed as [3737]∣∣∣∣∣ ηn+1

(n+ 1)!
dn+1Efb
dηn+1

∣∣∣∣∣
η=η̃

= min, n = 0, 1, 2, 3. (3.25)

The nth order Riss-Meyer correction can be interpreted as removal of the artifact provided by

the cap by nth order perturbation theory.

As an illustrative example, the trajectory of complex eigenvalues as a function of the cap

strength for a partial-wave calculation with lmax = 3 for the 3a1 mo is shown in Figure 3.73.7 for a

field intensity of F0 = −0.1 a.u.. The blue circles indicate the eigenvalues corresponding to the

range of ηc values [0.003, . . . , 0.06] of the cap parameter in steps of ∆ηc = 10−3. The results were

obtained using Mathematica’s ndeigensystem finite-element solver. The trajectory is smooth for

larger values of ηc, but it shows remarkable variation at small ηc (on the left in Fig. 3.73.7). This

demonstrates the above mentioned difficulty in solving the Schrödinger equation when ηc → 0.

The stabilization point (n = 0) is shown as a red cross, and the complex energy values at the

accumulation points for n = 1, 2 of the Riss-Meyer iterative correction scheme (equations (3.243.24)

and 3.253.25)) are shown as green and magenta crosses, respectively. These n = 1, 2 perturbatively

corrected energies fall below the curve and are in close proximity to one another. Looking at the

trajectory of complex eigenvalues and the locations of the stabilized value (n = 0) as well as the

corrected values to first and second order in perturbation theory (n = 1, 2), it can be noticed

that the cap results shown in Figure 3.73.7 agree up to three significant digits, both in resonance

position and width.
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Figure 3.7: Trajectory of complex eigenvalues as a function of ηc (blue circles) corre-

sponding to an lmax = 3 calculation of the 3a1 mo. The energy corresponding to the

ηc stabilization value (n = 0 in Eqs. (3.243.24) and (3.253.25)) is shown with a red cross. The

first and second order Riss-Meyer corrected energies (n = 1, 2 in Eqs. (3.243.24) and (3.253.25))

are indicated as green and magenta crosses, respectively. The electric field strength is

−0.1 a.u.
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3.6 Stark resonance parameters

Sections 3.6.13.6.1 and 3.6.23.6.2 present the numerical results for the physical parameters of interest,

namely the resonance position, ER, and width, Γ = −2EI , that characterize the tunnelling

process of the quasi-stationary state when an external electric dc field is applied along the ±ẑ

directions. The system of partial differential equations (3.113.11) is solved for a set of field strength

values, F0, as if it were an inhomogeneous problem. In the vicinity of a location in the (r, θ)

plane in which the probability amplitude is expected to be large, a two-parameter root search is

implemented in order to determine ER, EI , the complex energy that maximizes the probability

density amplitude in the 2d−grid.

A study of the influence of a set of numerical parameters involved in the two-dimensional

problem (3.113.11) on the complex eigenvalue ER + iEI , which describes the ionization process as

an exponential decay in time in terms of resonance position and half-width, is carried out. In

addition to testing the code against known results for atomic hydrogen [22], a systematic study

of the results for the H2O valence orbitals against a number of parameters is performed in order

to assess their accuracy. One parameter concerns the limiting resolution with which the finite-

element method proceeds (the maxcellsize parameter in the Mathematica 10 implementation of

ndsolve, denoted as ∆). For values ∆ < 0.02 a.u. we find stability in the eigenvalues (real and

imaginary parts) of two-three significant digits. For the results quoted in Secs. 3.6.13.6.1 and 3.6.23.6.2,

the more stringent criterion of ∆ = 0.01 a.u. is applied.

The second parameter analyzed in this chapter is the range where the complex scaling function

sets in, i.e., rs and ∆r in Eq. (3.103.10). For the scaling method to work the scaling is required to set

in for r > r0, where the effective potential represents a simple Coulomb tail, which in practice is

satisfied by rs > 2r0. Additionally, the condition ∆r < 2 a.u. is needed to guarantee a smooth

turn-on of the scaling in this region. Small values of ∆r pose challenges for the automated

finite-element method, since in the limit of ∆r → 0 one would need to implement the derivative

discontinuity in the solution as discussed by Scrinzi [4242]. It has been discussed in the literature

that implementing this smooth exterior scaling of the coordinates into the complex plane is

equivalent to adding a cap to the Hamiltonian [7474, 7575]. We find stable results for the real

and imaginary parts of the eigenenergies at the level of three significant digits for the range

10 < rs < 15 a.u. Larger values would require an increase in the computational domain beyond
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Figure 3.8: Resonance position as a function of the external field strength F0 for the

1b1 (red circles) and 1b2 (blue triangles) mos of H2O.

r = 20 a.u.

Another systematic that is explored is the choice of the ultimate scaling angle reached at

large r, namely the value of χs in (3.103.10). For an accuracy demand of three significant digits, and

the other parameters chosen in the ranges described above stability in the resonance widths is

achieved for 0.6 < χs < 1.2 rad.

Finally, in Section 3.6.33.6.3 we discuss the results of the partial-wave expansion method intro-

duced in Sec. 3.53.5 for a model potential that simulates the structure of the H2O molecule [7373].

The partial-wave approach is combined with a quadratic cap in order to study the effects of an

external dc field. The angular momentum basis in the model potential expansion is truncated

at lmax = 2 and lmax = 3 including all the associated m values. The resonance positions and

widths are obtained from the complex eigenvalues associated with the non-hermitian analysis of

the system of radial equations (3.223.22) introduced by the cap.
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Figure 3.9: Resonance width as a function of the external field strength F0 for the 1b1
(red circles) and 1b2 (blue triangles) mos of H2O. For comparison, atomic hydrogen

H(1s) ionization rates from Refs. [22, 33] are shown as crosses. For weak fields one

observes a tunnelling regime with ‘threshold’ field strengths where the ionization rate

rises quickly with F0.
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3.6.1 1b1 and 1b2 molecular orbitals

Figure 3.83.8 shows the resonance position ER as obtained from the present calculations for the

weakly bound 1b1 and the strongly bound 1b2 valence orbitals as a function of applied electric

field strength F0. In the limit of zero field the calculation reproduces the scf eigenvalues of

Moccia [11]. The field has to be strong (in comparison with atomic hydrogen results for 2p

orbitals [22]) in order to change the resonance position appreciably. For the more deeply bound

1b2 orbital the shift in resonance position saturates with field strength.

In Figure 3.93.9 the resonance widths are shown for both orbitals as functions of external field

strength F0. The graphs display threshold behaviour at the weaker field strengths. As expected,

we find a lower threshold (critical field strength) for the more weakly bound 1b1 orbital. Inter-

estingly, however, at a field strength of about F0 = 0.3 a.u. the values for the widths cross; that

is, the more deeply bound 1b2 orbital displays a larger ionization rate as the field strength is

increased further.

Also shown in Figure 3.93.9 are the widths for the H(1s) orbital from Refs. [22, 33]. They can be

compared to the 1b1 orbital results, since the binding energy is very close in the free-field limit.

Since the tunnelling barrier is mostly in the asymptotic regime where the potential energy has

a −1/r tail, it is not surprising that the widths for H2O(1b1) and H(1s) share some similarity

in shape. In the tunnelling region H(1s) has an ionization rate that is larger by about an order

of magnitude. In the over-barrier regime, however, the ionization rates approach each other to

within a factor of 3. Reasons for why the 1b1 water mo is harder to ionize than H(1s) have to do

with the different shape of the orbital density (m = 1 vs the spherical H(1s) density), and the

substantially more attractive potential at shorter distances.

An examination of contour plots of the densities Ψ∗Ψ, as well as of the potential energies

Veff −F0z for different field strengths (both as a function of r, θ), allows us to make the following

observations. For field strengths F0 < 0.1 a.u. there is a barrier the electrons need to penetrate

in order to be ionized, which is longer for the more deeply bound 1b2 orbital. This explains why

the ionization threshold occurs for F0 > 0.1 a.u. for this orbital, which is about a factor of 2

larger than for the 1b1 orbital.

The field-strength region where the ionization rates (resonance widths) display a change

in character, i.e., turn over to rise much more gradually with the field strength F0, can be
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characterized as a regime where there is a narrow potential saddle at small θ in the vicinity

of r ≈ 3 a.u., such that electron flux can leave and is then accelerated by the electric field.

The crossing of the ionization rates for the 1b1 and 1b2 orbitals occurs since the saddle in the

potential becomes effectively lower at strong fields for the 1b2 orbital. This can be inferred

from the comparison of the two effective potentials, which share the same asymptotic behaviour

beyond r = 4.3 a.u. (see Figure 3.23.2).

The origin for the different radial dependencies of the effective potential for the two orbitals

can be found in the geometry of the water molecule. The weakly bound 1b1 orbital has its

lobes perpendicular to the plane defined by the location of the three nuclei. Therefore, it is

least affected by the two protons. The 1b2 orbital explores the potentials due to the protons

more strongly in the scf calculation of Moccia, and therefore, the resulting Veff(r) has a more

attractive region in the range 0.7 a.u. < r < 4.3 a.u..

3.6.2 3a1 molecular orbital

The numerical results from applying the procedure described in Section 3.43.4 are shown in Fig-

ures 3.103.10 and 3.113.11.

The resonance positions ER are shown in Figure 3.103.10 for external fields applied along the ±ẑ

directions (red triangles/blue circles) for a range of external field strengths. For reference, the

resonance positions obtained for the 1b1 and 1b2 mos using a spherically symmetric potential,

Veff(r), are also indicated in the form of dashed and dot-dashed lines respectively. For zero field

strength F0 = 0 self-consistent eigenenergies obtained by Moccia [11] are included as black crosses

for the three valence orbitals of interest. The resonance position for the 3a1 orbital is bracketed

by those for the 1b1 and 1b2 orbitals.

It can be noticed that for external fields applied along the −ẑ direction, where most of the

density is located, the field strength F0 has to be strong, i.e., F0 > 0.1 a.u., for the resonance

position to change appreciably. On the other hand, the resonance position for fields applied

along +ẑ appears to be more sensitive at weaker fields. However the barrier appears to be longer

for external fields applied along the +ẑ direction, at a field strength of about F0 = 0.2 a.u. the

position values cross, indicating a higher sensitivity of the resonance positions for fields applied

along the negative ẑ direction as the field strength is increased further.
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Figure 3.10: Resonance position in atomic units as a function of the external field

strength F0 and the orientation of the field, along the ±ẑ direction (red triangles/blue

circles), for the 3a1 mo of H2O. As a reference, the resonance position values for the

1b1 (dashed line) and 1b2 (dot-dashed line) mos are also included.
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Figure 3.11: Resonance width in atomic units as a function of the external field strength

F0 and the orientation of the field, along the ±ẑ direction (red triangles/blue circles),

for the 3a1 mo of H2O. For reference, the resonance widths for the 1b1 (dashed line)

and 1b2 (dot-dashed line) mos are also shown.

Figure 3.113.11 shows the resonance widths corresponding to external fields applied along the ±ẑ

directions, as a function of the field strength F0. The results obtained with a symmetric effective

potential, Veff(r), for the 1b1 and 1b2 mos are also shown as dashed and dot-dashed lines for

comparison purposes.

In analogy to the 1b1 and 1b2 orbitals, the ionization rates for the 3a1 mo, associated with

the lifetime of the decaying state via Γτ = 1, exhibit a threshold behaviour at the weaker field

strengths. Interestingly, for the two directions of the applied field, we find a lower critical field

strength for the 3a1 orbital in comparison to what the more weakly bound orbital, 1b1, indicates.

In the tunnelling region, at F0 = 0.05 a.u., the 3a1 orbital for fields applied along the −ẑ

direction (blue circles) shows an ionization rate that is about one order of magnitude larger than

the ionization rate for fields applied in the opposite direction (red triangles), this gap becomes

narrower as the field strength increases toward the over-barrier regime. The strong dependency

on field direction implies that a different potential barrier is experienced by the electrons for the

two cases.
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Table 3.3: Resonance positions and widths for different field strengths (in atomic units).

The orientation of the external field is indicated by ±ẑ. The numbers in parentheses

indicate the exponent k, so that the numbers are multiplied by 10k.

3a1(ẑ) 3a1(−ẑ) 1b1 1b2

F0 ER Γ ER Γ ER Γ ER Γ

0.05 – 1.09(−6) −0.556 8.91(−6) – – – –

0.06 – 3.23(−5) −0.556 1.41(−4) – – – –

0.07 −0.582 4.82(−4) −0.557 1.09(−3) −0.502 9.82(−5) – –

0.08 −0.587 1.03(−3) −0.559 2.31(−3) −0.503 2.38(−4) – –

0.09 −0.594 2.26(−3) −0.568 5.65(−3) −0.504 5.72(−4) – –

0.1 −0.600 5.53(−3) −0.573 1.26(−2) −0.506 1.14(−3) −0.689 4.04(−5)

0.125 −0.617 1.54(−2) −0.589 3.21(−2) −0.510 3.76(−3) −0.694 5.45(−4)

0.15 −0.635 3.41(−2) −0.607 7.39(−2) −0.515 8.73(−3) −0.701 2.04(−3)

0.2 −0.668 7.98(−2) −0.656 1.72(−1) −0.525 2.28(−2) −0.718 1.23(−2)

0.25 −0.698 1.37(−1) −0.708 2.92(−1) −0.536 4.33(−2) −0.739 3.61(−2)

0.3 −0.724 2.07(−1) −0.796 4.31(−1) −0.546 6.74(−2) −0.760 7.51(−2)

0.35 −0.747 2.81(−1) −0.859 5.40(−1) −0.555 9.46(−2) −0.778 1.27(−1)

0.4 −0.765 3.60(−1) −0.957 6.40(−1) −0.564 1.24(−1) −0.790 1.91(−1)

The numerical results for the H2O valence orbitals studied in this chapter, 1b1, 1b2 and

3a1, are summarized in Table 3.33.3 for further reference, i.e., to allow comparison with future

calculations based on other models for the mos.

3.6.3 Ionization parameters from a partial-wave approach

Figure 3.123.12 shows the convergence of the three H2O valence mo eigenvalues as a function of the

basis size parameter lmax. The comparison with the orbital energies obtained previously using

the model potential with a Gaussian basis in a quantum chemistry program [44] (shown as solid

lines) reveals that the outermost orbital, 1b1, with its density perpendicular to the molecular
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plane, converges rapidly, because the density has limited overlap with the hydrogen atoms, as

indicated in Fig. 3.13.1. The calculated orbital energies fall slightly below the quoted values in

Ref. [44]. The values indicated as dash-dotted lines correspond to a local self-consistent potential

approach, namely the optimized potential method (opm) [55]. The opm represents a hf equivalent

calculation in which an effective local potential is optimized by means of a variational method

to yield self-consistent results that correspond to minimizing the total energy. The opm total

energy and outermost orbital energy are comparable with hf results. The opm values quoted in

Fig. 3.123.12 are an interesting comparison point since they result from an effective self-consistent

potential.

The 1b1 orbital is referred to as the highest occupied molecular orbital, and Koopmans’

theorem in hf theory [7676] can be carried over to dft methods which have a correct asymptotic

form of the effective potential and have been investigated for molecules [7777].

For the 3a1 orbital, which contributes to the bonding of the water molecule the convergence

with lmax is not as fast. One can expect therefore more interesting phenomena from the Stark

resonance parameter calculations for this case. Convergence with lmax is really slow for the

bonding orbital 1b2 due to the fact that a considerable amount of electron density appears along

each O-H bond.

The results of complex eigenenergies for the outermost mo 1b1 are shown in Fig. 3.133.13 for

lmax = 2, 3 as blue and red crosses, respectively. As a comparison the results obtained from

the one-centre expansion local potential combined with a modified ecs are indicated as purple

crosses. The left panel indicates the real part of the eigenvalue as the resonance position, and the

right panel shows the imaginary part, which represents the resonance width. When the electric

field is pointing towards the oxygen atom, Fz < 0, the electrons are pushed towards the protons,

which lowers their eigenenergy considerably (binding is represented by the magnitude of the

real part). When the electric field is pointing away from the oxygen, Fz > 0, the electrons are

attracted towards the nucleus, which initially decrease in binding, but eventually the attraction

to the oxygen reinforces their binding as the field strength increases.

The resonance width shown in the right panel indicates that there is a strong dependence on

the field strength at weak fields where the tunnelling regime dominates. In this region, there is a

marked increase in the exponential decay rate. As the field strength increases in both directions
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Figure 3.12: Eigenvalues for the H2O valence mos 1b1, 3a1, 1b2 obtained from the model

potential (3.173.17) as a function of the basis truncation parameter lmax are shown in

green, blue and red, respectively. The eigenvalues obtained for the model potential as

quoted in Ref. [44] are shown as solid lines. Also as a reference, the eigenvalues for an

exchange-only density functional theory approximation (opm) from Ref. [55] are shown

as dash-dotted lines.
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Figure 3.13: Resonance parameters for the 1b1 mo of H2O. The results for the truncation

parameter lmax = 2, 3 are shown as blue and red crosses, respectively. The results

obtained with a modified ecs are shown as purple crosses. The electric field is pointing

in the molecular plane from the oxygen atom along a centre line between the two

hydrogen atoms (for Fz > 0), and towards the oxygen atom (for Fz < 0).

one observes a turnover towards the over-barrier ionization regime. For Fz < 0, the continuous

lowering of the orbital energies observed in the left panel is accompanied by an increase in the

decay rate that exceeds the rate observed in the opposite direction by about a factor of two in

the over-barrier ionization regime.

The complex eigenenergies for the partial-wave-cap approach corresponding to the 1b2 mo

are shown in Fig. 3.143.14. In this case, convergence with the truncation parameter lmax is slower

than for the 1b1 valence orbital. This is consistent with the behaviour observed in Fig. 3.123.12 for

the field-free case. The 1b2 orbital, which is the most deeply bound of the three valence orbitals,

is harder to ionize as can be noticed in the widths that reach about one half of those for the

1b1 mo at strong fields in either direction respectively (see Fig. 3.14b3.14b). These decay rates also

indicate that for the given field range the tunnelling regime is dominant. As was observed for

the 1b1 mo, when the electric field points towards the oxygen atom, Fz < 0, the 1b2 is easier to

ionize than in the opposite direction.

Concerning the ecs results, shown as purple crosses in Figs. 3.133.13 and 3.143.14, derived from a

local effective potential corresponding to a one-centre expansion with an sto basis [4444], some
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Figure 3.14: Resonance parameters for the 1b2 mo of H2O. The results for the truncation

parameter lmax = 2, 3 are shown as blue and red crosses, respectively. The results

obtained with a modified ecs are shown as purple crosses. The electric field is pointing

in the molecular plane from the oxygen atom along a centre line between the two

hydrogen atoms (for Fz > 0), and towards the oxygen atom (for Fz < 0).

remarkable features require a discussion. The resonance positions in the left panels show a

symmetric behaviour about Fz = 0. This contrasts the partial-wave-cap calculations which are

more sensitive to the orientation of the external field showing a more pronounced dc shift for

both the 1b1 and 1b2 mos, respectively. On the other hand, comparable results are observed in

the decay rates as a function of the field orientation and strength shown in the right panels.

The partial-wave results for the 3a1 valence orbital are shown in Figure 3.153.15. The 3a1 mo, with

a probability distribution along the ẑ-direction on the molecular plane formed by the three nuclei,

presents remarkable results that follow a unique trend. In contrast with the monotonic increase

in binding that is observed in Figs. 3.133.13 and 3.143.14 when the electric field is pointing towards

the oxygen atom (Fz < 0), the resonance position (Fig. 3.15a3.15a) exhibits a different pattern as

the external field pushes the electrons towards the hydrogen atoms. Two oscillating trends are

observed, corresponding to each orientation of the dc field. A similar feature was reported for

molecular Stark shift calculations based on the total energy of the H2O molecule [1111].

Comparing these results with the previous calculations based on a single-centre scf effective

potential [4545], indicated as purple crosses in Fig. 3.153.15, it can be noticed that the partial-wave ex-
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Figure 3.15: Resonance parameters for the 3a1 mo of H2O. The results for the trunca-

tion parameter lmax = 2, 3 are shown as blue and red crosses, respectively. The results

obtained with a modified ecs are shown as purple crosses. The electric field is point-

ing in the molecular plane from the oxygen atom along a centre line between the two

hydrogen atoms (for Fz > 0), and towards the oxygen atom (for Fz < 0).

pansion of a model potential provides a more sensitive solution that preserves distinctive features

of the Stark dc shift and decay rate. Some agreement in the resonance positions can be noticed

at low field strengths on each side of the Fz axis. This could be attributed to the extension of the

scf effective potential to include a polar angle dependence for the 3a1 orbital (see Eq. (3.153.15) for

the effective potential Veff(r, θ)), as opposed to the 1b1 and 1b2 orbitals. However, the inclusion

of the dependence in this effective potential on the azimuthal angle φ seems crucial in order to

reproduce the behaviour observed for the dc Stark shift.

As Fig. 3.15b3.15b indicates, the resonance widths from previous results are similar to the widths

obtained with the partial-wave-cap approach, with the decay rate diverging for the case where

electrons are pushed away from the oxygen atom towards the two protons by about a factor of

two at Fz = −0.3 a.u.
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4 Above threshold ionization in laser-atom and laser-molecule

interactions

Generally, the interaction of an atom with intense laser fields is associated with photoionization

of the atom by the absorption of one or more photons. In fact, in very intense laser fields an atom

may absorb many more photons than the minimum required to get ionized, ejecting an electron

of very high energy. The photoelectron energy spectrum associated with this effect exhibits a

series of peaks separated by the energy of a laser photon. This phenomenon is known as ati and

was first observed by Agostini et al [1616].

ati has been tackled by means of diverse approaches, with analytical approximations dating

back to the Keldysh theory which represents a strong-field approximation [1919]. Alternatively,

attempts to find a numerical solution to the tdse [7878–8080] have been instrumental for the under-

standing of ati, and a variety of efforts that deal with the complexity of solving this challenging

numerical problem have been successful in the past [1818]. In the same way, complementary ap-

proaches to the solution of the tdse, such as the so-called Volkov-state methods [4848, 8181, 8282], have

revealed their strengths within strong-laser field problems in which a numerical solution would

involve a computationally taxing problem. The strong-field approximation [1919], which treats the

binding potential of the atom as a perturbation to the ionized electron, is the foundation to the

formalism discussed in this chapter.

Section 4.14.1 introduces some basic notions about strong-field ionization. Sec. 4.24.2 presents an

overview of the pioneering work by Keldysh to describe the laser ionization of atoms. Next,

a generalized approach that introduces rescattering of the electron back to the vicinity of the

binding potential is included in Sec. 4.34.3. The ionization regime of a model He atom under a

strong-laser field is explored in Sec. 4.4.14.4.1 for both scenarios: considering only direct electrons

where the ionization spectrum is reproduced by the Keldysh amplitude, and using a compact
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expression for the transition amplitude that encloses the limiting case of direct trajectories while

allowing electrons to rescatter to the parent ion as well. In addition to working out numerical

details presented in Kopold’s dissertation [88], in this thesis we explore the laser ionization of the

1b1 and 1b2 molecular orbitals of H2O in Sec. 4.4.24.4.2. The analysis presented in this chapter closely

follows that of [2121].

4.1 Multiphoton versus tunnelling ionization

As a result of the interaction with strong laser pulses that compete with the Coulomb forces,

the electron dynamics in atoms and molecules is characterized by multiphoton processes that

determine their response to the laser field. The Keldysh theory of strong-field approximation

illustrates how the dynamics of the underlying phenomena that contribute to the formation of

the ionization spectrum evolves as the laser field intensity increases [1919].

At moderate intensities, I < 1014 W/cm2, atomic states undergo a transition from bound

states into the continuum due to the multiphoton excitation linked to the interaction with the

laser field. The interaction with intense laser fields induces an ac Stark shift of the atomic

bound states that is responsible for the peak suppression in the ionization spectrum as the field

intensity increases [8383]. While s states with low principal quantum number n, have a negligible

shift in energy due their strong bond and are, in fact, harder to influence by the field, the

upward shift of the higher−n states and continuum can become appreciable in the form of an

increase in the ionization potential of the atom, Ip, see Figure 4.14.1(a). This shift is given by the

electron ponderomotive energy, Up = e2E2/4mω2, which is the cycle-averaged kinetic energy of

a free electron in the electric field of strength E and frequency ω. Although this increase in the

ionization potential could, possibly, make some transitions energetically forbidden, in a smoothly

varying pulse ionization channels may not be closed for the entire pulse, in such a way that the

corresponding peak in the ionization spectrum will not vanish completely [66, 7171].

The number of photons required for multiphoton ionization to take place depends on the

typical binding energies of the initial states, Ei = −Ip. For ionization of a hydrogen atom,

Ip ∼ 13.6 eV, with a typical photon energy of ~ω ∼ 1.5 eV at 800 nm, at least 9 photons

are necessary for the outer electrons to escape the binding potential of the atom and reach the

continuum. For the helium atom, Ip ∼ 24.5 eV, under a laser photon energy of ~ω = 1.58 eV,
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which we consider in this chapter, at least 15 photons are needed for ionization to occur.

At sufficiently high intensity, I > 1014 W/cm2, and low frequency, the number of photons

required for ionization grows considerably and the ionization process is ruled by a tunnelling

mechanism. In this regime, intense laser fields are comparable to the Coulomb binding poten-

tials, and ionization can be described by means of a quasi-static approach, in which the bound

electrons experience an effective potential that results from the interaction between the laser

electric field and the Coulomb attraction from the ion core [1919]. This effective potential acts as

an oscillating barrier through which electrons can escape via tunnelling, as Figure 4.14.1(b) illus-

trates. In the tunnelling regime, since the laser field varies slowly compared to the response time

of the electron, the ionization rate becomes the cycle average of the instantaneous dc tunnelling

rate. A fundamental quantity in Keldysh theory, known as the Keldysh parameter, is the ratio

of the incident laser frequency to the tunnelling rate, and can be written as [1919]

γ = ω

ωt
=

√
Ip

2Up
, (4.1)

where Ip is the field-free atomic ionization energy. Eq. (4.14.1) also explains the different time

scales in the tunnelling regime: when γ < 1 a bigger ionization potential Ip is associated with

more rapid electron motion inside the well. As a result the electron motion is on a faster time

scale than the laser oscillation period 2π/ω. The Keldysh parameter illustrates the limits of

applicability of the competing mechanisms that characterize the ionization process. For γ < 1,

tunnelling dynamics will dominate, whereas for γ > 1 multiphoton dynamics will prevail. In this

chapter, we focus on the tunnelling regime in ati.

4.2 Keldysh formalism

Even though the Keldysh formalism for strong-field ionization provided very good agreement with

experimental data of electron ati spectra for helium ionization [8484], rescattering effects were not

included in the theory and it failed to reproduce the plateau that is visible in measurements along

a broad energy spectrum [77, 8585], and emerged as a prevalent feature in the ati energy spectrum.

Figure 4.24.2 shows the measured ati spectra of rare gases in which a sudden change of slope of the

envelope of the peak heights or a plateau is observed. These effects were observed to evolve in

a similar manner at certain ranges of the laser-field intensities for all rare gases [77]. For the ati
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Figure 4.1: Schematic representation of (a) multiphoton ionization and (b) tunnelling

ionization as the laser intensity, I, increases. The dashed line corresponds to the con-

tribution to the potential energy due to the instantaneous laser electric field. The solid

line represents the full effective potential. From Ref. [66].

spectra shown in Fig. 4.24.2 the plateaus are more pronounced for Ar and Xe, while it appears to

be weaker for He.

A recollision picture in which the strong-field ionization is characterized by several steps,

involving tunnelling of the electron followed by a free interaction with the laser field in which

the electron returns to the core, was introduced later than the standard Keldysh description [8686,

8787]. In this chapter we are concerned with the numerical evaluation of an improved Keldysh

approximation [2121] that accounts for rescattering effects and reveals the complex structure of the

ionization spectrum.

The probability amplitude for an electron to transfer from the ground state of an atom with

binding potential V (r) into a scattering state |ψp(t)〉 due to an external laser field is given by [2121]

Mp = lim
t→∞,t′→−∞

〈ψp(t)|U(t, t′)|ψ0(t′)〉, (4.2)

where it is assumed that in the limit of early times, t′ → −∞, the exact wave function reduces

to the ground state ψ0(t). In order to express the total wave function in terms of the unper-

turbed wave function, the evolution operator formalism [8888] is implemented. The time-evolution

operator, U(t, t′), propagates the wave function |ψ(t)〉 from t′ to t under the full Hamiltonian

H(t) = −1
2∇

2 + VI(t) + V (r), (4.3)
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Figure 4.2: Experimental ati spectra for various noble gases, at a wavelength of λ =

630 nm and an intensity of I ' 2×1014 W/cm2 (3×1014 W/cm2 for He). From Ref. [77]
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which includes the binding potential of the parent ion, V (r), and the interaction with the laser

field, VI(t) = r ·E(t), under the dipole approximation in the length gauge [2121] (see Appendix AA).

The time-evolution operator satisfies an integral equation, namely the Dyson equation [2121, 8989],

which conveniently allows to construct an expansion in which the interaction with the external

field is treated as a perturbation. This representation, together with the orthogonality of the

initial ground state |ψ0〉 and scattering state |ψp〉, illustrates the possibility of major excursions

of the scattering electron away from its parent ion once it was propagated from the initial state

by U(t, t′).

Two approximations are crucial to derive the Keldysh result for the transition amplitude [2121].

The first approximation consists of replacing the complete time-evolution operator in (4.24.2) by the

Volkov time-evolution operator UV (t, t′), which propagates the wave function of a free electron

coupled through the interaction VI(t) to the external laser field and satisfies the Schrödinger

equation

[i∂t −HL(t)]U (V )(t, t′) = 0

HL(t) = −1
2∇

2 + VI(t) = −1
2∇

2 + r ·E(t),
(4.4)

In other words, the interaction with the binding potential is considered a perturbation everywhere

except in the initial and final states. In the second approximation the scattering state, ψp, is

replaced by the Volkov wave function, ψ(V )
p , which represents the state of a free electron in a

laser field with time-averaged momentum p. Further details about the derivation are to be found

in [2121]. These transformations, along with additional algebraic operations, lead to obtain an

equivalent form of the standard Keldysh amplitude [2121, 9090]

M
(0)
p = −i

∞∫
−∞

dt 〈ψ(V )
p (t)|V |ψ0(t)〉. (4.5)

Generally, replacing the time-evolution propagator U(t, t′) by the Volkov propagator U (V )(t, t′)

is more justified the shorter the range of the binding potential and the higher the intensity of

the laser field. In what follows, we will consider the limiting case of zero-range interactions of

the form

V (r) = −λ δ(r), (4.6)
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which has one or more bound states depending on λ [1818, 4646], and restricts the range of the spatial

integration in the amplitude (4.54.5). Zero-range potentials have been widely used in tunnelling [9191]

and multiphoton ionization problems [9292], as well as to simulate the electron dynamics in molec-

ular systems under intense laser fields [9393]. Inserting the zero-range potential (4.64.6) into the

standard Keldysh amplitude (4.54.5) yields the expansion

M
(0)
p ∼ 1

2π

√
2|E0|

∑
n

δ

(
p2

2 + Up + |E0| − nω
)

×
∞∑

l=−∞
J2l+n

(2px
ω

√
Up

)
Jl

(
Up
2ω

)
,

(4.7)

that generates the ionization spectrum of direct electrons only [2121], i.e., without rescattering.

After ionization, direct electrons escape the laser focus without any additional interaction with

the ion. The strength parameter of the zero-range potential, i.e., λ is effectively replaced by√
2|E0|. With this approximation one completely neglects the Coulomb interaction between

ionized electrons and the ion left behind. Here Up represents the ponderomotive potential of an

electron moving in the laser field with momentum p parallel to the laser field, px = |p|, |E0|

stands for the binding energy, and the Jn represent Bessel functions.

4.3 Generalized ionization amplitude including rescattering

As a result of ionization by a strong-laser field, electrons do not depart the ion vicinity imme-

diately after tunnelling the potential barrier and emerging in the continuum. Rather, they are

driven by the electric field of the laser, as the field changes in sign, away and back to the core

for several laser periods. Under these conditions they may scatter, at least once, off the atomic

potential before finally leaving the laser pulse. Rescattering mechanisms determine the universal

picture of ati spectra [1717, 4646, 8585], and, along with momentum conservation, represent the origin

of the characteristic plateau that is present in linear-polarization generated spectra [77], as shown

in Fig. 4.24.2. In this section, we are concerned with exploring the ati energy spectrum of such

electrons that interact further with the atomic core and rescatter.

In order to include electron rescattering in our study, it is necessary to allow the electron to

interact with the parent ion once it has been freed from the binding potential. This represents a

step further in relation to Keldysh theory of direct ionization [1919] and it can be implemented by
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resorting to the Dyson expansion of the time-evolution operator in which the binding potential

is considered a perturbation and the Volkov time-evolution operator plays an essential role.

Inserting the expansion for the time-evolution operator into the ionization amplitude (4.24.2) one

obtains the generalized expression [2121]

Mp = −i lim
t→∞

t∫
−∞

dt′〈ψp(t)|U (V )(t, t′){HI(t′)|ψ0(t′)〉

−i
t′∫

−∞

dt′′V U(t′, t′′)HI(t′′)|ψ0(t′′)〉},

(4.8)

which is still an exact representation of the transition amplitude. The first term is the direct

amplitude that yields the Keldysh matrix element discussed in Sec. 4.24.2. The second term allows

for additional interactions with the atomic potential, and therefore describes rescattering of the

electron. Further algebraic transformations on the second term result in the compact expression

for the ionization amplitude [2121]

Mp = −
∞∫
−∞

dt

t∫
−∞

dt′〈ψ(V )
p (t)|V U (V )(t, t′)V |ψ0(t′)〉, (4.9)

where the scattering state was replaced by a plane wave in order to carry out the limit of

t→∞. Due to this approximation, Eq. (4.94.9) is no longer an exact representation of the ionization

amplitude. This expression now describes both the direct electrons that depart from the atom

without further interaction with the binding potential, as well as the electrons that are promoted

to the continuum at some time t′, and propagate in the laser field until some later time t when

they return to within the range of the binding potential, whereupon they rescatter into their

final Volkov state.

Evaluation of the matrix element (4.94.9) can be very cumbersome for a finite-range binding

potential. However, it simplifies noticeably in the limit of a zero-range potential of the form (4.64.6)

where the spatial integrations become trivial. Expanding the Volkov wave function and time-

evolution operator in terms of Bessel functions, one of the remaining quadratures over time can

be carried out and yields the energy conserving δ−function. Therefore, one quadrature is left to
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be carried out numerically,

Mp ∼
∑
n

δ

(
p2

2 + Up + |E0| − nω
) ∞∑
l=−∞

J2l+n

(2px
ω

√
Up

)

×
∞∫
0

dτ

(
i

2πτ

)3/2 (
e−i[|E0|τ+lδ(τ)]

× exp

−iUpτ
1−

(
sin 1

2ωτ
1
2ωτ

)2


Jl

(
y(τ)Up

ω

)
− Jl

(
Up
2ω

))
,

(4.10)

where the real quantities y(τ) and δ(τ) are defined via

y(τ)e−iδ(τ) = 1
2 − i

(
sinωτ − 4 sin2 ωτ/2

ωτ

)
e−iωτ = Z, (4.11)

and are determined through the absolute value and phase of the complex quantity Z, respectively.

In contrast with the amplitude (4.74.7), in which the generalized Bessel function describes the

emission rate of direct electrons, the ionization amplitude (4.104.10) presents a more complicated

structure in terms of these oscillating functions.

4.4 Results

4.4.1 Ionization regime. A systematic study

This section is concerned with the study of the ionization spectrum generated by a strong-laser

field acting upon an atom with a binding potential that is approximated as a zero-range potential.

The external laser field is assumed to be turned off in the distant past and future, t→ ±∞. With

this in mind, we carry out the numerical evaluation of the transition amplitudes (4.74.7) and (4.104.10)

in which we concentrate on the case of a monochromatic laser field of the form

E(t) = ωA0x̂ sin(ωt), (4.12)

where A0 is the amplitude of the vector potential A(t) = −
∫

E(t)dt. For our calculation we

consider a laser field with ~ω = 1.58 eV at an intensity of 1015 W/cm2, acting upon a He atom

with E0 = −0.9 a.u. as the binding energy. Atomic units are used for the field intensity so the

relative strengths of the laser versus the atomic binding energy are displayed.
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The numerical evaluation of the remaining quadrature in Eq. (4.104.10) in terms of the travel time

is not straightforward as the convergence of the solution appears to be sensitive to the working

precision requested. Given that the integrand is independent of the electron energy, associated

with px in Eq. (4.104.10), a fixed value of the Bessel function order l would correspond to a single

value of the integral. This allows us to explore the convergence of the individual integrals that

form the sum over Bessel orders before assembling the results to be summed over the discrete

energies given by n. In what follows, we will refer to the time integral as F (l) by rewriting

Eq. (4.104.10) as

Mp ∼ lim
|l|max→∞

∑
n

δ

(
p2

2 + Up + |E0| − nω
) |l|max∑
l=−|l|max

J2l+n

(2px
ω

√
Up

)
F (l), (4.13)

where

F (l) =
∞∫
0

dτ

(
i

2πτ

)3/2 (
e−i[|E0|τ+lδ(τ)] exp

−iUpτ
1−

(
sin 1

2ωτ
1
2ωτ

)2


Jl

(
y(τ)Up

ω

)
− Jl

(
Up
2ω

))
.

(4.14)

To study the convergence of the sum over l, we partitioned the integration interval into

subintervals of 2π/ω and explored the progression of the results as a function of how many

intervals are included in the calculation as well as the working precision requested. A final

interval following the k−th interval, [2π/ω(k − 1), 2π/ωk), that extends to +∞ is included in

the calculation. Additionally, in order to bypass the singularity at τ = 0 due to the 1/τ factor in

F (l), a coordinate transform of the form x→
√
τ is implemented so that the integrand converges

to a finite value as τ approaches zero.

Figure 4.34.3 illustrates the evolution of discrete values of F (l) for a set of l values, |l| =

[10, 40, 80], as the working precision is increased. For l = 10, a working precision of about 15

decimal points seems to not affect the evaluation of the integral. As l increases, the values of the

integral deviate from the initial evaluation until they converge. This happens relatively quickly

for negative values of l for which the graphic indicates that approximately 25 digits of precision

would be enough to obtain the converged result. In contrast, for l > 0 the digits of precision had

to be increased to 50 for l = 80.

Given that the transition amplitude that describes the rescattering of an electron to its

binding potential (4.104.10) is a generalization of the Keldysh amplitude (4.74.7) one should expect
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Figure 4.3: Numerical evaluation of the time integral F (l), Eq. (4.144.14), for |l| = 10, 40, 80,

indicated in blue, red and magenta respectively, as a function of the working precision

requested.

that the generalized ati spectrum contains that of direct electrons at low electron energies. A

comparison between Eqs. (4.134.13) and (4.74.7) illustrates that, for a given value of l, the function

F (l) should be proportional to the Bessel factor Jl
(
Up
2ω

)
. This calculation was carried out for

different values of l in order to corroborate the validity of the aforementioned generalization.

Figure 4.44.4 exhibits a comparison of the numerical evaluation of F (l) in (4.134.13) with the simple

Bessel function in (4.74.7) for several sets of increasing values of lmax. It is to be expected that the

integrals F (l) are a multiple of the Bessel factor in the Keldysh amplitude for a given range of l

values. This can be observed in Fig. 4.44.4 as the Bessel factors (blue dots) are divided by a factor

of 5 to place them on the same scale as the time integrals F (l) (red dots). For negative values of

l, at about l = −30, the curves begin to differ as the integrals oscillate around 10−6 (arb. units)

for a range of negative l values that extends from l ≈ −30 to l ≈ −60, indicating the presence

of rescattering as opposed to the case for the direct transmission, shown as blue dots, from the

Keldysh amplitude. As one might notice, for sufficiently small negative values of l (l < −60)

the values of the integral start dropping below, indicating that convergence of the ionization

spectrum for rescattering electrons is to be expected. As the Bessel order, l, was increased in the
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Figure 4.4: Numerical evaluation of the time integral F (l) (4.144.14) (red dots) in contrast

with its analogous Bessel term in the Keldysh amplitude (4.74.7) for direct transmission

(blue dots) for zero-range He atom model as a function of the Bessel function order l

for increasing values of lmax, l = [−lmax, . . . , lmax]. The Keldysh result (blue dots) is

plotted on top of the result from F (l), i.e., the red symbols are covered up by the blue

ones when the calculations agree to graphing accuracy.

evaluation of the quadrature, the working precision and precision goal were tuned appropriately

so the curves would remain comparable. This is consistent with Figure 4.34.3, as the order of Bessel

functions increases, a higher working precision is required in order to find a numerical solution

to the quadrature. The symmetric behaviour followed by the Keldysh result with respect to the

Bessel function order is to be expected given the symmetric shape of the Bessel factor Jl(Up2ω ). In

contrast, the time integral F (l) contains a subtraction of Bessel functions in its argument which

accounts for the asymmetric behaviour depicted by the red dots.

The ionization spectrum for the He model for emission parallel to the electric field of the

laser that contains the contribution of direct electrons, given by the Keldysh amplitude (4.74.7), is

shown in Figure 4.54.5. For a given electron energy, the sum over the Bessel order was extended

up to increasing values of lmax, ranging from 20 to 50, in order to display the convergence of

the spectrum in the limit l → ∞. For lmax values as low as 20 and 30 the final structure of the
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Figure 4.5: ati spectrum of a zero-range model for helium by a linearly polarized field

with a laser intensity of 1015 W/cm2 with ~ω = 1.58 eV describing direct electrons.

Each curve corresponds to a finite value of lmax in the standard Keldysh amplitude.

spectrum for very small energies, < 1Up, begins to be visible. However, more terms need to be

considered in the sum over Bessel functions in order to obtain the converged spectrum. The yield

consisting only of direct electrons converges relatively fast to its final shape (dash-dotted line)

in which a sequence of narrow suppressions of the probability amplitude separated by rounded

tops drops as the electron energy increases and eventually vanishes at about 2.5Up.

The results of the calculations based on (4.104.10) are shown in Figure 4.64.6. Each coloured curve

represents the ionization amplitude for an atom of He under a strong-laser field for increasing

values of the Bessel function order, l. As one might notice, the ionization spectrum converges

for l = 80 (bottom right plot) after undergoing some fluctuations for l values between 40 and

70. The spectrum for direct electrons (black dots) is included as a reference. As it can be seen,

both the standard Keldysh amplitude and the generalized ionization amplitude that incorporates

rescattering exhibit very similar electron yields for energies lower than 2.5Up where the spectrum

is consisting only of direct electrons. As the electron energy increases, the rescattered electrons
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begin to exceed the direct ones and the curves start to differ from each other. The transition

probability, consisting almost exclusively of rescattered electrons, reaches a plateau consisting of

a sequence of suppressions separated by rounded tops. This behaviour is a direct consequence

of quantum interference, as the released electrons interfere constructively and destructively in

every optical cycle of the laser field as a function of energy. For large energies of about 10Up

the plateau shows a cutoff that indicates the end of the rescattering spectrum. The position of

this cutoff as well as the onset energy of the plateau fluctuate with the orientation of the emitted

electrons with respect to the electric field of the laser as well as with variations of the intensity

of the field [77, 2121, 4747].

4.4.2 Ionization spectrum for the 1b1 and 1b2 orbitals of H2O

The study on the H2O mos presented in Chapter 33 is extended in this section with the aim of

exploring the ati spectrum of the 1b1 and 1b2 mos previously characterized as spherical orbitals.

The zero-range model calculation carried out in the previous section combined with the sfa is

applied to these valence orbitals in order to explore their response to an intense laser field.

Each mo is treated as an independent spherical orbital in which the eigenvalues ε1b1 and

ε1b2 obtained from the radial representation of their effective potentials, Veff(r), are considered

their binding energies, respectively. With this in mind, it is possible to generate the ionization

spectrum for direct electrons and that for rescattering electrons that would correspond to each

mo under a strong-laser field. Inserting the molecular binding energies into Eqs. (4.74.7) and (4.104.10)

one can explore the convergence of the ionization spectrum in terms of the number of Bessel

functions included in their respective sums.

Similarly to the case of strong-field ionization of a zero-range He model, the quadrature

F (l) in (4.134.13) remains to be solved in order to obtain the ionization spectrum for rescattered

electrons. The general expression (4.104.10), which encloses the limiting case of ionization of direct

electrons, generates an electron yield which follows that of direct electrons for low energies, i.e.,

energy values below the onset of the ati plateau. This section is aimed to validate the previous

statement and explore the convergence of the ati spectrum of these two simplified representations

of H2O orbitals.

Figures 4.74.7 and 4.84.8 show the values taken by the function F (l) for a set of values of lmax,
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Figure 4.6: ati spectrum of a zero-range He model with a binding energy of E0 =

−0.9 a.u. by a linearly polarized field with a laser intensity of 1015 W/cm2 with ~ω =

1.58 eV in terms of an increasing Bessel order, lmax, as a function of the electron energy

(in colour). The result from the standard Keldysh approximation is shown as the black

dotted line.
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lmax = 30, . . . , 80, that indicate the extension of the sum (4.104.10) in terms of Bessel functions

and the Bessel term in the standard Keldysh amplitude (4.74.7) in red and blue, respectively. The

numerical values of the integral F (l) were rescaled for both mos, divided by a factor of 5.5 for

the 1b1 mo and by a factor of 6.5 for the 1b2 mo, in order to make the comparison between the

curves visible. Correspondingly, the working precision of the calculations was gradually increased

for |l| > 0 up to a maximum of 50 digits of precision for lmax = 80. As it has been observed for

ionization along the electric field of the laser for a He atom [2121], the precise agreement between

the emission rate for direct electrons and the full ionization spectrum including rescattering for

energies below the cutoff of the direct-electron spectrum indicates that a correlation between

the red and blue curves should be expected for a range of values of lmax before deviations due

to rescattering become substantial. This behaviour can be observed for both mos for l < −30,

where the quadrature F (l) reaches a plateau at about 10−5 that extends up to about l < −60

where signs of convergence of the time integral F (l) become noticeable as the red curve begins

to decline.

The ionization spectra corresponding to the 1b1 and 1b2 mos are shown in Figures 4.94.9 and 4.104.10

as a function of the electron energy. The evolution of the electron yield is presented in terms of the

Bessel order l, 40 ≤ l ≤ 80. As it can be noticed, expanding the sum in Eq. (4.104.10) up to lmax = 80,

purple curve, leads to convergence of the ati spectrum for both molecular orbitals. Consistently

with the comparison with the standard Keldysh amplitude shown in Figures 4.74.7 and 4.84.8, as

l increases a higher working precision is needed to obtain an accurate representation of the

ionization amplitude. It can be seen that the final shape of the spectrum for low energies can be

obtained for l values as low as 40. For those energy values one obtains full agreement between the

transmission due to direct electrons only (black curve) and the spectrum of rescattered electrons.

As the electron energy increases, the Keldysh amplitudes corresponding to both orbitals 1b1 and

1b2 vanish, giving rise to the onset of the plateau that describes the spectrum consisting entirely

of rescattered electrons.
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Figure 4.7: Numerical evaluation of the time integral F (l) (4.144.14) (red dots) in contrast

with its analogous Bessel term in the Keldysh amplitude (4.74.7) for direct transmission

(blue dots) for the 1b1 mo of H2O as a function of the Bessel function order l for

increasing values of lmax, l = [−lmax, . . . , lmax]. The Keldysh result (blue dots) is

plotted on top of the result from F (l), i.e., the red symbols are covered up by the blue

ones when the calculations agree to graphing accuracy.
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Figure 4.8: Numerical evaluation of the time integral F (l) (4.144.14) (red dots) in contrast

with its analogous Bessel term in the Keldysh amplitude (4.74.7) for direct transmission

(blue dots) for the 1b2 mo of H2O as a function of the Bessel function order l for

increasing values of lmax, l = [−lmax, . . . , lmax]. The Keldysh result (blue dots) is

plotted on top of the result from F (l), i.e., the red symbols are covered up by the blue

ones when the calculations agree to graphing accuracy.
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Figure 4.9: ati spectrum for the 1b1 mo of H2O by a linearly polarized field with laser

intensity of 1015 W/cm2 with ~ω = 1.58 eV in terms of an increasing Bessel order, l,

as a function of the electron energy (in colour). The result from the standard Keldysh

approximation is shown as the black dotted line.
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Figure 4.10: ati spectrum for the 1b2 mo of H2O by a linearly polarized field with laser

intensity of 1015 W/cm2 with ~ω = 1.58 eV in terms of an increasing Bessel order, l,

as a function of the electron energy (in colour). The result from the standard Keldysh

approximation is shown as the black dotted line.
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5 Saddle point approximation

For laser fields of sufficiently high intensity, the ati spectrum can be generated by implement-

ing a saddle point evaluation [8787] of the multidimensional integral for the transition amplitude

obtained in the previous chapter. This semi-classical approximation provides a deeper physical

insight than the expansion in Bessel functions from the improved Keldysh approximation [2121],

as it captures the essential underlying physics. It also establishes a connection between ati cal-

culations within the framework of the strong-field approximation and the concept of quantum

paths [2020], which represent space-time trajectories of the tunneling electrons. This concept has

its origins in the alternative formulation of quantum mechanics introduced by Feynman in terms

of path integrals [4949], in which the probability amplitude of a quantum mechanical process can be

represented as a coherent superposition of contributions from all possible spatio-temporal paths

that connect the initial and final state of the system.

This chapter presents the arguments of Kopold et. al. [88, 2020] in an attempt to reproduce

their study of ati on atoms, including electron rescattering, and test for numerical stability.

In view of this, the arguments introduced in their saddle-point analysis of ati are presented in

the following sections. The saddle-point approximation establishes the connection between the

quantum mechanical path integral formalism and the improved Keldysh approximation discussed

in Sec. 4.34.3. The transition amplitude that describes the ionization of an electron under an

external laser field is evaluated within the two frameworks, that in which only direct electrons

are considered as well as the case that incorporates rescattering off the parent ion. Our study

follows those in Refs. [2020, 2121].
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5.1 Quantum-orbit formalism

Several quantum models have been introduced in the literature that extend the scope of the

Keldysh approximation for strong laser-atom interactions. A generalization of the Keldysh-

Faisal-Reiss (kfr) formulation of ati explores the dynamics of the ionized electrons under a

high-intensity laser, including rescattering effects, by means of a representation of the time-

evolution operator as an expansion with respect to the interaction with the atomic binding po-

tential [2121]. The kfr theory of sfa has also been extended to the study of harmonic generation

(hhg) [8787, 9494] by means of a quantum model that takes into account additional interactions of

the ionizing electron with the ion core including higher-order terms in a perturbative expansion

leading to rescattering effects. This model, which extends beyond zero-range potentials, consti-

tutes a quantum mechanical formulation of the three-step semiclassical picture [9595], which has

proven to be crucial in understanding strong-field laser-atom interactions. These models, which

incorporate rescattering effects of the excited electrons, have been valuable in unraveling the

physical phenomena behind the ati plateau and its cutoff, an intrinsic feature of the ionization

spectrum.

A quasi-classical analysis of this generalization, based on the saddle-point method and the

path integral formalism [2020, 5050, 9696], has been particularly useful as it illustrates fundamental

aspects of the physics underlying strong-field ionization processes as well as the formation of

their spectra. This approach suggests that one pictures the processes taking place in laser-atom

interactions, such as ati and hhg, in terms of electron trajectories in phase space. These quantum

trajectories, as it is explained below, follow classical Newtonian dynamics, however, time must

be defined in the complex plane to account for tunnelling ionization. Consequently, they present

non-zero imaginary components for the ionization time, rescattering time and momentum, which

determine the probability of the process. Their physical content is reflected in the electron

dynamics: once it has been ionized at time t′, the electron may return to its parent ion at a later

time t and rescatter after propagating in the continuum with momentum k under the action of

the external field.

As a starting point in the evaluation of the ati probability amplitude 4.94.9 by means of a

saddle-point approximation, we consider the compact form of the Volkov state in the length
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gauge (see Appendix AA), which can be expressed as [1818]

|ψ(V )
p (t)〉 = |p + A(t)〉e−iSp(t), (5.1)

where |p + A(t)〉 represents a plane-wave state with momentum k = p + A(t) and

Sp(t) = 1/2
t∫
dτ [p + A(τ)]2 (5.2)

denotes the action of the system.

In view of the completeness of the plane-wave states as required by the evolution operator

formalism, it can be verified that the Volkov time-evolution operator of Eq. (4.44.4), which re-

places the exact time-evolution operator in the sfa [1919], expressed in terms of a Volkov-state

decomposition (5.15.1) by

U (V )(t, t′) =
∫
d3k|ψ(V )

k (t)〉〈ψ(V )
k (t′)|, (5.3)

is the solution to the initial-value problem (4.44.4), with U (V )(t′, t′) = 1̂, where 1̂ is the unit

operator [8888, 8989].

Inserting the expansion (5.35.3) into the matrix element (4.94.9) and taking into account the time

dependence of the ground state wave function, |ψ0(t)〉 = ei|E0|t|ψ0〉, one may write the probability

amplitude as the five-dimensional integral [2020]

Mp ∼
∞∫
−∞

dt

t∫
−∞

dt′
∫
d3k 〈[p + A(t)]eiSp(t)|V |k + A(t)〉e−iSk(t)

× 〈[k + A(t′)]eiSk(t′)|V |ψ0〉ei|E0|t′

∼
∞∫
−∞

dt

t∫
−∞

dt′
∫
d3k exp i

[
Sp(t)− Sk(t) + Sk(t′) + |E0|t′

]
× 〈p + A(t)|V |k + A(t)〉〈k + A(t′)|V |ψ0〉.

(5.4)

The action for ati, in the exponent of (5.45.4) consists of three terms

Sp(t, t′,k) = −1
2

∞∫
t

dτ [p + A(τ)]2 − 1
2

t∫
t′

dτ [k + A(τ)]2 +
t′∫

−∞

dτ |E0|, (5.5)

which correspond to the action of the entire system after rescattering at time t, between ionization

and rescattering where the intermediate free-electron momenta is indicated by k, and before the
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electron is ionized at time t′, respectively. The rescattering amplitude, Mp, which is responsible

for the high-energy plateau in the electron energy spectrum, takes the form [1818, 8888]

Mp ∼
∞∫
−∞

dt

t∫
−∞

dt′
∫
d3k exp

[
iSp(t, t′,k)

]
mp(t, t′,k), (5.6)

with

mp(t, t′,k) = 〈p + A(t)|V |k + A(t)〉〈k + A(t′)|V |ψ0〉. (5.7)

This amplitude corresponds to the so-called three-step model [1818], in which V represents the

potential that the ionized electron experiences when it rescatters off its parent ion. In order to

evaluate the total probability amplitude, one needs to integrate over the interval of ionization

times t′ during which the electric field is non-zero, integrate over all intermediate electron mo-

menta k, and over all rescattering times t > t′. The amplitude (5.65.6) can be approximated using

a saddle-point method [9494], in which the leading contribution to the ati spectrum is determined

by requiring stationarity of the quasiclassical action (5.55.5).

It is revealing to point out the contrast of the ionization amplitude (5.65.6), obtained with

the strong-field approximation, with its analogous representation in terms of the Feynman path

integral formulation [4949]. The time evolution operator of the entire system has the path integral

representation

U(rt, r′t′) =
∫

(r′,t′)→(r,t)

D [r(τ)] eiS(t,t′), (5.8)

where S(t, t′) =
t∫
t′
dτL[r(τ), τ ] is the action calculated along a specific path by integrating the

Lagrangian of the entire system along that path, and the integral measure denoted by D [r(τ)]

establishes a coherent sum over all possible paths that connect (rt) and (r′t′). This sum is, in

fact, an infinite-dimensional functional of integrals, and can be reduced, within the framework of

the sfa, to a sum over a few quantum orbits. By implementing the sfa we have approximated

the exact action of the system at the various stages of the process: before ionization, in between

ionization and rescattering, and after rescattering, as Eq. (5.55.5) indicates. The ionization ampli-

tude is then computed by means of a sum over the exponential of the action over a five-parameter

set of paths, parametrized by the ionization time t′, the rescattering time t and the canonical

momentum of the orbit denoted by k [2020].
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In the low-frequency limit, in which the time scale of one period of the electron motion is

small compared to one laser period, and for high-intensity laser fields, the five-dimensional set of

paths over which the transition amplitude (5.65.6) is evaluated can be reduced further by invoking

the saddle-point approximation [9494] to calculate the integral over p as well as t and t′. In this

regime, the transition amplitude contains a rapidly oscillating factor, exp iSp(t, t′,k), provided

that the parameters Up, Ip, and p2 in the quasi-classical action (5.55.5) are large enough. The

major contributions to the integrals in (5.65.6) come from the saddle points that render the phase

stationary.

In the process of evaluating the transition amplitude, the phase of the integrand is expanded

about the saddle-points along the path of steepest descent in the complex plane. As a result,

a handful of relevant paths remains to be considered in order to explore the ati spectrum [2020].

Since the tunnelling process of an electron is involved in this analysis, these paths take place in

the complex time domain. The condition

∂S

∂qi
= 0, (5.9)

where qi(i = 1, . . . , 5) runs over the five variables t, t′ and k, leads to the saddle-point equa-

tions [2020, 9494] (
k + A(t′)

)2 =− 2|E0|

(k + A(t))2 = (p + A(t))2

(t− t′)k =−
t∫

t′

dτA(τ).

(5.10)

The solutions (tS(Re tS > Re t′S), t′S ,kS), are known as the stationary points of the quasiclassical

action of the system, and define the quantum orbits which are the essential components in building

the ionization spectrum through the saddle-point approximation. From a physical perspective,

Eqs. (5.105.10) ensure the energy conservation at the time of tunnelling, elastic scattering of the

electron into its final state when it returns, and that in fact the electron returns to its parent

ion, respectively. Since |E0| > 0 in (5.105.10), the condition of energy conservation at the time of

ionization cannot be satisfied for any real time t′. As a consequence, the solutions (tS , t′S ,kS) of

the saddle-point equations describe complex orbits which puts limitations on a straightforward

visualization of the trajectories.
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The probability amplitude (5.65.6) can now be expressed in terms of the saddle-point solutions

as [2020]

Mp ∼
∑
i

(
(2πi~)5

det(∂2S/∂qj∂qk)j,k=1,...,5

)1/2

× exp(iS(tSi , t′Si ,kSi)), (5.11)

where qi(i = 1, . . . , 5) runs over the five variables tS , t′S and kS . The sum (5.115.11) involves a

reduced set of trajectories that are sufficient to approximate the ionization spectrum through

their interferences, which have constructive and destructive contributions.

5.2 Results

This section presents the results corresponding to a saddle-point analysis of the probability

amplitude to detect ati electrons that emerge from a model-helium atom under a strong laser

field of the form (4.124.12). In order to obtain comparable results to the quantum generalization of

the sfa presented in Chapter 44, the laser intensity and frequency were set to I = 1015 W/cm2

and ω = 0.0584 a.u., respectively.

5.2.1 Direct trajectories

The probability amplitude for detecting an ati electron that propagates with momentum p in

the continuum as a result of the laser irradiation of an atom, originally in its ground state, is

studied in this section. The action of a system consisting of a bound electron that is ionized at

time t0, without further interaction with the parent ion, has the form [88, 1818]

Sp(t0) = −1
2

∫ ∞
t0

dτ [p + A(τ)]2 −
∫ t0

−∞
dτE0, (5.12)

Since the main contribution to the transition amplitude (5.115.11) is given by the stationary points of

the action which satisfy the condition dSp/dt0 = 0, the integral (5.115.11) is evaluated by implement-

ing a saddle-point approximation [9797]. This consists in expanding the phase of the integrand,

Φ(t) = (1/η)S(t) = (ω/Up)S(t), in the vicinity of the points where the phase is stationary, which

results in determining the solutions of

∂Sp
∂t0

= 1
2(p + A(t0))2 + |E0| = 0. (5.13)

74



The stationary points from Eq. (5.135.13) have a non-zero imaginary component, therefore, it is

convenient to split the integral of the action (5.125.12) in the complex time domain by implementing

the substitution ωt0 → Re(ωt0) + iIm(ωt0). For a linearly polarized laser field of the form (4.124.12),

the location of the saddle points can be determined analytically and their real and imaginary

components satisfy the conditions

cos2(Re ωt0s) =1
2

(
1 + γ2 + Ep

2Up

)
− 1

2

√√√√( Ep
2Up

)2

+ (1 + γ2)2 + Ep
Up

(γ2 − cos 2φ)

cosh(Im ωt0s) =−
√
Ep
2Up

cosφ
cos(Re ωt0s)

,

(5.14)

where φ is the angle between the momentum p and the direction of polarization of the laser

field, x̂. The electron energy, as it propagates in the continuum, is indicated by Ep = p2/2. As

Eqs. (5.145.14) indicate, an electron energy Ep is associated with four saddle-points ωt0s, s = 1, . . . , 4,

which are related to each other by complex conjugation. These complex roots are illustrated in

Figure 5.15.1 for electron energies within the range (0, . . . , 6Up). The saddle points with positive

imaginary parts, t01 and t02, are shown in blue, whereas the red connected dots, t03 and t04,

indicate points with negative imaginary parts. The contours defined by the saddle points in phase

space illustrate the integration paths to follow for a given electron energy when constructing the

ati spectrum.

In a saddle-point evaluation of the integral (5.65.6), it is convenient to refer to the asymptotic

evaluation of the expression

I(η) =
∫
C

dzg(z)eηs(z) (5.15)

in the case where the functions s(z) and g(z) are analytic and η > 0. The integration contour C

is deformed into a composition of contours Cs coinciding with the path of steepest descent. This

transformation into the complex plane, in which the function s(z) = s(x+iy) = u(x, y)+iv(x, y),

leads to express the saddle-point condition as

(∇u) · (∇v) = 0, (5.16)

indicating that the curves along the directions of ∇u and ∇v always meet orthogonally at any

point. Ideally, one needs a path near a point z = zs such that u(x, y) attains a peak and
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Figure 5.1: Representation of the saddle points corresponding to Eqs. (5.145.14) that indi-

cate the complex ionization times associated with direct trajectories of electrons ionized

by a linearly polarized field with laser intensity of 1015 W/cm2 and ~ω = 1.58 eV. The

connected dots correspond to discrete energies within the range (0, . . . , 6Up). The tra-

jectories with Im ωt0i > 0 are shown in blue, while the ones with Im ωt0i < 0 are

indicated in red.
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decreases away from z = zs. However, the imaginary part v(x, y) will in general also change and

the exponential factor eiηv will oscillate rapidly in the vicinity of zs. If the point z = zs coincides

with a saddle point, a suitable path is one where v(x, y) is nearly constant as one moves away

from zs, in other words, when the exponential term in (5.155.15) can be expressed as [88]

eηu(x,y)+iηv(x,y) = eηu(x,y)eiηv(xs,ys). (5.17)

Therefore, in order to calculate the saddle point contributions to the integral, one chooses the

integration path such that Im s(z) = Im s(zs). Along the direction of steepest descent for the

surface v(x, y) = v(xs, ys), defined by −∇v|zs = −( ∂v∂x ,
∂v
∂y )|zs , the Cauchy-Riemann equations

justify that the tangents to the surface v(x, y) = v(xs, ys) lie in the direction of steepest descent

through zs. In a contour Cs that goes through the saddle points of s(z), the main contribution

to the integral in the transition probability comes from the saddle point zs = xs + iys or its

immediate vicinity. Therefore, a Taylor expansion of the action (5.125.12) around the saddle point

zs in the form

s(z) ' s(zs) + 1
2!s
′′(zs)(z − zs)2 (5.18)

is justified. This approximation allows for an analytic determination of the saddle point contri-

butions to the integral (5.155.15), which can be written as a Gaussian integral and evaluates to [88]

I(η) '
∑
sεZC

±g(zs)eηs(zs)
√

2π
−ηs′′(zs)

, (5.19)

provided that the original contour C is deformed into a composition Cmax of contours Cs,max which

are regions where s(z) and g(z) are analytic, with identical boundary points ∂Cmax = ∂C. The

sum in (5.195.19) runs over a partial set of all saddle points whose contours Cs,max combine into Cmax.

Accordingly, the kfr matrix element for direct electrons can be approximated by a Gaussian

function [88]

Mp ∼
T∫

0

dt eiηΦ(t), (5.20)

in which the phase is defined as Φ(t) = Sp(t)ω/Up, and the period of the laser field is indicated

by T . The integration path to follow is defined by a contour of saddle points whose locations,
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indicated in Eq. (5.145.14), are known analytically for a linearly polarized laser field. This expression

results in [88]

Mp ∼
∑
i

√
2π

−iS′′p(tsi)
exp iSp(tsi), (5.21)

where tsi denote the saddle points that lie in the contour of interest. Equation (5.215.21) approximates

the ati spectrum for an electron that, after being ionized at some time t0 under a strong laser

field, propagates under the influence of the field with no further interaction with the binding

potential.

In order to visualize the regions in phase space where the action Sp is stationary and, con-

sequently, construct an integration path of stationary phase through the saddle-points, it is

convenient to carry out the substitution t → tr + iti in Eq. (5.125.12). For a monochromatic laser

field (4.124.12), and assuming that the electron path is parallel to the electric field of the laser, the

real and imaginary components of the phase take the form [88]

Im iΦ(t) = ωtr(1 + Ep
Up

+ 2γ2) + 1
2 sin 2ωtr cosh 2ωti + 2

√
2Ep
Up

sinωtr coshωti (5.22)

−Re iΦ(t) = ωti(1 + Ep
Up

+ 2γ2) + 1
2 cos 2ωtr sinh 2ωti + 2

√
2Ep
Up

cosωtr sinhωti. (5.23)

At a given electron energy, the permitted integration contours follow from Im iΦ(t) = Im iΦ(tsi),

and Eq. (5.225.22) allows to write them explicitly as a function of ti(tr). Figure 5.25.2 shows contours

for constant imaginary part of the exponent in Eq. (5.205.20), as well as the set of saddle points

corresponding to an electron energy of 2.27Up, indicated by crosses (×). The blue curve corre-

sponds to contours with Im iΦ(t) = Im iΦ(ts1,s3), while contours with Im iΦ(t) = Im iΦ(ts2,s4)

are indicated by a red curve. The purple scale represents the real values of the exponent iΦ(t),

in which dark regions indicate small values of Re iΦ(t), while bright regions indicate large values

of Re iΦ(t). This implies that, for every single electron energy, Ep, only one possible integration

path is relevant in order to evaluate the transition amplitude Mp: the one starting at t = 0 to

+i∞, Ca, then along C1 across the saddle point t01 up to ωt = π + i∞ where the integrand

vanishes, from there along C2 across the second saddle point, t02, to ωt = 2π + i∞, and finally

along Cb to ωt = 2π. The integrands along Ca and Cb are identical and the integrals add up to
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Figure 5.2: Phase contours of Im iΦ(t) corresponding to the saddle points t01(t03) (blue

lines) and t02(t04) (red lines) for an electron energy of 2.27Up projected on the com-

plex plane. The allowed integration contour runs over the saddle points with positive

imaginary parts, t01 and t02. The regions in a purple scale represent the real part of

the exponent in Eq. (5.205.20), Re iΦ(t), in which dark/light regions stand for small/large

real parts .

zero due to the reversed integration orders. Along contours C1 and C2, the integrand is approx-

imated by the Gaussian (5.215.21) with i = 1, 2. For a given electron energy, Ep, the probability

amplitude (5.215.21) is evaluated along the integration trajectory that contains the saddle-points

with positive imaginary parts, t01 and t02, indicated as blue connected dots in Figure 5.15.1, in

order to obtain a converging result when evaluating the exponential term in Mp.

The described ionization spectrum of direct electrons for a model helium atom calculated

by means of the saddle-point approximation (5.215.21) is displayed in Figure 5.35.3 by dash-dotted

lines. The ati spectrum corresponding to the exact Keldysh amplitude is indicated with black

dots. The saddle-point approximation mirrors the fully quantum calculation in terms of an

expansion in Bessel functions. Similarly to what the Keldysh sfa results point out, the saddle-
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Figure 5.3: Calculated ati spectrum using Keldysh formalism (black dots) and the

saddle-point approximation (dash-dot line) in terms of trajectories 1 and 2, for a laser

intensity of 1015 W/cm2, ~ω = 1.58 eV, and a binding energy of E0 = −0.9 a.u. for

a zero-range He model. The electron energies are expressed in multiples of Up. The

Keldysh parameter and the ratio Up/ω are γ = 0.654 and η = 17.9, respectively.

point approximation generates an ati spectrum that vanishes at approximately 2.5Up as the

electron escapes the effects of the binding potential without further interaction with the parent

ion.

5.2.2 Trajectories with rescattering

Incorporating rescattering effects, in which ionized electrons are allowed to return to the parent

ion, is important in the study of ati as it expands the possible physical interpretations to the

ionization spectrum. In particular, it elucidates the origin of the extended ati plateau which can

be observed at high electron energies [8585]. This plateau, a key feature to the laser induced ati,

is thoroughly justified when rescattering effects are included in the analysis [77, 1717], and has been
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widely addressed in the literature under the hypothesis that the electrons that are responsible

for this plateau gain their energy through backscattering when upon propagation in the laser

field they return to the vicinity of the parent ion [77, 4646, 4747]. It is the purpose of this section to

revisit a saddle-point approximation of the rescattering picture in which the quantum orbits of

the ionized electron play an essential part in the formation of the ati spectrum [2020].

In the recollision picture, an electron transitions from the ground state into the continuum

at time t′S , ionization time, from that time on the effects of the laser field in the electron dy-

namics are dominant and the Coulomb potential of the parent ion becomes negligible as the

electron propagates in the continuum with momentum kS , however, the model accounts for fur-

ther interaction with the binding potential as the electron is considered to return to within the

vicinity of the ion at time tS , rescattering time, at which the electron acquires its final asymptotic

momentum p.

The relevant quantum orbits, defined by the complex saddle points (t′S , tS ,kS), are the solu-

tions of the saddle-point equations (5.105.10) which have their origin in the condition that the action

of the system remains stationary along those points. Given that the saddle-point equations (5.105.10)

are real, solutions come in complex conjugate pairs. The existence of these solutions in pairs can

be interpreted as a consequence of the invariance of the problem with respect to time reversal.

For the linearly-polarized field (4.124.12), after some algebraic work on the saddle-point equations,

one can solve for the rescattering time and ionization time as the numerical solutions of [2020]

[ωtS ∓ arccos(2 cosωtS + δ ∓ iγ)](2 cosωtS + δ)

±
√

1− (2 cosωtS + δ ∓ iγ)2 − sinωtS = 0
(5.24)

and

ωt′S = ∓ arccos(2 cosωtS + δ ∓ iγ), (5.25)

respectively, where the quantity δ is defined as δ =
√
p2/(4Up). Therefore, the complex paths are

generated for every possible set of saddle points (t′i, ti,ki), where i indicates the i−th quantum

trajectory. As Eq. (5.245.24) indicates, solutions for the rescattering time come in complex conjugate

pairs. Each optical cycle ωT = 2π contains two solutions for the return time ti for each of

the two possible combinations of signs. Considering the periodicity of the laser field (4.124.12), we

can focus our attention to the interval 0 < Re ti < T for the rescattering times. Subsequently,
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Eq. (5.255.25) generates a pair of solutions for the ionization time t′i within every interval delimited

by −(n+1
2 )T < Re t′i < −(n2 )T , with n = 0, 1, . . . , as can be noticed in Figure 5.45.4 (right).

In Figure 5.45.4, a subset of these numerical solutions illustrates the described distribution for

the release and return times corresponding to the first six quantum orbits, i = 1, . . . , 6, for a

fixed electron energy of Ep = 6Up. It can be noticed that in both cases, i.e., return times and

ionization times, the solutions come in pairs for each optical cycle of the laser field. The left

panel shows the roots of Eq. (5.245.24) for the return times corresponding to three consecutive optical

cycles. In addition, the electric field of the laser, Eq. (4.124.12), is depicted in the left panel with

dash-dotted lines for the optical cycle 0 < ωt < ωT . The right panel indicates the release times

that are obtained as the roots of Eq. (5.255.25) once the return times are calculated. The release

times illustrate how additional pairs of solutions become available for lower energies, with t′i

extending further into the past.

The value of the ponderomotive energy, Up, at which the two trajectories of a given pair

approach each other most closely corresponds to the cutoff of this pair. Typically, the orbits

that correspond to a given cutoff energy are defined as long and short orbits [1717]. Each pair

of trajectories (i, j) has its well-defined cutoff at some energy, Ecutoff , at which the orbits come

together, and the pair ceases to contribute to the ionization spectrum for Ep > Ecutoff . The

inset in the left panel of Figure 5.45.4 depicts the described behaviour for the pair (1, 2) of quantum

orbits, the curves indicate the numerical solutions for the return times corresponding to three

different values of the electron energy. No solutions can be found for the return times, and

subsequently the release times, if the electron energy exceeds the cutoff energy associated to a

given pair. The cutoff energy for the pair (1, 2) comes out to be 10.24Up as Figure 5.45.4 indicates.

Typically, the travel time, Re(ti− t′i), associated with a quantum orbit indicates the relevance of

its contribution to the ati spectrum, the ones with shorter travel time being qualitatively more

relevant, as they make up for the strongest contributions to the ionization spectrum.

The complex orbits for the ionization time, rescattering time and complex momentum, given

by the saddle-point solutions of Eqs. (5.245.24) and (5.255.25), are shown in Figure 5.55.5 for trajectories

i = (1, . . . , 6) as a function of the electron kinetic energy Ep. A subset of the energy values

is indicated in multiples of Up along the paths. In the process of obtaining the saddle points

corresponding to trajectories with increasing travel times, the substitution ωt→ ωt+ 2πk, with
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Figure 5.4: Results of a numerical determination of the return time ti and the release

time t′i based on Eqs. (5.245.24) and (5.255.25) for a specified electron energy, Ep = 6Up.

The intersections with the y = 0 axes indicate the real components of pairs of return

time (left) and their corresponding release times (right). The numbers in parentheses

refer to the numbers of individual trajectories. The electric field corresponding to the

monochromatic field (4.124.12) is depicted in the left panel in dash-dotted lines. The inset

in the left panel depicts the numerical solutions for the return time as the electron

energy increases.
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k = 0, 1, . . . , was implemented in Eqs. (5.245.24) and (5.255.25). The behaviour of these complex

trajectories is markedly different depending on the location of the classical cutoff. Every pair

of trajectories shows that the quantum orbits approach each other closely near the cutoff. For

energies above the cutoff, the orbits in every pair diverge away from one another and the ones

with negative imaginary parts stop contributing to the ati spectrum and are dropped from the

sum (5.115.11), as they lead to a diverging solution for the probability amplitude. This cutoff marks

a turning point in the complex paths. It can be noticed that both the rescattering times and

quantum momenta have very small imaginary parts before the cutoff, while their imaginary

components become noticeable as the electron energies increase beyond the cutoff. In contrast,

the imaginary parts of the ionization times are significant, indicating the origin of the electrons

through tunnelling ionization. For energies above the cutoff, the real components of the complex

paths remain approximately constant with increasing energy. As a result, a marked drop appears

after the cutoff in the spectrum associated with a given pair of trajectories.

It is illustrating to take into account the complex nature of the electron dynamics in order

to visualize how the action of the system, S(ti, t′i,ki), evolves as the electron energy increases.

To this end, one can write the explicit analytic expression for the action in the event that the

canonical momentum k and the final momentum p are parallel to the linearly polarized laser

field (4.124.12), which reads

S(t, t′,k) = −1
2

∫ ∞
t

dτ
[
p2 + 2A0p cos(ωτ) +A2

0 cos(ωτ)2
]

−1
2

∫ t

t′
dτ
[
k2 + 2A0k cos(ωτ) +A2

0 cos(ωτ)2
]

+
∫ t′

−∞
dτ |E0|. (5.26)

In the vicinity of the saddle points (ti, t′i,ki), where the action satisfies the stationarity condi-

tion (5.95.9), the integration limits that cause the integrand to diverge to ±∞ can be neglected.

Some algebraic simplifications on the analytic expression for the action allow us to express the
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Figure 5.5: Saddle points for the orbits (s = 1, . . . , 6) in the complex plane as a function

of the electron energy Ep specified along the lines in multiples of Up. A laser field of

1015 W/cm2 and ~ω = 1.58 eV and a binding energy of E0 = −0.9 a.u. were used

in the calculations. In this figure, ωt′ represents the ionization time, ωt stands for

rescattering time, and kx is the x−component of the canonical momentum k. The

underlying Keldysh parameter is γ = 0.464.
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phase, Φ = (1/η)S, in the probability amplitude (5.115.11) as

Φ(t, t′,k) =
(
EP
UP
− k2

2UP

)
ωt− 2√

UP

(
k −

√
2EP

)
sin(ωt)

+
(
k2

2UP
+ 1 + 2γ2

)
ωt′ + 2√

UP
k sin(ωt′)

+1
2 sin(2ωt′), (5.27)

where EP = p2/2 indicates the electron energy.

The phase values S(ti, t′i,ki)/η, with η = 35.8, corresponding to the electron trajectories with

the shortest travel times (i = 1, 2), are shown in Figure 5.65.6 as a function of the electron energy

Ep as blue/red lines, respectively. A subset of energy values is specified along the curves up to

the cutoff energy, whereupon a crossing takes place between the paths. Additionally, the complex

coordinates of the action that were graphically extracted from [88] are marked by crosses (×) for

the electron energies specified. The relative error of the action (5.265.26) with respect to the saddle-

point results from [88] is indicated with errorbars for the three energies considered. For energies

below the cutoff the most noticeable changes occur in the real components, while the imaginary

parts of the individual trajectories change little as they approach each other along the plateau.

In contrast to the saddle point behaviour (Figure 5.55.5), where in a given pair of trajectories

(i, j) they diverge rapidly from one another towards the cutoff, the complex contributions of the

action approach one another as the electron energy increases and eventually are interchanged at

the cutoff, at which point one of the trajectories ceases to contribute to the ati spectrum.

The computation of the ati spectrum can now be carried out once the solutions of the saddle-

point equations are determined. To this end, the appropriate subset of electron trajectories is

inserted into the matrix element (5.115.11). Figure 5.75.7 depicts the formation of the ati spectrum as

an increasing number of quantum orbits are included in the sum (5.115.11). The contribution to the

spectrum of a given pair of trajectories (i, j) reflects its cutoff energy, upon which the sequence

of interference maxima and minima is terminated by a sharp peak where the two trajectories

diverge and one of them increases exponentially and stops contributing to the spectrum. The

pair (1, 2) with the highest cutoff energy (around 10Up as shown in Figure 5.55.5) and shortest

travel time presents the dominant contribution to the ati spectrum. The second most important

contribution comes from the pair (3, 4), which has the lowest cutoff energy at around 7Up and
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Figure 5.7: Saddle-point evaluation of the ati spectrum as a function of the elec-

tron energy in terms of an increasing number of quantum paths. A laser intensity of

1015 W/cm2 and frequency ~ω = 1.58 eV were used in the calculations, as well as a

binding energy of E0 = −0.9 a.u. corresponding to a model-helium atom. The number

of relevant trajectories, increased by two on each additional spectrum, is highlighted at

the left of the curves. The dot-dashed curve (top) represents the calculation of the ati

spectrum from the integral (4.134.13).

second shortest travel time. Its final broad-top maximum, at around 6Up, remains visible in the

converged spectrum. As further pairs of trajectories with increasing travel times are included

in the calculation, their overall contribution to the spectrum decreases. In contrast with pre-

vious results [2020], in which the shortest six trajectories provided a good approximation to the

ati spectrum, our calculations indicate to be more sensitive to adding further trajectories to

the sum (5.115.11), as the converged ati spectrum becomes visible with the contributions from 14

quantum paths.
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6 Conclusions

In this dissertation we have developed a study of the ionization of the H2O molecule valence

orbitals under an electric dc field in which nhqm techniques have been implemented. Additionally,

a systematic study of the ati spectrum for a model-He atom was carried out following an extension

of the sfa. In the following subsections more detailed and summarized conclusions are offered

for these studies.

6.1 H2O in an external dc field

PDE system with a modified ECS

We have carried out a study of the H2O valence orbitals, 1b1, 1b2, and 3a1, in the presence of an

external electric dc field applied along the symmetry axis of the molecule, F = F0ẑ. As a starting

point, an orbital-dependent effective potential was extracted from a self-consistent solution for

the H2O mos expressed as an expansion on a basis of single-centre Slater-type orbitals [11]. The

1b1 and 1b2 molecular orbitals were approximated by orbitals in a spherically symmetric potential

and expressed as linear combinations of 2px and 2py orbitals, respectively. In the case of the 3a1

orbital, s − p type Slater orbitals were considered in addition to retaining the 2pz parts of the

mo expansion.

A modified ecs technique was applied to the radial coordinates in the Schrödinger equation

with orbital-dependent effective potential for each mo as part of solving the complex eigenvalue

problem to obtain the Stark resonance parameters. By means of a phase factor the scaling was

turned on gradually beyond some distance from the origin of coordinates. The ecs parameters,

rs and ∆r, as well as the asymptotic scaling angle, χs, were optimized in order to guarantee

a minimum of two to three significant digits in the solutions. The tunnelling ionization and
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over-barrier ionization regimes were explored by finding a numerical solution to the pde system

resulting from separating the complex-valued wave function into real and imaginary parts [4444, 4545].

The resonance parameters that describe the ionization process, resonance position and width,

were explored over a wide range of electric field strengths. It was demonstrated how an increase

of the field strength beyond a critical point in the over-barrier region leads to a crossing between

the ionization rates of the 1b1 and 1b2 orbitals.

For the 3a1 mo, the orientation of the external field was chosen in two directions, that is

the dc field pointing away or towards the oxygen atom fixed at the origin. The relationship

of the resonance parameters (position and width) to the neighbouring valence orbitals 1b1 and

1b2 was explored. Interestingly, the 3a1 orbital was found to ionize more easily than 1b1 or 1b2
irrespective of the field direction along ẑ.

These calculations should serve as motivation for further studies of molecular orbitals of

water using more sophisticated wave functions. It would be interesting to extend this work to

deal with laser fields for practical applications. For the hydrogen molecular ion this was done

using Floquet theory [6363], where some parallels were found between monochromatic ac and the

dc cases. Experimental observations of strong-field ionization of water vapour are available for

short, intense laser pulses [9898, 9999]. One needs to solve the tdse for realistic simulations of

these [100100, 101101].

Partial-wave approach with a CAP

Ionization of H2O valence orbitals exposed to an external dc field has been addressed from an

alternative perspective as well. The hydrogen components of a three-centre model potential

introduced in a study of ion collisions with water molecules [7373] were expressed as a partial-

wave expansion in a basis of spherical harmonics [7272] truncated at l = lmax. This representation

of the model potential in terms of partial waves resulted in a system of radial equations of

dimensions proportional to the size of the expansion. The system of coupled ordinary differential

equations for the different (l,m) channels was solved numerically by implementing a finite-element

Mathematica method. The precision of the calculations was modified accordingly as the number

lmax increased and, consequently, the number of (l,m) channels.

The field-free problem was addressed and orbital energies for the valence mos were obtained
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for increasing sizes of the partial-wave expansion. In a comparison with the solutions for the

model potential as quoted in a Gaussian orbital basis approach [44], the partial-wave expansion

results were found to approximate the eigenvalues from above. The outermost orbital 1b1, with

its density perpendicular to the molecular plane and little overlap with the hydrogen atoms,

indicated a fast convergence with lmax. On the other hand, for the more deeply bound mo 1b2,

with a considerable amount of electron density along each O−H bond, convergence with lmax

was noticeably slower. Comparison with the eigenvalues obtained for an exchange-only opm

calculation [55] was shown as well.

The complex-valued resonance energies were computed by including a quadratic cap that

was turned on at a distance such that the effective potential had reached its simple asymptotic

form. The eigenvalues were determined by implementing the Riss-Meyer correction scheme [3737].

Comparison of the calculated dc shifts and decay rates with the previous results based on a

single-centre scf orbital dependent effective potential [4444, 4545], for which azimuthal symmetry

was assumed, points to the fact that the partial-wave expansion of the model potential has more

geometric flexibility in the resonance solution, and therefore shows more prominent features in

the behaviour of dc shift and decay rate Γ as a function of the field strength and field orientation.

6.2 Above threshold ionization for laser-atom interactions

We have investigated the phenomenon of ati for a model-He atom in the presence of a strong

linearly polarized laser field. A generalization of the Keldysh formalism of sfa [1919], in which

rescattering of an electron with its parent ion is considered, has been explored in the limiting

case of a zero-range potential. A systematic study of the numerical convergence of the ati

spectrum has been carried out by evaluating the compact expression for ionization of an atom

into a scattering state [2121] with asymptotic momentum p. Several parameters associated with

the numerical precision of the calculation, such as the working precision, were tuned up in order

to reduce the error when evaluating the relevant quadrature.

In addition to the numerical evaluation of the compact expression for the transition amplitude,

an alternative analysis based on the concept of quantum paths [2020] was implemented. This

approach permitted to generate the ati spectrum by means of a saddle-point approximation in

which a coherent sum over a reduced number of complex trajectories was carried out. For the
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case of direct electrons, a total of two complex trajectories was sufficient to generate an ati

spectrum that converged to the Keldysh model. On the other hand, convergence of the ati

spectrum including electron rescattering proved to be a more intricate problem.

The zero-range potential model was implemented to generate an approximated strong-field

ionization spectrum for the 1b1 and 1b2 molecular orbitals of H2O. Each molecular orbital was

treated as an independent spherically symmetric orbital with a binding energy corresponding to

the eigenvalue of the field-free problem with a one-centre scf effective potential. This approach is

by no means an attempt to provide a realistic picture of the H2O molecule subjected to an intense

laser field. However, it could serve as reference to future works that focus on the convergence of

the ionization spectrum.
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A Length gauge

This appendix introduces the length gauge, a commonly used gauge choice to describe laser-atom
interactions.

The Hamiltonian for an electron in the presence of an external electromagnetic field described
by the potentials (A, φ) can be expressed as

H(t) = 1
2m(p− eA)2 + V (r) + eφ, (A.1)

where p = −i~∇, ∇ is the gradient operator, and V (r) is the binding potential of the atom. In
the presence of an electromagnetic field, the Hamiltonian is frequently decomposed as

H(t) = H0 +HI(t), (A.2)

where the operator H0 = p2/2m+ V (r) is known as the field-free Hamiltonian, while HI(t) de-
scribes the interaction of an otherwise free electron with the external field, and its form depends
on the gauge employed. Within the long-wavelength approximation (lwa), or dipole approxima-
tion, which neglects the space dependence of the electric field and the vector potential, so that
E(r, t)→ E(t) and A(r, t)→ A(t), one finds that the divergence of the vector potential vanishes
∇ ·A = 0, and the interaction operator takes the form

HI(t) = eφ− e

m
A · p + e2

2mA2 (A.3)

A gauge transformation is defined as a change of the electromagnetic field potentials (A, φ)
and the wave function Ψ by the gauge function Λ = Λ(r, t) such that

A→ A′ = A +∇Λ

φ→ φ′ = φ− ∂

∂t
Λ

Ψ→ Ψ′ = e−
ie
~ ΛΨ

(A.4)

This transformation leaves the physical fields E and B unaffected as well as the tdse i~ ∂
∂tΨ

′ =
H(t)Ψ′. The length gauge results from the transformation

Λ = −A(t) · r, (A.5)

which leads to

A′ = 0

φ′ = ∂

∂t
A(t) · r = −r ·E(t)

(A.6)
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for the vector and scalar potentials of the external laser field, respectively. In terms of the
transformed potentials, the interaction operator takes the form HI = −er · E(t). Therefore, in
the length gauge the tdse becomes

i~
∂

∂t
Ψ(r, t) = [H0 − er ·E(t)] Ψ(r, t). (A.7)

In the case that the binding potential V (r) is neglected, Eq. (A.7A.7) takes the form

i~
∂

∂t
Ψ(r, t) =

[
− 1

2m∇
2 − er ·E(t)

]
Ψ(r, t), (A.8)

that corresponds to the tdse for a free electron in a laser field. The solution of the tdse (A.8A.8)
is the Volkov wave function ΨV (r, t), which represents a plane wave describing an electron in a
strong laser field.
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