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Abstract

To compose one 360◦ image from multiple viewpoint images taken from different

fisheye cameras on a rig for viewing on a head-mounted display (HMD), a

conventional processing pipeline first performs demosaicking on each fisheye

camera’s Bayer-patterned grid, then translates demosaicked pixels from the

camera grid to a rectified image grid. By performing two image interpolation

steps in sequence, interpolation errors can accumulate, and acquisition noise in

each captured pixel can pollute its neighbors, resulting in correlated noise. In

this paper, a joint processing framework is proposed that performs demosaicking

and grid-to-grid mapping simultaneously, thus limiting noise pollution to one

interpolation. Specifically, a reverse mapping function is first obtained from a

regular on-grid location in the rectified image to an irregular off-grid location

in the camera’s Bayer-patterned image. For each pair of adjacent pixels in

the rectified grid, its gradient is estimated using the pair’s neighboring pixel

gradients in three colors in the Bayer-patterned grid. A similarity graph is

constructed based on the estimated gradients, and pixels are interpolated in the

rectified grid directly via graph Laplacian regularization (GLR). To establish

ground truth for objective testing, a large dataset containing pairs of simulated

images both in the fisheye camera grid and the rectified image grid is built.
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Experiments show that the proposed joint demosaicking / rectification method

outperforms competing schemes that execute demosaicking and rectification in

sequence in both objective and subjective measures.
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Chapter 1

Introduction

The advent of camera technologies means that images can now be captured in

non-traditional formats with large fields-of-view for modern imaging applica-

tions. One example is fisheye camera such as Kandao Qoocam1 or GoPro Max2

that is capable of capturing an ultra-wide but irregularly-shaped field-of-view.

An example fisheye camera image is shown in Fig. 1.1a. Multiple viewpoint

images captured by different fisheye cameras on a rig [54, 99] can be stitched

together using algorithms such as GIST [67] to compose a 360◦ image, which

can be viewed subsequently in a head-mounted display (HMD) such as HTC

Vive3 or Oculus Rift4 for an immersive viewing experience. The ability to

observe ultra-realistic 3D scenes in HMD is essential for a wide variety of

imaging applications, including virtual reality (VR) [99], augmented reality

(AR), surveillance [60], and immersive communication [87] for remote learning
1https://www.kandaovr.com/qoocam-8k/
2https://gopro.com/en/us/shop/cameras/max/CHDHZ-201-master.html
3https://www.vive.com/
4https://www.oculus.com/rift/
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CHAPTER 1. INTRODUCTION

and tele-surgery [92], etc.

However, captured images by fisheye cameras are often geometrically dis-

torted because of the optical structures of fisheye camera lenses. As illustrated

in Fig. 1.1b, straight lines on the fisheye camera images are visibly bent. Thus,

image rectification [50] is necessary before projecting these captured images

onto a physical display for visual consumption.

In general, rectification is a transformation process that realigns an image

onto a target image plane by performing image interpolation. The interpolation

position can be computed with a pre-computed camera calibration matrix

[120], which includes distortion information of the lenses. In recent literature,

some rectification methods without calibration procedures are proposed, by

performing rectification using the distorted information from the input fisheye

camera images. For example, line-based methods assume that straight lines are

projected to circular arcs in the image plane caused by radial lens distortion,

such that the distortion parameters can be estimated through arc fitting [109,

14, 100].

In a conventional image processing pipeline, before applying rectification on

fisheye camera images (e.g., from Fig. 1.2c to Fig. 1.2d), image demosaicking

(e.g., from Fig. 1.2b to Fig. 1.2c) will be performed first. This is because,

using a Bayer-patterned array, as shown in Fig. 1.2a, the camera sensor only

captures one color channel at each pixel location, which results in a Bayer-

patterned image as shown in Fig. 1.2b. Thus, to construct a color image like

Fig. 1.2c with all three color components (i.e., red, blue and green) at each

pixel location, image demosaicking needs to be performed to interpolate missing

color components.
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CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Example of fisheye camera images.

Recent popular methods for demosaicking perform image interpolation

that fills in missing color information using a local neighborhood of observed

pixels [12, 117]. In comparison, non-local methods [11, 49], such as non-local

mean (NLM) [118], tend to have better demosaicking performance, but they

are limited by high complexity and long running time.

Image demosaicking and rectification are performed separately in a con-

ventional image processing pipeline. However, during the capturing process, as

light photons are collected at each pixel location to compute an intensity value,

additive noise is typically observed, which corrupts the intensity computa-

tion. Performing demosaicking and rectification in sequence means that image

interpolation is executed twice, where at each stage, errors can accumulate,

and acquisition noise at the captured pixels can smear neighbors, resulting in

correlated noise.

3



CHAPTER 1. INTRODUCTION

(a) (b) (c) (d)

Figure 1.2: Processing pipeline for fisheye camera images. (a) Bayer filter

array on the camera sensor, which captures one color component at each pixel

location. (b) Bayer-pattern image, which is noisy in the real scene. The noise

is inevitably introduced during the capturing process. (c) Demosaicked color

image, which has three color channels on each pixel location. (d) Rectified

image.

The removal of correlated noise is more challenging than removing un-

correlated ones [46, 88]. In fact, independent and identically distributed (iid)

additive noise is assumed in most previous notable image denoising works,

such as bilateral filtering [85], NLM [10], and block-matching and 3D filtering

(BM3D) [25]. A denoising engine developed with the assumption of uncorre-

lated additive noise, such as additive white Gaussian noise (AWGN), tends to

perform poorly when applied to images with correlated noise [122].

To alleviate this problem, in this thesis a joint demosaicking and rectifi-

cation scheme is proposed for fisheye camera images. For example, Fig. 1.2d

will be obtained by interpolating Fig. 1.2b directly. This means that image

interpolation is performed only once, which limits the effect of noise pollution

during only one interpolation step and potentially leads to better performance.

4



CHAPTER 1. INTRODUCTION

Figure 1.3: An illustration of mapping in rectification.

In this thesis, the joint demosaicking problem is formulated as an inverse

imaging problem using graph signal processing (GSP) based regularization

for pixel interpolation. GSP [83, 95, 21] studies the processing of signals

residing on graphs. In recent years, GSP has been successfully applied to many

image processing tasks, such as image restoration [3, 115, 70, 84, 19], image

compression [39, 40, 56, 17, 93], and image segmentation [81, 86, 64, 8]. GSP is

suitable for the joint demosaicking / rectification problem, because the problem

requires processing of non-integer signal samples that are not conventional 2D

images on a regular 2D grid, and a graph-based approach can flexibly handle

irregular sample placements. To illustrate this, consider the rectification process

involving grid-to-grid mapping in Fig. 1.3. Two “on-grid” pixels in the rectified

image grid in the right map to two “off-grid” pixel locations in the fisheye

camera grid. The joint demosaicking / rectification problem is the problem of

interpolating directly these off-grid pixels translated from the rectified image

grid using only sparse on-grid color pixels in the fisheye camera grid. A cleverly

constructed graph can elegantly account for pairwise similarity information for

5



CHAPTER 1. INTRODUCTION

neighboring pixel pair in the rectified grid and the fisheye camera grid, as well

as pixel pairs across the two grids. Having constructed an appropriate graph

connected all relevant pixels, a target pixel patch can then be computed via

graph spectral filtering.

This thesis is structured as follows. In Chapter 2, a review on related works

in model-based image restoration, basic graph signal processing (GSP) concepts,

applications of GSP in image restoration, and joint demosaicking problems

is provided. The proposed joint demosaicking and rectification algorithm is

described in Chapter 3. In Chapter 4, the construction of an image dataset for

experiments is discussed. Experimental results are presented and discussed in

Chapter 5. Finally, a conclusion is provided in Chapter 6.

6



Chapter 2

Related Works

In this chapter, related works in model-based image restoration problems are

first discussed in Sec. 2.1. A brief introduction of Graph Signal Processing

(GSP) concepts is provided in Sec. 2.2. Literature in graph-based image

processing techniques is reviewed in Sec. 2.3. In Sec. 2.4, an overview on joint

demosaicking problems is provided.

2.1 Model-based Image Restoration

In this thesis, joint demosaicking and rectification is formulated as an inverse

imaging optimization problem. Optimization formulation is common in the

literature when addressing image restoration tasks, such as denoising [84] and

deblurring [3], using a model-based approach. To facilitate understanding, a

linear image formation model is first introduced in Sec. 2.1.1. Next, a Maximum

a Posteriori (MAP) formulation based on the model is introduced in Sec. 2.1.2.

7



CHAPTER 2. RELATED WORKS

2.1.1 Image Formation Model

An image (or image patch) that has been corrupted by additive noise, blurring,

and/or down-sampling can be described by the following linear model [84, 57,

3, 36, 82, 113, 34, 1]:

y = Hx + n, (2.1)

where y ∈ Rm and x ∈ Rn are the corrupted and original versions of the image

in vector form. H ∈ Rm×n is a matrix that can low-pass filter (blur) and/or

down-sample the image, and n ∈ Rm is an additive noise, typically with zero

mean and a known probability distribution. H can take on different definitions

depending on the intended applications.

For example, in image denoising [18, 107], the goal is to restore the original

noise-free image x given only a noisy observation y. H is an identity matrix in

this case. Additive noise n is often assumed to be independent and identically

distributed (iid). For example, additive white Gaussian noise (AWGN) with a

known noise variance is assumed in several notable works in the image denoising

literature [25, 102, 10]. However, in practice, the noise on images captured using

real camera sensors is a mixture of multiple noise sources following different

distributions. Hence, to more accurately simulate sensor noise, n is modeled

using more complex distributions in recent works, such as signal-dependent

models [72, 71, 103].

If H is a matrix performing both downsampling and a low-pass filtering

operation that mimics the point spread function (PSF) [111], e.g., bilinear

interpolation matrix with dimension m < n, then Eq. (2.1) can be interpreted

as an image super-resolution problem [78]. Noise n is often assumed to be zero

8



CHAPTER 2. RELATED WORKS

in this case. Thus, y is a low-resolution image that is observable, and x is the

corresponding target high-resolution image to be reconstructed.

When H is a blurring operator, Eq. (2.1) can be interpreted as an image

deblurring problem [90]. Specifically, H is a square matrix associated with a

blurring kernel, which typically is also a low-pass filter. If H is unknown, it is

estimated during the optimization process. The deblurring problem without

knowing H a priori is also called blind image deblurring [3].

Image interpolation [19, 89] and image inpainting [5, 94] are related prob-

lems, where H ∈ {0, 1}m×n is a sampling matrix that identifies m observable

pixels out of n, where m < n. (Each row of a sampling matrix contains a single

1 and the rest of the entries are 0’s.) Typically, no additive noise is considered,

i.e., n = 0. The difference between image inpainting and interpolation is that

unknown pixels are collocated in the same spatial region in image inpainting,

while unknown pixels are more evenly distributed in image interpolation. This

means that methods such as partial differential equations (PDEs) [13, 38] that

perform well for filling small holes in image interpolation tend not to work for

image inpainting.

In practice, an observed image may be a result of multiple corruptions,

making the image restoration problem even more challenging. For example, in

[114] a blurred image to be recovered is also assumed to be noise-corrupted.

This is true for an image captured at night by a handheld device like a mobile

phone, where the image tends to be blurry due to long exposure time and hand

movement, and noisy due to the low-light environment and the typical high

ISO setting. Similarly, a multi-frame super resolution degradation model is

discussed in [36], where the authors assume that the observable images are

9
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noisy, blurred and have low-resolution.

2.1.2 MAP Formulation for Restoration

Given the image formation model in (2.1), recovering the original signal x can

be formulated as a Maximum a Posteriori (MAP) problem; i.e., find signal x

that maximizes the posterior probability P (x|y) given observation y:

x∗ = arg max
x

P (x |y). (2.2)

Using Bayes’ rule, we can write

P (x |y) =
P (y |x)P (x)

P (y)
∝ P (y |x)P (x) (2.3)

x∗ = arg max
x

P (y |x)P (x) (2.4)

= arg min
x
− lnP (y |x)− lnP (x), (2.5)

where P (y |x) is the likelihood or fidelity term, and P (x) is the prior term.

The likelihood term can be derived from the image formation model in

(2.1). For example, for zero-mean AWGN noise, i.e., n ∼ N (0, σ2), likelihood

is an `2-norm:

P (y |x) ∝ exp(−‖y −Hx‖2
2). (2.6)

If the noise follows a Laplacian distribution, then the likelihood is an `1-norm:

P (y|Hx) ∝ exp(−‖y −Hx‖1). (2.7)

For the prior term, multiple choices are available depending on target

signal characteristics. For example, total variation (TV) regularization [91, 97]

10
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is a popular choice in image denoising for its properties of preserving edges on

the filtered image signal. For a length-N signal y = [y1, y2, · · · , yN ], its total

variation is defined as

V (y) =
N−1∑
i=1

|yi+1 − yi|. (2.8)

TV is based on the assumption that the original signal may have large but

sparse variations. Therefore, by minimizing TV of the signal—a convexification

of the `0-norm [91, 16]—the reconstructed signal will be close to the original

signal.

Other signal priors like low rank prior [27, 68], sparsity prior [1, 33],

and graph smoothness priors like graph total variation (GTV) regularization

[3, 108], graph Laplacian regularization (GLR) [115, 84] are also commonly

used in image restoration tasks. Graph smoothness priors will be discussed in

Sec. 2.3.1.

2.2 Graph Signal Processing

Graph signal processing (GSP) is an emerging field that studies signals residing

on irregular data kernels described by graphs [83, 95, 21]. In this section,

some basic concepts of GSP, such as graph definition, graph spectrum and

graph construction, are reviewed to facilitate understanding of the subsequent

chapters.

11
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2.2.1 Graph Definition

A graph G = (V , E ,W) consists of a node set V of size N and an edge set

E specified by (i, j, wij), where i, j ∈ V and wij ∈ R is an edge weight. A

graph can be unweighted where all edge weights have the same value, i.e.,

wij = 1,∀(i, j) ∈ E . If a positive graph is weighted, then wij > 0,∀(i, j) ∈ E ,

and wij reflects the similarity between samples at nodes i and j. An adjacency

matrix W ∈ RN×N can then be defined, where Wij = wij if (i, j) ∈ E , and

Wij = 0 otherwise. A signed graph with negative edge weights wij < 0 reflecting

pairwise dissimilarity is also possible and has been studied in the literature

[22]. However, in this thesis only positive graphs are used.

Graphs can be directed or undirected depending on applications. If a graph

is undirected, then an edge (i, j) means node i can traverse to node j and vice

versa, and wij = wji. This implies that W is a symmetric matrix. If a graph

is directed, then (i, j) implies only that node i can traverse to node j. wij

may not equal to wji, and W may not be symmetric. In some applications,

e.g., social networks, a user may follow another, but not the other way around,

and thus a directed graph is more suitable in representing relationships in the

network. In image processing, an undirected graph is more commonly used [21,

4, 115, 108, 55, 84].

A diagonal degree matrix is defined as D ∈ RN×N , where Dii =
∑

j wij.

Given W and D, a combinatorial graph Laplacian matrix is defined as

L = D−W. (2.9)

Since all the edge weights wij are assumed to be positive, as done in [21], one

can prove that L is a positive semidefinite (PSD) matrix via the Gershgorin

12
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circle theorem [105]. (Positive semidefiniteness means that x>Lx ≥ 0,∀x, and

the eigenvalues of L are non-negative, i.e., λ ≥ 0.)

2.2.2 Graph Spectrum

The Laplacian matrix L also enables a generalization of the notions of fre-

quencies and Fourier transform to the graph signal domain. Since L is a

real and symmetric matrix, one can show via the spectral theorem [24] that

L is diagonalizable. This means that L has a complete set of orthonormal

eigenvectors associated with real eigenvalues; i.e., L can be eigen-decomposed

into

L = UΛU>, (2.10)

where U is the eigen-matrix that contains eigenvectors of L as columns, and Λ

is a diagonal matrix that contains the eigenvalues along its diagonal:

Λ =


λ0

λ1

. . .

λN−1

 . (2.11)

Conventionally, the eigenvalues are sorted in a non-decreasing order: 0 = λ0 ≤

λ1 ≤ · · · ≤ λN−1. α = U>x is called Graph Fourier Transform (GFT) of

x, where α is a vector of GFT coefficients, and each pair of eigenvector and

eigenvalue is called a Fourier mode and graph Fourier frequency. Given a signal

x = [x1 . . . xN ]>, one can filter the signal in the frequency domain by scaling

13
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its eigenvalues, i.e.,

y = U


h(λ0)

h(λ1)
. . .

h(λN−1)

U>x, (2.12)

where h(λn) is a scaling factor for graph frequency λ.

There exist two normalized variants of L: normalized graph Laplacian

L = D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 , (2.13)

and random walk Laplacian

LRW = D−1L = I−W, (2.14)

which have different eigenvalues and eigenvectors properties compared to

combinatorial graph Laplacian L. Specifically, both L and LRW have a right

eigenvector that is constant:

L1 = 0 = 0 · 1, (2.15)

LRW1 = D−1L1 = 0 = 0 · 1, (2.16)

while L does not. The range of the eigenvalues of L and LRW is normalized

to [0, 2], while the eigenvalues of L is lower-bounded by 0. L and L are

symmetric matrices, while LRW is not. Using normalized Laplacian L means

that the energy of filtered signal p(L)x =
(∑P

i=1 aiLi
)

x using polynomial

filter p(L) =
∑P

i=1 aiLi remains bounded. For this reason, L has been used

in critically sampled biorthogonal graph wavelet design like GraphBio [98].

Similarly, normalized LRW was used for patch-based JPEG image decoding

[70], where it was shown that the weight of the regularization term called

14
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(a) (b) (c)

Figure 2.1: Illustration of graph construction on images. (a) 4 connected graph;

(b) a 16× 16 image block, and (c) an example of graph superimposed onto it,

where light lines represent smaller edge weights, and dark ones represent larger

edge weights.

LeRAG computed from LRW is easier to tune than the counterpart computed

from un-normalized L. In this thesis, for simplicity only combinatorial graph

Laplacian L is considered, and the normalized variants L and LRW are left for

future work.

2.2.3 Graph Construction

In many practical scenarios in GSP, one can construct an appropriate similarity

graph based on available per-node information, which can be used subsequently

for graph-based processing. For example, in a temperature sensing system, each

sensor node is physically placed at a planned location in a forest, and its 2D

coordinate is known. In this case, one can first compute the Euclidean distance

between two sensors, then compute an edge weight based on the distance [30].

In an image processing scenario, each pixel in a target image patch can be
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represented by a graph node, and an edge weight can encode the estimated

similarity or correlation between two neighboring pixels [21].

Specifically, similarity between nodes i and j can be coded as edge weight

wij, computed based on a notion of distance dist(i, j) and a Gaussian kernel,

i.e.,

wij = exp

(
−dist2(i, j)

σ2

)
, (2.17)

where σ is a parameter. Using a Gaussian function to define edge weight wij in

(2.17) means that 0 ≤ wij ≤ 1. There are many possible definitions of distance

depending on applications, for example:

• Geometric distance: dl(li, lj) = ‖li − lj‖, where li ∈ R2 is the 2D coordi-

nate of the i-th pixel in a target image patch [77].

• Photometric distance: dp(xi, xj) = |xi − xj|, where xi ∈ R+ is the pixel

intensity of the i-th pixel in a target image patch [77].

• Saliency distance: ds(si, sj), where si ∈ R+ is saliency value of the i-th

pixel in a target image patch [48].

• These combinations.

In recent literature, such as DeepGLR [115] and DeepGTV [108], dist(i, j) was

defined as feature distance, where the appropriate features are not manually

chosen, but are learned from training data by using convolutional neural

networks (CNN) [65, 66, 45].

The combination of geometric distance and photometric distance for

computing weights is also known as bilateral filter weights in image processing
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literature [101, 41, 85]:

wij = exp

(
−‖li − lj‖2

2

σ2
l

)
exp

(
−‖xi − xj‖2

2

σ2
x

)
, (2.18)

where σl and σx are the two parameters. In many GSP application in image

processing, a simple photometric distance is used for computing weights, i.e.

wij = exp

(
−‖xi − xj‖2

2

σ2

)
. (2.19)

If two pixels have a large difference in pixel intensity, like pixels on either side

of a shape object boundary, then the corresponding edge weight will be small.

With an appropriately chosen underlying graph that captures inter-pixel

similarities, good performance can be achieved in various imaging problems

such as compression and denoising [84, 56]. An example of graph construction

for an image patch is shown in Fig. 2.1c, where edge weights are computed

using Eq. (2.19). The light lines between two pixels represent smaller edge

weights, and the dark ones represent larger edge weights. In image processing,

a 4-connected graph or 8-connected graph are commonly used towards a sparse

graph construction (resulting in cheaper computation costs). If a 4-connected

graph is used, as shown in Fig. 2.1c, then each pixel at a center position will

be connected with its top, bottom, left, and right adjacency pixels. For an

8-connected graph, the pixels at the diagonal positions will also be connected.

2.3 Graph-based Image Processing Techniques

Two popular graph smoothness priors in the GSP literature—Graph Laplacian

Regularization (GLR) [84, 56] and Graph Total Variation (GTV) [108, 3] are
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first reviewed in Sec. 2.3.1. Then, some graph-based image restoration tasks,

including image denoising [84], image super-resolution [57], image deblurring

[3] are discussed in Sec. 2.3.2.

2.3.1 Graph Signal Priors

Figure 2.2: An example from [4] that compares GLR and GTV priors in image

deblurring problem. (a) Image blurred by Gaussian blur. (b) Image filtered

with SDGLR. (c) Image filtered with RGTV.

As discussed in Sec. 2.1.2, a signal prior P (x) assumes a target signal

characteristic without data—described in mathematical terms—for a MAP-

formulated problem. A signal prior should be accurate in describing signal x

and amenable to efficient optimization.

Graph Laplacian Regularization (GLR). By assigning sample value

xi ∈ R to node i, the ensemble x = [x1 . . . xN ]> ∈ RN is called a graph signal

on graph G. For a given positive graph G, signal x is considered smooth with

respect to (w.r.t.) G if each sample xi of node i is similar to samples xj of

neighboring nodes j with large edge weights wij. Equivalently in the graph
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frequency domain, x is composed of mostly low graph frequencies, and most

coefficients α = U>x of high frequencies are roughly zeros. Mathematically,

one can express this signal smoothness w.r.t. G using the graph Laplacian

regularizer (GLR) [95]:

x>Lx =
∑

(i,j)∈E

wij(xi − xj)2 =
N∑
k=1

λkα
2
k, (2.20)

where L is the graph Laplacian matrix, αk is the k-th GFT coefficient, and λk

is the k-th frequency (eigenvalue of L). A small GLR thus implies signal x is

smooth w.r.t. graph G.

Note that in this GLR definition, edge weights wij are fixed after initial-

ization. In contrast, in some recent literature [70, 84] signal-dependent GLR

(SDGLR) is proposed. Specifically, the weight in SDGLR is computed with

the signal, and hence the Laplacian matrix is a function of the signal x, i.e.,

x>L(x)x. As an example, one can compute the edge weight in SDGLR using

Eq. (2.19), which computes an edge weight using corresponding pixel values.

SDGLR tends to perform better than GLR in image restoration because

SDGLR promotes piecewise smoothness (PWS) in reconstructed signals. Specif-

ically, minimizing GLR only promotes (xi − xj)2 to 0 for large edge weights

wij. In contrast, to minimize each term in the sum in Eq. (2.20) for SDGLR,

either (xi − xj)2 becomes close to 0, or (xi − xj)2 becomes very large, in which

case wij becomes close to 0. This results in a bimodal edge weight distribution,

and a PWS reconstructed signal. PWS is commonly used as a prior for image

restoration which assumes sharp object boundaries and slowly varying interior

surfaces.

Graph Total Variation (GTV). Another popular graph smoothness
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prior is Graph Total Variation (GTV), which can be defined as

‖x‖GTV =
∑

(i,j)∈E

wij|xi − xj|, (2.21)

In this case, wij is fixed after initialization. Unlike GLR, GTV does not have a

natural frequency interpretation.

In [3], GTV is extended to reweighted graph total variation (RGTV),

‖x‖RGTV

∑
(i,j)∈E

wij(xi, xj)|xi − xj|, (2.22)

where each edge weight wij is a function of samples xi and xj in x and thus

is signal-dependent. In particular, one can use Eq. (2.19) to compute wij.

Compared with GTV which promotes d = |xi − xj| to 0, to minimize (2.22)

RGTV promotes d to either a very small value (i.e., |xi − xj| becomes small)

or very large (i.e., wij(xi, xj) becomes very small). Thus, RGTV promotes a

bimodal distribution of edge weights, and the resulting image patch becomes

PWS as well.

Example images reconstructed using SDGLR and RGTV as image priors

in an image deblurring problem are shown in Fig. 2.2. In Fig. 2.2(c), one can

see that the edges on the filtered image using RGTV can be better preserved

compared with the one using SDGLR. An analysis in [4] shows that RGTV

and SDGLR can both promote the desirable bimodal edge weight distribution,

while the signal independent ones cannot. However, the promotion of bimodal

edge weight distribution using SDGLR tends to slow down significantly when

d = |xi − xj| approaches 0, while this problem can be overcome using RGTV.
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2.3.2 GSP in Image Restoration

GSP tools have been successfully applied in many image restoration problems.

Some related works using GLR and RGTV in MAP formulations for restoration

tasks are discussed below.

Image denoising. With the assumption of AWGN noise, one can write

the image denoising problem via MAP using GLR as signal prior as

x∗ = arg min
x
‖x− y‖2

2 + µx>Lx, (2.23)

where µ > 0 is a tradeoff parameter. This formulation has a closed-form

solution given a fixed L:

x∗ = (I + µL)−1y. (2.24)

In [84], the authors derive the optimal GLR (OGLR) for the image denoising

task by performing analysis for a signal model in the continuous domain.

Image super-resolution. In [57], the authors pose a super-resolution

problem as a joint problem with image denoising. GLR is used to promote

piecewise smoothness for depth images in this work:

x∗ = ‖DHx− y‖2
2 + λx>Lx, (2.25)

where D is the downsample matrix, and H is the Gaussian low-pass filtering

operation. Like denoising, this problem also has a closed-form solution given

fixed D, H and L.

Image deblurring. In [3], RGTV is used as a signal prior to formulate

a MAP problem for blind image deblurring. Given an observed blurred image
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patch b, the problem is formulated as

(x∗,k∗) = arg min
x,k

1

2
‖x⊗ k− b‖2

2 + λ‖x‖RGTV + µ‖k‖2
2, (2.26)

where ⊗ is a convolution operator, k is the unknown blur kernel, and λ > 0

and µ > 0 are parameters. For unknown blur kernel k, as conventionally done

in the blind deblurring literature [2, 76, 15], an `2-norm ‖k‖2
2 is used as a

prior for k. Solving for both signal x and kernel k simultaneously is difficult.

Hence, (2.26) is solved alternately in [3], where x is fixed while an optimal k is

computed and vice versa until convergence.

Other graph-based image restoration tasks. In [70], as an alternative

to GLR, a graph regularization term called LeRAG defined using the random

walk graph Laplacian matrix instead of the combinatorial Laplacian matrix is

proposed for the problem of soft decoding of JPEG images. The advantage of

LeRAG is that it is defined using a normalized Laplacian matrix, while the

first (right) eigenvector is still a constant vector, which is desirable for smooth

images. In [55], a unified framework that alternately optimizes the graph

(image structure) and the signal on top of the graph (pixel patch) is proposed.

This is done to promote PWS in edge weights (interpreted as a graph signal in

a dual graph), which is a reasonable assumption for piecewise constant (PWC)

images like depth maps. In [19], a new gradient graph Laplacian regularizer

(GGLR) is proposed to promote piecewise planar (PWP) signal reconstruction

for the image interpolation problem.

This work leverages these earlier works in graph spectral image restoration,

but differs in that, in this work, (noisy) pixel observations are not directly

observable. Instead, an appropriate graph needs to be constructed using

multiple observed color pixels in the Bayer-patterned grid to estimate edge
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weights by exploiting inter-color correlation.

2.4 Joint Demosaicking Problems

As discussed in Chapter 1, since a camera sensor only captures one color channel

at each pixel location in a Bayer-patterned grid, demosaicking is conventionally

performed to interpolate missing color pixels early in the image processing

pipeline. Demosaicking is a well-studied image processing problem [47, 117, 75,

118, 44]. Instead of performing demosaicking in isolation, in recent years it is

often studied in tandem with other image processing tasks for more optimal end-

to-end performance. An overview of joint demosaicking problems is provided

in this section.

2.4.1 Joint Demosaicking and Denoising

One of the most widely studied joint demosaicking problems is joint demosaick-

ing / denoising (JDD) [52, 116, 42, 28]. Given a noise-corrupted Bayer-patterned

image, the joint demosaicking / denoising problem is to directly estimate the

original image with full color channels. A separate approach that performs

demosaicking followed by denoising would spread the original additive noise

to neighboring pixel locations via interpolation during the demosaicking step,

introducing correlated noise, and making the subsequent denoising problem

more challenging [80, 119].

To address the above problem, JDD problem is investigated to perform

denoising and demoaicking at the same time. In [53] a joint demosaicking /
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denoising approach is proposed based on a total least squares image denois-

ing method. In [62], the JDD problem is solved by learning a sequence of

energy minimization problems, and a proposed algorithm can be applied for

different sensor layouts such as Fujifilm X-Trans pattern. A machine learning

based approach is proposed in [59], which performs JDD through a learned

nonparametric random field.

In some recent literature, deep-learning-based approaches are used for the

JDD problem, which is reported to outperform the model-based approaches

discussed above. A deep-learning based JDD method is first proposed in [43].

In this work, the authors observe that simply using large quantity of training

samples do not guarantee convincing JDD performance, and thus they propose

a dataset that include some challenging patches which is useful in training a

network for the JDD problem. In [69], a network is proposed, which interpolates

pixels of green channel first as a guidance to recover the missing values of the

other color channels. A JDD method based on generative adversarial network

(GAN) is proposed in [29]. Although these learning-based approaches can

perform well if the testing image shares a similar distribution with the training

data, it can perform poorly if the noise statistics differ from the training data

[31].

This thesis shares a similar optimization philosophy as JDD, but focus on

designing a fast optimization algorithm for the joint demosaicking / rectification

problem. Moreover, compared to JDD, this problem is more complicated in

that pixels in the rectified image grid are typically mapped to non-integer

locations in the Bayer-patterned image grid.
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2.4.2 Joint Demosaicking and Rectification

The joint demosaicking / rectification problem is relatively new compared to

JDD. Existing works on this problem [61, 58, 63] focus on efficient implementa-

tion of a simple interpolation scheme for the joint demosaicking / rectification

process on hardware, e.g., implementing a linear interpolation algorithm with

circuits to interpolate the target pixels at non-integer locations, such that the

algorithm can be embedded on chips.

Recently, a joint demosaicking / rectification algorithm is proposed in [106].

This algorithm is implemented on an field-programmable gate array (FPGA)

hardware system. In this work, the authors consider that embedded camera

systems often are limited by their throughput capabilities due to hardware

resource limitations. Thus, they propose a demosaicking and rectification

algorithm to leverage its efficiency to reduce the memory footprint and improve

streaming performance.

2.4.3 Other Joint Demosaicking and Image Restoration

Problems

A brief review of other joint demosaicking problems is also provided. However,

these problems are quite different from the joint demosaicking / rectification

problem, and thus a new solution is proposed in this thesis.

Joint Demosaicking and Deblurring. In [23], a multi-scale deep

convolutional neural network is used to solve demosaicking and blind deblurring

jointly. In [73], a joint demosaicking and deconvolution algorithm based on
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first-order primal-dual minimization is proposed.

Joint Demosaicking and Super Resolution. In [35], a multi-frame

joint demosaicking and super resolution algorithm is proposed based on a MAP

estimation technique. A joint demosaicking and super-resolution algorithm for

unregistered aliased images is proposed in [104], which computes the alignment

parameters between the images on the raw camera data first before performing

interpolation. Some deep-learning based approaches for this problem are

proposed in [112, 121, 51].
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Chapter 3

Problem Formulation

In this chapter, a reverse mapping from Bayer-pattern grid to a rectified grid

is first discussed in Sec. 3.1. In Sec. 3.2, a Maximum a Posterior (MAP)

formulation for joint demosaicking and rectification problem is proposed. In

Sec. 3.3, a graph construction method for the rectified image is proposed,

where the edge weights are computed with estimated gradients. The inter-pixel

gradient estimation method is discussed in Sec. 3.4.

3.1 Reverse Mapping of Image Grids

From OpenCV [37], a mapping function, f : Z2 → R2, is obtained that

maps a pixel i’s integer 2D coordinate (xi, yi), xi, yi ∈ Z, in the rectified

image grid, to a real 2D coordinate (xs, ys), xs, ys ∈ R, in the fisheye camera

Bayer-patterned image grid. Specifically, this function is derived from estimated
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camera distortion parameters and targeted output camera intrinsic parameters5,

which will be discussed in detail in Sec. 4 that discusses data creation. See

Fig. 3.1 for an illustration of reverse pixel mapping from two adjacent pixels i

and j in the rectified image grid to locations s and t in the Bayer-patterned

grid.

In a conventional demosaicking algorithm [26], each color pixel (say red) in

an image grid is interpolated as a weighted linear combination of neighboring

red pixels. Similarly, an N -pixel color block x ∈ RN in the rectified image

grid can be linearly interpolated from an M -pixel neighborhood y ∈ RM in

the Bayer-patterned grid as Hy, where H ∈ RN×M is a weight matrix used for

interpolation. More complex non-linear interpolation methods [11, 49] such as

NLM [118] can also be incorporated into the joint demosaicking / rectification

framework—this direction is left for future work.

3.2 MAP Formulations for Image Restoration

The goal is to reconstruct a target square pixel patch x in the rectified grid in

a chosen color component, given an M -pixel neighborhood patch y of the same

color in the Bayer-patterned grid. Using GLR [84], an optimization problem

can be formulated via MAP as

min
x
‖Hy − x‖2

2 + µ x>Lxx (3.1)

where µ > 0 is a weight parameter to trade off the (first) fidelity term with

the (second) signal prior. In words, (3.1) states that the reconstructed signal x

5More information about this mapping function can be found in: https://docs.opencv.

org/master/db/d58/group__calib3d__fisheye.html

28

https://docs.opencv.org/master/db/d58/group__calib3d__fisheye.html
https://docs.opencv.org/master/db/d58/group__calib3d__fisheye.html


CHAPTER 3. PROBLEM FORMULATION

Figure 3.1: Reverse mapping from the rectified grid to the Bayer-patterned grid.

The white circles at the non-integer locations are the mapped locations from the

rectified grid. The black circles at the integer locations represent captured pixels in

the same color channel on the Bayer-patterned grid. Pixel intensity differences at

these locations are used to estimate edge weights between the white circles.

should be similar to interpolation Hy while being smooth with respect to a

graph specified by graph Laplacian matrix Lx.

Note that, although the graph smoothness prior is introduced in (3.1)

to combat possible inaccuracy in interpolation Hy during the demosaicking

process, (3.1) is not explicitly formulated as an image denoising problem.

Instead, it is formulated as an image restoration problem, and the goal is

to reconstruct the target signal x from observation y during the restoration

process.

For fixed interpolation matrix H and graph Laplacian Lx, (3.1) is an

unconstrained quadratic programming (QP) problem, whose solution can be
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computed from a system of linear equations:

(I + µLx) x = Hy. (3.2)

Since the coefficient matrix I + µLx in (3.2) is sparse, symmetric and positive

definite (PD), (3.2) can be efficiently solved without matrix inverse using a

fast numerical linear algebra algorithm such as conjugate gradient (CG) [79].

One can prove its positive definiteness as follows.

Proof: The positive definiteness of I and positive semidefiniteness of Lx

implies that x>Ix = x>x > 0,∀x 6= 0, and x>Lxx ≥ 0,∀x. Thus, for any

signal x 6= 0,

x>(I + µLx)x = x>Ix + x>Lxx (3.3)

≥ x>Ix > 0. (3.4)

Thus, I + µLx is a PD matrix.

3.3 Graph Construction

The restoration performance of (3.2) depends heavily on how the underlying

graph is constructed for target patch x in the rectified 2D grid, which determines

Laplacian Lx. For connectivity of patch x, an 8-connected graph is used in this

work, where each pixel in x is connected to its immediate vertical, horizontal

and diagonal neighbors. For edge weight wij that connects pixel pair (i, j) in

x, conventionally it is inversely proportional to the feature distance of the two

corresponding nodes; i.e., the larger the feature distance, the smaller the edge

weight [96]. In this imaging scenario, the feature distance is assumed to be the
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magnitude of the estimated signal gradient ∆ij ∈ R+ between samples i and j.

Using an exponential function as the kernel, the weights wij can be written as

wij = exp

(
−

∆2
ij

σ2
w

)
(3.5)

where σw is a parameter. (3.5) implies that 0 ≤ wij ≤ 1, and the resulting

graph Laplacian Lx, as defined in Section 2.3.1, is positive semi-definite (PSD)

(see [20] for a proof using Gershgorin Circle Theorem).

The crux of the graph construction procedure thus rests in the gradient

estimation for a pixel pair (i, j). The gradient ∆ij ∈ R+ is estimated via a

maximum likelihood estimation (MLE) formulation as follows. Suppose there

are K noisy observations δkij of ∆ij, k ∈ {1, . . . , K}, available. Then MLE of

∆ij given δkij is:

max
∆ij

Pr
(
∆ij | {δkij}Kk=1

)
→ max

∆ij

K∏
k=1

Pr
(
δkij | ∆ij

)
(3.6)

where in (3.6) each noisy observation δkij is assumed to be generated indepen-

dently, each with the following distribution:

Pr
(
δkij|∆ij

)
∝ exp

{
−vkij(∆ij − δkij)2

}
(3.7)

where vkij is a unique parameter for random variable δkij, to be discussed in

Section 3.4 in detail.

Minimizing the negative log of likelihood (3.6) results in

∆∗ij = arg min
∆ij

K∑
k=1

vkij(∆ij − δkij)2. (3.8)

To solve (3.8), one can take the derivative with respect to ∆ij and set it to 0,

resulting in

∆∗ij =
1

V

K∑
k=1

vkijδ
k
ij (3.9)
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where V =
∑K

k=1 v
k
ij. In other words, the optimal solution ∆∗ij in (3.9) is a

weighted average of the noisy gradient observations δkij.

3.4 Noise Model for Inter-pixel Gradient

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Pairing examples. (a) Discover pairs (m,n) ∈ Nij. (b) Compute

geometric distances between s, t and each pixel in (m,n). (c) Group (s,m)

and (t, n) for each pair (m,n) according to geometric distance. (d) Pairs (s,m)

and (t, n) are designated together into a group. (e)-(h) Compute the angle

between (m,n) and (s, t).i

One can obtain K “noisy” gradient observations δij in this joint demosaick-

ing / rectification framework as follows. First, define a spatial neighborhood

Nij surrounding non-integer locations s and t in the Bayer-patterned grid that

correspond to pixel pair (i, j) in the rectified grid. Within neighborhood Nij,
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pixel pairs (m,n) ∈ Nij can be discovered that are pairs of adjacent captured

pixels of the same color in the Bayer-patterned grid. For example, as shown

in Fig. 3.2a, given Nij that is a 4-by-4 image patch, there are four pixels that

belong to the red channel. If every two adjacent pixels in horizontal or vertical

directions are considered as pairs, then within Nij, four pairs (m,n) belonging

to the red channel can be discovered, as highlighted in red and orange color

lines for vertical and horizontal pairs in Fig. 3.2a. Similarly, for other color

channels, pairs can be discovered and used to compute the estimated gradient

for each channel.

The gradient for pair (m,n) ∈ Nij is first computed as

δmn
ij = ym − yn (3.10)

where ym and yn are the pixel intensity corresponding to the pixel pair (m,n)

on the Bayer-patterned grid.

An associated weight vmn
ij for pixel pair (m,n) is computed next as

vmn
ij = exp

{
−‖ls − lm‖2

2 ‖lt − ln‖2
2

σ2
v

}
cos θmn

st ρmn
st (3.11)

where ls is the coordinate of pixel s in the Bayer-patterned grid. As an example

shown in Fig. 3.2a to 3.2d, (s,m) and (t, n) are grouped as follows.

1. In Fig. 3.2a, candidate pairs (m,n) in Nij are first discovered.

2. In Fig. 3.2b, geometric distances between each pixel in pairs (m,n) and

each pixel in (s, t) are computed.

3. From Fig. 3.2c to Fig. 3.2d for each pair (m,n), based on the geometric

distances computed in the last step, designate two pairs (s,m) and (t, n)

33



CHAPTER 3. PROBLEM FORMULATION

(a) (b)

Figure 3.3: An example for computing correlation factor.

together into a group: label a pixel in pair (m,n) that is closer to s as

m, and the other pixel as n.

Angle is used as a feature for differentiating the contribution made by the

gradient in vertical and horizontal directions for computing (s, t). θmn
st is the

acute angle between line (s, t) and line (m,n), which can be computed once

the pairing between (m,n) and (s, t) is determined. As examples shown in

Fig. 3.2e to 3.2h, angle θmn
st is computed for the 4 pairs (m,n) and (s, t).

ρmn
st is a color gradient correlation factor that estimates the local correlation

of color gradients between colors of pairs (m,n) and (s, t), where pairs (m,n)

and (s, t) may belong to different color channels. Specifically, when computing

ρ for red and blue channels, the M -pixel Bayer-patterned patch y ∈ R
√
M×
√
M

is reshaped into 4 submatrices ỹ ∈ R
√
M
2
×

√
M
2 based on color channels, where

within each 4-pixel RGGB array on the Bayer-pattern, pixels of green channel in

the diagonal location is interpreted as two independent channels—Green-1 and

Green-2. An example is shown in Fig. 3.3a-3.3b. In the case of the red channel,

the 2D correlation coefficients between it and the other 3 channels (Blue,

Green-1, Green-2) are computed as ρRB, ρRG1 , ρRG2 , and its self-correlation

coefficient is ρRR = 1. The coefficients of the blue channel are computed
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in the same way. For the green channel, the maximum value from the two

computed correlation coefficients between it and the other two channels (Red

and Blue), i.e., ρRG = max{ρRG1 , ρRG2} and ρBG = max{ρBG1 , ρBG2} is used.

See Algorithm 1 for a summary of the proposed algorithm.

Algorithm 1 Joint demosaicking / rectification method.
Input: Bayer-pattern image patch y, H.

Output: Target image patch x∗.

1: for each pair (i, j) on targeted image patch do

2: Locating pair (s, t) on Bayer pattern y with H

3: Compute the correlation factor ρ with observations in Nij

4: Compute the gradient δm,n
i,j and weight vm,n

i,j with each pair (m,n) ∈ Nij

in three channels with (3.10) and (3.11).

5: For each channel, compute the estimated gradient ∆∗i,j by weighted

average via (3.9).

6: For each ∆∗i,j, compute the edge weight wi,j with (3.5).

7: end for

8: Compute the initial Lx via Lx = D−A.

9: while not converge do

10: Solving x∗ via (3.2).

11: Update L∗x based on x∗ with (3.5).

12: end while
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Chapter 4

Building Ground-truth Datasets

To objectively evaluate the proposed joint demosaicking and rectification scheme

described in Chapter 3, a comprehensive dataset containing ground-truth image

pairs both in the fisheye camera’s Bayer-patterned grid and in the rectified

image grid is necessary. Unfortunately, this kind of dataset is difficult to obtain

in practice. This is because one typically cannot set up a fisheye camera and

a regular camera at exactly the same viewing angle to capture a 3D scene at

exactly the same time.

An alternative solution is to generate synthetic images for evaluation.

However, in many synthetic camera image datasets, such as a dataset pro-

posed in [32], only a synthesized fisheye camera image is provided, but not a

corresponding rectified image. Thus, in this thesis, a synthetic image dataset

that includes image pairs on both the fisheye camera’s Bayer-patterned grid

and the rectified image grid is constructed. These images are rendered using

3D computer graphics models and two camera models via an open source 3D
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(a) (b) (c) (d)

Figure 4.1: Example fisheye camera images generated with software blender [7].

(a) Chessboard image for estimating reverse mapping matrix. (b)-(d) Fisheye

images generated with three 3D models: Boxes, Chair and Skull.

software called blender [7]. 3D objects are captured from different viewing

angles, rendered as images in spatial resolution of 512 × 512, and saved in

storage via lossless compression in BMP format to populate the dataset.

Four 3D models are used to generate the dataset, which consists of more

than 100 high-quality images. A camera intrinsic parameter matrix is also

derived for the fisheye camera model, which is used to compute the reverse

mapping matrix. The details of this generation process are described in this

chapter.

4.1 Camera Modeling

A perspective camera is a mathematical model of an ideal pinhole camera that

follows perspective projection. As illustrated in Fig. 4.2, for images captured

with a perspective camera without any lens distortion, its field of view 6 (FOV)
6Detailed description of FOV can be found at :https://en.wikipedia.org/wiki/Angle_

of_view
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Figure 4.2: Field of view (FOV) of perspective camera.

can be modeled as

θp = 2 arctan

(
w

2fp

)
(4.1)

where fp is the focal distance. w is the width of the sensor in millimeters, which

in a full frame camera (36mm× 24mm) is 36. For the fisheye camera, there

are 4 popular models as discussed in [6]. To simplify the generation process,

the simplest one, i.e., equidistant model, is adopted in this thesis, which is

modeled as

θf =
h

ff
(4.2)

where ff and θf are respectively the focal distance and FOV in this model, and

h is the height of the sensor in millimeters, which is 24 for a full-frame camera.

Note that there is no direct mapping function between these two models, and

thus one can only estimate the corresponding parameters of the fisheye camera

in the pinhole camera model, such that the reverse mapping function can be

computed.
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4.2 Camera Parameter Estimation

OpenCV [9] is used to estimate the parameters of fisheye camera in the

perspective camera model. First, 150 checkerboard images with the fisheye

camera are captured, as shown in Fig. 4.1a. They are then sent to the calibration

algorithm to estimate the intrinsic parameter matrix K ∈ R3×3 and distortion

coefficients d. Matrix K is defined as

K =


fx 0 cx

0 fy cy

0 0 1

 . (4.3)

fx and fy are focal distances in x- and y-axis respectively, and cx and cy are

repectively the x- and y-coordinates of image center of the fisheye lens in

the perspective camera model. d ∈ R5 is a vector for calibrating radical and

tangential distortion. Then, the targeted camera matrix P ∈ R3×3 needs to be

specified to generate the reverse mapping function, where

P =


fp,x 0 cp,x

0 fp,y cp,y

0 0 1

 (4.4)

and fp,x and fp,y are the focal distances of the targeted perspective lens. Note

that if a large FOV θf in fisheye camera model, e.g., 180◦, and a large focal

distance fp,x and fp,y in perspective camera model (small FOV) e.g., 50mm,

FOV = 39.6◦ are chosen, then the rectified image will be too smooth, since a

rectified image is only interpolated with a small portion of pixels of the fisheye

camera image. To avoid this problem, an FOV θf = 180◦ for fisheye camera

and a wide-angle lens focal distance fp,x = fp,y = 16mm for the perspective

camera are chosen. Once the intrinsic parameter matrix K is computed, a
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Figure 4.3: 3D Modeling in blender.

mapping matrix that maps each pixel location on the targeted grid to the

Bayer-pattern grid is computed using OpenCV [9].

4.3 Data Generation

The user interface of 3D modeling in software blender is shown in Fig. 4.3. Two

camera models are used to capture the object from different positions. The

specification of the camera settings is shown in Fig. 4.4. For the perspective

camera, the focal length is set to 16mm, and for fisheye camera, the FOV is

set to 180◦ and a full-frame camera sensor size is used. In some 3D models,

the depth of field and aperture features are enabled to better simulate realistic

camera capturing settings.

These frames are rendered with the highest render quality settings. For
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Figure 4.4: Camera settings.

example, ray-tracing for those 3D models that support this feature is enabled

to get a more realistic simulation of environmental light settings. In addition,

increase sampling rate is set to a high value to ensure that the rendered image

is noise-free. The frames are saved with lossless compression into BMP format

after the rendering procedure.
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Experiments

In this chapter, results of experiments to objectively evaluate algorithm perfor-

mance are presented. In Sec. 5.1, an experimental setup is first described. In

Sec. 5.2, quantitative comparisons between the proposed method and competing

methods are discussed.

5.1 Experimental Setup

The proposed joint demosaicking / rectification algorithm was tested on a Multi-

FoV image dataset [123] and the in-house constructed dataset7. The Multi-FoV

image dataset includes two scenes: room and city. 5 images from room and 25

images from city were used in the experiment. The in-house dataset includes

140 pinhole and fisheye camera images generated from 4 publicly available
7The dataset is available at: https://github.com/fengbolan/York-Fisheye-Image-

Rectification-Dataset
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Figure 5.1: PSNR and SSIM of a rectified image under different iteration

number.

3D models: box, chair, skull and teddy. 3 images from each scene were

used for evaluation. For demosaicking, two competing schemes were employed:

1) bilinear interpolation, and 2) a high quality linear (HQL) filter [74]. For

rectification, a bilinear interpolation method was employed. Given a fisheye

image, as shown in Fig. 5.2a and 5.4a, an image region corresponding to the

ground truth image (rectified image) was designated as the region of interest

(ROI), shown in Fig. 5.2b and 5.4b, respectively. Then color pixels were removed

in the ROI to generate a pre-demosaick Bayer-patterned image with additive

Gaussian noise as the input of competing algorithms.

The parameters of the proposed algorithm were set empirically according

to the content of the images. As described in Sec. 3.4, the algorithm was

performed iteratively. In Fig. 5.1, relation between the restoration performance,

which was evaluated with peak signal to noise ratio (PSNR) and structural index
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(a) (b) (c) (d) (e)

Figure 5.2: Results of demosaicking and rectification for room and city [123].

(a) Ground truth fisheye camera image. (b) Ground truth pinhole image. (c)

Demosaicking and rectification using the bilinear method. (d) Demosaicking

using high quality linear interpolation (HQL) [74] and rectification using the

bilinear method. (e) The proposed joint demosaicking / rectification method.

similarity (SSIM) [110], and the number of iteration of the proposed algorithm

was first explored. PSNR and SSIM are two commonly used metrics in image

quality assessment. Larger PSNR and SSIM mean better image perceptual

quality. PSNR is a metric that computed with mean squared error (MSE)

between the reconstructed images and the ground-truth images. Specifically,

PSNR is defined as

PSNR = 20× log10(
MAXI√
MSE

) (5.1)

where MAXI is the maximum possible pixel value of the image, and MSE is

defined as

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2 (5.2)

where I is a noise-free ground-truth image of size M × N and K is the
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(a) (b) (c) (d) (e)

Figure 5.3: Demosaicking and rectification result of the in-house dataset,

where the images were generated from the 3D models: box, chair, skull

and teddy. The noise level was σ = 10. (a) Ground truth fisheye camera

image. (b) Ground truth pinhole image. (c) Demosaicking and rectification

using the bilinear method. (d) Demosaicking using HQL interpolation [74] and

rectification using the bilinear method. (e) The proposed joint demosaicking /

rectification method.

noisy image. SSIM is a metric that evaluates structural similarity between

reconstructed images and ground-truth images, which ranges from 0 to 1. SSIM
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(a) (b) (c) (d) (e)

Figure 5.4: Demosaicking and rectification result of the in-house dataset,

where the images were generated from the 3D models: box, chair, skull

and teddy. The noise level was σ = 15. (a) Ground truth fisheye camera

image. (b) Ground truth pinhole image. (c) Demosaicking and rectification

using the bilinear method. (d) Demosaicking using HQL interpolation [74] and

rectification using the bilinear method. (e) The proposed joint demosaicking /

rectification method.

between images x and y can be defined as

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)(
µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2

) , (5.3)
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where µx and σx are mean and variance of x. σxy is the covariance between x

and y. C1 and C2 are two constants.

In this experiment, the algorithm was performed on a corrupted image with

AWGN noise with a standard deviation σ = 15 , and the maximum iteration

number was set to 20. PSNR and SSIM in each iteration were recorded, which

are shown with the blue and red lines in the figure, respectively. One can

observe that both PSNR and SSIM increase rapidly in the first 8 iterations,

while in the last 12 iterations, the improvement is limited. Thus, to achieved

a tradeoff between performance and complexity of the proposed algorithm, 8

iterations for the proposed dataset images and 5 iterations were used for the

Multi-FoV dataset images. The running time is about 1.5 minutes to process

an image with a resolution of 512 × 512. Since the algorithm is performed

on image patches, the algorithm is scalable to images with larger resolutions.

µ in (3.1) was set to 1 in all settings. σw in (3.5) was set to 0.02 in the first

iteration and 0.01 in the remaining iterations for the images from the Multi-FoV

dataset, and it was set to 0.035 in the first iteration and 0.028 in the remaining

iterations for the in-house dataset. The reason is that in the first iteration the

image is mostly corrupted, and in the remaining iterations the iterated results

are less noisy. σu in (3.11) was set to 1.5 for the Multi-FoV dataset and 6 for

the in-house dataset. The patch size was set to 32 pixels with a stride of 28

pixels. The experiments were conducted with Matlab R2019a and a computer

with a CPU of intel i7-9700T and 32G of RAM.
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Table 5.1: Demosaicking and rectification performance of 25 images from scene

room and city under noise level σ = 15.

PSNR(dB) SSIM[110]

Bilinear HQL[74] Proposed Bilinear HQL[74] Proposed

room 20.76 21.04 20.91 0.710 0.702 0.788

city 24.24 24.25 24.77 0.550 0.557 0.622

Table 5.2: Demosaicking and rectification performance comparison on noise-free

images from scene box, chair, skull, and teddy.

PSNR(dB) SSIM[110]

Bilinear HQL[74] Proposed Bilinear HQL[74] Proposed

box

24.17 23.53 24.21 0.917 0.912 0.916

22.64 22.10 22.71 0.907 0.902 0.906

21.70 21.68 21.60 0.877 0.876 0.875

chair

30.85 30.35 30.77 0.969 0.967 0.967

29.12 28.64 29.08 0.963 0.962 0.962

32.35 31.86 32.16 0.978 0.976 0.977

skull

28.09 27.63 28.15 0.950 0.944 0.947

26.20 25.56 26.39 0.921 0.909 0.921

30.14 29.64 30.21 0.957 0.953 0.954

teddy

33.96 33.45 33.97 0.958 0.954 0.958

33.06 32.56 33.09 0.952 0.947 0.952

33.81 33.41 33.69 0.962 0.959 0.962

5.2 Quantitative Comparisons

The visual results for room and city are shown in Fig. 5.2. The numerical

results on the Multi-FoV dataset in average SSIM [110] and PSNR are shown in

Table. 5.1. In Fig. 5.2e, it can be observed that due to the proposed smoothness

prior GLR in (3.1), compared with the other two methods, the results using

the proposed method tend to be smoother while the boundaries in the image
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Table 5.3: Demosaicking and rectification performance comparison on noisy

images from scene box, chair, skull, and teddy under noise level σ = 10.

PSNR(dB) SSIM[110]

Bilinear HQL[74] Proposed Bilinear HQL[74] Proposed

box

23.57 22.76 24.00 0.703 0.630 0.886

22.21 21.52 22.51 0.707 0.640 0.881

21.36 21.17 21.50 0.720 0.669 0.857

chair

28.58 27.47 30.32 0.751 0.670 0.943

27.40 26.47 28.77 0.748 0.673 0.939

29.37 28.16 31.73 0.744 0.657 0.953

skull

27.08 26.32 27.74 0.719 0.626 0.892

25.45 24.63 26.08 0.760 0.686 0.881

28.60 27.68 29.70 0.744 0.659 0.899

teddy

30.10 28.79 32.58 0.831 0.775 0.935

29.77 28.46 31.83 0.828 0.771 0.928

30.07 28.77 32.34 0.839 0.786 0.940

are well preserved. In addition, note that noise in the image demosaicked using

the HQL method is more noticeable than the one using the bilinear method.

This is because the HQL method employs filters to calculate a gradient map to

enhance edges in the image. However, it may also lead to noise enhancement

and image quality deterioration.

In contrast, the proposed algorithm achieves a good trade-off between edge

enhancement and noise reduction. Such a conclusion is supported by Table. 5.1.

Although PSNR of the HQL method outperformed the bilinear method on the

Multi-FoV dataset images, its SSIM is worse than the other two methods. For

the Multi-FoV dataset, PSNR of the proposed method for the room images

is better than the bilinear method, and it is close to the PSNR of the HQL

method. SSIM of the proposed method is higher than the other two methods.
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Table 5.4: Demosaicking and rectification performance comparison on noisy

images from scene box, chair, skull, and teddy under noise level σ = 15.

PSNR(dB) SSIM[110]

Bilinear HQL[74] Proposed Bilinear HQL[74] Proposed

box

22.93 21.97 23.85 0.577 0.494 0.857

21.74 20.90 22.35 0.589 0.514 0.853

20.98 20.72 21.32 0.631 0.584 0.825

chair

26.78 25.45 29.77 0.604 0.512 0.906

26.02 24.85 28.38 0.610 0.523 0.908

27.27 25.81 31.13 0.586 0.491 0.920

skull

26.09 25.07 27.33 0.614 0.514 0.863

24.65 23.66 25.66 0.682 0.603 0.854

27.19 25.99 29.22 0.644 0.554 0.881

teddy

27.73 26.14 31.13 0.720 0.634 0.884

27.47 25.96 30.47 0.716 0.636 0.875

27.65 26.14 30.90 0.729 0.650 0.889

For the city images, PSNR and SSIM of the proposed method are better than

the other two methods. The proposed method outperformed the other two

methods by up to 0.52 dB in PSNR and 0.086 in SSIM, respectively.

The visual results of the in-house dataset under the noise levels σ = 10 and

σ = 15 are shown in Fig. 5.3 and Fig. 5.4, respectively. Similar results can also

be observed in Fig. 5.3c to 5.3e and Fig. 5.4c to 5.4e, where noise is noticeable

on the image with bilinear and HQL methods. However, the proposed method

is less affected by such noise. To further evaluate the performance of the

proposed algorithm under different noise levels, the algorithm is executed for

the noisy images under different noise levels ranging from σ = 0 to σ = 20, and

the numerical results for each image are tabulated in Table. 5.2-5.5.

In Table. 5.2, it can be observed that the proposed algorithm has a similar
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Table 5.5: Demosaicking and rectification performance comparison on noisy

images from scene box, chair, skull, and teddy under noise level σ = 20.

PSNR(dB) SSIM[110]

Bilinear HQL[74] Proposed Bilinear HQL[74] Proposed

box

22.20 21.06 23.04 0.481 0.405 0.647

21.14 20.24 21.82 0.498 0.430 0.658

20.55 20.14 20.94 0.566 0.524 0.676

chair

25.13 23.63 27.41 0.484 0.391 0.686

24.63 23.25 26.44 0.498 0.407 0.687

25.42 23.90 28.07 0.465 0.372 0.672

skull

25.05 23.74 26.33 0.534 0.438 0.703

23.76 22.59 24.85 0.618 0.540 0.739

25.84 24.43 27.63 0.576 0.480 0.724

teddy

25.74 24.05 28.29 0.612 0.515 0.760

25.58 23.94 27.97 0.611 0.516 0.753

25.69 23.97 28.26 0.622 0.528 0.772

performance with bilinear interpolation in noise-free settings. However, in

Table. 5.3 to 5.5, it can be observed that with the increase of noise level,

the performance of bilinear and HQL methods decreases significantly, while

the proposed algorithm can maintain good performance across different noise

settings. Specifically, in Table. 5.4, under the noise level σ = 15 it outperformed

the other two competing methods by up to 4.99dB in PSNR on the images

from the scene teddy, and up to 0.429 in SSIM on the images from scene chair.

This is mainly because the generated images are mostly piecewise smooth

images. Compared with images from the Multi-FoV dataset, these images can

reap more benefit from the graph smoothness prior in (3.1).
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Conclusion

Fisheye cameras have drawn great interest for their wide use in virtual reality

and augmented reality applications. In a conventional processing pipeline for

fisheye camera images, demosaicking is first performed to interpolate missing

color pixels at each pixel location, followed by rectification to correct lens distor-

tion caused by irregular optical structure. However, during the image capturing

process, as light photons are collected at each pixel location to compute an

intensity value, additive noise is typically observed, which corrupts the intensity

computation. Performing demosaicking and rectification in sequence means

that image interpolation is executed twice, where at each stage, errors can

accumulate, and acquisition noise at the captured pixels can smear neighbors,

resulting in correlated noise, which is difficult to remove in subsequent steps.

Inspired by state-of-the-art joint demosaicking / denoising (JDD) methods

that perform demosaicking and denoising in one step, in this thesis, a graph-

based joint demosaicking / rectification algorithm is proposed, which performs
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demosaicking to interpolate the missing pixels in the Bayer-patterned grid and

corrects the fisheye camera distortion simultaneously. Specifically, a reverse

mapping function is first obtained from a regular on-grid location in the rectified

image to an irregular off-grid location in the camera’s Bayer-patterned grid. For

each pair of adjacent pixels in the rectified grid, its gradient is estimated using

the pair’s neighboring pixel gradients in three colors in the Bayer-patterned grid.

A similarity graph is constructed based on the estimated gradients, and pixels

are interpolated in the rectified grid directly via graph Laplacian regularization

(GLR).

To evaluate the proposed joint demosaicking and rectification scheme, a

comprehensive dataset containing ground-truth image pairs both in the fisheye

camera’s Bayer-patterned grid and in the rectified image grid is necessary.

Unfortunately, this kind of dataset is difficult to obtain in practice. Thus,

in this thesis, a synthetic image dataset that includes image pairs both on

the fisheye camera’s Bayer-patterned grid and the rectified image grid is

constructed.

Experimental results on two fisheye camera image datasets confirm that

the proposed joint demosaicking / rectification method outperformed competing

methods that perform demosaicking and rectification on the fisheye camera

images in separate steps.

For future work, interpolation method and gradient estimation method

can be further improved. Specifically, interpolation methods with better

performance, such as non-local mean methods, can be applied in this problem

to further improve interpolation performance. Furthermore, the interpolation

matrix H can be made signal-dependent, so that the interpolation can be
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performed based on the image content to recreate sharper image boundaries.

In addition, in graph construction, instead of estimating gradients and

computing edge weights using hand-crafted features, it is possible to extract

local features automatically by leveraging convolutional neural networks (CNN).

A well-trained CNN is capable of discovering sparse but relevant image features,

which can potentially further improve end-to-end performance.

For the proposed dataset, compared with natural images, images in the

current dataset are rendered with smooth backgrounds and without sufficient

fine details. This is not common in natural images captured by real fisheye

cameras, and thus these images might not be representative of natural images.

For future work, more 3D models with fine details can be used for a larger-size

dataset.
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