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ABSTRACT 

Cytometry of Reaction Rate Constant (CRRC) is a method for studying cell population 

heterogeneity based on the activity of cellular processes. The original CRRC workflow did not 

account for cell motility, which led to inaccurate measurements in motile cells. Here, we report 

on the development of a new CRRC workflow that makes it applicable to motile cells. We 

confirmed the robustness of the new workflow to cell movement by performing a comparative 

CRRC workflow study of cross-membrane transport in motile cells. Using the new workflow, 

preliminary progress was made on the investigation of cytochrome p450 (CYP) activity. We 

validated the CRRC experimental procedure to conduct such study but found that the CRRC 

CYP assay had considerable variability. Nonetheless, the development of the new CRRC 

workflow is a step in the right direction with more work needing to be done to understand the 

variability found in the CRRC CYP assay.  
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Chapter One 

INTRODUCTION 
 

 1.1 Chemoresistance 

 Chemotherapy is a long-established and routinely used cancer treatment that involves the 

administration of chemotherapeutic agents to target fast-dividing cells in patients.1,2 

Chemotherapeutic agents are either: i) cytotoxic or ii) cytostatic.3 Cytotoxic agents inhibit cell 

division and cause cell death, while cytostatic agents slow or stop the growth of cells without 

killing them. An ongoing issue associated with chemotherapy treatment is when a patient displays 

chemoresistance, i.e., tumour insensitivity to cytotoxic agents.4 It is important to note that there 

are two types of chemoresistance: i) intrinsic and ii) acquired. Intrinsic chemoresistance is when 

the tumour is unaffected by the first application of chemotherapy.5 Tumours can possess a 

subpopulation of cells that are inherently drug-resistant and cause cancer relapse after the first 

round of treatment. In contrast, acquired chemoresistance occurs when the tumour becomes 

insensitive to chemotherapeutic agents after the following rounds of treatment.6 A tumour can 

respond positively to the first round of chemotherapy, but it will likely develop resistance during 

the course of treatment due to the appearance of new mutations or changes in the tumour 

microenvironment. For example, around 50% to 70% of ovarian adenocarcinomas will relapse 

within one year from the start of treatment.7 Ultimately, chemotherapy will be unsuccessful in 

eliminating cancer for both forms of chemoresistance.
 

Evidently, chemoresistance is a concerning issue as it diminishes the effectiveness of 

chemotherapy leading to a shortened life expectancy of chemotherapy-treated cancer patients.8 In 

fact, chemoresistance may be responsible for treatment failure for up to 90% of cancer patients.9 

This has been an inevitable situation for many years as chemotherapy was and still is a critical 
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component of cancer treatment, alongside radiation and surgery. However, alternative cancer 

treatments have been developed over the years, such as immunotherapy, hormone therapy, 

molecularly targeted inhibitors, signal transduction inhibitors, heat ablation, and cryotherapy.10-14 

Specifically designing a treatment regimen for an individual cancer patient, known as precision 

oncology, can avoid patients undergoing treatments later deemed to be ineffective and can improve 

the success of cancer treatment.15 Thus, precision oncology is an innovative approach that has 

become a growing focus of cancer research.  

1.2 Precision oncology cancer treatment model 

Commonly, chemotherapy is one of the primary treatment options for a cancer patient and 

it involves the use of anticancer drugs that can be used by themselves or in combination with other 

anticancer drugs. If a patient is deemed to be chemoresistant, then alternative therapies are 

introduced.16,17 However, it usually takes multiple rounds of chemotherapy before concluding a 

patient is chemoresistant, since one round of chemotherapy is usually insufficient for such 

conclusion. While the target of chemotherapy is fast-dividing cells, an inevitable side effect of 

chemotherapy is the destruction of healthy cells. The destruction of healthy cells can cause severe 

problems such as low blood cell counts, gastrointestinal disorders, hair loss, etc.18 In addition, 

prolonged chemotherapy treatment potentially takes critical time away from the use of a more 

effective alternative therapy.  

In the current cancer treatment model, patients would blindly undergo multiple rounds of 

chemotherapy without pre-therapeutic evaluation to determine whether a patient is chemoresistant 

or chemosensitive. Although this current cancer treatment model is frequently used, there may be 

a more effective cancer treatment model that involves precision oncology. This precision oncology 

based cancer treatment model would instead have pre-therapeutic evaluation to predict if the 
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patient would display intrinsic chemoresistance, so a decision can be made for the patient to 

undergo chemotherapy or an alternative therapy (Figure 1).19 Having therapeutic evaluation prior 

to treatment could be extremely beneficial as it would potentially bypass unnecessary 

chemotherapy treatment and possibly lead to longer patient survival.20 Predictive cancer 

biomarkers, specifically chemoresistance predictors, would be tested for in the pre-therapeutic 

evaluation to guide the decision of the most optimal treatment for the patient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Current state of chemoresistance predictors 

 Predictive cancer biomarkers are substances or processes measured in the body that can be 

used to predict a patient’s response to a cancer treatment.21 Specifically, chemoresistance 

predictors are a type of predictive biomarker that foresees a patient’s response to chemotherapy.22 

Figure 1. Comparison of the current and the precision oncology based cancer treatment paradigms. Blue boxes 

represent diagnostic and evaluation steps, while the red boxes represent the use of chemotherapy. The current 

cancer treatment model is a trial-and-error system, where multiple rounds of chemotherapy are required to 

determine chemoresistance. The precision oncology based treatment model involves pre-therapeutic evaluation to 

determine chemoresistance.  Adapted from: Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical 

Challenges in Development of Chemoresistance Predictors for Precision Oncology. Anal. Chem. 09 

2020;92(18):12101-12110. doi:10.1021/acs.analchem.0c02644. 
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Thus far, many potential chemoresistance predictors have been proposed;22-24 however, only a 

small portion of these potential predictors have been proven to be adequate for clinical use. In fact, 

only a few chemoresistance predictors have been approved by FDA.25 Some examples of validated 

chemoresistance predictors are HER2 expression for breast cancer,26 KRAS mutations for non-

small cell lung cancer,27 and high microsatellite instability for colorectal cancer.28 Seemingly, there 

is a lack of suitable chemoresistance predictors as well as predictive biomarkers in general, which 

can be attributed to various reasons. These reasons include small study sizes leading to 

overestimation or underestimation of biomarker significance,29 lack of coordination between 

biomarker research laboratories leading to poor reproducibility,30 and the presence of regulatory 

and financial hurdles.31  

1.4 Requirements of a chemoresistance predictor  

 A chemoresistance predictor associates a measurable clinical endpoint y which serves as 

an indicator of clinical chemoresistance, with a laboratory parameter x that is measured prior to 

chemotherapy treatment, via the function below:  

               𝐹: 𝑦 = 𝐹(𝑥)            (1) 

If ythres is assigned as the threshold value that separates chemoresistance from 

chemosensitivity then a y value less than ythres corresponds to chemosensitivity and y value greater 

than ythres corresponds to chemoresistance. Graphical illustration of a chemoresistance predictor is 

shown in Figure 2.19 Thus, measuring the laboratory parameter x before the treatment for an 

individual patient can be used to anticipate whether the patient has pre-existing chemoresistance.  

 To establish a chemoresistance predictor for clinical use, two fundamental requirements 

should be met. The first requirement is biological, there must be a strong biological relationship 

between the laboratory parameter and the clinical endpoint. The second requirement is technical, 
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the analytical methods used for measuring both the laboratory parameter and the clinical endpoint 

must be reliable in terms of precision, accuracy, robustness, and ruggedness. The failure to satisfy 

the technical requirement impacts the ability to correctly answer the question of whether there is a 

strong biological relationship between the lab parameter and the clinical endpoint, which would 

lead to questionable determination of chemoresistance. Hence, the analytical methods measuring 

the clinical and laboratory parameters should be first validated by testing their precision, accuracy, 

robustness, and ruggedness, in order to reliably determine chemoresistance. 

 

 

 

 

 

 

 

 

 

 

 

1.5 Analytical method validation parameters  

 It is important to understand what is meant by these four analytical method validation 

parameters: precision, accuracy, robustness, and ruggedness. These four key parameters are some 

of the many that are checked to ensure that a method is suitable for its intended reason and produces 

legitimate data.32 The precision of an analytic method is the closeness of agreement between 

Figure 2. Graphical depiction of a chemoresistance predictor. A quantifiable clinical parameter is linked to 

a laboratory parameter measured from a patient prior to chemotherapy treatment. The ythres value is 

designated as the threshold that distinguishes chemoresistance from chemosensitivity, so a y value less than 

ythres corresponds to chemosensitivity and a y value greater than ythres corresponds to chemoresistance.   

Adapted from: Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in Development 

of Chemoresistance Predictors for Precision Oncology. Anal. Chem. 09 2020;92(18):12101-12110. 

doi:10.1021/acs.analchem.0c02644. 
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measurements acquired under specific conditions.33 In contrast, accuracy is the closeness of 

agreement between the value which is accepted either as the true or reference value and the 

measured value.34 Robustness expresses the resistance of an analytical method to small, but 

deliberate variations in experimental settings and provides an indication of its reliability during 

routine use.35 Lastly, ruggedness is the degree of reproducibility of results acquired by the analysis 

of the same sample under variable conditions, such as different laboratories, different analysts, 

different instruments, different analysis duration times, different analysis temperatures, different 

days, etc.36 Thus, an analytical method can be considered reliable if it is shown to sufficiently 

precise, accurate, robust, and rugged.  

1.6 Types of chemoresistance predictors 

 For this work, our focus is primarily on methods measuring laboratory parameters since 

methods for measuring clinical endpoints are considered satisfactory for correlation. A good 

example of a clinical endpoint that can be reliably measured because of its straightforwardness is 

overall survival, which is the length of time that a patient is alive from the start of the treatment or 

diagnosis.23 For the methods that measure laboratory parameters, the majority of them fall short in 

at least one of the critical method validation parameters already discussed (precision, accuracy, 

robustness, ruggedness). Therefore, our analysis will discuss these methods that measure 

laboratory parameters and their analytical performance. Furthermore, we will classify 

chemoresistance predictors based on the type of method that measures the laboratory parameter. 

For simplification, the chemoresistance predictors that will be discussed are placed into four broad 

categories: i) whole-tumour properties, ii) genetic aberrations, iii) random screening for quantities 

of molecules, and iv) quantities or activities of relevant catalysts (Figure 3). The first category, 

whole-tumour properties, is the only type of predictor that uses non-biochemical analyses; 
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however, it has not shown much promise in clinical settings. The next two categories, genetic 

aberrations and random screening for quantities of molecules, are particularly useful for discovery 

of possible laboratory parameters that could be correlated to chemoresistance, since these two 

categories use wide screening methods. The last category, quantities or activities of relevant 

catalysts, is best used for validation of potential laboratory parameters linked to chemoresistance. 

Note that potential laboratory parameters are likely to have been identified from wide screening 

methods. 

 

1.6.1 Whole-tumour properties 

Theoretically, any quantifiable property of a whole tumour such as its size, vascularization, 

oxygenation, etc., can be used as a laboratory parameter to be linked with a clinical endpoint for 

the development of a chemoresistance predictor. Quantifying these tumour properties can be 

accomplished with non-invasive imaging techniques like ultrasounds, x-rays, magnetic resonance 

imaging (MRI), computed tomography (CT), and positron emission tomography (PET).37 

Chemoresistance predictors based on non-invasive imaging have been investigated in numerous 

cancers including breast,38 ovarian,39 and NSCLC.40 However, no chemoresistance predictor based 

on tumour imaging has been successfully proven to be clinically useful.41 Rather all the clinically 

used chemoresistance predictors are based on biochemical analyses of tissue or body fluid 

Figure 3. Classification of chemoresistance predictors based on lab parameters. Assessment of whole-

tumour properties (red text) is the only non-biochemical analysis. 
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specimens. Hence, the rest of the discussion of chemoresistance predictors will be centred around 

biochemical analyses. 

1.6.2 Genetic aberrations 

 One type of biochemical chemoresistance predictor is based on genetic aberrations. 

Genetic aberrations are mutations, single-nucleotide polymorphisms, and chromosome deletions 

or translocations.42 Many of these aberrations are measurable, so the percentage of tumour cells 

that carry a specific genetic aberration can be found.43 Since these aberrations are simply listed as 

present or absent, they can be detected with high ruggedness, precision, accuracy, and robustness 

via DNA sequencing or fluorescence in-situ hybridization (FISH).44,45 The simple recording of an 

aberration being present or absent seems to have low uncertainty, thus making it ideal for the 

development of chemoresistance predictors. However, it is important to note that a threshold for 

the percentage of cells that carry a genetic aberration must be set to determine whether a patient is 

positive or negative, which leads to controversy over interpretation of positivity.46  

 Although it appears to be an ideal laboratory parameter, there are only a few reliable 

chemoresistance predictors based on genetic abberations.47 The two main issues hindering the 

genetic-based approach in producing more predictors are financial and biological. The first issue 

is financial, as the high cost for accurate whole-genome sequencing limits the amount of available 

data for predictor development.48 It is noteworthy to mention that this financial barrier may be 

alleviated in the future with the development of more DNA sequencing technologies. Moreover, 

the second problem is concerned with fundamental biology since a single genetic abnormality 

usually does not tell a full story about drug resistance. Instead, there are many other levels of 

cellular regulation that can contribute to drug resistance such as epigenetic, transcriptional, and 

post-translational regulation.49 Therefore, it is widely accepted that predictors based on genomic 
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aberrations are only useful for a small minority of cancer patients, but this approach may find more 

reliable predictors in the future with development of new DNA sequencing technologies. 

1.6.3 Random screening for quantities of molecules 

 Another category of biochemical chemoresistance predictors is built upon the random 

screening for quantities of molecules. This category of predictor uses screening technologies to 

determine the abundance of mRNAs, proteins, post- translational modifications of proteins, 

miRNAs, metabolites, etc.50,51 Molecules of interest are identified if there is correlation between 

the quantity of the molecule and a clinical endpoint. Thus, random screening for molecules of 

interest could potentially find a relevant laboratory parameter by chance, yet no approved 

predictors has been developed using this approach. 

 Measuring lab parameters for random screening predictors could be done through wide-

panel hybridization assays, nucleic acid sequencing methods, mass spectrometry, etc.30 All of these 

methods lack in either precision, accuracy, robustness, or ruggedness. For example, a microarray 

is a type of wide-panel hybridization assay that is semi-quantitative in nature. Microarrays have 

difficulties in accurately measuring absolute expression levels and detecting low abundance 

genes,52 thus, it is inadequate for measuring a laboratory parameter. For nucleic acid sequencing, 

a popular method used is Nanostring, which can identify up to 770 gene transcripts in a single run 

by detecting mRNA molecules with target-specific probe pairs. 53 However, Nanostring is known 

to be irreproducible,54 hence it cannot be used to ruggedly measure a lab parameter. Other methods, 

such as RT-qPCR and ELISA, are commonly used for quantitative measurements of small sets of 

molecules identified from the wide screens.55,56 But, RT-qPCR and ELISA have their own flaws 

such as the requirement for complex extraction of molecules of interest in RT-qPCR,57 and non-

specific antibody binding leading to a high background signal in ELISA.58 Moreover, RNA-Seq is 
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a highly accurate technique that can determine the differential expression of genes and transcripts 

with minimal amounts of RNA.59 Although RNA-Seq is highly accurate, there are struggles 

associated with sample preparation as low quality or quantity of recovered RNA causes biased 

results for this technique.60 Collectively, random screening methods are suitable for identification 

of prospective molecules of interest, but these methods lack in either precision, accuracy, 

robustness, or ruggedness for measuring these molecules of interest for chemoresistance 

prediction. 

1.6.4 Quantities or activities of relevant catalysts 

 Contrary to the predictors that rely on random screening for molecules of interest, there are 

other predictors that focus on relevant cellular processes that are known beforehand to be involved 

in chemoresistance. Most cytotoxic drugs inflict DNA damage in rapidly-dividing cells and 

subsequently trigger apoptosis in these cells, killing these cells. The cytotoxic effect of these drugs 

can be hindered when tumour cells display chemoresistance. Three common scenarios of 

chemoresistance are when: (i) the drug is expelled from the cells before reaching the nucleus, (ii) 

the drug cannot induce DNA damage because it is inactivated by drug-metabolizing enzymes, (iii) 

the drug reaches the nucleus and induces DNA damage; however, the DNA damage is quickly 

repaired by DNA repair enzymes, therefore apoptosis is prevented. These three chemoresistance 

mechanisms (drug expulsion, drug inactivation, and DNA damage repair) are directly linked to 

cytotoxic drugs, unlike other chemoresistance mechanisms, such as increased cell survival and 

inhibition of apoptosis. Furthermore, these three mechanisms are catalyzed by transporters or 

enzymes, hence, the amount or activities of these catalysts could be quantified for use as lab 

parameters. 
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1.6.4.1 Quantity of catalysts vs. their activity 

 Lab parameters of chemoresistance mechanism based on drug extrusion, drug 

degradation, or DNA damage repair can either be based on the amount or the activity of the 

catalyst. For an abundance-based lab parameter, the quantity (expression) of the catalyst is 

measured by the amount of mRNA or protein of that catalyst. Measuring mRNA or protein levels 

can be conveniently done within an affinity assay (hybridization assay or immunoassay), such as 

RT-PCR or Western blot. Nevertheless, the amounts of mRNA or protein of the catalyst does not 

correlate to the actual rate of catalysis, which is dependent on many other factors. Some factors 

include post-transcriptional and post-translational regulation, such as alternative splicing and 

post-translational protein modifications.61 Moreover, expression assays are inadequate for 

characterization of catalysis due to the influence of the tumour microenvironment on the reaction 

rate of transporters.62 Consequently, the expression levels of catalysts are unreliable lab 

parameters that are unlikely to correspond with clinical endpoints. On the other hand, the 

activities of a catalysts may provide a stronger basis for a chemoresistance predictor. There are 

different ways to analyze the activity of a catalyst as shown in Figure 4. The next sections will 

focus on the measurement of catalyst activities. 

 

Figure 4. Different methodological approaches to analyze the activity of a catalyst. Green text indicates our 

preferred approach (a single-cell kinetic assay), as explained in the following sections. 
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1.6.4.2 Population-average vs. single-cell approaches  

 The activities of catalysts are either investigated at the population or the single-cell level. 

Using the population approach, an average of a measurable characteristic is taken and used to 

describe the whole cell population. Taking the population average would be unfavourable for 

tumours. As we know, tumours are inherently heterogenous, meaning they comprise of cells that 

differ in many ways such as their morphology, gene expression, and the activities of cellular 

reactions.63 Accordingly, taking the population-average would ignore an important feature of 

tumours, which is their heterogeneity. 

In consequence, population-average approaches would be unable to identify a drug-

resistant cell subpopulation that exhibits increased activity of MDR transporters, drug-

metabolizing enzymes, or DNA damage repair enzymes. Not knowing the size of the drug-resistant 

cell subpopulation is potentially detrimental, since the size of this specific cell subpopulation is 

connected to chemoresistance; with a greater number of drug-resistant cells in the tumour, there is 

a higher chance that some cells would survive chemotherapy and cause cancer relapse.64 Evidently, 

the only way to accurately determine the size of a drug-resistant cell population is through a single-

cell assay. Single-cell assays analyze individual cells from a large cell population and can, 

accordingly, identify a subset of cells that are drug-resistant. If the size of the drug-resistant cell 

population is accurately measured, it can then be utilized as a lab parameter to be correlated with 

a clinical endpoint. Generally, the measurement of the number and characteristics of individual 

cells is termed cytometry.  

1.6.4.3 Non-kinetic vs kinetic approaches for assessing catalyst activity  

 Cytometry techniques that assess the activities of cellular processes at the single-cell level 

are either non-kinetic or kinetic. A non-kinetic cytometry technique, such as measuring the amount 
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of fluorescent product formed at a specific time point, can be used in theory to obtain reaction rates 

leading to the characterization of a drug-resistant cell subpopulation. However, there is a glaring 

issue with robustness regarding non-kinetic cytometry, since a small variation in the substrate 

concentration may significantly influence the results leading to different determined reaction rates. 

Consequently, non-kinetic cytometry techniques are non-robust and cannot be reliably used to 

characterize the size of a drug-resistant cell subpopulation.65  

An example of a commonly used non-kinetic cytometry technique is flow cytometry.66 

Flow cytometry can differentiate cells within a large, heterogenous population by measuring 

physical and chemical properties of individual cells as they are forced to pass through a laser beam 

in a single-file line. The problem with flow cytometry for assessing the activities of catalysts is 

that measurements cannot be repeated, since cells can only pass through the laser beam once. 

Considering reactions do not occur instantly, multiple measurements must be taken during the 

reaction itself to truly assess the activities of catalysts. Most single-cell assays that use flow 

cytometry have already been proven to be inaccurate and non-robust.67 Therefore, flow cytometry 

is a non-kinetic technique that is inadequate to determine the activities of catalysts to distinguish 

a drug-resistant cell subpopulation.  

 Thus, a kinetic cytometry technique is required to accurately assess the activities of 

catalysts for characterization of a drug-resistant subpopulation. Now, the question is what kinetic 

measurement can be used for this assessment of catalytic activity. Fundamentally, a chemical 

reaction is the process of reactants transforming into products and catalysts are substances that 

increase the reaction rate without being consumed.68 An accurate quantitative descriptor of a 

chemical reaction is the reaction rate constant, k, which relates the concentrations of the reactants 

to the reaction rate. Importantly, the rate constant is also a robust quantitative parameter, meaning 
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that it is insensitive to minimal changes in experimental settings, such as the substrate 

concentration and the duration of experiment. Moreover, rate constants can be measured at the 

single-cell level to quantify the activity of catalysts involved in the established chemoresistance 

mechanisms (drug expulsion, drug metabolism, and DNA damage repair) for accurate and robust 

determination of the drug-resistant cell subpopulation.   

1.7 Introduction to Cytometry of Reaction Rate Constant (CRRC)  

 Here, we introduce a kinetic cytometry technique that measures rate constants to 

characterize cell population heterogeneity, called the “Cytometry of Reaction Rate Constant” 

(CRRC).65,69-73 CRRC is a method based on time-lapse fluorescence microscopy and can be 

summarized in five major steps (Figure 5).65 First, a fluorescent or fluorogenic (initially non-

fluorescent) substrate that is involved in the mechanism of interest is loaded into the cells. Then, 

fluorescent images of many cells are acquired progressively to follow the changes in intracellular 

fluorescence intensity. The images are processed to generate kinetic traces (intracellular 

fluorescence intensity vs. time) for each cell. Next, single-cell rate constants are calculated from 

exponential fitting of the kinetic traces. Lastly, the rate constant distribution is shown as a kinetic 

histogram (number of cells vs. rate constant). 

 

 

 

 

 

 

 

Figure 5. Schematic representation of CRRC. See text for details. Adapted from: Koshkin V, Kochmann S, 

Sorupanathan A, et al. Cytometry of Reaction Rate Constant: Measuring Reaction Rate Constant in Individual Cells 

To Facilitate Robust and Accurate Analysis of Cell-Population Heterogeneity. Anal Chem. 03 2019;91(6):4186-4194. 

doi: 10.1021/acs.analchem.9b00388. 
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1.7.1 MDR transport activity analysis by CRRC   

 

So far, the main mechanism investigated by CRRC has been drug extrusion facilitated by 

MDR transporters. MDR transporters are predominantly responsible for extrusion of drugs, 

including chemotherapeutics, thus, they contribute to chemoresistance in various cancers such as 

breast, ovarian, and colorectal cancer.74 MDR transporters are ATP-dependent and transport a 

substrate against its concentration gradient.75 There are many MDR transporters, but there are three 

isoforms that are heavily linked to chemoresistance: P-glycoprotein (P-gp), MDR-associated 

protein 1 (MRP1), and breast cancer resistance protein (BCRP).76 The activity of these transporters 

can be simply assessed with fluorophores, which are non-specific for the different MDR 

transporters.77 In studies of MDR with CRRC, a fluorophore (fluorescein) and MDR transporter 

inhibitor (glyburide) is loaded into the cells and allowed to accumulate in the intracellular space. 

Consequently, after the removal of the MDR transport inhibitor, the decrease in intracellular 

fluorescence is followed over time as an indicator of the transporters’ activity. 

In previous work, CRRC was shown to be robust and accurate in studying cell population 

heterogeneity based on the activity of MDR transporters,78 and that it can differentiate cell 

subpopulations with low and high kMDR constants.79 In addition, it was shown that many 

phenotypes do not alter significantly in the first 96 hours after dispersion of cells from three-

dimensional clusters,80 suggesting that the rate constant measured in dispersed cells can be used 

for analysis of MDR activity in solid tumors, from which the dispersed cells originated from. 

Furthermore, it was demonstrated that dispersed cells acquired by disintegration of three-

dimensional clusters preserve their MDR activity for 24 hours.81 Altogether, these results suggest 

that CRRC can reliably measure the activity of a MDR-mediated drug extrusion for identification 

of a drug-resistant population. 
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1.7.2 Identification of cell motility issue with original CRRC protocol 

 

 CRRC is a method that is still in its infancy stage of development and requires considerable 

efforts until it is ready to be used in clinical practice. In clinical practice, CRRC will be used to 

analyze primary cells derived from a tumour, but first, it must produce reliable and consistent 

results for cell lines. We studied the activities of xenobiotic-metabolizing enzymes, cytochrome 

p450 (CYP) and aldehyde dehydrogenase (ALDH), for the first time and obtained irreproducible 

and non-robust results in various cell lines such as MCF7 (breast cancer) and OVCAR3 (ovarian 

cancer). After carefully examining the images obtained, we found that some cells would move 

during the experiment, even though cells were attached to the cell culture plate surface. An 

example of cell motility is shown in Figure 6. Since we assumed cells would remain stable for the 

entirety of the experiment, cell motility was completely disregarded in our original CRRC 

protocol. In addition, unintentional shifts caused by the manual addition of the fluorogenic 

substrate or nuclei stain, propidium iodide (PI), to the cell culture plate would also cause cells to 

lose their position. Thus, it became clear that a new CRRC workflow that addresses cell motility 

had to be developed, in order to obtain reliable measurements.   

 

 

 

 

 

 

 

 

Figure 6. An example illustration of a motile OVCAR3 cell. The yellow outline is the identified 

cell contour at time zero. As time passes, the cell moves from the identified cell contour at time 

zero, indicating that cell is moving from its starting position. 
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Chapter Two 

DEVELOPING A WORFKLOW FOR 

CYTOMETRY OF REACTION RATE 

CONSTANT (CRRC) THAT ADDRESSES CELL 

MOTILITY 

 The presented material is a manuscript titled "Workflow for Cytometry of Reaction Rate 

Constant (CRRC) to be Applicable to Motile Cells” that is currently under review and pending 

publication.  

My contributions to the manuscript were: i) developing the new workflow, ii) performing 

all presented experiments, iii) interpreting results, iv) preparing figures, and v) writing and 

editing the manuscript. 

2.1 Background   

 Cell tracking has become an essential component of live-cell experiments that involve 

time-lapse fluorescence microscopy.82-84 The original CRRC workflow did not account for cell 

motility, since all cells were assumed to remain in the same position during the time-lapse 

experiment. In the original workflow, cells were stained with PI and a fluorescence image was 

taken to reveal cell positions at the end of the experiment. Hundreds of cell contours would then 

be manually drawn on the PI-stained image by the analyst and these cell contour masks were used 

to determine intracellular fluorescence intensities for the entire stack of images. Evidently, the 

results of CRRC will be inaccurate for motile cells because the “static” cell contours used to 

determine intracellular fluorescence will not follow the continually changing cell positions. Thus, 

making CRRC insensitive to cell movement requires a revamped workflow that finds cell contours 

for each image and follows these cell contours through the image stack.  

Our new CRRC workflow combines two optical microscopy techniques: (i) transmitted-
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light microscopy for cell-contour identification and cell tracking through the time-stack of images 

and (ii) fluorescence microscopy for monitoring intracellular fluorescence intensities. To acquire 

images, our microscope is configured to automatically take a transmitted light image before every 

fluorescence image. Stacks of matching fluorescence and transmitted-light images are then 

processed and analyzed automatically to extract kinetic traces “intracellular fluorescence intensity 

vs time”. 

2.2 Justification for use of transmitted-light microscopy 

To ensure robustness of CRRC to cell movement, cell contours must be identified in the 

fluorescence images. This cannot be solely accomplished with imaging substrate conversion into 

the fluorescent product or imaging extrusion of the fluorophore since some images in the CRRC 

experiment will have too low of a fluorescent signal to distinguish cells from the background. 

Substrate conversion into fluorescent product causes a fluorescence increase, but the beginning 

images in the CRRC experiment will have minimal fluorescence for cell contours to be identified. 

The same concept applies to extrusion of the fluorophore which causes fluorescence decrease, then 

the last images of the experiment will have too low of a fluorescent signal for cell contour 

identification. Hence, it appears that the only practical way of identifying cell contours in the 

fluorescence images monitoring the reaction of interest in CRRC is to adopt a multichannel 

imaging approach. 

The multichannel imaging approach entails acquiring an accompanying image that can 

either a be another fluorescence image or a transmitted-light one. Using an accompanying 

fluorescence image requires staining cells with a fluorescence probe spectrally distinct from the 

fluorescent product or fluorophore. Such a probe would introduce unnecessary chemical stress on 

the cells and could also interfere with determination of the product’s fluorescence intensity due to 
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inevitable spectral overlaps. Therefore, we would prefer to use an accompanying transmitted-light 

image that avoids these potential issues. Further, modern microscopes have the capability to have 

separate focusing for different imaging modes, as the focal planes for fluorescence and 

transmitted-light modes may differ. 

Normally, transmitted-light images are not used for cell-contour identification, since the 

contrast between cells and background in transmitted-light images is insufficient. Moreover, 

automated cell contour recognition software is usually designed for fluorescence images, as cells 

appear as bright spots on a dark background in these images. The easier a cell could be recognized 

by the human eye will lead to better cell contour recognition performance. Standard transmitted-

light images, such as BF, DIC, and PC, do not provide the desired contrast like a fluorescence 

image, thus, these transmitted-light images need to be modified to have enhanced contrast. Various 

methods exist for increasing transmitted-light image contrast for cell contour identificaiton.85-88 

We chose to use a method called thresholding for its straightforwardness and its availability as a 

software tool for most modern microscopes. Thresholding is limiting the pixel intensities of an 

image to a small range, so that pixel intensities above the selected range convert to white (bit value 

of 1) and pixel intensities below the lower limit of the range convert to black (bit value of 0). 

Further, it was demonstrated that thresholding benefits from having a transmitted-light image 

slightly out of focus.87 The result of thresholding is a high-contrast transmitted-light image, where 

the cells appear as a bright spots on a dark background. An example of thresholding for a 

brightfield image is shown in Figure 7. It is important to state that raw DIC and PC images have 

inherently better contrast than BF, therefore they should outperform BF in cell contour 

identification. However, it is questionable if DIC and PC retain this advantage after undergoing 

thresholding, thus, a comparison between the three transmitted-light modes is required. 
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2.3 Experimental layout 

Our experimental layout for the development and validation of the new workflow involved 

five major steps. First, we compared the three transmitted-light modes for their cell contour 

identification performance and found that BF performed best using the thresholding technique, 

thus, BF was chosen as the transmitted-light image in the new workflow. Second, we tested the 

cell area determination ability of the altered BF images and found that they underestimate cell 

area; however, we proved this underestimation of cell area does not affect the results of CRRC. 

Third, we confirmed that cell movement between a matching fluorescent and BF image is 

negligible even for highly-motile cells; hence, the cell contours found for BF images are applicable 

to fluorescence images. Fourth, we performed an experiment for microscopes that are unable to 

separately focus for multichannel imaging and proved that the new workflow is insensitive to the 

difference in focal planes between the BF and fluorescence images. Finally, we compared the 

Figure 7. Example of using thresholding to enhance contrast for a brightfield image. On the left is a raw brightfield 

image out of focus by 30 μm, which undergoes thresholding to produce a high-contrast version of the same image on 

the right. 
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original and new workflows of CRRC by investigating cross-membrane transport in motile cells. 

We found that the original workflow tends to overestimate rate constants causing a shift of the 

histogram to the right, while the new workflow was unaffected by cell motility. 

2.4 Materials and methods 

2.4.1 Cell culture 

Ovarian cancer cells TOV-112D were acquired from ATCC and grown in MCDB 

105/Medium 199 (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. of MCDB 105: M6395, Cat. No. 

of Medium 199: M5017) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, 

USA, Cat. No: 12483-020). Cells were cultured in 60 mm plastic-bottom dishes (Sarstedt AG&Co, 

Numbrecht, Germany, Cat. No: 83.3901), 35 mm plastic-bottom dishes (Nest Biotechnology Co, 

Wuxi, Jiangsu, China, Cat. No: 706001), and a 50 mm glass-bottom dish (Mattek, Ashland, MA, 

USA, Cat. No: P50G-1.5-14-FGRD). The 35 plastic-bottom dishes were used for imaging except 

for one exception in the “Deciding on which transmitted light microscopy technique to use” section 

where a 50 mm glass-bottom dish was used. Cells were cultured at 37°C in a humidified incubator 

with 5% CO2 until they reached 70% confluency. 

2.4.2 Cell staining 

PI-nuclei staining was conducted for cell counting and to reveal cell positions after 

completion of the time-lapse experiment in original workflow. To perform PI-nuclei staining, 10 

µL of 6.5 mM saponin (Sigma-Aldrich, St. Louis, MO, USA, Cat. No:8047152), a cell membrane 

permeabilizing agent, and then 5 µL of 1 mM propidium iodide (PI, Sigma-Aldrich, St. Louis, 

MO, USA, Cat. No:25535164) were added into the cell culture plate containing 1.2 mL of Hanks’ 

Balanced Salt Solution (HBSS) (Gibco, Grand Island, NY, USA, Cat. No:14025092).89 After 10 

minutes, cells were imaged without washing. For experiments that required cytoplasmic staining, 
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cells were treated with 2 µM DRAQ9™ (Novus Biologicals, Littleton, CO, USA, Cat. No: NBP2-

81128) in HBSS. After 30 minutes, cells were washed three times with PBS (Cytiva, Logan, Utah, 

USA, Cat. No: SH30256.01) and then imaged. 

2.4.3 New CRRC experimental protocol for cross-membrane transport 

The full CRRC cross-membrane transport experiment involved the following four steps. 

First, we removed the cell culture medium and washed cells once with 1 mL of PBS. Second, we 

added a 1.2 mL HBSS solution containing 1.5 µM fluorescein (Sigma-Aldrich St. Louis, MO, 

USA, Cat. No:518478), the substrate of cross-membrane transport, and 10 µM glibenclamide 

(Research Biochemicals International, Natick, MA, USA Cat. No: G106), a multidrug resistance 

transport inhibitor, to the cell culture plate and incubated cells for 30 minutes. Third, we removed 

the substrate and inhibitor containing HBSS solution from the cell culture plate, and washed cells 

three times with 1 mL of PBS. Fourth, we added 1.2 mL of pure HBSS to the cell culture plate and 

then started image acquisition with alternating fluorescence and BF modes every 1 minute for 1 

hour. 

2.4.4 Image acquisition 

  In previous CRRC studies, imaging was only performed with confocal laser-scanning 

fluorescence microscopy.65,81,90 Here, we used epifluorescence microscopy with a Leica DMi8 

high-throughput cell-imaging system. This imager is capable of fully automated time-lapse image 

acquisition with alternating imaging modes, such as fluorescence and transmitted-light 

microscopy. The “Relative Focus Correction” feature of the imager was used to set different Z-

positions between the alternating imaging modes. All images were acquired with a 10× objective 

lens and the fluorescence of intracellular fluorescein was excited with a blue light-emitting diode. 

A FITC filter cube was used for fluorescein, RHOD cube for nuclei stain PI, and a Cy5 cube was 
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used for cytoplasmic stain DRAQ9. For transmitted-light microscopy, BF and DIC images were 

acquired with the same 10× apochromatic objective lens as fluorescence (HC PL APO 10x/0.45). 

PC images were acquired with a N Plan 10×/0.25 PH1 objective lens. All images were captured 

with a deep-cooled high resolution sCMOS camera. To acquire images of multiple regions of the 

cell culture plate, the “Mark and Find” option of the microscope was enabled. 

2.4.5 Image settings 

The following are the image settings for each Figure. For Figure 8, BF: no binning, 7.81 

ms (milliseconds) exposure, high well capacity, intensity 48, aperture 7, transmitted light field 

diaphragm (Tl-Fld) 23, 196–191 intensity threshold. DIC: no binning, 7.81 ms exposure, high 

well capacity, intensity 128, aperture 15, Tl-Fld 46, bias 50, 192–192 intensity threshold. PC: no 

binning, 7.81 ms exposure, high well capacity, intensity 130, aperture 24, Tl-Fld 23, 129–128 

intensity threshold. Fluorescence: RHOD channel, no binning, 50 ms exposure, low noise, 

fluorescence intensity manager (FIM) 30%, incident light field diaphragm (Il-Fld) 6. For Figures 

9 and 13, BF: no binning, 7.81 ms exposure, high well capacity, intensity 48, aperture 7, Tl-Fld 

23, 196-191 intensity threshold. Fluorescence: Y5 channel, 2×2 binning, 50 ms exposure, low 

noise, FIM 30%, Il-Fld 6. For Figures 10, 15, and 16, BF: no binning, 7.81 ms exposure, high 

well capacity, intensity 38, aperture 12, Tl-Fld 46, 196–191 intensity threshold. Fluorescence: 

FITC channel, no binning, 7.81 ms exposure, low noise, FIM: 30%, Il-Fld 6. For Figure 11, BF: 

no binning, 8 ms exposure, high well capacity, intensity 48, aperture 11, Tl-Fld 46, 84–80 

intensity threshold. 

2.4.6 Image processing in Fiji 

We used Fiji, an open-source software often used by biologists, for image processing and 

image analysis.91 Once the stacks of fluorescence and brightfield images were acquired, they 
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were placed in Fiji and combined as one composite channel. Then, the composite channel was 

loaded onto a recent version of TrackMate,92 a plugin built for cell identification and tracking. In 

TrackMate, automated cell contour identification was performed for the brightfield images using 

the StarDist dectector.93 From the identified cell contours, cells were tracked with the Linear 

Assignment Problem (LAP) tracker. For tracking, the maximum distance allowed that cells could 

travel between frames was set to diameter of a large cell (~ 20 µm) to ensure the same cell is 

followed in the track. Moreover, cells that did not have full-length tracks were excluded from 

further analysis. Lastly, using the cell tracks generated from the brightfield images, intracellular 

fluorescence intensities were extracted from the fluorescence images. 

2.4.7 Formation and analysis of kinetic traces 

The intracellular intensities extracted from TrackMate were arranged on Microsoft Excel 

to form individual kinetic traces. The kinetic traces were inputted in OriginPro®, a data analysis 

and graphing software, and exponentially fitted with the “ExpDec1” for calculation of the rate 

constant, kefflux. The “ExpDec1” function is shown below: 

𝑦 = 𝑦0 + 𝐴𝑒−
𝑥

𝑇𝑎𝑢                                                             (2)                                                      

where 𝑦0 = offset, 𝐴 = amplitude, 𝑇𝑎𝑢 = time constant, and kefflux (decay rate) is a derived 

parameter = 1/𝑇𝑎𝑢. 

Note that in previous CRRC studies, we obtained a rate constant characterizing the activity 

of only ATP-binding cassette (ABC) transporters, kMDR. Now, we decided to obtain a rate constant 

for total substrate efflux, kefflux. The two reasons for this change were: i) total drug extrusion of 

cross-membrane transport may be a better descriptor of drug resistance than drug extrusion 

catalyzed by ABC transporters only and ii) it is simpler to perform CRRC for determination of 

kefflux instead of kMDR. Furthermore, the following kefllux values were removed from further analysis: 
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kefllux values obtained from unsuccessful fitting, negative kefllux values, and kefllux values with high 

uncertainty (relative standard error, RSE > 100%). 

2.4.8 Cell population analysis 

Cross-membrane transport of each cell population determined by the original and new 

workflows were characterized by frequency histograms of cellular kefflux values. In OriginPro, 

histograms were plotted using the “Custom Binning” mode, while the median (peak position) and 

skewness (peak asymmetry) values of the kefflux distributions were obtained using the “Descriptive 

Statistics” tool. The kefflux distributions were compared using the two-sample Kolmogorov-

Smirnov test, considering α = 0.001 as the criterion of statistical significance. 

2.5 Results and discussion 

2.5.1 Deciding on which transmitted light microscopy technique to use  

The preference between the three transmitted-light modes was decided by their performance 

in correctly identifying cells. To determine the reference value for an accurate cell count, we 

manually counted PI-stained cells in a fluorescence image. We used this image for reference 

because PI-stained cells appear as well-distinguished bright spots, since neighbouring nuclei are 

spaced out by cytoplasm. Therefore, PI-stained fluorescence images are highly suited for both 

manual cell counting and cell counting software.94 An example of a raw fluorescence image of PI-

stained cells is shown in the leftmost panel of Figure 8A. After taking the fluorescence image, we 

took BF, DIC, and PC images of the exact, same region of the cell culture plate as the fluorescence 

image. Note that the transmitted-light images were taken 30 µm lower than their focal plane, so 

that cells appear brighter than the background, which aids in thresholding (see three rightmost 

panels in Figure 8A as an example).  

All four types of raw images (fluorescence, BF, DIC, and PC) were processed before 
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automated cell contour identification took place. The fluorescence images were converted from 

RGB to the 16-bit format and the background in these images were subtracted by 50 pixels using 

the “rolling ball radius” algorithm (see the leftmost panel in Figure 8B as an example). 

Transmitted-light images underwent live-mode thresholding to obtain high-contrast images (see 

three rightmost panels in Figure 8B as an examples). The cells were then counted in all four high-

contrast images for multiple regions of the cell culture plate using the cell contour determination 

software (StarDist). A radius range filter (3 to 12 µm) was applied to ensure that we only counted 

single cells and excluded cell debris and clustered cells which could not be distinguished. The 

obtained cell numbers were compared to the reference manual count. 

Figure 8. Comparing three modes of transmitted light-microscopy (BF, DIC, and PC) in their cell contour 

identification performance of TOV-112D cells on a plastic-bottom dish. The highest percentage of correctly 

identified cells was considered the winner for this competition. Panel A (red contours) shows raw, unmodified 

images.  Cells were manually counted in the fluorescence (fluo) image of PI-stained cells and this number was 

used as reference (583 in this example). The fluorescence image was in-focus, while the three transmitted-light 

images were out-of-focus to facilitate thresholding for enhanced contrast. Panel B (green contours) shows the 

resulting images from thresholding with the identified cell contours (magenta). The raw fluorescence image was 

converted from RGB to 16-bit format and the background of the image was subtracted using the “rolling ball 

radius” algorithm (50 pixels). The raw transmitted light images were subjected to thresholding and converted to 

the 16-bit format. In this example, the percentages of correctly identified cells were: 96% in the edited 

fluorescence image, 88% in the edited BF image, 79% in the edited DIC image and 43% in the edited PC image. 
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A consideration we took in the cell counting results is that DIC imaging of cells is usually 

done on a glass-bottom dish,95 due to plastic being a birefringent material that can cause optical 

disturbances with DIC. Thus, we conducted a comparative study of the transmitted-light modes in 

their ability of correctly identifying TOV-112D cells grown on both plastic (30-mm) and glass-

bottom (50-mm) dishes. For the plastic-bottom dish, we found that the mean percentage of cells 

(standard deviation [SD]) that the software could identify were 98% (1%), 83% (5%), 68% (8%), 

and 47% (4%) in fluorescence, BF, DIC, and PC images, respectively (mean and SD were 

calculated over three regions). For the glass-bottom dish, we found that the mean percentage of 

identified cells (SD) that the software could identify were 99% (1%), 75% (7%), and 70% (5%) in 

fluorescence, BF, and DIC images, respectively (mean and SD were calculated over five regions). 

Although the software identified 74% (7%) of cells in PC images on a glass-bottom dish, it was 

evident that almost all identified cells had incorrect contours due to a pronounced halo effect that 

occurs with PC microscopy.96 Thus, PC on glass-bottom dishes was removed from any further 

consideration. 

The highest percentage of correctly identified cells was expectedly obtained for the 

fluorescence mode. This result was unsurprising since cell recognition software is made for 

fluorescence images, since this type of image naturally provides excellent contrast for cells without 

any enhancement required, as mentioned before. For the transmitted-light modes, BF had the 

highest percentage of correctly identified cells both on a plastic-bottom (83%) and glass-bottom 

dish (75%), thus it was considered the winner in our competition and was used as the transmitted-

light mode for cell contour identification and cell tracking in our new workflow. 

2.5.2 Cell area determination 

Although BF was considered the winner from the transmitted-light modes for cell counting, 
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we also wanted to test its performance in cell area determination. To accomplish this, we took 

fluorescence images of TOV-112D cells stained with cytoplasmic dye DRAQ9 and then took BF 

images of the same field of views and compared the mean cell area in the BF images to the 

fluorescence images (Figure 9). Again, the radius range filter (3 to 12 µm) was applied to ensure 

that we only obtained the areas of single cells. We found that mean cell area (SD) in the cytoplasm-

stained images was 176.66 µm2 (3.31 µm2), while the mean cell area was 94.31 µm2 (2.68 µm2) 

for the BF images (mean and SD were calculated from three fields of view). These results 

correspond to a deviation of 46.62% between the determined mean areas from the fluorescence 

and BF images, with the BF images clearly underestimating the cell area. This result was 

unsurprising as thresholding in the BF images can cause parts of the peripheral cell area to be 

removed. However, there may be overestimation of cell area in the fluorescence image since a 

epifluorescence microscope was used, meaning the resolution of cell contours is not the highest.97 

Figure 9. Cell area determination of TOV-112D cells stained with 2 µM of cytoplasmic dye DRAQ9. Fluorescence 

(fluo) images (red frame) and high-contrast BF images (green frame) were taken of the same field views. The identified 

cell contours determined from StarDist are shown in magenta. In this example shown, the mean cell area obtained 

from the fluorescence image was 173.01 µm2, while the mean cell area obtained from the BF image was 91.12 µm2. 



 
 29 

Thus, the true cell area is somewhere in between the cell areas determined from the fluorescence 

and BF images. Nonetheless, it was important to quantify how well our high-contrast BF images 

determine cell areas and led us to question if this underestimation of cell area affects the results of 

CRRC. 

2.5.3 Robustness of CRRC to cell area 

We confirmed that our high-contrast BF images underestimate cell area, so we decided to 

investigate if this underestimation of cell area affects the results of CRRC. Hypothetically, since 

we are interested in kinetics of fluorescence intensities rather than the actual intensity values, the 

consistent loss of cell area should not significantly influence the results of CRRC. Nevertheless, 

we conducted a CRRC experiment of cross-membrane transport in TOV-112D cells and obtained 
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Figure 10. Illustration of CRRC’s insensitivity to cell diameters (areas). Kinetic histograms of kefflux rate 

constants found in TOV-112D cells using 10, 15, and 20 µm estimated cell diameters are displayed. The 

variation in sample sizes is attributed to differences in cell identification and filtering; however, each 

distribution comprised of over 100 cells. Median kefflux values are shown and their positions are designated 

by the arrows. The kefflux rate constant distributions were compared to each other using the two-sample 

Kolmogorov-Smirnov test and were found not to be significantly different at the 0.05 level. The p values 

were 0.66 (10 and 15 µm), 0.82 (10 and 20 µm), and 0.81 (15 and 20 µm). 
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kefflux rate constant distributions using different recognized cell diameters (areas) (Figure 10). The 

cells were analyzed using the Laplacian of Gaussian (LoG) detector in TrackMate. With this 

detector, cells are recognized based on an estimated diameter that can be varied. The estimated 

cell diameters were 10, 15, and 20 µm. It was found that the kefflux distributions had nearly identical 

median kefflux values and were found not to be significantly different, according to the Kolmogorov-

Smirnov test at the 0.05 level. Therefore, it is suitable to use our thresholding method for 

processing of BF images, as the results of CRRC are unaffected by the systematic underestimation 

of cell areas. 

2.5.4 Cell movement during acquisition of matching fluorescence and BF images 

  Now that we selected to use processed BF images in our new workflow, we were interested 

in cell motility between matching fluorescence and BF images. Specifically, we wanted to confirm 

that the cell contours determined in the BF images are applicable to the fluorescence images 

because of the brief time gap that exists between a fluorescence image and an accompanying BF 

image. Hence, we assessed the extent of cell motility within this brief time frame. For the purpose 

of recording cell tracks, we carried out high frequency (1 image per 10 s) time-lapse BF imaging 

of motile TOV-112D cells (Figure 11A). From the cell tracks, we discovered that speed of cell 

migration did not follow a normal distribution (Figure 11B). The median of the distribution was 

approximately 150 µm/h and the interquartile range was 40 µm/h. The fastest cell moved at speed 

of v ≈ 401 µm/h. In a similar study that measured the motility of single cells using an ImageJ 

plugin, the fastest determined cell speed of MDA-MB-231 (breast cancer) cells was around 70 

µm/h.98 The difference in speeds could be attributed to the time interval of image acquisition — 

we acquired images every 10 s, while images were taken every 5 min in the other study. With 

high-frequency image acquisition, we wanted to accurately quantify cell movement for the short 
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duration it takes for acquiring matching fluorescence and BF images, which was timed to be 

approximately t1 = 3.0 s. Hence, the shift of the quickest cell during this short time frame is 

x = vt1 = 0.33 µm. Further, the mean cell diameter (SD) was d = 13 µm (3 µm). The error that such 

a shift in cell position can cause in intracellular fluorescence intensity integration over the area 

within the cell contours is of the order of x/d ≈ 0.025 (Figure 12). Accordingly, the error in 

 

B 

A 

Figure 11. (A) Speed determination of motile TOV-112D cells found from high frequency time-lapse BF imaging 

(1 image per 10 s). The three panels show cells with varying levels of motility; red lines show representative cell 

tracks. Cell contours (green) show cell positions at the start of time-lapse imaging. Average speeds for each cell 

are shown in the panels. (B) Distribution of cell movement speeds (µm/h) shown as a histogram.  Shapiro-Wilks 

normality test at the 0.05 level revealed that the distribution was not normal (P = 2.2 × 1016). The interquartile 

range of the distribution was 40 µm/h, while the distribution's peak was roughly 150 µm/h. The quickest cell moved 

at a rate of about 401 µm/h. 
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intracellular fluorescence intensity caused by the short time gap between the fluorescence image 

and BF image is roughly 2.5%, which is negligible even for the fastest moving cell. Thus, cell 

positions in the matching fluorescence and BF images can be assumed to be identical.  

2.5.5 Consideration of focusing for fluorescence intensity integration 

We continued our investigation in fluorescence intensity integration, but this time 

considering the effects of focusing. Most modern advanced microscopes have the configuration 

option of setting distinct Z-positions for different imaging modes, but we wanted to see if our new 

workflow is applicable for microscopes without this option, so we performed the following 

Figure 12. Schematic depiction of the effect of cell movement on fluorescence intensity integration. Let us 

assume that x/r << 1, where x is the distance travelled by the cell and r is a cell radius. In this case, the cell 

area above x can be assumed to be a triangle: s = xl/2. The total area that is excluded from fluorescence 

intensity integration is S = 2s = 2xl/2 = xl = x(2r/4) = xr/2 and the area would be integrated is that of a 

circle: Scircle = r2. The area excluded for fluorescence intensity integration is smaller than the area of the 

circle. Hence, the relative error of cell area determination for integrating fluorescence is 

∆S = S/Scircle = xr/(2r2) = x/(2r) = x/d. 
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experiment. We stained TOV-112D cells with the cytoplasmic probe DRAQ9. DRAQ9 was 

chosen as the probe because it did not a require an inhibitor like the cross-membrane transport 

substrate, fluorescein, and since we used an apochromatic lens (HC PL APO 10×/0.45), DRAQ9 

(far red) is roughly on the same focal plane as fluorescein (green). First, a high-contrast BF image 

was taken and used for cell contour determination. Then, we focused on the cells in the 

fluorescence mode and took an image for reference. From experience, it is more likely to be out 

of focus by 5 µm, hence we took out-of-focus fluorescence images 5 µm below and 5 µm above 

the reference. Intracellular fluorescence intensities were found in all fluorescence images using the 
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Figure 13. Mean relative deviations with 95% confidence intervals (CI) in fluorescence intensities at different 

Z positions. TOV-112D cells were stained with 2 μM of the cytoplasmic probe DRAQ9. Cell contours were 

found from taking a high-contrast BF image. An in-focus fluorescence image was taken for reference and 

fluorescence images 5 µm below and 5 µm above the reference were taken. Intracellular fluorescence 

intensities obtained from the in-focus image were used to find relative deviations in intensities for the out-of-

focus images. The mean relative deviations were -2.2% (95% CI, -1.46% – -2.94%) for the fluorescence image 

taken 5 µm below and 3.6% (95% CI, 2.4% – 4.8%) for the fluorescence image taken 5 µm above the 

reference. 
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cell contours determined from the high-contrast BF image. Fluorescence intensities for cells in the 

in-focus image were used as references to find the mean relative deviations in fluorescence 

intensities for the out-of-focus images, which were 2.2% (95% confidence interval [CI], -1.46% – 

-2.94%) for 5 µm below and 3.6% (95% CI, 2.4% – 4.8%) for 5 µm above (Figure 13). 

2.5.6 New CRRC workflow in practice 

A comparison of the new and original workflows is schematically depicted in Figure 14. To 

establish the effect of cell motility on the two workflows, we studied cross-membrane transport in 

motile TOV-112D cells using both workflows and compared their final histograms. For accurate 

cell tracking in the new workflow, we set the time interval between subsequent BF images (t2) to 

be shorter than the time required for the fastest cell (with speed v) to travel a distance equal to the 

mean cell diameter d: t2 << d/v. Consequently, we used the determined values of v = 401 µm/h and 

Acquisition of time-lapse fluorescence 
images of intracellular substrate 

(product)

Acquisition of time-lapse fluorescence 
images of intracellular substrate (product) 

accompanied  by brightfield images

Staining cells with propidium iodide and 
taking a single fluorescence image of 

intracellular PI

Original workflow New workflow

Automated determination of cell 
contours on the propidium iodide 
fluorescence image only using the 

Analyze Particles tool in Fiji

Determination of fluorescence 
intensities of the substrate (product) in 

the time stack of images using cell 
contours drawn in the propidium iodide 

image using Fiji

Construction of time dependencies of fluorescence intensities in Excel, exponential 
fitting of these dependencies to find rate constants in OriginPro, and plotting a kinetic 

histogram “number of cells vs rate constant” in OriginPro

Processing of fluorescence and brightfield 
images in Fiji

Merging pairs of the processed 
fluorescence and brightfield images into 

composite images in Fiji

Automated (i) determination of cell 
contours, (ii) cell tracking, and (iii) 

determination of intracellular 
fluorescence intensity of the substrate 

(product) in the time-stack of composite 
images using TrackMate + StarDist

Figure 14. Comparison of the original (left) and new (right) workflows. The last step of kinetic analysis 

remained the same for both workflows. 
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d = 13 µm from the “Cell movement during acquisition of matching fluorescence and brightfield 

images” section, to set t2 = 1 min. The two workflows were used to acquire their respective time-

lapse images and to construct time dependencies of intracellular fluorescence intensities (kinetic 

curves). The kinetic curves were fitted with a single exponential decay function to calculate the 

unimolecular rate constant of cross-membrane transport, kefflux.  

To examine the effect of cell motility on both workflows, we looked at kinetic curves for 

cells with low and high motility. For the high motility cell, we found that the two workflows 

produced noticeably different kinetic curves and kefflux values due to the absence of the cell tracking 

Figure 15. Examples of kinetic curves produced by the original and new workflows. All four kinetic curves 

were fitted to the single exponential decay function, ExpDec1, available in OriginPro. The black squares 

represent intracellular fluorescence intensities at specific time points and the exponentially fitted curves are 

shown in red. (A) High-motility cell. The original workflow produced an unusual kinetic curve. OriginPro 

accepted this curve and generated a kefflux value that is 9-fold greater than the rate constant obtained from the 

new workflow. (B) Low-motility cell. The two workflows recorded similar kinetic curves and kefflux values. 
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in the original workflow leading to abnormal kinetic behaviour (see example in Figure 15A).  

Contrary, the two workflows recorded similar kinetic curves and kefflux values for the low motility 

cell, as cell tracking was not required to acquire the correct kinetic curve for this particular cell 

(see example in Figure 15B). Hence, the two workflows produced different kefflux values for cells 

with high motility, as cell tracking is absent in the original workflow.  

An in-depth explanation of the abnormal kinetic curve behaviour seen with the original 

workflow starts with the single cell contour mask used for fluorescence integration. In the original 

workflow, the contour mask is acquired at the end of the time-lapse experiment., which is likely 

to differ for highly motile cells whose positions change gradually during the experiment. 

Additionally, the manual addition of PI used to obtain the cell contour masks, may cause an 

unintentional, last shift in the cell’s position. Accordingly, for a highly motile cell, little to no 

fluorescence will be integrated in the initial stages of the experiment because the true cell position 

will be mostly outside of the cell contour mask. However, the location of the cell will gradually 

overlap with the identified cell contour mask as it moves closer to its final destination leading to 

an increase in fluorescence over time. This can be seen in Figure 15A, as the increase in 

fluorescence occurs until around 40 minutes. At around 40 minutes is when the cell stops moving, 

which ended the overlapping process between the true cell position and the cell mask as well as 

the increase in fluorescence intensity. Then, a sharp decline in fluorescence can be seen after 40 

minutes, which appears to be the part of the kinetic curve where OriginPro calculated the relatively 

high kefflux value from. Hence, the inconsistency between the true cell position and determined cell 

contour mask is what causes relatively higher kefflux values in the original workflow.  

A significant finding from the in-depth comparison of the fluorescence-decay kinetics of 

cells with varying motility is that the rate constant of highly motile cells was likely overestimated 
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using the original workflow. When comparing the CRRC histograms produced by the two 

workflows, a distinguishable shift to the right is seen for the histogram of the original workflow 

(Figure 16). The original workflow produced a median kefflux that was 1.4-fold greater than the 

median kefflux value of the new workflow. Further, the distribution of original workflow had a 12-

fold greater skewness value than the new workflow’s distribution, indicating there were more 

positive kefflux values in the original workflow’s distribution. We then investigated if there was a 

statistically significant difference between the rate constant distributions using the two-sample 

Kolmogorov-Smirnov test. The distributions in Figure 16 were shown to differ significantly the 

0.001 level (D = 0.376, Dα = 0.209, p = 2.82 × 10–11). It is noteworthy to mention that the two 

distributions in Figure 16 have different sample sizes. This occurs since the two workflows differ 
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Figure 16. CRRC histograms of cross-membrane transport activity, represented by kefflux, in TOV-112D cells. The 

variation in sample size is caused by the different cell contour identification processes in the two workflows. Both 

sample sizes consisted of over 100 cells. Median and skewness values are displayed, with the positions of the 

median values indicated by the arrows. The histogram acquired from the original workflow is evidently skewed 

towards the right. The kefflux distributions of the two workflows were found to be statistically different by the two-

sample Kolmogorov-Smirnov test at the 0.001 significance level (p = 2.82 × 10–11). 
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in the cell contour identification step; nonetheless, both sample sizes were greater than a 100 cells 

(miniumium sample size for statistical signficance) and the Kolmogorov-Smirnov test is 

insensitive to the difference in sample sizes. Thus, based on these results we can conclude that the 

new workflow produces a CRRC histogram that is robust to cell motility, while the original 

workflow produces a positively skewed histogram caused by the absence of cell tracking. 

2.6 Conclusion 

The development of the new workflow is a significant move towards CRRC becoming a 

practical analytical tool. A wider range of cell types, which include motile cells, can now be 

reliably analyzed by CRRC. Consequently, this workflow will allow us to initiate CRRC studies 

of reactions other than cross-membrane transport. In recent years, significant advancement has 

been made in the design of high-quality fluorogenic substrates for intracellular enzymes. 

Specifically, such substrates have been made for a significant xenobiotic-metabolizing enzyme 

linked to chemoresistance: aldehyde dehydrogenase,99,100 and cytochrome P450.101 We predict that 

using the new CRRC workflow along with these substrates will facilitate the discovery of novel 

predictive biomarkers of chemoresistance.19 
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Chapter Three 

APPLYING NEW CYTOMETRY OF REACTION 

RATE CONSTANT (CRRC) WORKFLOW TO AN 

INTRACELLULAR ENZYME: CYTOCHROME 

P450  

 
3.1 Background 

With the development of the new workflow, our aim was to study chemoresistance 

mechanisms that have yet to be analyzed by CRRC: DNA damage repair and drug metabolism. 

For DNA damage repair, we are interested in analyzing the activity of enzyme by the name of 

ERRC1, since this enzyme has been heavily linked to chemoresistance.102 Unfortunately, a 

fluorogenic substrate has not yet been developed for ERCC1, so we chose to focus on drug 

metabolism instead. 

3.1.1 Introduction to cytochrome p450 

For drug metabolism, one of the major enzymes involved in this mechanism is cytochrome 

p450 (CYP) as this superfamily of enzymes are responsible for ~75% of total drug metabolism.103 

CYPs are located in the inner membrane of the mitochondria or the endoplasmic reticulum of cells 

in several tissues, for example, in the liver, kidney, lung, small intestine, brain, and heart.104 The 

human CYP superfamily is composed of approximately 60 genes and is divided into 18 families 

and 44 subfamilies. Members of the same family share at least 40% amino acid identity and 

members of the same subfamily share at least 55% amino acid identity.105 Their nomenclature is 

composed of the CYP root, indicating the cytochrome P450 superfamily; followed by a Arabic 

numeral, indicating the family (e.g., CYP1, CYP2, CYP3); then a capital letter, which indicates 

the subfamily (e.g., CYP1A, CYP2B, CYP3A); and another numeral for each member (e.g., 

CYP1A1, CYP2B6, CYP3A4) 106. Since CYPs are major players in drug metabolism, they are 
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linked to chemoresistance in many different types of cancer such as lung, prostate, breast, and 

ovarian cancer.107 

3.1.2 CYP’s involvement in chemoresistance 

  CYPs are hemoproteins — with a single iron protoporphyrin IX prosthetic heme group — 

that catalyze the hydroxylation of exogenous and endogenous compounds with multiple chemical 

structures. Furthermore, they are oxidoreductases, i.e., they activate molecular oxygen (O2) at the 

iron center and incorporate one of the oxygen atoms into an array of substrates.108 For their 

reactions, CYPs need the NADPH co-factor as the electron donor and the enzyme cytochrome 

P450 reductase as the electron transfer partner.109 A typical CYP-catalyzed hydroxylation is 

summarized below, with R–H representing a substrate:110  

 R–H + O2 + NADPH + H+ → R–OH + H2O + NADP+ (3) 

This reaction deactivates a substrate by converting it to a more polar product, R-OH, which 

leads to easier elimination of the substrate from the cell. If the substrate is, for example, a 

chemotherapeutic, the insertion of the hydroxyl group will make the drug lose its anticancer 

activity and promote its extrusion from the cell. This is how CYPs contribute to chemoresistance, 

as drug-resistant cells with elevated CYP activity, would have an insufficient chemotherapeutic 

concentration in their interior.111 

3.1.3 Analyzing CYP activity by CRRC 

  Evaluation of CYP activity by CRRC is conceptually more complex than CRRC analysis 

of cross-membrane transport because of two reasons: location of the catalyst and type of probe 

that is used in the analysis. While transporters are in the cell membrane, CYPs are intracellular 

enzymes, found in the inner membrane of the endoplasmic reticulum or the mitochondria. As for 

the probe, a fluorophore is used as the substrate for cross-membrane transport, because it is simply 
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extruded out from the interior of cells. Hence, no chemical transformation of the substrate is 

required. On the other hand, CYPs require a fluorogenic substrate; thus, a fluorescence increase is 

seen over time in the CYP CRRC assay. To help visualize CRRC analysis of an enzymatic reaction 

like CYP, an altered schematic representation of the CRRC steps is shown in Figure 17. There are 

a numerous fluorogenic substrates of CYP that could be used for CRRC such as O-alkyl derivatives 

of resorufin, fluorescein, and coumarin.112 For this study, we chose pentoxyresorufin, C17H17NO3, 

a probe that is selective for the CYP2B subfamily,113,114 because it was commercially available 

and used in previous CYP activity studies.115,116  

 

3.1.4 Enzyme kinetics relevant to CRRC of intracellular enzymatic reactions 

 It is important discuss the kinetics that underly CRRC analysis of enzymatic reaction. 

CRRC is best suited for cellular reactions that proceed through the formation of intermediate 

complex. Enzymatic reactions, such as CYP-mediated drug metabolism, meet this criterion as 

these reactions proceed through an intermediate enzyme-substrate complex. A typical enzymatic 

reaction is shown below:117 

 E + S ↔ ES → E + P (4) 

Figure 17. A schematic illustration of the steps involved in CRRC analysis of an enzymatic reaction. The two 

differences from CRRC analysis of cross-membrane transport are: 1) a fluorogenic substrate is used instead of a 

fluorescent one and 2) intracellular fluorescence increases are monitored instead of fluorescence decreases. 
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where E is an enzyme, S is a substrate, ES is the intermediate enzyme-substrate complex, 

and P is the product. 

Furthermore, the rate of product formation in this reaction is given by the Michaelis-

Mentens equation, as presented below:118 

𝑑[P]

𝑑𝑡
=

Vmax[S]

KM + [S]
 

where Vmax is the maximum reaction velocity and KM is the Michaelis constant.  

CRRC evaluates an enzymatic process by determining the ratio between Vmax/KM, which 

is equivalent to the pseudo-first order rate constant, k. Note that the rate constant is a robust 

parameter that is uninfluenced by changes in experimental settings. Here, we measured the pseudo-

first order rate constant, kCYP, which characterizes CYP activity in a single cell. Measuring the 

first-order rate constant requires that first-order conditions are satisfied, so the substrate 

concentration must be lower than KM. If substrate concentration is greater than KM, product 

concentration would depend linearly on time, so the kinetic trace would fail exponential fitting. If 

a cell produces a kinetic trace that fails exponential fitting, it would not be included in the 

histogram. Therefore, we take into consideration fundamental enzyme kinetics principles to ensure 

that we obtain reliable data.  

Moreover, it is worth mentioning that finding the ratio between Vmax/KM to calculate the 

rate constant does not rely on knowing the intracellular substrate concentration. The reason to 

avoid dependence on intracellular substrate concentration is due to impracticality. Intracellular 

substrate concentration cannot be controlled in the activity analysis of an intracellular enzyme like 

CYP. Furthermore, this type of analysis requires the use of a fluorogenic substrate that is initially 

nonfluorescent, so it would be difficult to determine its exact concentration in cells. Hence, 

(5) 
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measuring the first-order rate constant is the most pragmatic method for evaluating intracellular 

enzyme activity. 

3.2 Experimental layout 

The goal of this work was to assess the applicability of the new CRRC workflow for 

analyzing the activity of a drug-degradation pathway catalyzed by cytochrome P450 (CYP), a 

primary group of enzymes metabolizing chemotherapeutics. We tested a fluorogenic substrate 

suitable for interrogating intracellular activity of CYP and developed an experimental protocol that 

considers the interferences of other reactions. It was found that the substrate and experimental 

protocol is suitable to analyze CYP activity, as intracellular fluorescence increase was seen and 

maintained over time.  We then tested intraplate variability (repeatability) of CRRC analysis of 

CYP activity. Unexpectedly, we obtained statistically different kCYP distributions of the same cell 

line split into separate culture plates that were analyzed under the same conditions. This led us to 

test intraplate variability of CYP activity and we found that one region of the cell culture plate had 

cells with significantly different CYP activity than other regions.     

3.3 Materials and methods 

3.3.1 Cell culture 

HCT-116 colon cancer cells were purchased from ATCC and grown in McCoy’s 5A 

modified medium (Gibco, Grand Island, NY, USA, Cat. No: 16600082) supplemented with 10% 

fetal bovine serum (Gibco, Grand Island, NY, USA, Cat. No: 12483-020). Cells were cultured in 

60 mm plastic-bottom dishes (Sarstedt AG&Co, Numbrecht, Germany, Cat. No: 83.3901) and 35 

mm plastic-bottom dishes (Nest Biotechnology Co, Wuxi, Jiangsu, China, Cat. No: 706001) for 

imaging. Cells were cultured in an incubator at 37°C with a humidified 5% CO2 atmosphere until 

they reached 70% confluency. 
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3.3.2 CRRC experimental protocol for CYP activity analysis  

To assess CYP activity, we followed O-dealkylation of pentoxyresorufin (a fluorogenic 

CYP substrate) forming resorufin (a fluorescent product) over time. Pentoxyresorufin is a 

lipophilic substrate, thus it was diluted in DMSO. Probenecid (1 mM), an organic anion 

transporter inhibitor, was added to prevent extrusion of the product and dicoumarol (25 μM), an 

inhibitor of the enzyme NAD(P)H Quinone Dehydrogenase 1, was added to inhibit unwanted 

transformation of the product (resorufin) into non-fluorescent dihydroresorufin. The full CRRC 

CYP activity analysis protocol involved the following four steps. First, we removed the cell 

culture medium and washed cells once with 1 mL of PBS (Cytiva, Logan, Utah, USA, Cat. No: 

SH30256.01). Second, we added 1.2 mL of HBSS solution containing 1 mM probenecid and 

25 μM dicumarol to the cell culture plate. Third, we started started image acquisition with 

alternating fluorescence and BF modes every 30 seconds for 1 hour. Fourth, after 3 minutes, we 

removed 0.6 mL of the solution in the cell culture plate and replaced it with 0.6 ml of HBSS 

solution containing 15 μM pentoxyresorufin and let image acquisition continue until the end of 

the experiment.  

3.3.3 Image acquisition 

  The same microscope, objective lens, camera, and microscope capabilities were used as 

the previous chapter “Developing a New Workflow for Cytometry of Reaction Rate Constant 

that Addresses Cell Motility”.  Note that a RHOD cube was used to detect the fluorescence of 

resorufin.  

3.3.4 Image settings 

The following are the image settings for each Figure. For Figures 20, 21, and 22, BF: 

4×4 binning, 7.81 ms exposure, high well capacity, intensity 14, aperture 12, Tl-Fld 46, 229–234 
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intensity threshold. Fluorescence: RHOD channel, 4×4 binning, 200 ms exposure, low noise, 

FIM: 30%, Il-Fld 6.  

3.3.5 Image processing in Fiji 

We followed the same image processing procedure discussed in the previous chapter, 

“Developing a New Workflow for Cytometry of Reaction Rate Constant that Addresses Cell 

Motility” with no changes made. 

3.3.6 Formation and analysis of kinetic traces 

The kinetic analysis was the same as previous chapter, “Developing a New Workflow for 

Cytometry of Reaction Rate Constant that Addresses Cell Motility” except for one change. Here, 

the kinetic traces were exponentially fitted with the “ExpAssocDelay1” function in OriginPro for 

calculation of the rate constant, kCYP. The “ExpAssocDelay1” function is shown below: 

        𝑦 = 𝑌𝑏 + 𝐴(1 − 𝑒−
(𝑥−𝑇𝐷)

𝑇𝑎𝑢 )                                                (6)                                                      

where  𝑌𝑏 = baseline, 𝐴 = amplitude, 𝑇𝐷 = time offset, 𝑇𝑎𝑢 = time constant, and kCYP is a 

derived parameter = 1/𝑇𝑎𝑢 

3.3.7 Cell population analysis 

No changes were made from the preceding chapter, “Developing a New Workflow for 

Cytometry of Reaction Rate Constant that Addresses Cell Motility” except for the consideration 

of another descriptive statistic measure, interquartile range (peak width). 

3.4 Results and discussion 

3.4.1 Validation of CYP CRRC experimental protocol 

As a CRRC study of CYP activity was never done before, it was of primary focus to 

develop and validate a protocol for this purpose. As mentioned before, pentoxyresorufin was 
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selected as the fluorogenic substrate to interrogate CYP activity. CYP catalyzes the O-dealkylation 

of pentoxyresorufin to form the fluorescent product, resorufin. This reaction will cause 

intracellular fluorescence to increase over time. However, other side reactions could affect 

fluorescence accumulation over time. Resorufin could be extruded out of the cell or undergo 

conversion into a non-fluorescent product. Hence, we identified two inhibitors to prevent these 

unwanted processes from occurring: probenecid and dicumarol. Probenecid is an organic anion 

transporter inhibitor that prevents expulsion of resorufin and dicoumarol is an inhibitor that 

prevents the transformation of fluorescent resorufin into non-fluorescent dihydroresorufin. A 

schematic depiction of the CRRC CYP assay is shown in Figure 18.  

Now that an experimental protocol has been developed, we wanted to test the new CRRC 

workflow for CYP activity analysis. An example set of matching high-contrast BF and 

fluorescence images is shown in Figure 19.  To reiterate a point made in the preceding chapter 

Figure 18. Schematic illustration of CYP activity analysis by CRRC. The initially non-fluorescent CYP 

substrate pentoxyresorufin (grey) is converted into fluorescent product resorufin (yellow) by CYP enzymes. 

CYP enzymatic activity in single cells is quantified by the accumulation of resorufin fluorescence intensity. 

Dicumarol (red), an inhibitor of the enzyme NAD(P)H Quinone Dehydrogenase 1, is added to avoid further 

transformation of resorufin into dihydroresorufin (grey), which is non-fluorescent. Probenecid (red), an 

inhibitor of organic anion transport, is added to avoid leakage of resorufin out of the cell. 
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against the use of only fluorescence imaging of substrate conversion, note that no fluorescence 

is observed at the start of the experiment since no substrate is present. Thus, it would nearly be 

impossible to locate cells using fluorescence images before substrate addition; however, the  

matching high-contrast BF image allows for cell contours to be identified in the pre-substrate 

addition stage of the experiment. Once the substrate is added to the cell culture plate after the 3-

minute mark, an immediate increase in fluorescence can be seen. From these images, it appears 

that the CRRC experimental procedure for interrogating CYP activity with the new workflow is 

practical.  

To ensure that the CRRC protocol for CYP activity analysis is functional with the new 

workflow, we performed a trial run of the experiment in HCT-116 cells to analyze intracellular 

Figure 19. Example set of images obtained with the new CRRC workflow for CYP activity analysis. High-contrast 

BF images (top) are accompanied by fluorescence images (bottom) taken every 30 seconds for 1 hour. Images taken 

at 0, 4, 40 and 60 min are shown. Fluorogenic substrate, 15 μM pentoxyresorufin, was added after 3 minutes. 

Fluorescence images are displaying intracellular accumulation of the fluorescent product, resorufin. Resorufin 

fluorescence emission was detected by the RHOD cube. Additionally, 1 mM probenecid and 25 μM dicumarol are 

present in the cell culture plate. 
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fluorescence. After we obtained the intracellular fluorescence intensities, we averaged the 

intensities at each time point to generate a representative kinetic trace of CYP activity (Figure 

20). A drastic increase in intracellular fluorescence is observed after substrate addition at 3 

minutes. Further, it appears that intracellular fluorescence is sustained for the entirety of the 

experiment, indicating the two inhibitors, probenecid and dicumarol, are indeed promoting the 

accumulation of the fluorescent product. Hence, it appears that the CRRC protocol for 

interrogating CYP activity is successful with the new workflow and can be used for further 

experiments.  

3.4.2 Interplate variability of CYP CRRC assay 

After showing the apparent success of studying CYP activity using the new CRRC workflow, 

the next goal was to prove the repeatability of the assay. To prove repeatability, the CYP CRRC 
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Figure 20. Population kinetic trace of CYP activity in HCT-116 cells. A sharp increase in intracellular fluorescence 

can be seen after substrate addition at 3 minutes. Fluorescence is maintained for the duration of the experiment. 
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assay was performed with HCT-116 cells split into two cell culture plates analyzed under the same 

conditions. It was predicted that kCYP distributions originating from these two plates should 

produce similar histograms due to the fact that the same cells were analyzed under the same 

conditions. CRRC histograms of CYP activity for the two plates of HCT 116 cells are shown in 

Figure 21, with the first plate of cells representing “trial 1”, and the second plate of cells 

representing “trial 2”. From observing the histograms, they are clearly not superimposable as 

expected. To understand the difference in the appearance of the histograms, the descriptive 

statistics of the kCYP distributions from each trial were investigated. The descriptive statistics 

(median kCYP, interquartile range, and skewness) for each distribution are shown in Table 1. 

Despite the difference in appearance of the histograms, both trials had the exact same median kCYP 
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Figure 21. CRRC histograms for repeated trials of CYP CRRC activity analysis in HCT 116 cells. 

Approximately 800 cells were analyzed in each trial. The kCYP distributions of the two trials were found to 

be statistically different by the two-sample Kolmogorov-Smirnov test at the 0.05 significance level 

(p = 0.0034).   
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values. However, the difference in distributions could be attributed to the variation in interquartile 

range, as the variation in skewness was only 5.5%. The variation between interquartile range for 

the trial distributions was 31.6%, with trial 2 having a larger interquartile range (larger peak width), 

which can be seen in the histogram. For some reason, there was more spread of the data points in 

the middle portion of the trial 2’s distribution. Moreover, the two-sample Kolmogorov-Smirnov 

test confirmed that the distributions in Figure 21 were significantly differently at the 0.05 level 

(D = 0.088, Dα = 0.068, p = 0.0034). Hence, we unexpectedly found that kCYP distributions of 

repeat trials were significantly different, likely caused by their difference in interquartile range.  

Table 1. Descriptive statistics of kCYP distributions for repeated trials of CRRC CYP activity analysis in HCT-116 

cells. The median kCYP, skewness, and interquartile range are shown for each trial. The variation (%) of each parameter 

is shown between trials.  

Parameter Trial 1 Trial 2 Variation 

Median kCYP  0.33 min-1 0.33 min-1 0 

Interquartile Range 0.13 min-1 0.19 min-1 31.6% 

Skewness 11.27 10.65 5.5% 

 

3.4.3 Intraplate variability of CYP CRRC assay 

The difference in kCYP distributions of repeat trials led us to investigate the variability within 

the same cell culture plate. We performed the CYP CRRC assay for HCT-116 cells and then 

compared the kCYP distributions originating from adjacent regions (positions) of the cell culture 

plate. Again, we expected that the histograms from each position will appear similar, since the 

same cells from nearby regions of the cell culture plate were analyzed under the same conditions. 

CRRC histograms of CYP activity in HCT-116 cells from adjacent regions of the cell culture plate 

are displayed in Figure 22. The histograms for the different regions do not completely overlap, 

thus suggesting a difference in the distributions. For detailed analysis of the distributions, the 
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descriptive statistics (median kCYP, interquartile range, and skewness) are shown in Table 2. The 

parameter that varied the least across the regions was the median kCYP (8.8%), followed by the 

interquartile range (14.3%). However, the skewness had an extremely high variation of 93.8%, 

due to the fact that the distribution of position 2 was nowhere near as positively skewed as the 

other two positions. This is likely the reason for position 2’s distribution being significantly 

different from position 1 according to the Kolmogorov-Smirnov test at the 0.05 level (D = 0.17, 

Dα = 0.12, p = 9.25 × 10–4). The distributions of position 1 and 3 were not significantly different 

(D = 0.088, Dα = 0.11, p = 0.13), and distributions of position 2 and 3 were not significantly 

different (D = 0.11, Dα = 0.12, p = 0.064). Based on these unanticipated results, there was 

considerable intraplate variability found, likely caused by the distribution of one region of the cell 

Figure 22. CRRC histograms of CYP activity in HCT-116 cells from different regions within the same cell culture 

plate. Positions are regions of the cell culture plate that were imaged right next to each other.  Over 100 cells were 

analyzed in each position. Only the distributions of positions 1 and 2 were statistically different from each other 

determined by the two-sample Kolmogorov-Smirnov test at the 0.05 significance level (p = 9.25 × 10–4).   
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culture plate not being as positively skewed as the other regions.  

Table 2. Descriptive statistics of kCYP distributions originating from HCT-116 cells found in different regions 

(positions) of the same cell culture plate. The median kCYP, skewness, and interquartile range are shown for each 

position. The variation of each measure for all three positions is shown as percentages. 

 

 

3.5 Conclusion 

Here, we have shown preliminary progress on the investigation of the activity of an 

intracellular xenobiotic-metabolizing enzyme, CYP, that has yet to be studied by CRRC, using the 

newly developed workflow. We found the appropriate fluorogenic substrate and inhibitors to 

accomplish this assay, confirmed by the increase and maintenance of intracellular fluorescence 

over time. Then, we tested intraplate variability (repeatability) of CRRC analysis of CYP activity 

and we unexpectedly obtained statistically different kCYP distributions. This led us to test intraplate 

variability of CYP activity and we obtained another unanticipated result as the kCYP distribution of 

one region of the cell culture was significantly different from the rest.      

 

 

 

 

 

 

 

Parameter Position 1 Position 2 Position 3 Variation  

Median kCYP 0.31 min-1 0.34 min-1 0.33 min-1 8.8% 

Interquartile Range 0.14 min-1 0.12 min-1 0.12 min-1 14.3% 

Skewness 10.00 0.73 11.80 93.8% 
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LIMITATIONS 

 

Although the development of a new CRRC workflow that addresses cell motility was a 

positive step in the right direction, there are several improvements that could be made. First, the 

thresholding of brightfield images needs to be maintained over the course of the time-lapse 

experiment. Currently, any slight changes in the Z-position of cells could cause them to be lost 

from view due to the limited pixel intensity range that is set at the start of the experiment that 

cannot be adjusted. Fixed thresholding was sometimes responsible for less than desired sample 

sizes as cells could not be tracked until the end of the experiment, although all histograms shown 

in this work consisted of population sizes that are statistically significant (over 100 cells). 

Nonetheless, stronger conclusions can be made with more cells analyzed and included in the 

CRRC histogram. Increasing the sample size of CRRC will allow it to compete with flow 

cytometry, in terms of statistical power, as flow cytometry is capable of analyzing thousands of 

cells. Moreover, another limitation present in the new CRRC workflow is the lack of automation 

of mechanical operation.  Currently, medium exchange occurs through manual operation of a 

pipette. One problem that arises with manual medium exchange is that unintended disturbances 

of the cell culture plate may occur and that could cause drastic changes in cell positions leading 

to unsuccessful cell tracking. Another issue with manual medium exchange is that it takes critical 

time away that could be used to shorten the time interval to acquire intracellular fluorescence 

intensities at more time points or it can be used to acquire more imaging positions that will lead 

to increased sample size.  Therefore, addressing these limitations will further improve CRRC and 

push forward its development as an analytical method 

Furthermore, there were some limitations regarding the study of CYP activity using the 

new CRRC workflow.  Even though intracellular fluorescence increase was seen with the 
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substrate used, it still required a relatively high exposure time (200 ms) and 4×4 binning for its 

fluorescent product to be detected, which is unideal.   Having a shorter exposure time can reduce 

the time interval and acquiring images without binning will allow for more accurate identification 

of the cell contours since binning pixelates the cell contours. Additionally, the unanticipated 

intraplate and interplate variability results found with the CYP activity assay needs to be 

confirmed that they were uninfluenced by the new CRRC workflow and that cells truly displayed 

this activity.  Nonetheless, good preliminary progress was made with interrogating the activity 

of an intracellular enzyme never studied before by CRRC. 
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CONCLUSION AND FUTURE WORK  

 
In this work, we reported on the creation of a new CRRC workflow that represents a 

significant step forward in the development of CRRC as a practical analytical method. CRRC is 

now insensitive to cell motility and can now reliably study a wider range of cell types. Because of 

this new workflow, we began to investigate a critical chemoresistance mechanism that was never 

studied before by CRRC — xenobiotic metabolism catalyzed by CYP. Furthermore, we exhibited 

preliminary progress by validating the CRRC protocol for studying this enzyme’s activity. We 

found unexpected intraplate and interplate variability results when studying CYP activity, with 

more work needed be done to confirm these results. Altogether, CRRC is a cytometry technique 

that has great promise in the future to be a reliable analytical method used for validation of 

chemoresistance predictors. 

The first next step involves confirming the intraplate and interplate variability results by 

using the new CRRC workflow on photobleaching of fluorescent beads. Similar rate constant 

distributions should be obtained from the beads using the new workflow, thereby confirming 

previous results. After that, proving robustness (e.g., substrate concentration, duration of 

experiment) and accuracy (e.g., differentiating a high and low CYP activity cell lines) of the CYP 

CRRC assay will be accomplished. Moreover, there are plans to automate and streamline our 

kinetic analysis using Python as it is still a laborious process that involves two software: Excel and 

OriginPro.    
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