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Abstract

We introduce classes of Ramanujan-like series for 1
π , by devising methods for evaluating harmonic sums

involving squared central binomial coefficients, as in the family of Ramanujan-type series indicated below,

letting Hn = 1 + 1
2 + · · ·+ 1

n denote the nth harmonic number:
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· · ·

In this direction, our main technique is based on the evaluation of a parameter derivative of a beta-type

integral, but we also show how new integration results involving complete elliptic integrals may be used to

evaluate Ramanujan-like series for 1
π containing harmonic numbers.

We present a generalization of the recently discovered harmonic summation formula
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through creative applications of an integration method that we had previously introduced. We provide

explicit closed-form expressions for natural variants of the above series. At the time of our research being

conducted, up-to-date versions of Computer Algebra Systems such as Mathematica and Maple could not

evaluate our introduced series, such as
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We also introduce a class of harmonic summations for Catalan’s constant G and 1
π such as the series

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 1)2
= 16 +

32G− 64 ln(2)

π
− 16 ln(2),

which we prove through a variation of our previous integration method for constructing 1
π series.
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We also present a new integration method for evaluating infinite series involving alternating harmonic

numbers, and we apply a Fourier–Legendre-based technique recently introduced by Campbell et al., to prove

new rational double hypergeometric series formulas for expressions involving 1
π2 , especially the constant ζ(3)

π2 ,

which is of number-theoretic interest.
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Chapter 1

Introduction

This Thesis is primarily concerned with the study of closed-form expressions from a perspective grounded in

special functions theory, and with a particular emphasis being placed on hypergeometric functions and their

generalizations. The development of applications of identities involving special functions so as to obtain

simplified or explicit or more efficient ways of expressing such functions may be considered as a core part of

the study of special functions, and this Thesis is firmly rooted in this area.

Throughout the history of mathematical analysis, a natural problem has arisen continually and ubiqui-

tously: The problem of determining a meaningful evaluation for a given mathematical object or construction

that involves a limiting process or operation, as in with definite integrals, infinite series, infinite products,

continued fractions, applications of differential operators, etc. While there is some degree of subjectivity as

to what should be meant by the expression closed-form evaluation [14], this does not take away from how

important the aforementioned problem is within mathematical analysis and related areas.

As an example of an especially important problem in the history of mathematics given by finding a closed

form for an infinite series, we refer to the Basel problem. This refers to the problem of evaluating the infinite

series 1+ 1
22 +

1
32 + · · · . Leonhard Euler famously solved the Basel problem in 1734, providing the closed-form

evaluation π2

6 =
∑∞

n=1
1
n2 . The fact that to this day, in the year 2022, there is no known closed form for

the corresponding cubic sum 1 + 1
23 + 1

33 + · · · is representative of the extreme depth about the subject of

the evaluation of infinite series. In this Thesis, we mainly focus on introducing techniques for determining

closed forms for infinite series and definite integrals, based on our articles in [17, 18, 19, 20].

There are many sources of motivation concerning the study of closed forms for mathematical objects

such as infinite series and definite integrals [14]. In this direction, we refer the interested reader to Borwein

1



and Crandall’s text Closed forms: what they are and why we care [14], and, in this regard, we briefly review

some relevant points.

To begin with, given a series or integral that arises in some context or application, symbolically evaluating

such an expression in a simplified, meaningful way could give insight into further applications, or connections

to other areas in mathematics, and could be of benefit in terms of numerical computation:

“As mathematical discovery more and more involves extensive computation, the premium on

having a closed form increases. The insight provided by discovering a closed form ideally comes

at the top of the list, but efficiency of computation will run a good second.” [14, p. 55]

Much of the field of computer algebra is devoted to the development of algorithms for computing symbolic

forms for an inputted series, integral, etc., with many commercial and industrial applications:

“It is now the case that much mathematical computation is hybrid : mixing numeric and symbolic

computation. Indeed, which is which may not be clear to the user if, say, numeric techniques

have been used to return a symbolic answer or if a symbolic closed form has been used to make

possible a numerical integration. Moving from classical to modern physics, both understanding

and effectiveness frequently demand hybrid computation.” [14, p. 56]

Another source of motivation behind the study of the application of infinite sum/integral evaluations is in the

hope of determining number-theoretic properties about mathematical constants, as in with the irrationality

measure or the transcendence of a given constant defined by a series/integral [3, 26]. For example, the

problem of determining whether or not Catalan’s constant G = 1 − 1
32 + 1

52 − · · · is irrational is widely

considered to be a major unsolved problem in mathematics. The foregoing considerations provide much in

the way of inspiration behind the infinite series evaluations that we have introduced and that are given in

this Thesis.

As a representative example of a symbolic evaluation for an infinite series given in this Thesis, we highlight

the formula
∞∑

n=1

C̃2
nHn =

32G− 64 ln 2

π
− 16 ln 2 + 16 (1.1)

that we had proved in [18], letting
Ä
C̃n : n ∈ N

ä
denote the sequence of normalized Catalan numbers, and

writing Hn = 1 + 1
2 + · · · + 1

n to denote the nth harmonic number. The summands of the series examined

in this Thesis are given by naturally occurring sequences, as in (1.1). At the time of our research being

conducted, up-to-date versions of Computer Algebra Systems such as Mathematica and Maple could not

evaluate our introduced series/integrals.

2



This Thesis is mainly devoted to the development of techniques for evaluating series involving harmonic

or harmonic-type numbers that may be written as double hypergeometric series and as equivalent integral

expressions involving special functions such as the complete elliptic integrals. There is much motivation

regarding research based on harmonic sums. This topic dates back to Euler’s seminal work on sums of this

form. As stated in [73], Euler, after his renowned solution to the Basel problem, introduced closed forms for

harmonic sums as in
∑∞

n=1
H(m)

n

nq , which are referred to as Euler sums, writing H
(m)
n = 1+ 1

2m + · · ·+ 1
nm to

denote generalized harmonic numbers. The evaluation of Euler-type sums, as in with binomial generalizations

and the like of the classical Euler sums, is of importance in special functions theory, number theory, and

physics; see [73] and the references therein.

Originally, our methods relied on integration techniques based on variants and generalizations of the

special function known as the beta function [18, 19, 20], as we explore in Sections 2–4 below. However,

through our joint work with Jacopo D’Aurizio and Jonathan Sondow [30, 31], it was shown how the closed

forms put forth in [19, 20] are closely related to Fourier–Legendre (FL) theory, with the FL-based techniques

introduced in [31] having been employed in [31] (cf. [33]) in the evaluation of binomial-harmonic series

inspired by Ramanujan’s famous series for 1
π .

The Legendre polynomials, as introduced by Adrien-Marie Legendre in 1782, form one of the most im-

portant families of orthogonal polynomials, and arise very often in the fields of special functions, numerical

analysis, approximation theory, number theory, and Fourier analysis, and in many other areas within math-

ematics, not to mention the prominent role that Legendre polynomials play in physics. If a function f over

[−1, 1] may be written as

f(x) =

∞∑
n=0

anPn(x),

letting Pn(x) denote the nth Legendre polynomial, then the above expansion is referred to as a Fourier–

Legendre expansion or a Fourier–Legendre series, providing a standard generalization as to what is classically

meant by a Fourier series.

There are many basic properties of Legendre polynomials that naturally lend themselves to the study of

series involving Pochhammer symbols, binomial coefficients, etc., making note, in particular, of the identity

whereby P2n(0) =
(
− 1

4

)n (2n
n

)
for all natural numbers n, together with the generating function identity

1√
1− 2xz + z2

=

∞∑
n=0

Pn(x)z
n.
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Both of these identities were employed by Bauer in 1859 [6] to prove the formula

2

π
=

∞∑
n=0

Å
− 1

64

ãnÇ2n
n

å3

(4n+ 1) (1.2)

which was famously rediscovered by Ramanujan, as recorded in his second notebook [61].

In this Thesis, we provide techniques for determining evaluations in terms of 1
π for rational series that

involve powers of central binomial coefficients, as in the famous formulas due to Ramanujan that are shown

below and in (1.2) [70] (cf. [9, p. 352–364]):

4

π
=

∞∑
n=0

Å
1

2

ã8nÇ2n
n

å3

(6n+ 1),

16

π
=

∞∑
n=0

Å
1

2

ã12nÇ2n
n

å3

(42n+ 5). (1.3)

A central object of study in this Thesis is given by new infinite series that involve both squared central

binomial coefficients and finite sums as summand factors.

As in [88], we state that much of the interest in the study of series that contain harmonic-type numbers

and central binomial coefficients is due to the role that such series play in many different subjects, including

the “analysis of algorithms, combinatorics, number theory and elementary particle physics” [88, p. 1]. The

number-theoretic significance of terminating/non-terminating sums involving harmonic-type numbers and

binomial expressions, as in with the work of Roberto Tauraso et al. in this area [65, 79], motivates the pursuit

of the study of such sums in its own right; see also [64].

1.1 Organization of the Thesis

After reviewing background/preliminary material in Sections 1.2–1.4, we proceed to reproduce our published

work on Ramanujan-like series for 1
π involving harmonic numbers [19] in Section 2, which largely concerns

the application of an evaluation method based on integral expressions of the form

∫ 1

0

( ∞∑
n=0

(−1)n
Ç

1
2

n

å
f(n)

x2n ln
(
1− x2

)
√
1− x2

)
dx
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so as to produce remarkable [87] and Ramanujan-like [19, 87] series for expressions involving 1
π , as in the

formula

8 ln(2)− 4

π
=

∞∑
n=1

Å
1

16

ãnÇ2n
n

å2
Hn

2n− 1

that we had introduced in [19] (see Remark 2.2.2 below), noting the resemblance to (1.2). Series evaluation

methods based on manipulations of integrals involving the complete elliptic integrals are also a subject of

focus in Section 2. Afterwards, in the following Section, we reproduce our article [18] on further applications

of the techniques from [19] for evaluating series involving products of the form
(
2n
n

)2
Hn. The concepts from

[19] are also generalized in Section 4, in which we reproduce our publication on Series containing squared

central binomial coefficients and alternating harmonic numbers [20], which introduces a variant of the beta

integration-based Lemma from [19] so as to evaluate binomial-harmonic series involving expressions of the

form H2n for n ∈ N, as in the following evaluation:

16G+ 24− 48 ln(2)

π
+ 4− 8 ln(2) =

∞∑
n=1

Å
1

16

ãnÇ2n
n

å2
H2n

(n+ 1)2
.

Then, in Section 5, we provide preliminary material on FL theory, reproducing introductory material from

our joint works in [30] and [31], and we briefly review the main results from [31]. We then, in Section

6, reproduce our publication [17] on the application of the methods from [31] in the evaluation of double

hypergeometric series for 1
π2 .

1.2 Pi and the AGM

This Thesis is focused on the problem of evaluating series involvingÇ
1

4n

Ç
2n

n

åå2

∆(n)

in terms of 1
π or 1

π2 or special values of the complete elliptic integrals, letting ∆(n) denote a harmonic-

type number or Ramanujan’s S-function or related series (see Section 6). Three standard references on

Ramanujan’s series for the reciprocal of π are given by: Berndt’s text [9], the survey paper [5] (cf. [11]),

and the classic text Pi and the AGM [10]; see [92], as well. In this section, we focus on background material

that is covered in Pi and the AGM [10] that directly pertains to the main results given in this dissertation.

It is not an exaggeration to state that the history of mathematics is permeated with applications con-

cerning identities and computations involving π. In this regard, naturally occurring phenomena involving

5



limiting operations often can be shown to result in expressions involving π. An especially historially signifi-

cant instance of this is given by the above referred solution due to Euler of the famous Basel problem. Quite

similarly, the rational series for 1
π introduced by Ramanujan are very significant in the history of research

on the closed-form evaluation of infinite series.

The complete elliptic integrals of the first and second kinds are to play an important role throughout

much of this Thesis, especially in Sections 2, 5, and 6 below. This leads us to review material from [10,

§1] that relates to our uses of the special functions K and E, as defined below, in the evaluation of infinite

series, and that provides a historical context pertaining to our applications of these special functions. We

adopt a standard definition of complete elliptic integrals, in accordance with the definitions provided in the

Digital Library of Mathematical Functions1:

K (k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

, (1.4)

E (k) :=

∫ π/2

0

√
1− k2 sin2 θ dθ. (1.5)

Gauss’ arithmetic-geometric mean (AGM) iteration is a real-valued function of two positive real variables,

defined as follows, and studied by Gauss toward the end of the eighteenth century. Following [10, §1.1], by

setting an+1 := an+bn
2 and bn+1 :=

√
anbn, from the famous arithmetic-geometric mean inequality, this gives

us that bn ≥ bn+1 ≥ an+1 ≥ an. We have that

an+1 − bn+1 =
an − 2

√
anbn + bn
2

.

This can be shown to give us that an+1 − bn+1 <
1
2 (an − bn) [89]. So, we may set M(a, b) := limn→∞ an =

limn→∞ bn, letting a0 := a and b0 := b [89]. This gives us a continuous function, since we have that

M(a, b) =
(a+ b)π

4K
Ä
a−b
a+b

ä ; (1.6)

see [89].

The AGM iteration is described in [10, p. 1] as ‘One of the jewels of classical analysis’, and since this

iterative procedure is intimately connected with so much about the history of the complete elliptic integral

functions and to basic properties about K and E that are of relevance to our dissertation, it is worthwhile

to briefly review the AGM iteration. One of the main reasons as to why this AGM procedure and this

1See https://dlmf.nist.gov/19.
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M -function are of such interest in the field of mathematical analysis comes from the functional equation

whereby

M(a, b) =M

Å
a+ b

2
,
√
ab

ã
. (1.7)

Again, following [10, §1.1], we have that

λM(a, b) =M(λa, λb). (1.8)

If we set a = 1 in (1.7), this gives us that

M(1, b) =M

Å
1 + b

2
,
√
b

ã
,

which is equivalent to

M (1, b) =
1 + b

2
M

Ç
1,

2
√
b

1 + b

å
.

So, again following [10, §1.1], the evaluation of M , in general, reduces to the evaluation of M(1, b), in view

of (1.8). From the functional equation whereby

f(x) =
1 + x

2
f

Å
2
√
x

1 + x

ã
, (1.9)

this can be used to prove the identity involving K in (1.6); one of the most basic functional relations involving

the complete elliptic integral K is as follows [34, 90]:

K(k) =
1

1 + k
K

Ç
2
√
k

1 + k

å
.

Gauss proved the following limiting formula for the AGM:

1

M(1, x)
=

2

π

∫ π/2

0

dθ»
1− (1− x2) sin2 θ

. (1.10)

We remark that the equality

1

M(1,
√
2)

=
2

π

∫ 1

0

dt√
1− t4

(1.11)

has motivated much of our recent research [29] based on the results introduced in Section 2. Gauss’ proof
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involves the series expansion

2

π

∫ π/2

0

dθ√
1− x2 sin2 θ

= 1 +

∞∑
i=1

Å
(2i− 1)!

i!(i− 1)!

ã2
x2i

42i−1
, (1.12)

as given by expanding the above integrand as a Maclaurin series and then reversing the order of integration

and infinite summation [10, §1.2]. Sections 2–4 and Section 6 below are mainly based on series involving

squared, normalized central binomial coefficients as summand factors, and reversing integration and infinite

summation also arises very frequently therein.

Elliptic function theory played an important role in nineteenth-century mathematics [10, p. 7] [60]. Some

of our main contributions in this Thesis concern developments in the study and application of complete

elliptic integrals. The study of elliptic integrals as hypergeometric functions actually forms a prominent

area in the study of hypergeometric functions in general, in large part because series expansions as in (1.14)

and (1.15) often have applications in physics and engineering, and often arise in many different areas in

mathematics.

Many of our results are based in the discipline within special functions theory given by elliptic-type

functions as hypergeometric functions. So, as in [10, §1.3], we express the functions in (1.4) and (1.5) with

the Maclaurin series for these functions, which form an important subclass of Gaussian hypergeometric series

that we use frequently.

We define and denote the Pochhammer symbol so that (x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1), for

n ∈ N. Generalized hypergeometric series are defined and denoted as below:

pFq

a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣∣ z
 =

∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
. (1.13)

The Maclaurin series expansions for the functions K and E defined by the integrals in (1.4) and (1.5) are as

below [10, pp. 8–10]:

K(k) =
π

2
· 2F1

 1
2 ,

1
2

1

∣∣∣∣∣ k2
 , (1.14)

E(k) =
π

2
· 2F1

 1
2 ,−

1
2

1

∣∣∣∣∣ k2
 . (1.15)
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These power series expansions are very important in this Thesis, for the reasons indicated below.

According to the definition of the Pochhammer symbol, we may rewrite the above Maclaurin series

expansions so that

K(k) =
π

2

∞∑
n=0

Å
1

16

ãnÇ2n
n

å2

k2n

and

E(k) = −π
2

∞∑
n=0

Å
1

16

ãnÇ2n
n

å2
k2n

2n− 1
. (1.16)

A main part of Sections 2–4 and Section 6 concerns the development of identities for series involvingÅ
1

16

ãnÇ2n
n

å2

as a summand factor for n ∈ N0, writing N0 in place of N ∪ {0}. As below, we review the evaluation of

K
Ä

1√
2

ä
and E

Ä
1√
2

ä
.

We are to frequently apply the special functions known as the gamma function and the beta function,

as defined below. This is mainly because: (1) Some of the our main integration methods rely on beta-type

integration identities, as in Lemmas 2.2.1 and 4.2.1; (2) We often rely on identities involving harmonic

numbers derived from the Γ-function; and (3) Many of the explicit series evaluations given in Section 3 are

given in terms of special values of the Γ-function.

We let ψ denote the special function known as the digamma function [69, §9]. This function is defined

as follows:

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
.

Let γ = limn→∞
(
Hn − lnn

)
denote the Euler-Mascheroni constant. The ψ-function admits the following

infinite series expansion:

ψ(z) = −γ +

∞∑
n=0

z − 1

(n+ 1)(n+ z)
.

Let ℜ(c) denote the real part of a complex number c. The Γ-function is defined by the Euler integral

Γ(x) :=

∫ ∞

0

e−ttx−1 dt

for ℜ(x) > 0, and generalizes the factorial function, with Γ(n + 1) = n! for n ∈ N0. The beta function is

defined so that

β(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt (1.17)
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Figure 1.1: A graph of K on the domain [0, 1) generated by Mathematica.

for ℜ(x),ℜ(y) > 0, and admits the following evaluation:

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

As indicated above, some of the main integration identities that we apply are based on generalizations and

variants of this special function.

We record the reflection formula

Γ(x)Γ(1− x) =
π

sin(πx)
. (1.18)

This also gives us the value Γ
(
1
2

)
=

√
π, which we often make use of, as in Section 2.5, for example. More

generally, we frequently make use of half-integer values of the Γ-function, since the Legendre duplication

formula [44]

Γ(z)Γ(z)

Γ(2z)
= 21−2z Γ

(
1
2

)
Γ(z)

Γ
(
z + 1

2

) (1.19)

allows us to express Γ
(
z + 1

2

)
in terms of central binomial coefficients.

We later apply the symbolic evaluations that are highlighted as Theorem 1.9 in Pi and the AGM [10].

Apart from the values forK
Ä

1√
2

ä
andE

Ä
1√
2

ä
highlighted below, arguments such thatK andE admit explicit

symbolic forms are given by the elliptic lambda function [10, §4]. If K(λ) admits an explicit evaluation, then

the same must hold for E(λ), and vice-versa; see [10, §5]. Graphs for K and E on the domain [0, 1) are given

in Figures 1.1 and 1.2.

We briefly review the proof that

K

Å
1√
2

ã
=

Γ2
(
1
4

)
4
√
π

(1.20)
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Figure 1.2: A graph of E on the domain [0, 1] generated by Mathematica.

and that

E

Å
1√
2

ã
=

4Γ2
(
3
4

)
+ Γ2

(
1
4

)
8
√
π

given as the proof of Theorem 1.7 in [10, p. 25]. By definition of K, we have that:

K

Å
1√
2

ã
=

∫ 1

0

dt√
(1− t2)

Ä
1− t2

2

ä
=

√
2

∫ 1

0

dt√
(1− t2)(2− t2)

.

Enforcing the substitution x2 := t2

2−t2 so that

K

Å
1√
2

ã
=

√
2

∫ 1

0

dx√
1− x4

,

we again encounter the integral shown in (1.11). Setting u := t4, we obtain that

K

Å
1√
2

ã
=

√
2

4
β

Å
1

4
,
1

2

ã
.

By the reflection formula in (1.18), we have that Γ
(
1
2

)
=

√
π and Γ

(
3
4

)
=

√
2π

Γ( 1
4 )
, giving us the desired result.

The proof for E
Ä

1√
2

ä
is similar, if we again use the substitution x2 := t2

2−t2 [10, p. 25].

The series highlighted in (1.2) above due to Ramanujan is proved in [10] as a special case of an identity

involving the elliptic alpha function [10, §5]. As we had previously indicated, the formula in (1.2) was proved

by Bauer in 1859 using a Fourier–Legendre expansion, and this classical proof is closely related to much of

the material in this Thesis on FL theory.

In Section 6, we extend the main techniques in [31] so as to be applicable to double series for constants

11



containing expressions as in 1
π or 1

π2 . The techniques in Sections 5 and 6 rely heavily on the use of integrals

involving K or E. A number of integrals of this form are involved in Pi and the AGM [10], as in the identity

[10, p. 188] ∫ 1

0

K(k)√
1− k2

dx = K2

Å
1√
2

ã
.

As stated above, the explicit evaluation in (1.20) is of interest in terms of the results introduced in Section

3; see (3.23) and (3.24) below, and the surrounding material.

Let the generalized complete elliptic integrals of the first kind be defined so that

Ks(k) =
π

2
2F1

 1
2 − s, 12 + s

1

∣∣∣∣∣ k2
 ,

and similarly for Es(k). Applications of generalizations and variants of K and E are central to our work.

As indicated in [10], the evaluation in (1.20) may also be proved using the identity

2

π
Ks(h) = 2F1

 1
4 − s

2 ,
1
4 + s

2

1

∣∣∣∣∣ (2hh′)
2


for 0 ≤ h ≤ 1√

2
, writing h′ =

√
1− h2.

The integer moments of K and E, as in the integrals

∫ 1

0

knK(k) dk (1.21)

and ∫ 1

0

knE(k) dk, (1.22)

along with similarly defined integrals, have played an important role in On the interplay among hyper-

geometric functions, complete elliptic integrals, and Fourier-Legendre expansions [31]. Two of the main

hypergeometric transforms from [31] were directly based on the Maclaurin and FL expansions of the latter

factors in (1.21) and (1.22). Also, the transformation methods in Section 6 are based on generalizations of

(1.21) and (1.22).

The integral evaluation ∫ 1

0

K(k)

1 + k
dk =

π2

8
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highlighted in [10, §5.6], along with a number of similar integral formulas given in [10, §5.6], are instances of

a class of mathematical objects that is central to our work: Informally, we are referring to integrals of the

form ∫ 1

0

K(x)g(x) dx

for certain elementary functions g; see Sections 2, 5, and 6 below.

1.3 Further preliminaries

The interchange of limiting operations is at the core of so much about the field of mathematical analysis. Since

we are to frequently make use of the interchange of the operations of infinite summation and integration, it is

appropriate to provide a preliminary framework so as to justify our later applying interchanges of this form.

However, in our publications [17, 18, 19, 20, 31], it was not deemed to be necessary to go into detail about

such interchanging operations to prove the identities we had introduced. This is because: For a reasonably

well-behaved sequence (an : n ∈ N0) such that
∑∞

n=0 anx
n or

∑∞
n=0 anPn(2x − 1) (see Section 5 below) is

expressible in terms of previously known elementary/special functions, verifying the interchangeability of

the operators
∫ 1

0
· dx and

∑∞
n=0 · is typically relatively straightforward, and the main focus of our work is in

special functions theory, as opposed to real analysis.

As described in [55, §1.2], the classical result known as Tonelli’s Theorem is often useful in the justification

of the interchange of the operations of definite integration and infinite summation. As in [55, §1.2], we refer

the interested reader to Theorem 6.10 in the classic text [91].

Tonelli’s Theorem: Suppose that f(x, y) ≥ 0 for ordered pairs in E×F = {(x, y) ∈ Rm+n : x ∈ E, y ∈ F}.

It then follows that the following interchange property holds [55, §1.2] (cf. [91]):

∫
E

∫
F

f(x, y) dy dx =

∫
F

∫
E

f(x, y) dx dy.

As stated in [55, §1.2],

“Absolutely convergent series can be considered to be special cases of Lebesgue integrals over the

measure space (0, 1, 2, . . .). Hence, the interchange of summation and integration can be applied

to functions which are Lebesgue integrable, including those not necessarily non-negative.” [55,

13



p. 14]

Again, following [55, §1.2], we obtain, as a Corollary, that: For a subset E of a Cartesian power of R, and

for functions fn : E → [0,∞) for natural numbers n, the following interchange property holds for absolutely

convergent integrals and series: ∫
E

∞∑
n=1

fn =

∞∑
n=1

∫
E

fn.

Similarly, again following [55, §1.2], if
∑∞

n=1A(k, n) and
∑∞

k=1A(k, n) are absolutely convergent for natural

numbers n and k, then
∞∑

n=1

∞∑
k=1

A(k, n) =

∞∑
k=1

∞∑
n=1

A(k, n)

and these series are absolutely convergent.

The famous Monotone Convergence Theorem is also useful, for our purposes, in order to justify the

exchange of integration and infinite summation.

Monotone Convergence Theorem: Assume that fn : X → [0,∞) is a measurable function for each

natural number n, writing X to denote a measurable set. Also, suppose that fn → f almost everywhere,

and that f1 ≤ f2 ≤ · · · . It then follows that

lim
n→∞

∫
X

fn =

∫
X

f.

With regard to the interchange of limiting operations results considered above, we encountered a problem:

The situation is somewhat more complicated when dealing with shifted FL expansions, since the sequence

of shifted Legendre polynomials is not increasing, and since shifted Legendre polynomials are typically not

nonnegative over [0, 1].

Let us illustrate this matter in a concrete way, using one of the main transforms from Section 6, as

given in Theorem 6.2.1. In order to prove the motivating example highlighted in Section 6.1.1, we set

fn =
(

1
16

)n (2n
n

)2
in Theorem 6.2.1, and we would then have to justify moving the operator

∫ 1

0
· dx inside

both of the following infinite sums:

∫ 1

0

( ∞∑
n=0

∞∑
m=0

fn
2m+ 1

xnPm(2x− 1)

)
dx. (1.23)
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Figure 1.3: Graphs illustrating gn(x) for n = 1, . . . , 5.

So, we begin by setting

gn(x) := fnx
n

∞∑
m=0

1

2m+ 1
Pm(2x− 1)

and we want to show that ∫ 1

0

( ∞∑
n=0

gn(x)

)
dx =

∞∑
n=0

Ç∫ 1

0

gn(x) dx

å
.

The functions g1(x), g2(x), . . ., g5(x) are illustrated in Figure 1.3.

We have that gn(x) ≥ 0 for n ∈ N and for x ∈ [0, 1]. So, by Tonelli’s Theorem, we obtain that (1.23)

may be written as:
∞∑

n=0

(∫ 1

0

( ∞∑
m=0

fn
2m+ 1

xnPm(2x− 1)

)
dx

)
.

So, we restrict our attention to the outer summand:

∫ 1

0

( ∞∑
m=0

fn
2m+ 1

xnPm(2x− 1)

)
dx.

Write

hm,n(x) :=
fn

2m+ 1
xnPm(2x− 1).
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In this case, we cannot use Tonelli’s Theorem to show that

∀n ∈ N0

∫ 1

0

( ∞∑
m=0

hm,n(x)

)
dx =

∞∑
m=0

Ç∫ 1

0

hm,n(x) dx

å
.

Also, the Monotone Convergence Theorem cannot be used in this case: It is not the case that
∑0

m=0 hm,1(x) ≤∑1
m=0 hm,1(x), it is not the case that

∑1
m=0 hm,1(x) ≤

∑2
m=0 hm,1(x), etc.

We can show that we may apply the famous Dominated Convergence Theorem, as reproduced below.

Dominated Convergence Theorem: Suppose that fn : R → R is a measurable function for each natural

number n, and suppose that the sequence of such functions converges pointwise almost everywhere to f .

Also, assume that there exists an integrable function g such that |fn(x)| ≤ g(x) for each element n ∈ N and

for all x. It then follows that f is integrable and that

∫
R
f = lim

n→∞

∫
R
fn.

See also [75, 85] for some results on the uniform convergence of Fourier–Legendre expansions.

Apart from the concrete examples provided above for (1.23), we may apply the same approach more

generally, in this Thesis, to justify the interchange of the operations of integration and infinite summation

over expressions involving shifted Legendre polynomials. It was not necessary to justify the interchange of

integration and infinite summation in the published research articles [17, 18, 19, 20, 31], so it is reasonable

to leave it to the reader to fill in the details as to how we may, as described above, demonstrate how

the above results on the interchange of limiting operations may be applied to the results introduced in

[17, 18, 19, 20, 31].

1.4 A note on the use of Computer Algebra Systems

In this Thesis, as based on the articles [17], [18], [19], and [20], we may refer to series or integral evaluations

being new. In the course of our writing the the articles [17], [18], [19], and [20], at the time, up-to-date

versions of Mathematica and Maple, such as Mathematica 11, could not directly evaluate the series/integrals

for which our evaluations are described as new, i.e., using the usual commands for inputting series/integrals,

and without the use of separate or additional packages; wherever appropriate, we have specified, as below,
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our use of the 2022 version of Mathematica and Maple 2020. By inputting equivalent formulations of

such sums/integrals into Maple or Mathematica, and by using commands such as the Wolfram commands

FunctionExpand and/or FullSimplify, then no evaluation can be produced. For example, in view of

Remark 2.2.2 below, let us consider the third series highlighted in the above Abstract, namely:

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 5)
.

Inputting the following into Mathematica 2022, this CAS is not able to provide any evaluation.

Sum[Binomial[2 n, n]^2 HarmonicNumber[n]/16^n/(2 n - 5),

{n, 1, Infinity}]

By inputting equivalent versions of the input indicated above, Mathematica 2022 is still unable to provide

any evaluation. For example, by applying FunctionExpand to the above summand, we obtain the equivalent

expression suggested by the following Mathematica input, but, again, Mathematica 2022 is not able to

provide any evaluation.

Sum[(Gamma[1/2 + n]^2*(EulerGamma + PolyGamma[0, 1 + n]))/

((-5 + 2*n)*Pi*Gamma[1 + n]^2), {n, 1, Infinity}]

Similarly, by applying an index shift or by altering the lower parameter for the sum under consideration, we

still are not able to obtain any evaluation via Mathematica, as in with the following input.

Sum[Binomial[2 n, n]^2 HarmonicNumber[n]/16^n/(2 n - 5),

{n, 0, Infinity}]
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Chapter 2

Ramanujan-like series for 1
π involving

harmonic numbers

2.1 Introduction

The evaluation of summations containing binomial coefficients and harmonic numbers is an interesting topic,

and a large amount of mathematical literature is devoted to this area. We consider, in this Section, the general

problem of evaluating infinite series involving harmonic numbers and squared central binomial coefficients.

Many harmonic sums involving binomial coefficients may be evaluated by applying differential operators

to known hypergeometric identities. In particular, the Ramanujan-like formula

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)2
=

12− 16 ln(2)

π

which was noted in 2014 by Junesang Choi [38] and in 2016 by Hongwei Chen [37] may be proven using this

method. The author of [37] strongly encourages further exploration of properties of series involving powers

of binomial coefficients and harmonic numbers.

Although certain types harmonic summations may be evaluated by applying differential operators to

specific hypergeometric identities, it is not, in general, obvious as to how to evaluate a given a harmonic

sum involving powers of binomial coefficients. Inspired in part by [37], we introduce, in this Section, a very

general method for evaluating series with a summand involving a factor of the form
(
2n
n

)2
Hn. Using this

method, we prove a variety of new Ramanujan-like formulas for 1
π .
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The main method introduced in this Section for evaluating harmonic sums containing expressions of the

form
(
2n
n

)2
is based on a parameter derivative of a beta-type integral. This technique is very useful and

general, because this method may be used to evaluate series of the form

∞∑
n=1

g(n)

Ç
2n

n

å2

Hn

for a given function g on N, whereas techniques given by differentiating specific classes of hypergeometric

identities will only produce specific results. We also show how a generating function recently considered by

Boyadzhiev in [15] may be used to evaluate certain harmonic sums with squared central binomial coefficients,

and we also describe a general method for evaluating harmonic sums of the form

∞∑
n=1

g(n)

Ç
2n

n

å2

(H2
n +H(2)

n ).

The Ramanujan-type formula

∞∑
n=0

Å
− 1

64

ãnÇ2n
n

å3

(3(4n+ 1)Hn − 2) = −12 ln(2)

π

is proven in [51], and several other Ramanujan-like formulas related to harmonic numbers are proven in [51].

Apart from [37] and [51], it seems that there had not, prior to our work, been very much mathematical

literature concerning harmonic sums for 1
π . It is thus natural to use a systematic approach towards the

construction of new series of this form.

The formulas for 1
π introduced in this Section can also be proven using some new formulas for definite

integrals involving complete elliptic integrals, as we discuss in Section 2.4. We are interested in the general

problem of evaluating integrals involving complete elliptic integrals in part because there are many applica-

tions related to elliptic functions and elliptic integrals in various fields connected to physics and engineering.

As discussed in [58], many physical problems involve multiple integrals involving elliptic integrals such that

once one of the integrations is completed, the resultant integrand contains an elliptic integral.

2.2 Harmonic sums involving squared central binomial coefficients

In this Section, we describe some different techniques for evaluating Ramanujan-like series involving harmonic

numbers and expressions of the form
(
2n
n

)2
, and in Section 2.3 we apply our main technique, which is described
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in Section 2.2.1, by introducing new harmonic series for 1
π .

2.2.1 First strategy

Our first strategy for constructing new Ramanujan-type series for 1
π is based on the evaluation of integrals

of the form
∫ 1

0
xn ln(1−x2)√

1−x2
dx. Integrals of this form may be evaluated in a natural way in terms of harmonic

numbers, as indicated in Lemma 2.2.1 below. We remark that a somewhat similar strategy based on the

evaluation of integrals involving an expression of the form x ln2m−1 x
1−x was recently used to evaluate certain

classes of series involving harmonic numbers in [74].

Lemma 2.2.1. Let f : N0 → C be such that the series

∞∑
n=0

(−1)n
Ç

1
2

n

å
f(n)

x2n ln
(
1− x2

)
√
1− x2

is integrable on [0, 1], and write g(n) = f(n)
16n(2n−1) . Then

∑∞
n=0 g(n)

(
2n
n

)2
Hn is equal to:

2

π

(∫ 1

0

( ∞∑
n=0

(−1)n
Ç

1
2

n

å
f(n)

x2n ln
(
1− x2

)
√
1− x2

)
dx− (2.1)

π ln(2)

∞∑
n=0

g(n)

Ç
2n

n

å2
)
, (2.2)

under the assumption that it is possible to reverse the order of integration and infinite summation in (2.1).

Proof. This follows by applying the identity

∫ 1

0

x2n ln
(
1− x2

)
√
1− x2

dx = −π2
−2nnΓ(2n) (Hn + 2 ln(2))

Γ2 (n+ 1)
, (2.3)

by reversing the order of integration and summation in (2.1).

The above Lemma is especially useful because it is not, in general, otherwise obvious as to how to evaluate

a series of the form
∑∞

n=0 g(n)
(
2n
n

)2
Hn.

Since one of the key tools used in this Section is based on the evaluation of integrals of the form∫ 1

0
xn ln(1−x2)√

1−x2
dx, it is worthwhile to note that this integral is a derivative of the beta function with respect

to a parameter. In particular, recalling (1.17), we have that

1

2

∂

∂y
β

Å
n+ 1

2
, y + 1

ã
=

∫ 1

0

un
(
1− u2

)y
ln
(
1− u2

)
du,
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so that ∫ 1

0

un ln
(
1− u2

)
√
1− u2

du =

√
πΓ
(
n+1
2

) (
ψ
(
1
2

)
− ψ

(
n+2
2

))
2Γ
(
n+2
2

)
for n ∈ N0. So, the Legendre duplication formula, as in (1.19), allows us to express the above evaluation

with central binomial coefficients, depending on the parity of n.

2.2.2 Boyadzhiev’s generating function

Boyadzhiev recently evaluated the generating function for the sequenceÇÇ
2n

n

å
Hn : n ∈ N0

å
and similar sequences in [15], proving that

∞∑
n=0

Ç
2n

n

å
Hnx

n =
2√

1− 4x
ln

Ç
1 +

√
1− 4x

2
√
1− 4x

å
for |x| < 1

4 .

Boyadzhiev’s generating function may be used to construct certain types of Ramanujan-like series for 1
π

involving squared central binomial coefficients and harmonic numbers. However, in view of our considerations

concerning the expression in (2.6), it seems that it is not, in general, possible to use this kind of generating

function-based approach, compared to our integration method in Lemma 2.2.1.

To construct a Ramanujan-type series for 1
π using Boyadzhiev’s generating function one may use the

following integral identity: (
2n
n

)
4n

=
2

π

∫ ∞

0

dx

(x2 + 1)n+1
.

To illustrate this idea, as well as the technique described in Section 2.2.1, we offer two corresponding proofs

of the following Ramanujan-like formula.

Remark 2.2.2. As of the time the research article [19] was being written, up-to-date Computer Algebra

Systems such as Mathematica and Maple could not evaluate the series in Theorem 2.2.3 below. However,

the version of Mathematica in 2022 is able to evaluate this series, but not our generalizations of this series

such as
∞∑

n=1

(
2n
n

)2
Hn

16n(2n− 3)
, (2.4)

noting that our evaluation for (2.4) does not follow in a direct way from Theorem 2.2.3 via reindexing
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arguments, as we later explore in Section 3. Maple 2020 is also not able to evaluate (2.4).

Theorem 2.2.3.
∑∞

n=1
(2nn )

2
Hn

16n(2n−1) =
8 ln(2)−4

π .

Proof #1: In Lemma 2.2.1, we set f(n) = 1. In this case, the integrand in (2.1) reduces to ln
(
1− x2

)
.

By setting the argument of the Maclaurin series in (1.16) for E as 1, the elliptic singular value E(1) = 1

allows us to evaluate the series in (2.2), again with f(n) = 1. Since x ln
(
1− x2

)
− 2x + 2 tanh−1(x) is an

antiderivative of the integrand in (2.1) for f(n) = 1, we may evaluate the definite integral in (2.1).

Proof #2: By Boyadzhiev’s generating function, we have that

∞∑
n=0

(
2n
n

)
Hnx

2n−2

4n
=

2 ln
Ä√

1−x2+1
2
√
1−x2

ä
x2

√
1− x2

.

Integrating both sides of this equality, we have that
∑∞

n=0
(2nn )Hny

2n−1

4n(2n−1) is equal to:

2

Å
−
√
1− y2 −

√
1− y2 ln

Å
1√
1−y2

+ 1

ã
+
√
1− y2 ln(2) + 1

ã
y

.

Therefore,
∑∞

n=0

(2nn )Hn2
(

1
x2+1

)n+1

4nπ(2n−1) is equal to

4

Ç
√
x2 + 1−

√
x2 ln

Ç
1√
x2

x2+1

+ 1

å
+

√
x2(ln(2)− 1)

å
π (x2 + 1)

3/2
.

Mathematica is able to evaluate the integral

∫ ∞

0

4

Ç
√
x2 + 1−

√
x2 ln

Ç
1√
x2

x2+1

+ 1

å
+

√
x2(ln(2)− 1)

å
π (x2 + 1)

3/2
dx

as 8 ln(2)−4
π , and we can prove this by evaluating the corresponding indefinite integral. So, this gives us a

proof for the above evaluation of
∑∞

n=1
(2nn )

2
Hn

16n(2n−1) .

In Section 2.4, we offer another proof of Theorem 2.2.3, through the use of integrals involving complete

elliptic integrals.

Our main strategy introduced in Section 2.2.1 for evaluating Ramanujan-type series for 1
π involving

harmonic numbers is much more general and powerful compared to the alternative technique outlined in
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Section 2.2.2. For example, it seems that it would not be feasible to use Boyadzhiev’s generating function

to prove the following result due to Choi [38] and to Chen [37], although Lemma 2.2.1 may be used to prove

the following Theorem.

Theorem 2.2.4.
∑∞

n=1
(2nn )

2
Hn

16n(2n−1)2 = 12−16 ln(2)
π [37, 38].

Proof #1 : In Lemma 2.2.1, we set f(n) = 1
2n−1 . This yields the following integrand, again with reference

to Lemma 2.2.1:

−
ln
(
1− x2

) Ä√
1− x2 + x sin−1(x)

ä
√
1− x2

. (2.5)

According to the Maclaurin series identity

∞∑
n=0

(
2n
n

)2
xn

16n(2n− 1)2
=

4E (
√
x)

π
+

2(x− 1)K (
√
x)

π

following from (1.16), by taking the indefinite integral of (2.5), we may obtain the desired evaluation via

Lemma 2.2.1.

By Boyadzhiev’s generating function, we have that
∑∞

n=0
(2nn )Hny

2n−2

4n(2n−1) is equal to

2

Å
−
√

1− y2 −
√
1− y2 ln

Å
1√
1−y2

+ 1

ã
+
√
1− y2 ln(2) + 1

ã
y2

. (2.6)

Integrating the above expression yields an expression involving the polylogarithm function. It does not

seem to be possible, e.g., with current CAS software or with known symbolic computation algorithms for

indefinite integrals, to evaluate the corresponding integral needed to evaluate the series
∑∞

n=1
(2nn )

2
Hn

16n(2n−1)2

using the identity
(2nn )
4n = 2

π

∫∞
0

dx
(x2+1)n+1 . This illustrates how the strategy introduced in Section 2.2.1 may

be used to construct Ramanujan-like series for 1
π that cannot be evaluated directly following the technique

given in Section 2.2.2. We later offer an alternative proof of Theorem 2.2.4 using definite integrals involving

complete elliptic integrals. We also offer an alternative proof of the following Theorem using integrals

containing complete elliptic integrals.

Theorem 2.2.5.
∑∞

n=1
(2nn )

2
Hn

16n(2n−3) =
120 ln(2)−68

27π .

Proof #1: Setting f(n) to be equal to 2n−1
2n−3 in Lemma 2.2.1, this yields the integrand

1

3

(
2x2 + 1

)
ln
(
1− x2

)
. (2.7)
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The series in (2.2), again with f(n) = 2n−1
2n−3 , is as follows:

∞∑
n=0

(
2n
n

)2
16n(2n− 3)

.

So, the desried evaluation for the binomial-harmonic series under consideration follows by taking an an-

tiderivative of (2.7), and by evaluating the series in (2.2) according to the elliptic integral identity

∞∑
n=0

(
2n
n

)2
xn

16n(2n− 3)
= −2(4x+ 1)E (

√
x)

9π
− 4(1− x)K (

√
x)

9π
,

by taking x→ 1.

2.2.3 Series involving an expression of the form H2
n +H

(2)
n

In Section 2.5, we show how the evaluation of integrals of the form

∫ 1

0

xn ln2
(
1− x2

)
√
1− x2

dx

may be used to prove new formulas for Ramanujan-like series, such as the formula

∞∑
n=1

(
2n
n

)2 Ä
H2

n +H
(2)
n

ä
16n(2n− 1)

=
4π

3
+

16
(
2 ln(2)− 2 ln2(2)− 1

)
π

introduced in [19].

2.3 Ramanujan-type series for 1
π involving harmonic numbers

We begin by presenting new Ramaujan-like series for 1
π with a summand of the form

(2nn )
2
Hn

16npn
, letting pn

denote a polynomial with integer coefficients. Lemma 2.2.1 may be used to evaluate summations of this

form in the case whereby pn is a polynomial with two different factors, but this case can be reduced to

simpler cases by decomposing the appropriate fraction into simpler fractions. So, we omit consideration of

summands of the form
(2nn )

2
Hn

16npn
in the case whereby pn has two different factors.

The Ramanujan-like formulas given in [19], as reproduced in this Section, had apparently not appeared in

any mathematical literature prior to [19] concerning summations involving harmonic numbers and binomial

coefficients, with the exception of the formula which is given in Theorem 2.2.4. The Ramanujan-like formulas
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listed below, as in (2.8)–(2.16), may be verified using Lemma 2.2.1. For example, we provide a proof for the

equality in (2.8).

We set f(n) = 2n−1
n+2 in Lemma 2.2.1. In this case, the integrand in (2.1) is as below:

2
Ä√

1− x2x2 + 2
√
1− x2 − 2

ä
ln
(
1− x2

)
3x4

√
1− x2

.

A corresponding antiderivative is as below:

2

9

(
− 4

√
1− x2

x
+

ÄÄ
4
√
1− x2 − 3

ä
x2 + 2

Ä√
1− x2 − 1

ää
ln
(
1− x2

)
x3

+

4

x
+ 5 ln(1− x)− 5 ln(x+ 1) + 8 sin−1(x)

)
.

As for the required non-harmonic series in (2.2), Ramanujan’s series (cf. [1]) of the form

S(r) =

∞∑
k=0

Å
1

16

ãk (2k
k

)2
k + r

are considered in Section 6, in which the classical formula for such series for r ∈ N is reproduced. The

foregoing considerations nicely illustrate how series as in (2.8) are natural but nontrivial extensions of

Ramanujan’s S-series; this was recently explored, subsequent to the publications included in this Thesis, in

our recent coauthored publication [27].

For the sake of brevity, we leave it to the reader to verify the remaining equalities given below, apart

from our proof of (2.8):

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 2)
=

16

9
+

16− 80 ln(2)

9π
, (2.8)

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 3)
=

256

225
+

416− 1424 ln(2)

225π
, (2.9)

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 4)
=

1024

1225
+

6416− 18288 ln(2)

3675π
, (2.10)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)
=

8 ln(2)− 4

π
, (2.11)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 3)
=

120 ln(2)− 68

27π
, (2.12)
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∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 5)
=

−6508 + 10680 ln(2)

3375π
, (2.13)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)2
=

12− 16 ln(2)

π
, (2.14)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 3)2
=

164− 176 ln(2)

27π
, (2.15)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 5)2
=

70724− 67760 ln(2)

16875π
. (2.16)

We remark that analogues of Lemma 2.2.1 may be used to evaluate series involving expressions of the form

H2n. Explicitly, as an equivalent formulation of the moment formula in (2.3), we find that

∫ 1

0

x4n ln
(
1− x2

)
√
1− x2

dx = π
(
−2−4n−1

)Ç4n
2n

å
(H2n + 2 ln(2)) ,

leading us to formulate the following analogue of Lemma 2.2.1: For a sequence (fn : n ∈ N0) such that it is

possible to reverse the order of integration and infinite summation with respect to the expression

∫ 1

0

ln
(
1− x2

)∑∞
n=0

(
x4

4

)n
(2nn )f(n)

2n−1√
1− x2

dx,

the binomial-harmonic sum

π

2

∞∑
n=0

(
1
64

)n (2n
n

)(
4n
2n

)
f(n)H2n

2n− 1

is expressible as

−
∫ 1

0

ln
(
1− x2

)∑∞
n=0

(
x4

4

)n
(2nn )f(n)

2n−1√
1− x2

dx−

π ln(2)

∞∑
n=0

(
1
64

)n (2n
n

)(
4n
2n

)
f(n)

2n− 1
. (2.17)

Our study of summations as in (2.17) formed a basis, subsequent to [19], for our joint article on the hyper-

geometry of the parbelos [30].

Example 2.3.1. Setting f(n) = 1 in the above analogue of Lemma 2.2.1, we can show that

∞∑
n=1

2−6n
(
2n
n

)(
4n
2n

)
H2n

2n− 1
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is equal to the following expression involving the dilogarithm:

− π

12
+

Li2
Ä
17− 12

√
2
ä

2π
−

√
2

π
+

3 ln2
Ä
1 +

√
2
ä

π
+

5
√
2 ln(2)

π
+

3 ln
Ä√

2− 1
ä

π
+

ln
Ä√

2− 1
ä
ln
Ä
1 +

√
2
ä

π
.

We remark that the Ramanujan-like series introduced in this Section may be rewritten as double series

using identities such as the following series identity:

∞∑
n=1

1

n(m+ n)
=
ψ(0)(m+ 1) + γ

m
.

For example, the formula
∞∑

n=0

(
2n
n

)2
Hn

16n(2n− 3)
=

120 ln(2)− 68

27π

may be rewritten as the following double hypergeometric series formula:

96 ln(2)− 88

9π
=
∑

m,n≥0

(
2m
m

)2
16m(2m− 1)(n+ 1)(m+ n+ 2)

.

2.4 Definite integrals involving complete elliptic integrals

We recall the definitions of K and E given, respectively, in (1.14) and (1.15). The series for 1
π given in

Section 2.3 are closely related to properties concerning complete elliptic integrals. To illustrate this idea, we

begin by showing how the known integral formula

∫ 1

0

ln(1− x)K(
√
x) dx = 8 ln(2)− 8

may be used to construct yet another proof of Theorem 2.2.3.

Proof #3 of Theorem 2.2.3: Using integration by parts with respect to the integral

∫ 1

0

ln(1− x)K(
√
x) dx = 8 ln(2)− 8,
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by letting u = ln(1− x) and v′ = K(
√
x), with

v(x) = 2xK(
√
x)− 2K(

√
x) + 2E(

√
x)− 2,

we have that 8 ln(2)− 8 is equal to

∫ 1

0

−2 + 2E(
√
x)− 2K(

√
x) + 2xK(

√
x)

1− x
dx.

Therefore,

8 ln(2)− 8 = −2

∫ 1

0

1−E (
√
x)

1− x
dx− 2

∫ 1

0

K
(√
x
)
dx.

So, we have that

2− 4 ln(2) =

∫ 1

0

1−E(
√
x)

1− x
dx. (2.18)

So, since

1−E(
√
x) =

1

2
π

∞∑
n=0

(
1
2

)
n

(
− 1

2

)
n
(1− xn)

(1)nn!
,

we have that

1−E(
√
x)

1− x
=

1

2
π

∞∑
n=0

(
1
2

)
n

(
− 1

2

)
n

Ä
1−xn

1−x

ä
(1)nn!

.

By integrating both sides of this equality, we find that

2− 4 ln(2) =
1

2
π

∞∑
n=0

(
1
2

)
n

(
− 1

2

)
n
Hn

(1)nn!
,

as desired.

The equality given in (2.18) turns out to be unexpectedly useful, since (2.18) may be used to construct

an alternative proof of Theorem 2.2.4, as shown below. The formula in (2.18) can also be used to construct

another proof of Theorem 2.2.5.

Proof #2 of Theorem 2.2.4: Rewriting the equality
∫ 1

0
K(

√
x) dx = 2 as

∫ 1

0

Å
− K(

√
x)

2(−1 + x)
+

xK(
√
x)

2(−1 + x)

ã
dx = 1,
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from (2.18), we have that

∫ 1

0

Å−1 +E(
√
x)

−1 + x
− K(

√
x)

2(−1 + x)
+

xK(
√
x)

2(−1 + x)

ã
dx = 3− 4 ln(2).

Rewrite this equality as follows:

∫ 1

0

π
Ä
2(x−1)K(

√
x)

π + 4E(
√
x)

π

ä
− 4

π(x− 1)
dx =

12− 16 ln(2)

π
.

This equality may be rewritten as follows:

∫ 1

0

−4 + π 2F1

− 1
2 ,−

1
2

1

∣∣∣∣∣ x


π(−1 + x)
dx =

12− 16 ln(2)

π
.

But since

∞∑
n=0

16−n (1− xn)
(
2n
n

)2
(−1 + 2n)2(1− x)

=

π 2F1

− 1
2 ,−

1
2

1

∣∣∣∣∣ x
− 4

π(x− 1)
,

by integrating both sides of the above equality appropriately we thus have that

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)2
=

12− 16 ln(2)

π
,

as desired.

Proof #2 of Theorem 2.2.5: Begin by evaluating
∑∞

n=0
(2nn )

2
( 1−xn

1−x )
16n(2n−3) as

10− 3π 3F2

− 3
2 ,

1
2 ,

1
2

− 1
2 , 1

∣∣∣∣∣ x


9π(−1 + x)
,

which is equal to

10− 3π
Ä
4(1−x)K(

√
x)

3π + 2(4x+1)E(
√
x)

3π

ä
9π(x− 1)

.
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So, the infinite series given in Theorem 2.2.5 is equal to the following integral:

∫ 1

0

10− 3π
Ä
2(1+4x)E(

√
x)

3π + 4(1−x)K(
√
x)

3π

ä
9π(−1 + x)

dx.

Therefore, the series given in Theorem 2.2.5 is equal to:

8

9π
+

∫ 1

0

Å
10

9π(−1 + x)
− 2E(

√
x)

9π(−1 + x)
− 8xE(

√
x)

9π(−1 + x)

ã
dx,

which is equal to:

8

9π
− 2

9π

∫ 1

0

1−E(
√
x)

1− x
dx− 8

9π

∫ 1

0

1− xE(
√
x)

1− x
dx.

We can find a closed-form evaluation of the above expression using (2.18), since 1−xE(
√
x)

1−x = E(
√
x) +

1−E(
√
x)

1−x .

Similar approaches may be used to construct alternative proofs for the other formulas for 1
π given in

Section 2.3. We remark that new formulas for integrals containing complete elliptic integrals, such as the

formula ∫ 1

0

ln2(1− x)dE(
√
x) = 8− 2π2

3
+ 16(ln(2)− 1) ln(2),

may be proven by rewriting the harmonic numbers in the series given in Section 2.3 and Section 2.5 using

integrals such as
∫ 1

0
xm ln(1 − x) dx. Many integrals of this form can also be proven using integration by

parts and by applying known results concerning complete elliptic integrals, so we omit a full investigation of

these integrals.

2.5 Summations with squared harmonic numbers

Given the variety of integration results and Ramanujan-type series related to Lemma 2.2.1, it is natural to

consider generalizations of the strategy introduced in Section 2.2.1. We begin by considering the integral

∫ 1

0

xn ln2
(
1− x2

)
√
1− x2

dx,

which is equal to the following expression for n > −5.

1

4nΓ
(

n
2 +1
)
Γ
(

n
2

)(√πΓ(n+1
2

)(
4Γ
(
n
2 + 1

)(
ψ(0)

(
n
2 + 1

)2 − ψ(1)
(
n
2 + 1

))
+ nΓ

(
n
2

)(
4(γ+

2 ln(2))ψ(0)
(
n
2 + 1

)
+ π2 + 2γ2 + 8 ln2(2) + 8γ ln(2)

)))
.
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Theorem 2.5.1.
∑∞

n=1
(2nn )

2
(H2

n+H(2)
n )

16n(2n−1) = 4π
3 +

16(2 ln(2)−2 ln2(2)−1)
π .

Proof. Since
∞∑

n=0

(−1)nx2n
( 1

2
n

)
ln2
(
1− x2

)
√
1− x2

= ln2
(
1− x2

)
,

we have that
∞∑

n=0

(−1)n
Ç

1
2

n

åÇ∫ 1

0

x2n ln2
(
1− x2

)
√
1− x2

dx

å
= 8− π2

3
+ 4 ln2(2)− 8 ln(2).

Expanding the above summand using the above evaluation of the expression
∫ 1

0

xn ln2(1−x2)√
1−x2

dx together with

Theorem 2.2.3 may be used to evaluate
∑∞

n=1
(2nn )

2
(H2

n+H(2)
n )

16n(2n−1) .

The following Propositions may be proven by analogy with our proof of Theorem 2.5.1. Choi [38] had

proved an equivalent form of Proposition 2.5.2 in 2014 by differentiating Gauss’ 2F1(1)-identity.

Proposition 2.5.2.
∑∞

n=1
(2nn )

2
(H2

n+H(2)
n )

16n(2n−1)2 = 64+64 ln2(2)−96 ln(2)
π − 8π

3 [38].

Proposition 2.5.3.
∑∞

n=1
(2nn )

2
(H2

n+H(2)
n )

16n(2n−3) = 20π
27 +

16(−53−90 ln2(2)+102 ln(2))
81π .

Proposition 2.5.4.
∑∞

n=1
(2nn )

2
(H2

n+H(2)
n )

16n(2n−3)2 = 32(268+9 ln(2)(22 ln(2)−41))
243π − 88π

81 .

It is often useful to translate summations such as the series given in the above Propositions using integral

identities such as
∫ 1

0
nxn−1 ln2(1− x) dx = (Hn)

2 +H
(2)
n . For example, we have that

∫ 1

0

K(
√
x) ln2(1− x) dx = 48− 4π2

3
+ 32(ln(2)− 2) ln(2) (2.19)

from Proposition 2.5.2, together with the aforementioned integral identity. We remark that such integration

results often may be used to prove formulas for double series involving harmonic numbers. For example, we

can show that ∑
m,n≥0

(
2m
m

)2
Hn

16m(n+ 1)(m+ n+ 2)
=

48 + 32(ln(2)− 2) ln(2)

π
− 4π

3

using (2.19) together with the identity
∑∞

n=0
xn+1Hn

n+1 = 1
2 ln

2(1− x).
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2.6 Variations

Recall that the main techniques introduced in this Section for constructing series for 1
π involving harmonic

numbers are based upon the evaluation of the following integrals:

∫ 1

0

xn ln(1− x2)√
1− x2

dx,∫ 1

0

xn ln2
(
1− x2

)
√
1− x2

dx.

Intuitively, our approach towards constructing new series for 1
π involved the integration of “variations” of

the binomial expansion of
√
1− x2 using the above integrals (see Lemma 2.2.1 and Section 2.5), so that

the expression 1√
1−x2

would in some sense “cancel” with an expression similar to
√
1− x2, thus yielding

a relatively simple logarithmic integral being equal to π times a Ramanujan-like series involving harmonic

numbers. It is natural to consider simple variations of this strategy, based on the evaluation of definite

integrals of the form
∫ 1

0
xne(x)√
1−x2

dx and similar integrals, letting e(x) denote an elementary function.

Example 2.6.1. The interesting formula

π − tanh(π)√
π

=

∞∑
n=0

(
2n
n

) Ä
(−i− n)− 1

2
+ (i− n)− 1

2

ä
4n

can be shown to hold by evaluating

∞∑
n=0

(−1)nxn
(− 1

2
n

)
sin(ln(x))

√
1− x

= − sin(ln(x))

x− 1
,

and integrating both sides of this equation by evaluating
∫ 1

0
xn sin(ln(x))√

1−x
dx.

Example 2.6.2. We can show that

∞∑
n=0

(
2n
n

)
(H−1−i−n −H−1+i−n)

4n(2n− 1)

is equal to

4 cosh(π)
(
Γ(1 + i)Γ

(
3
2 − i

)
− Γ(1− i)Γ

(
3
2 + i

))
5
√
π
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by evaluating
∞∑

n=0

(−1)nxn
( 1

2
n

)
sin(ln(x))

−1 + x
= − sin(ln(x))√

1− x
,

and integrating both sides of this equality, by evaluating
∫ 1

0
xn sin(ln(x))

−1+x dx.

Example 2.6.3. The equality

−4i coth(π)

5
√
π

=

∞∑
n=0

(
2n
n

)
4n(2n− 1)

Ç
1

(−i− n) 1
2

− 1

(i− n) 1
2

å
can be shown to hold by evaluating

∞∑
n=0

(−1)nx2n
( 1

2
n

)
sin2(ln(x))

√
1− x2

= sin2(ln(x))

and integrating both sides of this equation.

We currently leave it as an open problem to further investigate variations of the techniques given in

Section 2.2.

2.7 Conclusion

The evaluation of integrals involving complete elliptic integrals based on the evaluation of harmonic sums

given by analogues of Lemma 2.2.1 may be an interesting area to explore. Also, we currently leave the

natural problem of evaluating Ramanujan-like series involving higher powers of central binomial coefficients

and harmonic numbers as an open problem.

Recall that one of the main tools used in this Section is based on the following parameter derivative for

a beta-type integral:

1

2

∂

∂y
β

Å
n+ 1

2
, y + 1

ã
=

∫ 1

0

un
(
1− u2

)y
ln
(
1− u2

)
du.

It would be interesting to further explore the use of other kinds of parameter derivatives of beta-type integrals

in the construction of Ramanujan-like series involving 1
π and definite integrals involving complete elliptic

integrals.

While there are many new formulas which can be obtained by applying parameter derivatives to hyper-

geometric identities, the main technique indicated in Section 2.2.1 can be applied in a very general way to

compute series involving products of the form
(
2n
n

)2
Hn, as discussed in Section 2.1. However, we encourage
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the exploration of new formulas for 1
π which can be obtained from parameter derivatives of hypergeometric

identities.
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Chapter 3

Further series involving harmonic

numbers and squared central binomial

coefficients

3.1 Introduction

In [37, 38], it was noted that the Ramanujan-like formula

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)2
=

12− 16 ln(2)

π
(3.1)

may be proved through an application of a differential operator to Gauss’ 2F1(1)-identity. A similar strategy

was also applied to prove an equivalent formulation of the equation

∞∑
n=1

(
2n
n

)2
Hn

(n+ 1)16n
= 4− 16 ln(2)

π
(3.2)

in 2017 in [62]. Both (3.1) and (3.2) are special cases of our very useful result highlighted as Lemma

2.2.1, as introduced in [19] and reproduced in Section 2. While applying parameter derivatives to classical

hypergeometric identities only produces specific results on harmonic summations containing squared central

binomial coefficients as a factor in the summand, Lemma 2.2.1 may be applied much more generally. The

power of Lemma 2.2.1 motivates the exploration of further applications of techniques from [19], as well as
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investigations on applications of analogues and variants of Lemma 2.2.1.

3.1.1 Background

The problem of determining explicit symbolic evaluations for summations containing entries of harmonic-

type sequences and central binomial coefficients is a deep and interesting subject that has been explored

through the use of many different kinds of classical analysis-based techniques. In [46], a variety of infinite

summations involving generalized harmonic numbers and central binomial coefficients are evaluated through

the use of beta-like integrals. In [39], a more abstract way of “depicting” harmonic-like numbers is used,

writing

Hn = σ1

Å
1,

1

2
,
1

3
, . . . ,

1

n

ã
and

H2
n −H

(2)
n

2
= σ2

Å
1,

1

2
,
1

3
, . . . ,

1

n

ã
,

letting

σm (x1, x2, . . . , xn) =
∑

1≤k1<k2<···<km≤n

xk1xk2 · · ·xkm

denote the elementary symmetric function of order m. The authors in [39] mainly explore the sym-

bolic evaluation of infinite series involving central binomial coefficients as well as expressions such as

σm

(
1, 1

32 , . . . ,
1

(2n−1)2

)
and σm

(
1, 1

22 , . . . ,
1

(n−1)2

)
. The results put forth in [39] are nicely representative

of how mathematical problems concerning the symbolic computation of series involving harmonic-like num-

bers can be closely connected with seemingly unrelated subjects in the theory of symmetric functions and

in number theory.

The series expansions for powers of the inverse sine mapping proved in [13] involve central binomial

coefficients and “nested” harmonic-type multisums, including

k−1∑
n1=1

1

(2n1)2

n1−1∑
n2=1

1

(2n2)2
· · ·

nN−1−1∑
nN=1

1

(2nN )2
.

Motivated in part by the main results from [13], and in particular the classical infinite series identity

2

3

(
arcsin

(z
2

))4
=

∞∑
n=1

H
(2)
n−1

n2
(
2n
n

)z2n
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known to Ramanujan [8], the authors in [65] determine congruences for

p

p−1∑
n=1

Hn−1(2)

nd
(
2n
n

) tn (mod p)

for prime numbers p and for special values of d, generalizing congruence results given by Zhi-Wei Sun in [77],

in which the formula

π3

48
=

∞∑
n=1

2nH
(2)
n−1

n
(
2n
n

)
is also introduced. This discussion further illustrates how researching new kinds of subjects concerning sum-

mations containing harmonic-like numbers together with central binomial coefficients can lead to unexpected

results in both applied analysis and number theory, and surprising connections between these disciplines.

In [51], new hypergeometric identities related to Ramanujan-like series for 1
π are proved using WZ-pairs,

and an equivalent formulation of the Ramanujan-type [79] formula

∞∑
n=1

Å
− 1

64

ãnÇ2n
n

å3

(4n+ 1)Hn =
32Γ2

(
1
8

)
3Γ2

(
− 1

8

)
Γ2
(
1
4

) − 4 ln(2)

π

is employed in the derivation of one of the main identities given in [51]. The related formula

∞∑
n=0

Å
− 1

1024

ãnÇ2n
n

å5

(2− 5(4n+ 1)Hn) =
1024(15 ln(2)− 2π)

3Γ4
(
− 1

4

)
was recently proved in [79] through the use of a parameter derivative applied to a classical 6F5(−1) series

identity. These results, along with Sun’s work on binomial-harmonic sums as in [76, 78], strongly inspire

us to explore new techniques for computing series with summands with a factor of the form Hn and fixed

powers of
(
2n
n

)
in the numerator.

The formula
∞∑

n=1

Ç
2n

n

å3
H ′

2n

28n
=

Γ6
(
1
3

)
(8
√
3 ln 2− 3π)

24 · 22/3π4
(3.3)

is proved in [82] through the use of special values of the multi-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑

k=1

e2πxki

∣∣∣∣∣
s

dx, (3.4)

which, as discussed in [82], is used in the analysis of uniform planar random walks in the case whereby every

step is a unit step, with the direction being random. In particular, the definite integral in (3.4) is equal to
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the sth moment of the distance in a given random walk, measured from the origin of the plane after a total of

n ∈ N steps are taken. The delightful binomial-harmonic series given in (3.3) is proved through an identity

for W3(s), which shows how series with binomial powers and entries in harmonic-like sequences can have

direct applications in the theory of random walks, further motivating the exploration of new applications of

the main techniques introduced in [19].

The application of parameter derivatives to hypergeometric identities to prove new results on binomial

series containing harmonic numbers was recently discussed in [66]. In [66], formulas for evaluating harmonic

summations of the following forms are proved using this method:

∞∑
n=1

(2a)n(1− 2a)n
(n!)2

Hn

2n
,

∞∑
n=1

(2a)n(2b)n

n!
(
a+ b+ 1

2

)
n

Hn

n+ 1
.

Letting the parameter a given in the former series be equal to 1
4 , we obtain the series

∞∑
n=1

Ç
2n

n

å2
Hn

32n
, (3.5)

which is evaluated in terms of the gamma function in [66]. Since Lemma 2.2.1 is very useful for evaluating

many different kinds of summations involving factors of the form
(
2n
n

)2
Hn, whereas the summation techniques

considered in [66] are given by differentiating specific hypergeometric identities, it is natural to consider the

problem of evaluating generalizations of the series in (3.5), through the use of the integration method given

in [19], which is described in Section 3.1.2. In particular, for a rational function r(n), it is not obvious as to

how to compute generalizations of (3.5) of the form

∞∑
n=1

Ç
2n

n

å2
Hn · r(n)

32n
(3.6)

following the strategies outlined in [66], or using the generating functions for sequences involving products

of harmonic numbers and central binomial coefficients given in [15].

The infinite series in (3.5) also recently appeared in [79]. In [79], it is noted that by Bailey’s theorem, we

have that

2F1

a, 1− a

c

∣∣∣∣∣ 12
 =

Γ
(
c
2

)
Γ
(
c+1
2

)
Γ
(
a+c
2

)
Γ
(
1−a+c

2

) , (3.7)
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and that (3.5) may be computed in terms of the gamma function by applying the operator ∂
∂c to both sides

of (3.7) in the case whereby a = 1
2 . A formula for a p-adic analogue of (3.5) is also proved in [79], and

many supercongruences for finite sums with central binomial coefficients and harmonic-type numbers are

established. The lovely formula

∞∑
n=1

Ç
2n

n

å3
Hn

64n
=

512π(π − 3 ln(2))

3Γ4
(
− 1

4

)
is also proved in [79] following the “usual” method of applying a parameter derivative to both sides of a

known hypergeometric identity; in this case, the classical result known as Dixon’s theorem is used. Instead

of applying partial derivative operators to classical hypergeometric series identities, we make use, in this

Section, of something of an inverse approach by showing how Lemma 2.2.1 may be used in a very general

way to evaluate series involving harmonic numbers and squared central binomial coefficients.

In this Section, we offer generalizations of the formula

∞∑
n=1

Ç
2n

n

å2
Hn

32n
=

8
√
π(π − 4 ln(2))

Γ2
(
− 1

4

) (3.8)

that had been noted by Tauraso in 2018 in [79] and by Nicholson in 2018 in [66] by showing how creative

applications of the integration strategy we had previously introduced in [19] can be used to evaluate series

of the following forms for z ∈ Z>0:

∑
n∈N

(
2n
n

)2
Hn

32n(n+ z)
,
∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)
,
∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)2
.

In Section 3.1.2, we briefly review some preliminary results. In Section 3.2, we offer a new proof of the

evaluation for (3.5) using the integral transform from [19], to illustrate the idea of applying this integration

technique with respect to summations of the form given in (3.6), and we prove the following new formulas:

∞∑
n=1

Å
1

32

ãn (2n
n

)2
Hn

n+ 1
= 8−

2Γ2
(
1
4

)
π3/2

− 4π3/2 + 16
√
π ln(2)

Γ2
(
1
4

) ,

∞∑
n=1

Å
1

32

ãn (2n
n

)2
Hn

2n− 1
=

(4 ln(2)− π)Γ2
(
1
4

)
8π3/2

+

√
π(π + 4 ln(2)− 4)

Γ2
(
1
4

) ,
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∞∑
n=1

Å
1

32

ãn (2n
n

)2
Hn

(2n− 1)2
=

Γ2
(
1
4

)
(π − 4 ln(2))

8π3/2
− 2

√
π(π + 4 ln(2)− 6)

Γ2
(
1
4

) .

3.1.2 Preliminaries

The equality whereby

2

∞∑
n=1

(2a)n(2b)n

n!
(
a+ b+ 1

2

)
n

Hn

2n
=

∞∑
n=1

(a)n(b)n

n!
(
a+ b+ 1

2

)
n

Hn,

is proved in [66], for elements a and b in the set of complex numbers such that a + b − 1
2 ̸∈ Z<0, and this

identity is used to prove that the series
∑∞

n=1
(2a)n(1−2a)n

(n!)2
Hn

2n is equal to

√
π

2Γ(1− a)Γ
(
a+ 1

2

) Åψ (1− a) + ψ

Å
a+

1

2

ã
− ψ (1)− ψ

Å
1

2

ãã
, (3.9)

letting ψ(x) = Γ′(x)
Γ(x) denote the digamma function, thus leading to the evaluation of (3.5) noted in Theorem

3.2.1 below. We present a generalization of this Theorem, using the main method applied in [19].

As noted above, the formula in (3.8), which has motivated much of the work put forth in the present

Section, also appears in [79] and is proved through a straightforward application of Bailey’s theorem. We

offer a new proof of (3.8) that is significantly different compared to the proofs of this result from both [79]

and [66]. Variants of our proof of (3.8) may be used to greatly generalize the formula in (3.8) through the

use of Lemma 2.2.1.

Lemma 2.2.1 often allows us to express an infinite series of the form

∞∑
n=1

g(n)

Ç
2n

n

å2

Hn (3.10)

in a convenient way in terms of a relatively “manageable” definite integral over an elementary function. As

discussed above, this is very useful because it is not obvious in general how to symbolically compute series

of the form noted in (3.10) by applying parameter derivatives to known hypergeometric identities.

We remark that throughout the course of our present work, expressions such as “closed form” are meant

to include evaluations involving the gamma function. We also recall the series expansions for K and E shown

in (1.14) and (1.15), respectively.

40



3.2 Motivating examples

As we previously noted, the following Theorem follows immediately from the formula for (3.9) given in [66].

We offer a new proof of this result, to illustrate how the main technique in [19] can be used to evaluate series

as in (3.6).

Theorem 3.2.1.
∑∞

n=1

(
2n
n

)2 Hn

32n =
Γ2( 1

4 )
4
√
π

Ä
1− 4 ln(2)

π

ä
[66, 79].

Proof. Letting f(n) be equal to 2−n(2n − 1) in Lemma 2.2.1, we find that the series given in the above

Theorem is equal to:

−2
√
2

π

∫ 1

0

ln
(
1− x2

)
√
1− x2

√
2− x2

dx−
Γ2
(
1
4

)
ln(2)

π3/2
.

Using the substitution u = 1− x2 in the above integrand, we find that

∞∑
n=1

Ç
2n

n

å2
Hn

32n
= −

√
2

π

∫ 1

0

ln(u)√
1− u2

√
u
du−

Γ2
(
1
4

)
ln(2)

π3/2
.

The substitution of the Maclaurin series for 1√
1−u2

in the above integrand may be used to symbolically

compute the above integral. In particular, since

∞∑
n=0

(−1)n
Ç
− 1

2

n

å
u2n−

1
2 ln(u) =

ln(u)
√
u
√
1− u2

,

we have that ∫ 1

0

ln(u)
√
u
√
1− u2

du = −4

∞∑
n=0

Å
1

4

ãn (
2n
n

)
(4n+ 1)2

.

We can show that the finite sum
m∑

n=0

(
1
4

)n (2n
n

)
(4n+ 1)2

is equal to the following expansion for m ∈ N, through a simple inductive argument involving a telescoping

series.

4−m−1

(4m+ 5)2Γ
(
− 1

4

) ·(− 4mπ3/2(4m+ 5)2Γ

Å
1

4

ã
−

Γ

Å
−1

4

ãÇ
2m+ 2

m+ 1

å
4F3

1,m+ 5
4 ,m+ 5

4 ,m+ 3
2

m+ 2,m+ 9
4 ,m+ 9

4

∣∣∣∣∣ 1
)
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Rewrite the above expression as indicated below:

−1

4
·
π3/2Γ

(
1
4

)
Γ
(
− 1

4

) −
(
2m+2
m+1

)
4m+1(4m+ 5)2

· 4F3

1,m+ 5
4 ,m+ 5

4 ,m+ 3
2

m+ 2,m+ 9
4 ,m+ 9

4

∣∣∣∣∣ 1
 .

It can be shown that the latter term in the above expression approaches 0 as m approaches infinity, which

gives us the closed-form evaluation

−
π3/2Γ

(
1
4

)
4Γ
(
− 1

4

) =

∞∑
n=0

(
1
4

)n (2n
n

)
(4n+ 1)2

, (3.11)

yielding the desired result.

To show how Lemma 2.2.1 may be applied in a nontrivial way to evaluate classes of variants of the

summation given in Theorem 3.2.1, we consider the problem of evaluating the following natural analogue of

the harmonic summation given in the above Theorem:

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 1)
. (3.12)

It is not obvious as to how to evaluate this series following the techniques given in [66]. Computer

Algebra Systems such as Mathematica 2022 and Maple 2020 are not able to provide any kind of closed-form

evaluation for the series in (3.12), and it is not obvious as to how to apply known integral formulas for

harmonic numbers to evaluate this sum. For example, through an application of the formula

∫ 1

0

1− xn

1− x
dx = Hn,

we see that the summation in (3.12) may be expressed as

∫ 1

0

8E(
√

x
2 )+4(x−2)K(

√
x
2 )

πx +
»

2
π

Γ(− 1
4 )

Γ( 1
4 )

x− 1
dx,

but it is not at all obvious how to compute the difficult integral given above. Similarly, through the use of

the integral identity whereby

Hn = −n ·
∫
x∈[0,1]

ln(1− x) · xn−1 dx

for n ∈ N0, we find that the problem of symbolically computing (3.12) is equivalent to the difficult problem
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of evaluating the following integrals:

− 1

16

∫ 1

0
2F1

 3
2 ,

3
2

3

∣∣∣∣∣ x2
 ln(1− x) dx =

4

π

∫ 1

0

Ç
E
(√

x
2

)
x2

+

(
x
2 − 2

)
K
(√

x
2

)
x2

å
ln(1− x) dx.

In a similar fashion, it appears that it would be infeasible to make use of known integral formulas for

central binomial coefficients or Catalan-type numbers to determine a closed-form expression for the infinite

series in (3.12). To illustrate this assertion, if we factor out the expression Cn = 1
n+1

(
2n
n

)
in the summand

in this series and replace this factor with a standard integral expression for the Catalan number Cn of order

n, we see that the infinite sum in (3.12) may be expressed as

2
√
2

π

∫ 4

0

 
4− x

x(8− x)
ln

Ç
1

2
+

…
2

8− x

å
dx,

which cannot be evaluated by CAS software such as the 2022 version of Mathematica and Maple 2020. Sim-

ilarly, if we substitute a Wallis-type integral into the summand in (3.12), this would yield a very recalcitrant

integral such as that given below:

1

π

∫ 2π

0

(
4 sec2(t)

( 
1− cos2(t)

2
ln

(
2

 
1− cos2(t)

2

)
−( 

1− cos2(t)

2
+ 1

)
ln

( 
1− cos2(t)

2
+ 1

)
+ ln(2)

))
dt.

The above discussion shows that it is not feasible to use standard or conventional integration methods to

evaluate
∞∑

n=1

(
2n
n

)2
Hn

32n(n+ 1)
,

which shows, in part, why determining the closed-form evaluation given below is challenging. Our proof of

the following Theorem nicely illustrates how Lemma 2.2.1 may be applied in a creative way to produce a

simple closed-form evaluation that does not follow directly from this integration Lemma.

Theorem 3.2.2. The series
∞∑

n=1

Å
1

32

ãn (2n
n

)2
Hn

n+ 1
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is equal to

8−
2Γ2

(
1
4

)
π3/2

− 4π3/2 + 16
√
π ln(2)

Γ2
(
1
4

) .

Proof. Letting f(n) =
(
1
2

)n 2n−1
n+1 , by Lemma 2.2.1, we have that the series

∑∞
n=0

(
1
32

)n (2nn )
2
Hn

n+1 is equal to

the following expression:

4

π

∫ 1

0

Ä√
4− 2x2 − 2

ä
ln
(
1− x2

)
x2

√
1− x2

dx− 16
√
π ln(2)

Γ2
(
1
4

) .

So, the problem of computing the series given in Theorem 3.2.2 is equivalent to the problem of evaluating

the following integrals:

∫ 1

0

Ä√
4− 2x2 − 2

ä
ln
(
1− x2

)
x2

√
1− x2

dx =

∫ 1

0

Ä√
2
√
1 + u− 2

ä
ln(u)

2(1− u)3/2
√
u

du.

Rewrite the expression ∫ 1

0

Ä
−2 +

√
2
√
1 + u

ä
ln(u)

(1− u)3/2
√
u

du

as

4π +
√
2

∫ 1

0

√
1 + u ln(u)

(1− u)3/2
√
u
du. (3.13)

Our strategy for computing (3.13) in closed form is to find a formula for the Maclaurin series coefficients

for the expression
√
1+u

(1−u)3/2
in the integrand in (3.13), then multiply each term in the corresponding series

expansion by ln(u)√
u
, and then integrate term-by-term. This may appear to be a very roundabout way of

determining the symbolic value of the definite integral in (3.13), but it is not at all clear what kinds of

integration methods could be successfully applied to find (3.13) in closed form. From the equality

√
1 + u

(1− u)3/2
=

∞∑
n=0

u2n(1 + 2u+ 4n(1 + u))Γ
(
n+ 1

2

)
√
πΓ(n+ 1)

, (3.14)

we have that √
1 + u

(1− u)3/2
=

∞∑
n=0

(4n+ 1)u2nΓ
(
n+ 1

2

)
√
πΓ(n+ 1)

+

∞∑
n=0

4u2n+1Γ
(
n+ 3

2

)
√
πΓ(n+ 1)

.

The evaluation in (3.14) as well as the equivalent evaluation in the next displayed equation both follow from

the generating function for central binomial coefficients. We claim that the definite integral in (3.13) is such
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that the following equalities hold, but proving this is nontrivial.

∫ 1

0

√
1 + u ln(u)

(1− u)3/2
√
u
du = −4

∞∑
n=0

(4n+ 1)Γ
(
n+ 1

2

)
(4n+ 1)2

√
πΓ(n+ 1)

−

16

∞∑
n=0

Γ
(
n+ 3

2

)
(4n+ 3)2

√
πΓ(n+ 1)

= − 1

16

…
π

2
Γ2

Å
−1

4

ã
−

Γ2
(
1
4

)
√
2π

.

We may rewrite the first series as

− 4

∞∑
n=0

Å
1

4

ãn (
2n
n

)
4n+ 1

. (3.15)

Using the generating function for the sequenceÇÇ
2n

n

å
: n ∈ N0

å
, (3.16)

we have that

− 4√
1− x4

= −4

∞∑
n=0

Å
1

4

ãn
x4n
Ç
2n

n

å
.

We have that
∫
− 4√

1−x4
dx may be evaluated as −4F

(
sin−1(x)

∣∣− 1
)
, letting F denote the elliptic integral

of the first kind, using the Mathematica notation for this function. Taking limits as x → 0 and x → 1, we

obtain the expression −4K(
√
−1). From the formula

L = 2

∫ 1

0

dx√
1− x4

= 2K
Ä√

−1
ä

for the lemniscate constant L [80], which is half of the arc length

s =
1√
2π

Γ2

Å
1

4

ã
of a lemniscate with parameter a = 1 [80], we obtain the desired evaluation for the sum in (3.15). Now,

rewrite the series

−16

∞∑
n=0

Γ
(
n+ 3

2

)
(4n+ 3)2

√
πΓ(n+ 1)

as below:

4

∞∑
n=0

Å
1

4

ãn Å 1

(4n+ 3)2
− 1

4n+ 3

ãÇ
2n

n

å
.
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From the generating function for (3.16), we see that the equivalence

4

∞∑
n=0

Å
1

4

ãn (
2n
n

)
4n+ 3

=

∫ 1

0

4x2√
1− x4

dx

holds. The value of the integral ∫ 1

0

x2√
1− x4

dx

is also a lemniscate constant [80], and the following evaluation is known to hold [80]:

∫ 1

0

x2√
1− x4

dx =

√
2π3/2

Γ2
(
1
4

) .
The desired evaluation for the remaining series

4

∞∑
n=0

Å
1

4

ãn 1

(4n+ 3)2

Ç
2n

n

å
may be proved in essentially the same way compared with the method that was used to obtain the evaluation

presented in (3.11): We may inductively prove that the partial sum

m∑
n=0

(
1
4

)n (2n
n

)
(4n+ 3)2

may be evaluated as

1

4m+1(4m+ 7)2Γ
(
1
4

)(4m−1(π − 4)
√
π(4m+ 7)2Γ

Å
−1

4

ã
−

Γ

Å
1

4

ãÇ
2m+ 2

m+ 1

å
4F3

1,m+ 3
2 ,m+ 7

4 ,m+ 7
4

m+ 2,m+ 11
4 ,m+ 11

4

∣∣∣∣∣ 1
)

and we may evaluate the limit of the above expression as m→ ∞. We thus obtain the desired result.

As discussed in the Introduction, Lemma 2.2.1 is much more versatile compared to the use of specific

hypergeometric identities to determine results on series involving
(
2n
n

)2
Hn. To further illustrate this idea,

we offer a complete proof of the closed-form evaluation for the infinite series

∑
n∈N

(
2n
n

)2
Hn

32n(2n− 1)
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given below in Theorem 3.2.5. We begin with the integration results given in the following two Lemmas.

Lemma 3.2.3. The integral ∫ √
1 + u ln(u)√
1− u

√
u

du (3.17)

may be evaluated as below:

∞∑
n=0

2u2n+
1
2Γ
(
n+ 1

2

)
√
πΓ(n+ 1)

(
ln(u)

4n+ 1
+
u ln(u)

4n+ 3
− 2

(4n+ 1)2
− 2u

(4n+ 3)2

)
.

Proof. Differentiating the above series with respect to u, we obtain the infinite series

∞∑
n=0

u2n−
1
2 (u+ 1)Γ

(
n+ 1

2

)
ln(u)

√
πΓ(n+ 1)

,

which is equivalent to

(u+ 1) ln(u)√
u

·
∞∑

n=0

(u
2

)2nÇ2n
n

å
.

Using the generating function for the integer sequence
((

2n
n

)
: n ∈ N0

)
, we obtain the desired result.

Lemma 3.2.4. The evaluation

∫ 1

0

√
1 + u ln(u)√
1− u

√
u

du =
(π − 4)Γ2

(
− 1

4

)
16

√
2π

+
π3/2Γ

(
1
4

)
Γ
(
− 1

4

)
holds.

Proof. Consider the summand given by the series expansion in Lemma 3.2.3. The limit of this summand as

u approaches 0 vanishes, and the limit as u approchaes 1 is equal to

−
8
(
16n2 + 16n+ 5

)
Γ
(
n+ 1

2

)
√
π(4n+ 1)2(4n+ 3)2Γ(n+ 1)

.

This shows us that the integral ∫ 1

0

√
1 + u ln(u)√
1− u

√
u

du

may be written as

−8 ·
∞∑

n=0

Å
1

4

ãn (16n2 + 16n+ 5
) (

2n
n

)
(4n+ 1)2(4n+ 3)2

,
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which, in turn, must be equal to

− 4

∞∑
n=0

(
1
4

)n (2n
n

)
(4n+ 1)2

− 4

∞∑
n=0

(
1
4

)n (2n
n

)
(4n+ 3)2

. (3.18)

We had previously evaluated the first series in (3.11). A method for evaluating the latter series is presented

in the above proof for Theorem 3.2.2.

Theorem 3.2.5. The following equality holds:

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)
=

Γ2
(
1
4

)
(4 ln(2)− π)

8π3/2
+

√
π(π + 4 ln(2)− 4)

Γ2
(
1
4

) .

Proof. We observe that
∞∑

n=0

Å
1

32

ãn (2n
n

)2
Hn

2n− 1

is equal to

2

π

∫ 1

0

√
2− x2 ln

(
1− x2

)
√
2
√
1− x2

dx+
4
√
π ln(2)

Γ2
(
1
4

) +
Γ2
(
1
4

)
ln(2)

2π3/2
(3.19)

from Lemma 2.2.1, and we thus observe that the series given in Theorem 3.2.5 is also equal to

1√
2π

∫ 1

0

√
1 + u ln(u)√
1− u

√
u

du+
4
√
π ln(2)

Γ2
(
1
4

) +
Γ2
(
1
4

)
ln(2)

2π3/2
.

From Lemma 3.2.4, we obtain the desired result.

Theorem 3.2.6. The series
∞∑

n=1

Å
1

32

ãn (2n
n

)2
Hn

(2n− 1)2

is equal to

Γ2
(
1
4

)
(π − 4 ln(2))

8π3/2
− 2

√
π(π + 4 ln(2)− 6)

Γ2
(
1
4

) .

Proof. A direct application of Lemma 2.2.1 shows that the series given in the above Theorem is equal to the

following expression:

−
√
2

π

∫ 1

0

Ä√
2− x2 + x sin−1

Ä
x√
2

ää
ln
(
1− x2

)
√
1− x2

dx+…
2

π
ln(2)

Ç
Γ
(
− 1

4

)
Γ
(
1
4

) +
2Γ
(
1
4

)
Γ
(
− 1

4

)å .
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Expanding the above integrand, we again encounter the integral

∫ 1

0

√
2− x2 ln

(
1− x2

)
√
1− x2

dx

which we had previously seen in (3.19). So, we find that the infinite sum given in Theorem 3.2.6 is also equal

to the following:

−
√
2

π

∫ 1

0

x sin−1
Ä

x√
2

ä
ln
(
1− x2

)
√
1− x2

dx+

Γ2
(
1
4

)
(π − 4 ln(2))

8π3/2
−

√
π(−4 + π + 8 ln(2))

Γ2
(
1
4

) .

By rewriting the above integral as ∫ 1

0

sin−1
Ä√

1−u√
2

ä
ln(u)

2
√
u

du (3.20)

and then substituting the expression
√
1−u√
2

into the Maclaurin series for the inverse sine, we see that the

definite integral given in (3.20) is also equal to

− π

4
√
2

∞∑
n=0

Å
1

32

ãn (2n
n

)2
Hn+1

n+ 1
+

√
πΓ
(
− 1

4

)
ln(4)

4Γ
(
1
4

)
and we may thus apply Theorem 3.2.2 to yield the desired result.

3.3 Generalizations and variations

We begin by noting that one of the key ingredients in our proof of Theorem 3.2.2 was based on the use of a

Maclaurin-type series for the expression √
1 + u

(1− u)3/2
(3.21)

for u ∈ [0, 1), and that the determination of a suitable power series expansion for this expression was

nontrivial in that it is not obvious as to how to find explicit formulas for the Taylor series coefficients for

(3.21) without already knowing the formula we had introduced in (3.14). For our strategy in computing the

Maclaurin series coefficients for (3.21), we had planned to make use of known results on the series expansion

for …
1 + u

1− u
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and then “interpret” the left-hand factor in the left-hand side of

1

1− u

…
1 + u

1− u
=

√
1 + u

(1− u)3/2

as a partial sum operator. The preceding discussion nicely illustrates how successful applications of Lemma

2.2.1 often require creative manipulations of generating functions.

It seems that applying the proof technique for Theorem 3.2.2 to try to determine the value of

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 2)
(3.22)

may be cumbersome or infeasible. However, by means of a re-indexing argument, we see that there is a

connection between (3.22) and Theorem 3.2.2, Theorem 3.2.5, and Theorem 3.2.6.

Theorem 3.3.1. The series
∞∑

n=1

(
2n
n

)2
Hn

32n(n+ 2)

is equal to

64

9
−

Γ2
(
1
4

)
(π − 4 ln(2) + 18)

9π3/2
+

»
2
πΓ
(
− 1

4

)
(9π + 36 ln(2)− 16)

18Γ
(
1
4

) .

Proof. Apply the re-indexing technique indicated below:

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 2)

=

∞∑
n=2

Å
1

32

ãn−1
(
2n−2
n−1

)2
Hn−1

n+ 1

=

∞∑
n=2

Å
1

32

ãn−1
(
2n−2
n−1

)2 (
Hn − 1

n

)
n+ 1

=

∞∑
n=2

Ñ
321−n

(
2n−2
n−1

)2
Hn

n+ 1
−

321−n
(
2n−2
n−1

)2
n(n+ 1)

é
=

1

2
+

8
»

2
πΓ
(
1
4

)
9Γ
(
− 1

4

) + 32

∞∑
n=2

32−n
(
2n−2
n−1

)2
Hn

n+ 1

=
1

2
+

8
»

2
πΓ
(
1
4

)
9Γ
(
− 1

4

) + 8

∞∑
n=2

2−5nn2
(
2n
n

)2
Hn

(n+ 1)(2n− 1)2

=
1

2
+

8
»

2
πΓ
(
1
4

)
9Γ
(
− 1

4

) +
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8

∞∑
n=2

2−5n

Ç
2n

n

å2

Hn

Å
1

9(n+ 1)
+

1

6(2n− 1)2
+

5

18(2n− 1)

ã
.

We now have that the desired result follows immediately from Theorem 3.2.2, Theorem 3.2.5, and Theorem

3.2.6.

To compute a given series of the form
∞∑

n=1

(
2n
n

)2
Hn

32n(n+ z)

in closed form for z ∈ Z>0, we make use of the inductive approach described below. We begin by re-writing

the above summation as suggested below:

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)

=

∞∑
n=1

(
2n
n

)2
Hn

32n((n+ 1) + z − 1)

=

∞∑
n=2

(
2n−2
n−1

)2
Hn−1

32n−1(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(
2n
n

)2
Hn−1

(2n− 1)2(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(
2n
n

)2 (
Hn − 1

n

)
(2n− 1)2(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(
2n
n

)2
Hn

(2n− 1)2(n+ z − 1)
− 8

∞∑
n=2

2−5nn
(
2n
n

)2
(2n− 1)2(n+ z − 1)

.

Hypergeometric series of the form ∑
n

Å
1

32

ãn n
(
2n
n

)2
(2n− 1)2(n+m)

always have closed-form evaluations for m ∈ N, as may be verified by writing

∞∑
n=0

n
(
2n
n

)2
xn+m−1

32n(2n− 1)2
=

1

8
xm2F1

 1
2 ,

1
2

2

∣∣∣∣∣ x2
 (3.23)

and evaluating the above expressions as

1

8
xm
Ç
4
(
1− 2

x

)
K
(√

x
2

)
π

+
8E
(√

x
2

)
πx

å
(3.24)
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and then using known results on moments of complete elliptic integrals. Now, we observe that we may

expand the factor

n2

(2n− 1)2(n+ z − 1)

from the summand in the series

∑
n

n2

(2n− 1)2(n+ z − 1)

Å
1

32

ãnÇ2n
n

å2

Hn

as follows:

n2

(2n− 1)2(n+ z − 1)
=Å

z − 1

2z − 1

ã2
· 1

n+ z − 1
+

4z − 3

2(2z − 1)2
· 1

2n− 1
+

1

2(2z − 1)
· 1

(2n− 1)2
.

So, in our attempts to compute
∞∑

n=1

(
2n
n

)2
Hn

32n(n+ z)

in closed form, we see that this problem amounts to the symbolic computation of the following series:

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ (z − 1))
,

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)
,

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)2
.

So, we see that Theorem 3.2.2 may be regarded as the “base case” for our inductive technique, with Theorem

3.2.5 and Theorem 3.2.6 providing the required evaluations for the latter two sums given above, thus high-

lighting the utility of the Theorems given in Section 3.2. Through an application of the technique described

above, we obtain the following new results:

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 3)
=

2048

225
− 4

√
π(297π + 1188 ln(2)− 800)

225Γ2
(
1
4

) −

2Γ2
(
1
4

)
(313 + 25π − 100 ln(2))

225π3/2
,
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∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 4)
=

16384

1225
+

Γ2
(
1
4

)
(−15974− 1425π + 5700 ln(2))

3675π3/2
−

4
√
π(−7984 + 2401π + 9604 ln(2))

1225Γ2
(
1
4

) ,

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 5)
=

2097152

99225
+

2Γ2
(
1
4

)
(−1071611− 98550π + 394200 ln(2))

297675π3/2
−

4
√
π(−391872 + 102851π + 411404 ln(2))

33075Γ2
(
1
4

) .

We encounter computational obstacles in attempting to apply the same kind of inductive procedure with

respect to summations of the form ∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)

for z ∈ Z>0. This illustrates how the problem of computing generalizations of (3.5) can be very complicated

and often requires a degree of ingenuity in the application of Lemma 2.2.1. The problem of evaluating

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 3)
(3.25)

is especially interesting, since there is an unexpected corollary of the symbolic evaluation for the infinite

summation given above that we discuss in Section 3.5.

Suppose that we were to attempt to evaluate the series in (3.25) using Theorem 3.2.5, following the

inductive strategy that had been employed in our generalization of the proof for Theorem 3.3.1. So, we must

re-index (3.25) as demonstrated below:

∞∑
n=1

32−n
(
2n
n

)2
Hn

2n− 3

∞∑
n=0

32−n−1
(
2n+2
n+1

)2
Hn+1

2n− 1

1

8

∞∑
n=0

2−5n(2n+ 1)2
(
2n
n

)2 Ä
Hn + 1

n+1

ä
(n+ 1)2(2n− 1)
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1

8

∞∑
n=0

2−5n(2n+ 1)2
(
2n
n

)2
Hn

(n+ 1)2(2n− 1)
+

1

8

∞∑
n=0

2−5n(2n+ 1)2
(
2n
n

)2
(n+ 1)3(2n− 1)

.

However, it is not clear as to how to evaluate the sum

∞∑
n=0

Å
1

32

ãn (
2n
n

)2
(2n+ 1)2

(n+ 1)3(2n− 1)

in closed form. Moreover, if we apply partial fraction decomposition with respect to the factor

(2n+ 1)2

(n+ 1)2(2n− 1)

in the “re-indexed” harmonic summation given above, we obtain the expression

16

9(2n− 1)
+

10

9(n+ 1)
− 1

3(n+ 1)2
,

but it is not at all clear as to how the series

∑
n∈N

(
2n
n

)2
Hn

32n(n+ 1)2

could be evaluated, even through an application of Lemma 2.2.1, since this would require the symbolic

computation of a difficult integral such as

∫ 1

0

ln(u) ln
Ä
1 +

√
1+u√
2

ä
(1− u)3/2

√
u

du

and it is not clear as to how to apply the Maclaurin series substitution strategy employed to evaluate (3.13).

To evaluate series of the form ∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)

for z ∈ Z>0, we may apply the following procedure inspired by our proofs for Theorem 3.2.2 and Theorem

3.2.5.

1. Let f(n) = 2n−1
2n(2n−2z+1) , apply Lemma 2.2.1, and evaluate the corresponding hypergeometric series

∑
n∈N

(
2n
n

)2
32n(2n− 2z + 1)
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in closed form;

2. Through the application of Lemma 2.2.1 noted above, we obtain an integrand of the form 
2− x2

1− x2
ln
(
1− x2

)
p(x)

for a polynomial p(x) with algebraic coefficients. Apply the substitution u = 1− x2;

3. We thus obtain an integrand of the form…
1 + u

1− u
· ln(u)√

u
· q(u)

for a polynomial q(u) with algebraic coefficients. Replace the expression
»

1+u
1−u with its Maclaurin

series

1 +

∞∑
n=1

21−nun
Ç
n− 1⌊
n−1
2

⌋å
in the above integrand and integrate term-by-term.

Using the above procedure, we obtain the following results, thus illustrating the versatility of Lemma

2.2.1:

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 3)
=

√
π(π + 4 ln(2)− 4)

3Γ2
(
1
4

) −
Γ2
(
1
4

)
(15π − 60 ln(2) + 8)

216π3/2
,

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 5)
=

11π3/2

75Γ2
(
1
4

) − Γ2
(
1
4

)
(32 + 51π − 204 ln(2))

1080π3/2
+

4
√
π(55 ln(2)− 51)

375Γ2
(
1
4

) ,

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 7)
√
π(65π + 260 ln(2)− 212)

875Γ2
(
1
4

) +
Γ2
(
1
4

)
(5796 ln(2)− 856− 1449π)

41160π3/2
.
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Using a similar algorithm, we may evaluate series of the form

∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)2

in closed form for z ∈ Z>0, and we leave it as an exercise to formalize this idea. For example, using an

analogue of the procedure described above, we obtain the following result:

∞∑
n=0

Å
1

32

ãn (2n
n

)2
Hn

(2n− 3)2
=

4
√
π(7− π − 4 ln(2))

9Γ2
(
1
4

) +
Γ2
(
1
4

)
(8 + 7π − 28 ln(2))

216π3/2
.

3.4 Ramanujan-type formulas

Inspired by the method we had applied to generalize Theorem 3.3.1, we consider the use of similar strategies

to determine explicit evaluations for new 1
π series with summands given by the product of

(
2n
n

)2
Hn

16n

and a rational function r(n). These were the main kinds of mathematical objects under investigation in

Section 2, as opposed to series involving summand factors of the form

(
2n
n

)2
Hn

32n
,

which served as something of a basis for Section 3.2 and Section 3.3. To illustrate this idea, we begin by

considering the problem of finding a symbolic evaluation for the simple and natural-looking series

∞∑
n=1

C2
nHn

16n
,

letting Cn denote the nth Catalan number, as above. Summations of the form

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)2
(3.26)
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for z ∈ Z>0 had not been discussed in Section 2; series of the form in (3.26) cannot be evaluated through

a direct or straightforward application of Lemma 2.2.1. In contrast to this integration Lemma, we make

use of a recursive approach to prove the following result, which serves as the base case for an inductive

generalization.

Theorem 3.4.1. The following equation holds:

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ 1)2
= 16 +

32G− 64 ln(2)

π
− 16 ln(2).

Proof. We begin by making use of the following result that had been introduced in [19]:

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 3)
=

−68 + 120 ln(2)

27π
.

Recall that the above result follows from Lemma 2.2.1 by letting f(n) = 2n−1
2n−3 . Now, apply the following

re-indexing argument:

−68 + 120 ln(2)

27π
=

∞∑
n=1

16−n
(
2n
n

)2
Hn

2n− 3
=

∞∑
n=0

16−(n+1)
(
2n+2
n+1

)2
Hn+1

2n− 1
=

1

4

∞∑
n=0

4−2n(2n+ 1)2
(
2n
n

)2
Hn+1

(n+ 1)2(2n− 1)
=

1

4

∞∑
n=0

4−2n

Ç
2n

n

å2

Hn

Å
− 1

3(n+ 1)2
+

10

9(n+ 1)
+

16

9(2n− 1)

ã
+

1

4

∞∑
n=0

4−2n

Ç
2n

n

å2
(

− 1

3(n+ 1)3
+

10

9(n+ 1)2
−

16

27(n+ 1)
+

32

27(2n− 1)

)
=

− 1

12

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ 1)2
− 1

12

∞∑
n=0

(
2n
n

)2
16n(n+ 1)3

− 24 ln(2)− 40

27π
.

We remark that for the final equality given above, we implicitly made use of Lemma 2.2.1 in the case whereby

f(n) = 1. So, we have shown that the problem of symbolically computing the infinite series given in the

above Theorem is equivalent to the remarkably simpler problem of computing the hypergeometric series
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given below:
∞∑

n=0

(
2n
n

)2
16n(n+ 1)3

. (3.27)

Making use of the Catalan number integral formula whereby

(
2n
n

)
n+ 1

=
1

2π

∫ 4

0

xn
…

4− x

x
dx,

we find that the series in (3.27) is also equal to

1

2π

∫ 4

0

−8
√
4− x

(
1

x

)3/2(
− 2 +

√
4− x+

2 ln(2)− 2 ln

(
1 +

…
1− x

4

))
dx.

We note that the underlying indefinite integral

∫
−
4
√
4− x

(
1
x

)3/2 (−2 +
√
4− x+ 2 ln(2)− 2 ln

(
1 +

√
1− x

4

))
π

dx

may be evaluated as below; this may be verified by differentiating the following expression:

8

π

…
1

x

(
− 4i

√
xLi2

Å
e
−2i sin−1

(
1
2

√√
4−x+2

)ã
+ x− 4

√
4− x−

4i
√
x ln

Å
1

2

Å»
2−

√
4− x+ i

»√
4− x+ 2

ãã
· ln
Ä√

4− x+ 2
ä
−

2
√
4− x ln

Ä√
4− x+ 2

ä
+
√
4− x ln(16)−

4i
√
x sin−1

Å
1

2

»√
4− x+ 2

ã2
+ 2

√
x sin−1

Ç√
4− x

2

å
−

4
√
x sin−1

Å
1

2

»√
4− x+ 2

ã
·Å

−1 + 2 ln

Å
1− e

−2i sin−1
(

1
2

√√
4−x+2

)ãã
−

√
x ln(16) sin−1

Ç√
4− x

2

å
+ 8

)
.

Taking the limit as x → 0 and x → 4 shows that the above definite integral must be equal to as − 32G
π −

16 + 48
π + 16 ln(2), thus completing our proof.

By analogy with our generalization of Theorem 3.3.1, we make use of the following procedure to compute
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infinite series of the form
∞∑

n=0

(
2n
n

)2
Hn

16n(n+ z)2

for z ∈ Z>0. Begin by rewriting (3.26) as follows:

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)2
=

∞∑
n=2

(
2n−2
n−1

)2
Hn−1

16n−1(n+ z − 1)2
=

4

∞∑
n=2

Å
1

16

ãn n2
(
2n
n

)2
Hn

(2n− 1)2(n+ z − 1)2
−

4

∞∑
n=2

Å
1

16

ãn n
(
2n
n

)2
(2n− 1)2(n+ z − 1)2

.

For each z ∈ Z>0, we may evaluate

∑
n

Å
1

16

ãn n
(
2n
n

)2
(2n− 1)2(n+ z − 1)2

,

using a recursive approach (see [1] and Section 6 below for closely related material on Ramanujan’s S-

function). Through the use of partial fraction decomposition, expand the quotient

n2

(2n− 1)2(n+ z − 1)2

as suggested below:

− 2z − 2

(2z − 1)3
· 1

n+ z − 1

+
1

(2z − 1)2
· 1

(2n− 1)2

+
(z − 1)2

(2z − 1)2
· 1

(n+ z − 1)2

+
4z − 4

(2z − 1)3
· 1

2n− 1
.

Starting with Theorem 3.4.1 as the base case, we may thus evaluate (3.26) recursively since series of the

form
∞∑

n=1

(
2n
n

)2
Hn

16n(n+m)
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for m ∈ N may be evaluated directly through Lemma 2.2.1. Following this algorithm, we obtain the new

results indicated below:

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 2)2

=
112

27
− 64 ln(2)

9
+

16(13 + 24G− 44 ln(2))

27π
,

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 3)2

=
6272

3375
− 1024 ln(2)

225
+

23632 + 30720G− 54208 ln(2)

3375π
,

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 4)2

=
129536

128625
− 4096 ln(2)

1225
+

783408 + 860160G− 1484864 ln(2)

128625π
.

3.5 Conclusion

Our explorations on the symbolic computation of series with summands containingÅ
1

32

ãnÇ2n
n

å2

Hn

as a factor have led us to a surprising discovery concerning a new series involving alternating harmonic

numbers, as elaborated below.

By Lemma 2.2.1, by letting f(n) =
(
1
2

)n 2n−1
2n−3 , we find that the infinite series

∞∑
n=0

Å
1

32

ãn (2n
n

)2
Hn

2n− 3
(3.28)

is equal to the following:

2

π

∫ 1

0

Ä√
2− x2 + x2

√
2− x2

ä
ln
(
1− x2

)
3
√
2
√
1− x2

dx−

Γ
(
− 1

4

)
ln(2)

3
√
2πΓ

(
1
4

) −
10
»

2
πΓ
(
1
4

)
ln(2)

9Γ
(
− 1

4

) .
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Interestingly, if the Mathematica command Simplify is applied to this expression, Mathematica produces

the following output, letting regularized hypergeometric functions be denoted with pF̃q:

1

18
√
2π

(
−

40
√
πΓ
(
1
4

)
ln(2)

Γ
(
− 1

4

) −
6
√
πΓ
(
− 1

4

)
ln(2)

Γ
(
1
4

) +

3

(
4γE(

√
−1) + π

(
−
√
π

(
2
∂

∂x
3F̃2

− 1
2 ,

1
2 ,

1
2

1, x

∣∣∣∣∣ − 1

 ∣∣∣∣∣
x= 1

2

+

∂

∂x
3F̃2

− 1
2 ,

1
2 ,

1
2

2, x

∣∣∣∣∣ − 1

 ∣∣∣∣∣
x= 1

2

+

2
∂

∂x
2F1

− 1
2 ,

1
2

x

∣∣∣∣∣ − 1

 ∣∣∣∣∣
x=1

+

∂

∂x
2F̃1

− 1
2 ,

1
2

x

∣∣∣∣∣ − 1

 ∣∣∣∣∣
x=2

)))
.

From the above output, together with the symbolic calculation for (3.28) that we had provided in Section

3.3, we have that the series
∞∑

n=1

Å
− 1

16

ãnÇ2n
n

å2
(2n+ 3)H ′

2n

(2n− 1)(n+ 1)
(3.29)

is conjecturally equal to

5Γ2
(
1
4

)
(π − 4 ln(2))

12
√
2π3/2

+
Γ
(
− 1

4

)
(3π + 12 ln(2)− 20)

12
√
πΓ
(
1
4

) − 2

3
.

This is very interesting because it is unexpected that Lemma 2.2.1 can also be applied to determine new series

involving alternating harmonic numbers, and this suggests that there may be a deep connection between

Lemma 2.2.1 and the main integration technique from [32]. How can we obtain new classes of series containing

harmonic-like numbers of the form H ′
2n as in (3.29) by showing how the definite integral in Lemma 2.2.1

can be expressed in terms of parameter derivatives of hypergeometric expressions of the form pFq(−1), as

above?
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Chapter 4

Series containing squared central

binomial coefficients and alternating

harmonic numbers

4.1 Introduction

As we had discussed above, there appears to be an interesting connection between series involvingÅ
1

32

ãnÇ2n
n

å2

Hn

and series containing factors of the form Å
− 1

16

ãnÇ2n
n

å2

H ′
2n. (4.1)

We had considered, as above, that Lemma 2.2.1 cannot be applied directly to evaluate the series

∞∑
n=1

Å
1

32

ãn (2n
n

)2
Hn

2n− 3
, (4.2)

in the sense that it is unclear how the required integral expression given by this method may be evaluated.

The above experimentally discovered formula for (3.29) motivates the study of summations containing (4.1) as
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a factor. We introduce an interesting integration technique to evaluate series of this form, offering something

of a partial solution to an open problem given in [18].

As we had previously considered, it is surprising that Lemma 2.2.1 can be used to evaluate (3.29), since

this Lemma is specifically “designed” for series containing Hn for n ∈ N, as opposed to series involving

even-indexed alternating harmonic numbers. The evaluation of generalizations and variations of (3.29) is

left as an open problem in [18], and serves as a basis for the research in this Section, inspiring us to construct

an integration technique that allows us to evaluate series of this form, by analogy with Lemma 2.2.1.

4.2 Main results

The main integration technique introduced in this Section is given in Lemma 4.2.1 below. This Lemma

provides us with a remarkably simple way of evaluating series of the form noted in (4.3), which are otherwise

often very difficult to symbolically compute. The Lemma given below may be regarded as a direct analogue

of Lemma 2.2.1.

Lemma 4.2.1. For a sequence (fn)n≥0 such that the series

∞∑
n=0

Å
1

16

ãn
H ′

2n

Ç
2n

n

å2
fn
n+ 1

(4.3)

converges, the above summation is equal to

4

π

∫ 1

0

∞∑
n=0

(−1)nx2n
√
1− x2

Ç
− 1

2

n

å
fn ln (x) dx (4.4)

+
1

2

∞∑
n=0

Å
1

16

ãn (2n
n

)2
(2 ln(2)(n+ 1) + 1)

(n+ 1)2
fn, (4.5)

under the assumption that the sequence f is such that it is possible to reverse the order of integration and

summation in (4.4)

Proof. We apply the identity

∫ 1

0

x2n
√
1− x2 ln(x) dx =

√
π
Ä
Hn− 1

2
−Hn+1

ä
Γ
(
n+ 1

2

)
8Γ(n+ 2)

,

by reversing the order of integration and summation in (4.4) and simplifying, and we obtain an equivalent

form of the above identity for the series in (4.3), rewriting the expression Γ
(
n + 1

2

)
using central binomial
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coefficients, according to the Legendre duplication formula.

The problem of evaluating the infinite series given below is difficult, in the sense that it does not seem

to be feasible to apply the generating functions from [15, 37] to evaluate the series in (4.6).

Corollary 4.2.2. The series
∞∑

n=0

Å
− 1

16

ãn (2n
n

)2
H ′

2n

n+ 1
(4.6)

is equal to

2 +
(4 ln(2)− π)Γ2

(
1
4

)
4
√
2π3/2

−
√
2π(4 + π + 4 ln(2))

Γ2
(
1
4

) .

Proof. Letting fn = (−1)n, by Lemma 4.2.1, we have that (4.6) is equal to

4

π

∫ 1

0

 
1− x2

1 + x2
ln(x) dx+ 2 +

ln(2)Γ2
(
1
4

)
√
2π3/2

− 4
√
2π(2 + ln(2))

Γ2
(
1
4

) ,

and we may evaluate the above integral in the following manner. An antiderivative of the above integrand

may be expressed as below:

− x 3F2

 1
4 ,

1
4 ,

1
2

5
4 ,

5
4

∣∣∣∣∣ x4
+

x3

9
3F2

 1
2 ,

3
4 ,

3
4

7
4 ,

7
4

∣∣∣∣∣ x4


+ x 2F1

 1
4 ,

1
2

5
4

∣∣∣∣∣ x4
 lnx− x3

3
2F1

 1
2 ,

3
4

7
4

∣∣∣∣∣ x4
 lnx.

Taking limits as x→ 0 and x→ 1, we may use evaluations for lemniscate-like constants (a term introduced

in the subsequent paper [29]) given in the preceding Section.

Through the use of Lemma 4.2.1, we are also able to evaluate sums of the form

∞∑
n=0

Å
− 1

16

ãn (2n
n

)2
H ′

2n

n+ z

for natural numbers z > 1. Applying partial fraction decomposition to the rational component of the series

in (3.29), we obtain the expression

1

3

∞∑
n=1

Å
1

16

ãn (−1)n+1
(
2n
n

)2
H ′

2n

n+ 1
+

8

3

∞∑
n=1

Å
1

16

ãn (−1)n
(
2n
n

)2
H ′

2n

2n− 1
,
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and, in view of Theorem 4.2.2, this strongly motivates the evaluation of the series given in the following

Theorem, since much of this Section is inspired by the open problem given in [18].

Corollary 4.2.3. The equality

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′

2n

2n− 1
=

(π − 4 ln(2))Γ2
(
1
4

)
8
√
2π3/2

−
√

π
2 (π + 4 ln(2)− 4)

Γ2
(
1
4

)
holds.

Proof. If we let fn = (−1)n(n+1)
2n−1 , then by Lemma 4.2.1, we have that the series in Corollary 4.2.3 is equal to

4

π

∫ 1

0

−
√
1− x2

(
3x2 + 2

)
ln(x)

2
√
x2 + 1

dx−
√
2π ln(4)

Γ2
(
1
4

) −
(2 + ln(8))Γ2

(
1
4

)
6
√
2π3/2

,

and we thus obtain the desired result.

Lemma 4.2.1 may also be used to evaluate

∞∑
n=0

Å
− 1

16

ãn (
2n
n

)2
H ′

2n

2n− 2z − 1

for z ∈ N. As a way of further demonstrating the utility of Lemma 4.2.1, we offer a simplified proof of the

following result that had been introduced in [31].

Corollary 4.2.4.
∑∞

n=1

(
1
16

)n (2nn )
2
H2n

2n−1 = 6 ln(2)−2
π [31].

Proof. Letting fn = n+1
2n−1 , by Lemma 4.2.1 we have that

∞∑
n=1

Å
1

16

ãn (2n
n

)2
H ′

2n

2n− 1
=

4

π

∫ 1

0

1

2

(
3x2 − 2

)
ln(x) dx− 2(2 + ln(8))

3π
,

and from the evaluation of
∑∞

n=1

(
1
16

)n (2nn )
2
Hn

2n−1 given in [19] we obtain the desired result.

By letting fn = n+1
2n−2z−1 for z ∈ N with regard to Lemma 4.2.1, we also obtain closed-form evaluations.

The series in

4G− 12 ln 2 + 6

π
=

∞∑
n=0

Å
1

16

ãnÇ2n
n

å2
H2n

(2n− 1)2
(4.7)

from [32] is a natural extension of the Choi–Chen series for 1
π from [37, 38], and it is natural to explore new

methods of deriving the formula in (4.7), in the hope of arriving at similar results.
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Corollary 4.2.5. The evaluation in (4.7) holds [32].

Proof. By Lemma 4.2.1, if we let fn = n+1
(2n−1)2 , then we see that the series from (4.7) equals

∫ 1

0

1

2
ln(x)

Ä
−2x2 + 3

√
1− x2x sin−1(x) + 2

ä
dx+

4(4 + 9 ln 2)

9π
,

and using the symbolic form for
∑∞

n=1

(
1
16

)n (2nn )
2
Hn

(2n−1)2 given in [19], we obtain the desired result.

Using the technique given in the proof of Corollary 4.2.5, we are also able to evaluate series of the form∑∞
n=1

Å
(2nn )

4n(2n−2z−1)

ã2
H2n. for z ∈ N. Again through an application of Lemma 4.2.1 together with Lemma

2.2.1 as in the proof of Theorem 4.2.5, we can evaluate series of the form
∑∞

n=1

(
1
16

)n (2nn )
2
H2n

n+z for z ∈ N.

Corollary 4.2.6. The infinite series
∞∑

n=1

(
2n
n

)2
H2n

16n(n+ 1)2
(4.8)

is equal to 16G+24−48 ln(2)
π + 4− 8 ln(2).

Proof. Through a direct application of Lemma 4.2.1 we find that the series

∞∑
n=1

(H2n −Hn)
(
2n
n

)2
16n(n+ 1)2

is equal to 1
2 4F3

 1
2 ,

1
2 , 1, 1

2, 2, 2

∣∣∣∣∣ 1
− 4 + 16 ln(2)

π . So, from the evaluation

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 1)2
= 16 +

32G− 64 ln(2)

π
− 16 ln(2)

introduced in [18], we find that the problem of evaluating binomial-harmonic series in the above Theorem

reduces to the evaluation of a 4F3(1) series with half-integer parameters. As above, using the canonical

integral formula (
2i
i

)
i+ 1

=

∫ 4

0

xi
»

4−x
x

2π
dx

for the Catalan sequence, we may evaluate (3.27).

Based on the evaluation provided in the above Theorem, through the use of iterative re-indexing, we are

able to obtain new evaluations for sums of the form
∑∞

n=1

Å
(2nn )

4n(n+z)

ã2
H2n for natural numbers z > 1.
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The main Lemma introduced in this Section can also be applied to series that do not involve squared cen-

tral binomial coefficients. For example, a direct application of Lemma 4.2.1 shows that
∑∞

n=1

(
1
64

)n (2nn )(
4n
2n)H2n

n+1

is equal to

8

3
+

8
√
2− 40

√
2 ln(2) + 8 ln

Ä
1 +

√
2
ä

3π
,

and this can also be determined using a generating function from [37], together with a Wallis-type integral.

The exploration of further applications of Lemma 4.2.1 seems like a worthwhile area to pursue.
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Chapter 5

Background on and applications of

Fourier–Legendre theory

5.1 Introduction

In the history of mathematical analysis, there are many strategies for computing infinite series in symbolic

form and it remains a very active area of research. In our recent publication [31], we introduced a variety

of new results on the closed-form evaluation of hypergeometric series and harmonic summations through

the use of new techniques that are mainly based on the use of complete elliptic integrals and the theory of

Fourier–Legendre (FL) expansions.

Inspired in part by our previous work on the evaluation of a 3F2(1)-series related to the parbelos constant

[30], which, in turn, came about through the discovery [19] of an integration technique for evaluating series

involving squared central binomial coefficients and harmonic numbers in terms of 1
π , in the article [31] we

applied a related integration method to determine new identities for hypergeometric expressions, as well as

new evaluations for binomial-harmonic series.

We recall the notation and definition for pFq-series, as indicated in (1.13). We are interested in evaluating

integrals such as ∫ 1

0

K
(√
x
)
g(x) dx (5.1)

for a suitable function g, by expanding K as a Maclaurin series, perhaps after a manipulation of the expres-

sion K, and integrating term-by-term. However, by replacing g(x) with its shifted Fourier–Legendre series
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expansion, integrating term-by-term and equating the two resulting series, we often obtain new closed-form

evaluations. We illustrate this idea with the example described in Section 5.2 below that is taken from our

publication [30], after a preliminary discussion concerning the basics of FL theory.

Legendre functions of order n are solutions to Legendre’s differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0

for n > 0 and |x| < 1. For n ∈ N0, Legendre polynomials Pn(x) are examples of Legendre functions, and

may be defined via the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (5.2)

The following equivalent definition for Pn(x) will also be used:

Pn(x) =
1

2n

n∑
k=0

Ç
n

k

å2

(x− 1)n−k(x+ 1)k. (5.3)

The Legendre polynomials form an othogonal family on (−1, 1), with

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δm,n, (5.4)

which gives us the Fourier–Legendre series for a suitable function g:

g(x) =

∞∑
n=0

ñ
2n+ 1

2

∫ 1

−1

g(t)Pn(t) dt

ô
Pn(x). (5.5)

Letting shifted Legendre polynomials be denoted as P̃n(x) = Pn(2x − 1), polynomials of this form are

orthogonal on [0, 1], with ∫ 1

0

P̃m(x)P̃n(x) dx =
1

2n+ 1
δm,n.

By analogy with the expansion from (5.5), for a reasonably well-behaved function f on (0, 1), this function

may be expressed in terms of shifted Legendre polynomials by writing

f(x) =

∞∑
m=0

cmPm(2x− 1).
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We can determine the scalar coefficient cm in a natural way using the orthogonality of the family of shifted

Legendre polynomials. In particular, we see that if we integrate both sides of

P̃m(x)f(x) =

∞∑
n=0

cnP̃m(x)P̃n(x)

over [0, 1], we get

cm = (2m+ 1)

∫ 1

0

Pm(2x− 1) f(x) dx.

Brafman’s formula states that

∞∑
n=0

(s)n(1− s)n
(n!)2

Pn(x)z
n = 2F1

s, 1− s

1

∣∣∣∣∣ α
 2F1

s, 1− s

1

∣∣∣∣∣ β
 , (5.6)

letting α = 1−ρ−z
2 , β = 1−ρ+z

2 , and ρ =
√
1− 2xz + z2 [16]. The canonical generating function for Legendre

polynomials is [44, 47]

1√
1− 2xz + z2

=

∞∑
n=0

Pn(x)z
n. (5.7)

This gives the following result (see [40] and [47]) which we exploit heavily:

K
Ä√

k
ä
=
∑
n≥0

2

2n+ 1
Pn(2k − 1). (5.8)

If we make use of the standard moment formula

∫ 1

0

xiPn(2x− 1) dx =
(i!)2

(i− n)!(i+ n+ 1)!
(5.9)

for shifted Legendre polynomials, then we can see why (5.8) holds. In particular, from the Maclaurin series

for K, we have that

K
(√
x
)
Pn(2x− 1) =

π

2

∞∑
i=0

Å
1

16

ãiÇ2i
i

å2

xiPn(2x− 1),

and by rewriting the right-hand side as

π

2

∞∑
i=0

Å
(2i)!

i!

ã2
1

16i(i− n)!(i+ n+ 1)!
=

2(sin(πn) + 1)

(2n+ 1)2

using the moments for the family {Pn(2x− 1)}n∈N0 , we obtain the desired result.
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5.2 A motivating example

With regard to the proof of Lemma 2.2.1, since

∫ 1

0

x4n ln
(
1− x2

)
√
1− x2

dx = −
√
πΓ
(
2n+ 1

2

)
(H2n + 2 ln(2))

2Γ(2n+ 1)
,

and since
∞∑

n=0

(−1)nx4n
( 1

2
n

)
ln
(
1− x2

)
√
1− x2

=
√
x2 + 1 ln

(
1− x2

)
we have that the series

∞∑
n=0

(
2n
n

)(
4n
2n

)
H2n

64n(2n− 1)

may be evaluated in terms of the following 3F2(1)-series:

3F2

− 1
2 ,

1
4 ,

3
4

1
2 , 1

∣∣∣∣∣ 1
 .

Using the On-Line Encyclopedia of Integer Sequences, the author of this Thesis had experimentally discovered

that the decimal expansion of the above series seems to agree with that for the the parbelos constant
√
2+ln(1+

√
2)

π [30]. This conjecture is proved in a variety of different ways in [30], where the “palindromic”

formula

3F2

 1
4 ,

1
2 ,

3
4

1, 32

∣∣∣∣∣ 1
 =

8

π
tanh−1 tan

π

8
(5.10)

is introduced and is used in one proof through an application of Fourier–Legendre theory that heavily makes

use of the complete elliptic integral K.

Adopting notation from (5.1), we let g(x) = 1
(2−x)3/2

; the main integral under investigation is then

∫ 1

0

K
(√
x
) 1

(2− x)
3/2

dx. (5.11)

Letting (x)n = Γ(x+n)
Γ(x) denote the Pochhammer symbol, by writing the series in (5.10) as

3F2

 1
4 ,

1
2 ,

3
4

1, 32

∣∣∣∣∣ 1
 =

∞∑
n=0

(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(1)n
(
3
2

)
n
n!

71



=

∞∑
n=0

(
2n
n

)(
4n
2n

)
(2n+ 1)64n

and by noting that
∞∑

n=0

(
2n
n

)(
4n
2n

)
64n

t2n =
2K
Ä»

2t
t+1

ä
π
√
t+ 1

,

we thus find that

3F2

 1
4 ,

1
2 ,

3
4

1, 32

∣∣∣∣∣ 1
 =

2
√
2

π

∫ 1

0

K (
√
r)

(2− r)3/2
dr. (5.12)

Manipulating (5.7) so as to obtain the generating function for shifted Legendre polynomials, we find that

1

(2− x)
3
2

=

∞∑
n=0

(2n+ 1)
√
2
Ä√

2− 1
ä2n+1

P̃n(x),

so that ∫
x∈[0,1]

P̃m(x)
1

(2− x)
3
2

dx =
√
2
Ä√

2− 1
ä2m+1

for allm ∈ N0, from the orthogonality relations for shifted FL polynomials. So, from the important expansion

in (5.8), we have that the integral in (5.11) equals

∫ 1

0

∑
n≥0

2

2n+ 1
P̃n(x)

1

(2− x)
3
2

dx =
∑
n≥0

2

2n+ 1

√
2
Ä√

2− 1
ä2n+1

=
√
2 ln
Ä
1 +

√
2
ä
.

This, together with equation (5.12), gives us the desired evaluation in (5.10).

5.3 An evaluation method due to Campbell, D’Aurizio, and Son-

dow

Generalized harmonic functions are of the form

H(b)
a = ζ(b)− ζ(b, a+ 1), (5.13)
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where ζ(b) denotes the Riemann zeta function evaluated at b, and

ζ (b, a+ 1) =

∞∑
i=0

1

(i+ a+ 1)
b

denotes the Hurwitz zeta function with parameters b and a + 1. In the case b = 1, we often omit the

superscript on the left-hand side of (5.13). We also adopt the standard convention whereby H
(0)
a = a. If we

let cn, c
′
n, . . ., c

(m)
n be hypergeometric expressions, then we define a twisted hypergeometric series to be one

of the form
∞∑

n=0

(
cnH

(γ)
αn+β + c′nH

(γ′)
α′n+β′ + · · ·+ c(m)

n H
(γ(m))

α(m)n+β(m)

)
.

The evaluation of such series using our main technique is of central importance in our work.

We have shown in [31] how this technique may be used to prove that

π

4
=

3F2

−η, 12 , 1
3
2 , 2 + η

∣∣∣∣∣ − 1



3F2

 1
2 ,

1
2 , 1 + η

1, 2 + η

∣∣∣∣∣ 1


(5.14)

for η > −1, and that we may obtain the following identity on the moments of the elliptic-type function

E(
√
x):

∫ 1

0

E(
√
x)xη dx =

π

2(1 + η)
· 3F2

− 1
2 ,

1
2 , 1 + η

1, 2 + η

∣∣∣∣∣ 1


=
4

3(1 + η)
· 3F2

− 1
2 , 1,−η

5
2 , 2 + η

∣∣∣∣∣ − 1

 .

In [31], we have proved the equality

∑
n≥0

Ç
4n

2n

åÇ
2n

n

å
Hn −Hn−1/2

64n
=

π√
2
− 2

√
2

π
ln2
Ä√

2 + 1
ä

and we also have provided a closed-form evaluation for the series

∞∑
n=0

Ç
2n

n

åÇ
4n

2n

å 1
2 + nHn− 1

2
− nHn

64n
.
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In [31], we have offered a new FL-based proof of the 1
π formula

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)
=

8 ln(2)− 4

π
(5.15)

introduced in [19], along with a new proof of the formula

∑
m,n≥0

Å
1

16

ãm (
2m
m

)2
Hn

(n+ 1)(m+ n+ 2)
=

48 + 32(ln(2)− 2) ln(2)

π
− 4π

3

given in [19]. By applying a moment formula that is used to prove the identity in (5.14), we have proved

[31] the following double series result:

∑
n,m∈N0

(n+ 1)!n!Hn

(2m+ 1)(n−m+ 1)!(m+ n+ 2)!
= 12− π2

3
+ 8 ln2(2)− 16 ln(2).

Inspired in part by our above integration method for evaluating series containing factors of the formH2
n+H

(2)
n ,

we have offered [31] a new proof of the formula

∞∑
n=0

Å
1

16

ãnÇ2n
n

å2
H2

n +H
(2)
n

n+ 1
=

64 ln2(2)

π
− 8π

3

using the machinery of Fourier–Legendre expansions. We have also proved [31] the formula

∞∑
n=0

(
2n
n

)2
H2n

16n(2n− 1)
=

6 ln(2)− 2

π
,

which extends our proof of (5.15). In [31], we have proved the equality

∞∑
n=0

Ç
2n

n

å2Hn+ 1
4
−Hn− 1

4

16n
=

Γ4
(
1
4

)
8π2

− 4G

π
,

and have offered a new proof of the equation

∞∑
n=1

(
2n
n

)2
H2n

16n(2n− 1)2
=

4G+ 6− 12 ln(2)

π
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introduced in [32]. Using FL theory, we have, as in [31], proved the formula

∑
m,n≥0

(
2m
m

)2(2n
n

)2
16m+n(m+ n+ 1)(2m+ 3)

=
7ζ(3)− 4G

π2
,

strongly motivating further explorations on our main techniques from [31].

Recall that the polylogarithm function Lin(z) is defined so that

Lin(z) =

∞∑
k=1

zk

kn

for |z| ≤ 1, and in the case n = 2 we obtain the dilogarithm mapping. In [31], we have applied our integration

methods to explore connections between generalized hypergeometric functions and polylogarithmic functions,

providing an evaluation of ∑
n≥1

(
4n
2n

)(
2n
n

)
n 64n

=
3

16
· 4F3

1, 1, 54 , 74
2, 2, 2

∣∣∣∣∣ 1


in terms of a dilogarithmic expression, with a similar evaluation being given for

∞∑
n=0

(
2n
n

)2
(2n+ 1)

16n(n+ 1)4
.

In [31], we have proved a variety of new results on generalized complete elliptic integrals of the form

J(x) =

∫ π/2

0

(√
1− x sin2 θ

)3
dθ.

Using the moments of this function, we have proved [31] that the identity

15π

32
=

3F2

− 3
2 , 1,−η

7
2 , 2 + η

∣∣∣∣∣ − 1



3F2

− 3
2 ,

1
2 , 1 + η

1, 2 + η

∣∣∣∣∣ 1


holds for η > −1. A generalization Jm(x) of J(x) is also introduced in [31], in which we introduced formulas

for evaluating the moments of Jm(x).
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5.4 Related mathematical literature

Some of our main results from [31] are given by the construction of new formulas for 1
π using Fourier–

Legendre expansions. So, it is natural to consider FL-based techniques that have previously been applied to

derive new infinite series formulas for 1
π . One of Ramanujan’s most famous formulas for 1

π is

2

π
=

∞∑
n=0

Å
− 1

64

ãn
(4n+ 1)

Ç
2n

n

å3

,

which was proved by Bauer in 1859 in [6] using a Fourier–Legendre expansion. Levrie applied Bauer’s

classical FL-based method to functions of the form (
√
1− a2x2)2k−1 to derive new infinite sums for 1

π , such

as the Ramanujan-like equation [61]

8

9π
=

∞∑
n=0

Å
− 1

64

ãn (4n+ 1)
(
2n
n

)3
(n+ 1)(n+ 2)(2n− 3)(2n− 1)

.

Much of the subject matter in Wan’s Thesis [82] is closely related to some of our main techniques from

[31]. One of our key methods from [31] is the manipulation of generating functions for Legendre polynomials

to construct new rational approximations for 1
π , as is the case with [82]. The Section in [82] on Legendre

polynomials and series for 1
π makes use of Brafman’s formula (5.6), proving many series for 1

π typically

involving summands with irrational powers.

Wan also explored the use of Legendre polynomials to construct new series for 1
π in [83] and new results

in this area were also introduced by Chan, Wan, and Zudilin in [36]. Brafman’s formula is also applied in

[83] to produce new results on 1
π series, whereas the FL-based methods in [31] mainly make use of Fourier–

Legendre expansions for elliptic-type expressions such as K (
√
x). New series for 1

π are given in [84] through

a generalization of Bailey’s identity for generating functions given by componentwise products of Apéry-type

sequences and the sequence of Legendre polynomials. The construction of hypergeometric series identities

using expansions in terms of Legendre polynomials has practical applications in mathematical physics [56]

and related areas; a variety of binomial sum identities given in terms of generalized hypergeometric functions

are proved in [43] through the use of the family {Pn(x) : n ∈ N0}.
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Chapter 6

Families of double hypergeometric

series for constants involving 1
π2

6.1 Introduction and motivation

The 17 hypergeometric series for 1
π introduced by Ramanujan are among the most celebrated out of the

myriad of groundbreaking mathematical results discovered by Ramanujan. Within the many new areas of

research that are still directly inspired by the 1
π series that Ramanujan discovered over 100 years ago, of

particular note are the techniques introduced by Guillera for constructing Ramanujan-like hypergeometric

series for 1
π2 ; see [2, 48, 49, 50, 52, 53, 54]. This is a main source of inspiration behind the results given in

this Section, in which we make use of recent developments in Fourier–Legendre (FL) theory to formulate a

powerful method for constructing families of rational double hypergeometric series for expressions containing

1
π2 as a factor, especially the constant ζ(3)

π2 , letting

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

Å
1− 1

ps

ã−1

denote the Riemann zeta function. We adopt the standard definition of the term double hypergeometric

series, which traces back to the 1889 article [57] of Jacob Horn [35], in which this expression is defined as a

double power series ∑
m,n≥0

am,n x
myn
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such that the quotients
am+1,n

am,n
and

am,n+1

am,n
are both rational functions in m and n. In this Section, we

show how the integration methods introduced in the recent article [31] may be applied to transform double

hypergeometric sums that cannot be evaluated with elementary or previously known methods into strikingly

simple expressions that provide us with evaluations involving 1
π2 for the original double series. We prove,

via the main FL-based technique from [31], and often in conjunction with Bonnet’s recursion formula [42, p.

124], many new double series transformation formulas that may be successfully applied to evaluate infinite

families of Guillera-inspired double series for expressions involving 1
π2 .

The families of rational double hypergeometric series that we introduce for constants containing 1
π2 as

a factor are of interest for a variety of reasons. These double sums, despite having very simple summands,

are such that the single sums that we obtain by summing over a fixed index also have no known symbolic

evaluation, and it appears that the existing literature on double hypergeometric transforms does not apply

to the infinite families of double hypergeometric series under consideration, which cannot be expressed with

classical families of double hypergeometric sums, as in with Appell functions, Humbert series, etc. The

techniques from FL theory that we apply in this Section give us an efficient way of symbolically computing

many different kinds of families of double hypergeometric series involving products of binomial coefficients.

6.1.1 A motivating example

Let us highlight the formula

14ζ(3)

π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
m+ n+ 1

(6.1)

introduced in this Section, in which we construct infinite families of generalizations of the closed-form

evaluation in (6.1). The techniques that we introduce in this Section are especially useful for the construction

of new families of rational approximations to ζ(3)
π2 , and hence our preliminary discussions on the evaluation

in (6.1) as a motivating example. However, the main purpose of the research in this Section is to introduce

new rational hypergeometric series for constants involving 1
π2 more generally, as in the series

16
√
2 ln(2)

π2
=
∑

m,n≥0

Å
1

4

ã2m+3n
(
2m
m

)2(2n
n

)(
4n
2n

)
m+ n+ 1

(6.2)

that is introduced via the main technique in this Section.

Summing with respect to either of the indices involved in the double sums that we introduce produces

expressions with no symbolic form involving elementary functions or “established” special functions such as
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the Riemann zeta function. In particular, if we take the summand in (6.1) and sum over m ∈ N0, we obtainÅ
1

16

ãn (2n
n

)2
n+ 1

· 3F2

 1
2 ,

1
2 , n+ 1

1, n+ 2

∣∣∣∣∣ 1
 .

As Adamchik describes in [1], there is a rich mathematical history associated with hypergeometric expressions

of the form

S(r) =

∞∑
k=0

Å
1

16

ãk (2k
k

)2
k + r

=
1

r
3F2

 1
2 ,

1
2 , r

1, r + 1

∣∣∣∣∣ 1
 , (6.3)

which were of considerable interest to Ramanujan [1], letting r ∈ N/2. Generalizations of such families of

hypergeometric series were also explored in [12]. However, the 3F2(1) series in (6.3) does not admit any

closed-form evaluation, despite Ramanujan’s identity whereby

S(r) =
16r

πr2
(
2r
r

)2 r−1∑
k=0

Å
1

16

ãkÇ2k
k

å2

in the case whereby r ∈ N. Recalling that the complete elliptic integral of the first kind may be defined so

that

K(x) =
π

2
2F1

 1
2 ,

1
2

1

∣∣∣∣∣ x2
 ,

we find that: From the generating function for the sequence of squared central binomial coefficients, we

obtain the moment formula

S(r) =
2

π

∫ 1

0

zr−1K
(√
z
)
dz. (6.4)

We also recall the above given Maclaurin series expansion for E. The moments of Ramanujan’s general-

izations of K and E were recently applied in [12] to prove some hypergeometric identities, and to evaluate

some 3F2(1)-series. However, the evaluation of series involving expressions as in (6.4) so as to form new

double series evaluations seems to be a new area of research. Elementary methods of series evaluation, as in

with the manipulation of generating functions and the like, cannot be applied to evaluate the series that we

introduce.

In consideration of the amount of interest in 3F2(1)-series of the form indicated in (6.3), as well as

the study of the moments of elliptic-like integrals, more generally, this motivates researching summations

involving these kinds of expressions. We again examine the summand of the series in (6.1), noting its
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symmetry, i.e., its forming a symmetric function. As noted above, the problem of evaluating the series

∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
m+ n+ 1

= ? (6.5)

is equivalent to the problem of evaluating the following series:

∞∑
m=0

Å
1

16

ãmÇ2m
m

å2

S(m+ 1). (6.6)

Of course, by the symmetry of the summand in (6.5), we obtain the same series as in (6.6) by summing over

either of the indices of the above double sum. However, it is unclear as to what kinds of known results on

the hypergeometric S-function defined in (6.3) could be applied successfully to evaluate the difficult double

sum in (6.5). Moreover, it appears that it is not possible to use Wallis-type integral formulas for central

binomial coefficients to evaluate this sum. The key idea behind our proof for (6.1) is given by using the main

method from [31] in conjunction with the moment formula for shifted Legendre polynomials.

6.1.2 Preliminaries

We refer to previous sections on preliminaries on the special functions involved in this Section. However, we

find it appropriate to highlight the recurrence

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x), (6.7)

with P0(x) = 1 and P1(x) = x. Using this recurrence, we can show that the FL expansion for x · g(x) is

given as

x · g(x) =
∞∑

n=0

Å
2n+ 1

4n+ 1
A2n +

2n+ 2

4n+ 5
A2n+2

ã
P2n+1(x),

in the case whereby g is continuous on [−1, 1] [61]. The recursion in (6.7) is often referred to as Bonnet’s

recursion formula. We make note of the corresponding recursion (2n+1)(2x−1)Pn(2x−1) = (n+1)Pn+1(2x−

1)+nPn−1(2x−1) for shifted Legendre polynomials [33], i.e., polynomials of the form Pm(2x−1) for m ∈ N0.

Of particular importance in this Section is the moment formula for shifted Legendre polynomials.
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We adopt the notational convention concerning the Γ-function indicated below:

Γ

 α, β, . . . , γ
A,B, . . . , C

 =
Γ(α)Γ(β) · · ·Γ(γ)
Γ(A)Γ(B) · · ·Γ(C)

.

Recalling the moment formula in (5.9), we record the following more general form of this identity:

∫ a

−a

(x+ a)
α−1

Pν

(x
a

)
dx = (2a)

α
Γ

 α, α

α+ ν + 1, α− ν


for a > 0 and ℜ(α) > 0, as given in [68, p. 195].

We offer a full proof for our motivating example in (6.1) after we prove a much more powerful result, as

in the transformation formula given as Theorem 6.2.1 below.

6.2 Transformation methods based on the work of Campbell et

al.

The study of hypergeometric transforms forms an important aspect about the field of classical analysis.

There is much mathematical literature on transformation identities for double hypergeometric series [35, 59,

63, 71, 72, 81], but it seems that previously known results in this area cannot be applied to prove the results

that we introduce.

Theorem 6.2.1. Let (fn : n ∈ N0) be such that the function g(x) given by the ordinary generating function

for this sequence is well-defined on (0, 1), and such that that the integral

∫ 1

0

K(
√
x)g(x) dx (6.8)

is well-defined and is such that the following holds: If we replace g(x) in the above integrand with the series∑∞
n=0 fnx

n, and replace K(
√
x) by either its Maclaurin series or its shifted FL series, summing over m ∈ N0,

and if the operators
∫ 1

0
· dx,

∑∞
n=0 ·, and

∑∞
m=0 · commute in either case and are such that the following

series are convergent, then

π

2

∑
m,n≥0

Å
1

16

ãm (
2m
m

)2
m+ n+ 1

· fn (6.9)
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equals

2
∑

m,n∈N0
n≥m

1

2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
· fn. (6.10)

Proof. Let f and g be as above, satisfying the above conditions. Starting with the integral in (6.8), let us

rewrite this expression as ∫ 1

0

( ∞∑
n=0

fnx
nK(

√
x)

)
dx. (6.11)

We replace the factor K(
√
x) with its Maclaurin series:

π

2

∫ 1

0

∞∑
n=0

(
fnx

n
∞∑

m=0

Å
1

16

ãmÇ2m
m

å2

xm

)
dx.

So, under the commutativity assumptions of the above Theorem, we obtain the series in (6.9). Now, rewrite

(6.11) by replacing K(
√
x) with the shifted FL series for this expression, so as to obtain:

2

∫ 1

0

( ∞∑
n=0

∞∑
m=0

fn
2m+ 1

xnPm(2x− 1)

)
dx. (6.12)

From the moment formula for shifted Legendre polynomials, as in (5.9) above, together with the commuta-

tivity assumptions given above, we may rewrite (6.12) to yield the expression in (6.10).

Remark 6.2.2. With regard to the double sum in (6.10), it is actually not necessary to enforce the condition

whereby n ≥ m, since 1
(n−m)! vanishes if n−m is a negative integer, by convention.

As an application of the above Theorem, we apply this identity to prove the motivating example from

(6.1). Letting fn :=
(

1
16

)n (2n
n

)2
for n ∈ N0, and writing g(x) in place of the power series expansion∑∞

n=0 x
nfn, from the above Theorem, we obtain that

π

2

∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
n+m+ 1

(6.13)

must equal

2
∑

m,n∈N0
n≥m

Å
1

16

ãn (
2n
n

)2
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
.
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We claim that we may evaluate the finite sum

w∑
n=0

Å
1

16

ãn (
2n
n

)2
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
(6.14)

as Å
1

16

ãw (2w + 1)2
(
2w
w

)2
(2m+ 1)3

(w!)2

(w −m)!(w +m+ 1)!
. (6.15)

Let us show this inductively, for w ∈ N0. To begin with, we have that

0∑
n=0

Å
1

16

ãn (
2n
n

)2
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
= δm,0

for m ∈ N0, letting δ denote the Kronecker delta function, i.e., so that δ0,0 = 1 and δm,0 vanishes for nonzero

m. Setting w = 0 in (6.15), the resultant expression also must be equal to δm,0 for m ∈ N0. So, the base

case for our inductive proof holds. Now, under the assumption that (6.14) equals (6.15) for a given w ∈ N0,

this gives us that
w+1∑
n=0

Å
1

16

ãn (
2n
n

)2
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
(6.16)

must equal the following: Å
1

16

ãw (2w + 1)2
(
2w
w

)2
(2m+ 1)3

(w!)2

(w −m)!(w +m+ 1)!
+Å

1

16

ãw+1
(
2(w+1)
w+1

)2
2m+ 1

((w + 1)!)2

(w + 1−m)!(w + 1 +m+ 1)!
.

So, it remains to be seen that the above expression is equal to the following, recalling (6.15):Å
1

16

ãw+1
(2(w+1)
(w+1)

)2
(2m+ 1)3

(2(w + 1) + 1)2((w + 1)!)2

((w + 1)−m)!((w + 1) +m+ 1)!
.

This may be shown by rewriting
(
2(w+1)
w+1

)
as 2(2w+1)

w+1

(
2w
w

)
and then simplifying our evaluation for (6.16).

So, now that we have proved our closed-form evaluation for the finite sum in (6.14), let us consider the

problem of evaluating the limit of this evaluation as w → ∞. We claim that

lim
w→∞

Å
1

16

ãw (2w + 1)2
(
2w
w

)2
(2m+ 1)3

(w!)2

(w −m)!(w +m+ 1)!

must equal 4
π(2m+1)3 . To prove our closed form for the above limit, one way of going about with this would be

83



to use Stirling’s approximation, i.e., so that by repeated applications of the asymptotic equivalence whereby

n! ∼
√
2πn

(
n
2

)n
, we obtain thatÅ

1

16

ãwÇ2w
w

å2

(2w + 1)2
(w!)2

(w −m)!(w +m+ 1)!
∼

e

π
w2w(w −m)−w+m− 1

2 (w +m+ 1)−w−m− 3
2 (2w + 1)2

for fixed m. Taking the limit of this right-hand expression as w approaches infinity, we obtain 4
π .

So, from the foregoing discussion, we have that the identity whereby

4

π(2m+ 1)3
=

∞∑
n=0

Å
1

16

ãn (
2n
n

)2
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!

holds for m ∈ N0, recalling that we are letting 1
z! vanish for z ∈ Z<0, so that we may instead let the initial

index for the above infinite series be equal to m instead of n = 0. Summing over m ∈ N0 on both sides of

this equation, we can see that the expression in (6.13) must be equal to

8

π

∞∑
m=0

1

(2m+ 1)3
=

7ζ(3)

π
,

giving us the desired result.

We are interested in mimicking the above proof technique, but with the use of variants and generalizations

of the integrand factor K (
√
x), as we later explore.

6.2.1 New results

The above Theorem, on its own, is powerful enough to be able to provide 1
π2 evaluations for both of the

infinite families of rational hypergeometric series suggested below. However, actually applying this Theorem

to prove these evaluations requires some work, as we discuss below.

−7ζ(3) + 2

π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 1)

(6.17)

−63ζ(3) + 14

18π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 3)

(6.18)

· · ·
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7ζ(3) + 6

π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 1)2

189ζ(3) + 194

108π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 3)2

· · ·

We offer a detailed explanation as to how the first out of the above series for ζ(3)
π2 may be obtained from

Theorem 6.2.1; the remaining members of the infinite families of evaluations indicated above may be proved

in essentially the same way. How can we find more explicit identities for

∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 2z + 1)

(6.19)

and ∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2n− 2z + 1)2

(6.20)

for arbitrary z ∈ N?

Example 6.2.3. Via a direct application of Theorem 6.2.1, by letting

fn =

Å
1

16

ãn (
2n
n

)2
2n− 1

, (6.21)

we have that

π

2

∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(n+m+ 1)(2n− 1)

(6.22)

may be rewritten as

2
∑

m,n∈N0
n≥m

fn · (n!)2

(2m+ 1)(n−m)!(n+m+ 1)!
.

We claim that the single sum
∞∑

n=m

fn · (n!)2

(2m+ 1)(n−m)!(n+m+ 1)!

may be evaluated as 8
π · 1

(2m−1)(2m+1)3(2m+3) . To show this, we begin by evaluating the finite sum

w∑
n=m

Å
1

16

ãn (
2n
n

)2
(2n− 1)(2m+ 1)

(n!)2

(n−m)!(n+m+ 1)!
(6.23)
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in closed form as follows:

4m2 + 4m+ 4w + 3

42w+1(2m− 1)(2m+ 3)(2m+ 1)3(2w + 1)
×(

2w+2
w+1

)2
((w + 1)!)2

(w −m)!(w +m+ 1)!
.

This can be shown using induction, and again with the usual recursion for central binomial coefficients. More

specifically, we have that

0∑
n=m

Å
1

16

ãn (
2n
n

)2
(2n− 1)(2m+ 1)

(n!)2

(n−m)!(n+m+ 1)!
= −δm,0,

and by rewriting the above expression involving
(
2w+2
w+1

)2
according to the relation wherebyÇ

2w + 4

w + 2

å
=

2(2w + 3)
(
2w+2
w+1

)
w + 2

,

we obtain our evaluation of (6.23). Again by using the asymptotic equivalence given by Stirling’s approxi-

mation, we may evaluate the limit of our evaluation for (6.23) as w → ∞, in much the same way as in with

our proof of the motivating example highlighted in Section 6.1.1. So, from the identity whereby

∞∑
n=m

fn · (n!)2

(2m+ 1)(n−m)!(m+ n+ 1)!
=

8

π
· 1

(2m− 1)(2m+ 1)3(2m+ 3)

that we obtain, we apply
∑∞

m=0 · to both sides of this identity, and, according to Theorem 6.2.1, this gives

us that the expression in (6.22) equals

16

π

∑
m≥0

1

(2m− 1)(2m+ 1)3(2m+ 3)
,

and by applying partial fraction decomposition to the above summand, we may obtain the desired closed form

for (6.22).

6.2.2 Further applications of the above hypergeometric transform

From the infinite families of series for ζ(3)
π2 displayed above, we are curious as to how the series transformation

method given by Theorem 6.2.1 may be applied more generally. What kinds of series for constants involving

1
π2 can we determine more generally using this result? Adopting notation from Theorem 6.2.1, if we define fn
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with more general products of binomial coefficients, compared to (6.21), then this leads us toward interesting

evaluations, as we consider below.

Example 6.2.4. We claim that the evaluation

16
√
2 ln(2)

π2
=
∑

m,n≥0

Å
1

4

ã2m+3n
(
2m
m

)2(2n
n

)(
4n
2n

)
m+ n+ 1

(6.24)

may be proved through a direct application of Theorem 6.2.1, in much the same as in with the steps that we

had taken to obtain the rational ζ(3)
π2 series in Example 6.2.3. By setting fn :=

(
1
4

)3n (2n
n

)(
4n
2n

)
in Theorem

6.2.1, this Theorem gives us that

π

2

∑
m,n≥0

Å
1

4

ã2m+3n
(
2m
m

)2(2n
n

)(
4n
2n

)
m+ n+ 1

(6.25)

must be equal to

2
∑

m,n∈N0
n≥m

Å
1

2

ã6n (2n
n

)(
4n
2n

)
(2m+ 1)

(n!)2

(n−m)!(n+m+ 1)!
. (6.26)

We claim that the sum
∞∑

n=m

Å
1

2

ã6n (2n
n

)(
4n
2n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!

may be evaluated as 8
√
2

π · 1
(2m+1)(4m+1)(4m+3) . This can be shown to be true by evaluating the partial sum

w∑
n=m

Å
1

2

ã6n (2n
n

)(
4n
2n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!

as

4√
π

Å
1

4

ãw Γ
(
2w + 5

2

)
(2m+ 1)(4m+ 1)(4m+ 3)Γ(w −m+ 1)Γ(w +m+ 2)

,

as may be shown inductively. This gives us that the identity whereby

∞∑
n=m

Å
1

2

ã6n (2n
n

)(
4n
2n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
=

8
√
2

π
· 1

(2m+ 1)(4m+ 1)(4m+ 3)
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must hold for m ∈ N0. So, by applying the operator
∑∞

m=0 · to both sides of this equality, i.e., so that

∑
m,n∈N0
n≥m

Å
1

2

ã6n (2n
n

)(
4n
2n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
=

8
√
2

π

∞∑
m=0

1

(2m+ 1)(4m+ 1)(4m+ 3)
,

we find that we may evaluate this latter sum, i.e., the single hypergeometric sum given above. Proving that

the right-hand side of the above equality equals 4
√
2 ln(2)
π is straightforward, so this evaluation must give us

the desired evaluation for the double sum in (6.24), thanks to our application of Theorem 6.2.1, as given by

the equality of (6.25) and (6.26).

Example 6.2.5. The above transformation Theorem also may be used to give us new rational series for

constants involving 1
π2 that involve non-central binomial coefficients. For example, a direct application of

this Theorem gives us that

18
√
3 ln

(
27
16

)
π2

=
∑

m,n≥0

Å
1

16

ãm Å 1

27

ãn (2m
m

)2(2n
n

)(
3n
n

)
m+ n+ 1

,

as may be proved in much the same way as above. Explicitly, and again adopting our notation from Theorem

6.2.1, we set

fn :=

Å
1

27

ãnÇ2n
n

åÇ
3n

n

å
,

so that Theorem 6.2.1 directly gives us the equality of

π

2

∑
m,n≥0

Å
1

16

ãm Å 1

27

ãn (2m
m

)2(2n
n

)(
3n
n

)
m+ n+ 1

and

2
∑

m,n∈N0
n≥m

Å
1

27

ãn (2n
n

)(
3n
n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
.

So, by evaluating
∞∑

n=m

Å
1

27

ãn (2n
n

)(
3n
n

)
2m+ 1

(n!)2

(n−m)!(n+m+ 1)!

in closed form as

9
√
3

2π
· 1

(2m+ 1)(3m+ 1)(3m+ 2)
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and by applying the operator
∑∞

m=0 to both sides of this equality, we may obtain the desired result.

6.2.3 Applying the shifted FL expansion for the complete elliptic integral of

the second kind

Many of the main results from [31] are based on the use of integrals given by replacing K (
√
x) with E (

√
x)

in (5.1). So, it is natural to construct an analogue of Theorem 6.2.1 as applied to integrals as in (6.27) below,

subject to the conditions specified below.

Theorem 6.2.6. Let the sequence (fn : n ∈ N0) satisfy the following conditions. We let g(x) denote the

ordinary generating function for this sequence, and we suppose that g is well-defined on (0, 1), and is such

that that the integral ∫ 1

0

E(
√
x)g(x) dx (6.27)

is well-defined and is such that the following holds: If we replace g(x) in the above integrand with the series∑∞
n=0 fnx

n, and replace E(
√
x) by either its Maclaurin series or its shifted FL series, summing over m ∈ N0,

and if the operators
∫ 1

0
· dx,

∑∞
n=0 ·, and

∑∞
m=0 · commute in either case and are such that the following

series are convergent, then the expression

− π

2

∑
m,n≥0

Å
1

16

ãm (
2m
m

)2
(2m− 1)(m+ n+ 1)

· fn (6.28)

equals

− 4
∑

m,n∈N0
n≥m

1

(2m− 1)(2m+ 1)(2m+ 3)

(n!)2

(n−m)!(n+m+ 1)!
· fn. (6.29)

Proof. Working under the assumptions of the above Theorem, we rewrite the integral in (6.27) as

∫ 1

0

( ∞∑
n=0

xnf(n)

)
E
(√
x
)
dx, (6.30)

and by expanding the factor E (
√
x) with its Maclaurin series, we obtain that (6.30) equals (6.28), by moving

the integration operator into the summand of the double series that we obtain. Replacing the integrand

factor E (
√
x) with its shifted FL expansion in (6.30), we obtain the expression in (6.29), again under the

assumption that we may move the
∫ 1

0
· dx operator inside the double sum that we obtain.

Through a direct application of the above Theorem, we obtain the infinite families of series for constants
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involving 1
π2 indicated below, as may be verified.

7ζ(3) + 6

2π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2m− 1)(2n− 1)

(6.31)

189ζ(3) + 130

108π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ n+ 1)(2m− 1)(2n− 3)

· · ·

−21ζ(3)− 50

8π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(2m− 1)(m+ n+ 1)(2n− 1)2

−189ζ(3) + 514

324π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(2m− 1)(m+ n+ 1)(2n− 3)2

· · ·

For the sake of clarity let us offer a proof for the first out of the evaluations listed above. Setting

fn :=

Å
1

16

ãnÇ2n
n

å2
1

2n− 1

in Theorem 6.2.6, from this Theorem, we immediately have that

−π
2

∑
m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(2m− 1)(2n− 1)(m+ n+ 1)

and

−4
∑

m,n∈N0
n≥m

Å
1

16

ãn (
2n
n

)2
(2m− 1)(2m+ 1)(2m+ 3)(2n− 1)

(n!)2

(n−m)!(n+m+ 1)!

must be equal. With regard to the latter summand displayed above, we may verify the closed-form identity

whereby the single sum

∞∑
n=m

Å
1

16

ãn (
2n
n

)2
(2m− 1)(2m+ 1)(2m+ 3)(2n− 1)

(n!)2

(n−m)!(n+m+ 1)!

must equal

8

π
· 1

(2m− 1)2(2m+ 1)3(2m+ 3)2
,

and by applying
∑∞

m=0 · to both sides of this equality, we may obtain the closed-form evaluation displayed
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in (6.31).

We may also apply Theorem 6.2.6 to obtain rational double hypergeometric series for constants involving

expressions as in
√
2 ln(2)
π2 , as suggested below:

16
√
2(−1− 8 ln(2))

15π2
=
∑

m,n≥0

Å
1

2

ã4m+6n
(
2m
m

)2(2n
n

)(
4n
2n

)
(m+ n+ 1)(2m− 1)

.

6.3 Applications of Bonnet’s recursion formula

How can we generalize the transformation methods given in Theorem 6.2.1 and Theorem 6.2.6 so as to be

applicable to more general integrals of the form

∫ 1

0

e(x)g(x) dx (6.32)

for an elliptic-type expression e(x)? For example, let us consider making use of the following Maclaurin

series:

π

4

∞∑
m=0

xm+1
(
2m
m

)2
16m(m+ 1)

= E
(√
x
)
−K

(√
x
)
+ xK

(√
x
)
. (6.33)

To mimic our proofs of Theorem 6.2.1 and Theorem 6.2.6, we need to compute the shifted FL expansion for

the right-hand side of the above equality. To determine this expansion, we make use of Bonnet’s recursion

formula.

In general, we obtain much more complicated coefficients in the shifted FL expansions for expressions

such as

E(
√
x)−K(

√
x)

x
, (6.34)

i.e., expressions involving negative powers of x times elliptic-type integral expressions. For example, we have

that ∫ 1

0

E (
√
x)−K (

√
x)

x
Pn(2x− 1) dx = 4(−1)nOn+1 −

2

2n+ 1
+ (−1)n+1π,

where On =
∑n−1

k=0
(−1)k

2k+1 . These more complicated kinds of FL expansions make it difficult to apply analogues

of the transformation identities as in Theorem 6.2.1 and Theorem 6.2.6 in the case whereby we use the

Maclaurin/FL series for expressions involving negative powers of x and elliptic-type functions, as in (6.34).

On the other hand, using a direct analogue of Theorems 6.2.1 and 6.2.6 based on the identity in (6.33),

91



together with an application of Bonnet’s recursion formula to give us the shifted FL identity whereby

E
(√
x
)
−K

(√
x
)
+ xK

(√
x
)
= 4

∞∑
m=0

(2m+ 1)

(2m− 1)2(2m+ 3)2
Pm(2x− 1),

we may obtain the infinite families of double series for constants involving 1
π2 indicated below, letting fn be

equal to (
2n
n

)2
16n(2n− 2z + 1)

or

(
2n
n

)2
16n(2n− 2z + 1)2

for a fixed parameter z ∈ N.

7ζ(3)− 26

4π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ 1)(m+ n+ 2)(2n− 1)

(6.35)

189ζ(3)− 958

324π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ 1)(m+ n+ 2)(2n− 3)

· · ·

78− 21ζ(3)

8π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ 1)(m+ n+ 2)(2n− 1)2

1682− 315ζ(3)

648π2
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ 1)(m+ n+ 2)(2n− 3)2

· · · (6.36)

We offer a proof for the first out of the formulas listed above; the remaining evaluations may be proved in

the same kind of way. We begin by defining

fn :=

Å
1

16

ãnÇ2n
n

å2
1

2n− 1
,

and with regard to (6.32), we also set

e(x) := E(
√
x)−K(

√
x) + xK(

√
x),

and we define g(x) so that:

g(x) :=

∞∑
n=0

fn x
n.
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Mimicking our proofs of Theorems 6.2.1 and 6.2.6, we can show that

π

4

∑
m,n≥0

Å
1

16

ãm (
2m
m

)2
(m+ 1)(m+ n+ 2)

· fn

must be equal to:

4
∑

m,n∈N0
n≥m

2m+ 1

(2m− 1)2(2m+ 3)2
(n!)2

(n−m)!(n+m+ 1)!
· fn.

With regard to this latter summand, applying
∑∞

n=m · to this expression and evaluating this resultant series,

and then summing over m ∈ N0, we are led to the explicit evaluation in (6.35).

Again applying our main technique in the case whereby we set the elliptic-type factor e(x) in the in-

tegrand in (6.32) to be equal to e(x) = E (
√
x) − K (

√
x) + xK (

√
x) we may obtain families of rational

double hypergeometric series for constants involving 1
π2 , with non-central binomial coefficients involved in

the summand, as below:

72
√
3(71− 36 ln(2) + 27 ln(3))

1225π2
=
∑

m,n≥0

(
2m
m

)2(2n
n

)(
3n
n

)
16m27n(m+ 1)(m+ n+ 2)

.

6.3.1 The generating function for squares of Catalan numbers

From the Maclaurin series for K and E, we obtain the following identity:

∞∑
m=0

Å
1

16

ãmÇ2m
m

å2
xm+1

(m+ 1)2
=

16E (
√
x)

π
− 8K (

√
x)

π
+

8xK (
√
x)

π
− 4.

Through a direct application of Bonnet’s recursion formula, we may express the right-hand side of the above

identity with the shifted FL expansion given as below:

128

π

∞∑
m=0

Pm(2x− 1)

(2m− 1)2(2m+ 1)(2m+ 3)2
− 4.

Mimicking our proofs for Theorems 6.2.1 and 6.2.6, and exploiting the above shifted FL expansion, we can

show, for sequences (fn : n ∈ N0) satisfying the appropriate analogues of the conditions in Theorems 6.2.1

and 6.2.6, that the identity whereby

∑
m,n≥0

Å
1

16

ãm (
2m
m

)2
(m+ 1)2(m+ n+ 2)

· fn
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equals −4
∑∞

n=0
1

n+1 · fn plus

128

π

∑
m,n∈N0
n≥m

(n!)2

(2m− 1)2(2m+ 1)(2m+ 3)2(n−m)!(n+m+ 1)!
· fn

holds. This may be used to prove that

24 + 28ζ(3)

π2
− 16

π
=
∑

m,n≥0

Å
1

16

ãm+n
(
2m
m

)2(2n
n

)2
(m+ 1)2(m+ n+ 2)

,

which is particularly interesting, providing a rational double hypergeometric series for a closed form involving

the constants 1
π ,

1
π2 , and

ζ(3)
π2 . We obtain the infinite generalizations of the above evaluation suggested below.

32

3π
− 21ζ(3) + 50

2π2
=
∑

m,n≥0
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16
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(
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)2(2n
n

)2
(m+ 1)2(m+ n+ 2)(2n− 1)
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45π
− 945ζ(3) + 1738
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m,n≥0
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(m+ 1)2(m+ n+ 2)(2n− 3)

· · ·

21ζ(3) + 178

4π2
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9π
=
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m,n≥0

Å
1

16

ãm+n
(
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m

)2(2n
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)2
(m+ 1)2(m+ n+ 2)(2n− 1)2

1246 + 147ζ(3)

108π2
− 2432

675π
=
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m,n≥0

Å
1

16

ãm+n
(
2m
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)2(2n
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(m+ 1)2(m+ n+ 2)(2n− 3)2

· · ·

For example, setting

fn :=

Å
1

16

ãnÇ2n
n

å2
1

2n− 1
,

we find that the problem of evaluating the first out of the double series listed above is equivalent to that for:

∑
m,n∈N0
n≥m

(n!)2fn
(2m− 1)2(2m+ 1)(2m+ 3)2(n−m)!(n+m+ 1)!

,

and by applying
∑∞

n=m · to the expression given by the above summand, we obtain

8

π
· 1

(2m− 1)3(2m+ 1)3(2m+ 3)3
,
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and by summing over m ∈ N0, this allows us to determine the desired closed form, in this case.

We may greatly generalize the double hypergeometric transforms given in this Section, through the use

of Bonnet’s recursion formula, by mimicking the above techniques and by letting the elliptic-type integral

function e(x) in (6.32) be equal to power series expansions as below, letting z1 ∈ N and z2 ∈ N0:

∞∑
m=0

Å
1

16

ãm (
2m
m

)2
m+ z1

xm+z1+z2 ,

∞∑
m=0

Å
1

16

ãm (
2m
m

)2
(m+ z1)2

xm+z1+z2 ,

∞∑
m=0

Å
1

16

ãm (
2m
m

)2
2m− 2z1 + 1

xm+z2 ,
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m=0

Å
1

16

ãm (
2m
m

)2
(2m− 2z1 + 1)2

xm+z2 .

We strongly encourage the pursuit of new research areas based on these kinds of applications of the techniques

introduced in this Section.
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Chapter 7

Further explorations

This concluding section is partly based on feedback on this Thesis from members of this author’s supervisory

committee regarding further areas of research regarding the material in this Thesis.

To begin with, Nantel Bergeron [7] suggested that the material in Sections 5 and 6 may be generalized

using families of orthogonal polynomials apart from the Legendre polynomials. In this regard, it may be

worthwhile to explore the use of Hermite polynomials, but a full exploration of this kind of subject is beyond

the scope of our current considerations. Incidentally, the use of orthogonal polynomials in what is referred

to as the Askey scheme was suggested in the context of the author’s recent research with Wenchang Chu

related to the double series introduced in [28]. Systematically applying polynomials in the Askey scheme

using direct analogues or variants of main identities from Sections 5 and 6 may serve as a basis for a suitable

follow-up to this Thesis.

The recent publication [28] indicated above was based on further applications of the double series trans-

forms from Section 6, using special values for expressions involving the dilogarithm function. In the author’s

forthcoming paper for the Bulletin of the Irish Mathematical Society [22], it is noted that previously known

two-term dilogarithm relations as in [21] may be applied in conjunction with identities from [28] in order to

obtain interesting formulas as below [22]:

∑
m,n≥0

Å
1

16

ãm Å 1

20

ãn (2m
m

)2(2n
n

)
m+ n+ 1

=

√
5π

3
− 6

√
5 ln2(ϕ)

π
,

∑
m,n≥0
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1

16

ãm Å
− 1
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ãn (2m
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)2(2n
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)
m+ n+ 1

=
16G√
3π

−
2 ln
Ä
2 +

√
3
ä

√
3

.
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As in [22], we encourage a full exploration of this subject.

References citing the journal article reproduced in Section 2 include [33, 86, 87, 88]. We encourage the

development of the methods given in this Thesis in conjunction with the material from [33, 86, 87, 88]. In

this regard, the coefficient-extraction methods due to Wang and Chu [87] are especially noteworthy, since

these methods introduced in [87] yielded explicit identities for infinite families of generalizations of series

introduced in [19]. The bijective result known as the modified Abel lemma on summation by parts was

recently employed in [27] to build on the material from both [19] and [87]. The integration-based methods

from Section 2, the hypergeometric-based methods from [87], and the combinatorial methods from [27] are

remarkably and fundamentally different, but since these disparate methods have been successfully applied

to achieve similar results, this suggests that it may be worthwhile to pursue interdisciplinary explorations

based on “combinations” of the methods from [19, 27, 87].

With reference to the list of the author’s publications given above, prior to Section 1, the author has

explored the use of a variety of different techniques in relation to the contents of Sections 2–6. In this regard,

the Wilf–Zeilberger method [67] has been applied by the author in [23, 24, 25], and fractional calculus-based

methods have been applied in [26]. The author is actively involved in research based on WZ-type telescoping

methods relevant to the contents of Sections 2–6, as well as research based on the “semi-integration by parts”

method formulated in [26].
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