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Abstract— The aim of the paper is to present an inverted 
pendulum system that operates in two different modes. Firstly, 
it operates in a static balancing mode, during which the 
controller tries to keep the pendulum balanced and maintain the 
current position of the pendulum carriage. Secondly, it also 
operates in a velocity control mode, so that the carriage can 
move at a selective velocity while simultaneously maintaining 
pendulum balance. In order to realize these two modes of 
control we implement a state feedback controller and schedule 
gain depending on the selected mode of operation of the system. 
We first describe the design and construction of the system. We 
then perform state space analysis, build state feedback 
controllers designed as linear quadratic regulators (LQR), and 
run tests to examine the operation of the system whilst 
subjecting the pendulum to impulsive disturbances. In 
particular, we investigate differences in control behavior in 
static position mode and in velocity-controlled mode. We 
present the experimental results and discuss their implications. 

Keywords— State feedback controller, gain scheduling, 
inverted pendulum, Dual mode control, DIN Rail, LQR. 

I. INTRODUCTION 
Stabilizing an unstable system is a classical problem in 

control engineering. Indeed, in control theory and robotics, the 
inverted pendulum system has been one of the main 
benchmarks used almost for the last 100 years [1]. Due to its 
importance, many researchers have been developing different 
inverted pendulums and implemented different control 
systems methods to stabilize them. In this system, the balance 
of the pendulum has to be controlled by moving the cart back 
and forth within the limited travel of the cart. 

The first researcher to demonstrate a solution to the 
inverted pendulum system was James Kerr Roberge in 1960 
[2,3]. At the time, his system was the first to be thoroughly 
researched and successfully controlled, although there seemed 
to be few applications of the technology. Since then, it has 
proved to form an important basis for systems in several fields 
of engineering. For example, two systems that involves 
similar control of balancing are rockets at take-off and during 
flight, or stabilizing a quadcopter [4].  

 Many designs for inverted pendulums have been proposed 
[5 - 8]. The current system is an extended version of a previous 
inverted pendulum [9]. Here we modified the previous design 
to facilitate construction and improve safety.  The new design 
is much lighter than the original, making it much more 
portable. It also makes use of more off-the-shelf components 
which will make it easier for other researchers to construct and 
replicate the system.  

 We also incorporate additional sensors to assist evaluation 
of behavior. In particular, we place an encoder on the stepper 
motor shaft so that we can accurately estimate cart position. In 
addition, we intercept the signal from the encoder located on 

the cart so we can also record the pendulum angle. This 
facilitates measurement of pendulum behavior during 
balancing.  

 As well as presenting a design for pendulum and 
controller, the contributions of this paper is also to investigate 
gain scheduling to change controller characteristics during 
different operating modes. We first describe a state space 
model for the inverted pendulum and its mechanical design. 
We then discuss controller design and simulation. Finally, we 
present the results from actual physical operation during 
balancing. 

 
Fig 1. Schematic of pendulum showing all main components.  

II. MATHEMATICAL ANALYSIS 

A. Nonlinear analysis of pendulum dynamics 
A schematic of the new pendulum design is shown in Fig. 

1. The non-linear differential equation describing the inverted 
pendulum kinematics can be derived by consideration of 
forces. We extend the result of [10] by including a damping 
term, leading to the expression 

(𝐼 + 𝑚𝑙!)
𝑑!𝜃
𝑑𝑡! + 𝜇

𝑑𝜃
𝑑𝑡 = 𝑚𝑔𝑙 sin 𝜃 +𝑚𝑙

𝑑!𝑥"
𝑑𝑡! cos 𝜃

(1) 

where the angle to the vertical is denoted by θ, the coefficient 
of viscosity is denoted by μ, the mass of the pendulum is 
denoted by m, the moment of inertia of the rod about its center 
of mass is I, the length to the center of mass is denoted by l 
and the displacement of the pivot is given by xp. 

Here we focus on kinematic analysis. We note that a 
kinematic description is sufficient to derive control, and we do 
not need to control forces in the system if we use cart velocity 
as the control input (this is also the case if we use acceleration 
control). To control the cart using applied force (which is often 
done in many inverted pendulum implementations), we would 
also need to make use of additional equations to capture the 
cart forces and dynamics.  

 The non-linear expression in equation (1) can be linearized 
by calculating the system Jacobian and evaluating it around its 
equilibria positions. In the pendulum’s inverted configuration, 



this leads to a linearized differential equation which takes the 
form: 
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B. Laplace analysis of pendulum dynamics  
It is enlightening to examine the linearized differential 

equation describing the inverted pendulum kinematics in the 
s-domain, since it yields important insights to the behavior of 
the system. From the differential equation (2) describing the 
linearized pendulum, we next apply Laplace transforms 
assuming zero initial conditions. 

5(𝐼 + 𝑚𝑙!)𝑠! + 𝜇𝑠 −𝑚𝑔𝑙8Φ(𝑠) = 𝑚𝑙𝑠!𝑋"(𝑠) (3) 

 We now write down the transfer function  

Φ(𝑠)
𝑋"(𝑠)

=
𝑠!𝑚𝑙

5(𝐼 + 𝑚𝑙!)𝑠! + 𝜇𝑠 −𝑚𝑔𝑙8
(4) 

If we wish to use velocity control, we can write that 
velocity as the differential of position. In the Laplace domain 
this leads to the relationship 

 
𝑉" = 𝑠𝑋" (5) 

We next rearrange the transfer function to yield a unity 
term in front of the highest power of s. 
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(6) 

 
Comparing equation (6) with the canonical form of a 2nd 

order linear dynamical system, where 𝜔# is the natural 
frequency of the system and 𝜉 is its damping ratio: 
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	(7) 

 
We see that by inspection the natural frequency 𝜔#is given 

by the expression 

⟹𝜔# = H
𝑚𝑔𝑙

(𝐼 + 𝑚𝑙!)
(8) 

 
We can relate angular frequency to frequency in cycles per 

second since 
	𝜔# = 2𝜋𝑓 

Therefore  

⟹ 𝑓# =
1
2𝜋

H
𝑚𝑔𝑙

(𝐼 + 𝑚𝑙!)
(9) 

 
Similarly, by inspection is can be seen that the damping 

ratio 𝜉 is given by the expression 

⟹ 𝜉 =

𝜇
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=
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These equations provide a useful means to evaluate the 
important system parameters from 𝜔#  and 𝜉  by observing 
behavior of the pendulum, for example whilst it passively 
swings in the non-inverted configuration after an initial push. 

C. State space model of balancing  
 To implement state feedback control of balancing in an 
inverted configuration, we use a mathematical expression of 
the system that captures its dynamics in state space format, 
following the derivation in [9] starting from the linearized 
system given in equation (2).  

 
 We implement the velocity control of the cart needed to 
balance the pole using a stepper motor, which can easily 
realize the desired cart velocity. That is, we use cart velocity 
as the control input (u = Vc). To stabilize the pendulum using 
velocity control, we first write the second derivative control 
term in equation (2) on the RHS as a first derivative of velocity 
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We choose the following state variables so no derivatives 

of the control velocity appear as control terms: 
 

𝑥% = 𝜃	 (13) 
 

𝑥! =
𝑑𝜃
𝑑𝑡 − 𝑏&𝑉𝑐

(14) 
 
As shown in [9], this leads to the state space matrix 

representation of the system 
 

⇒ S
�̇�%
�̇�!
U = V

0 1

−𝑎! −𝑎%
X S
𝑥%
𝑥!
U + S

𝑏&
−𝑎%𝑏&

U 𝑣$ (15) 

 

y = [1 0] S
𝑥%
𝑥!
U (16) 

where we represented the constant coefficient terms as 
follows: 

𝑎% =
𝜇

(𝐼 +𝑚𝑙!)
(17)

𝑎! =
−𝑚𝑔𝑙

(𝐼 + 𝑚𝑙!)
(18)

𝑏& =
𝑚𝑙

(𝐼 + 𝑚𝑙!)
(19)

 

 
These values were numerically evaluated using 

measurements of the physical pendulum. This 2x2 system can 
be directly used as a basis for velocity control, in which the 
inverted pendulum balances and the cart can simultaneously 
move along the rail at a specified velocity.  

In order to explicitly implement position control on the 
cart location, we add states to the system state vector that 
directly represent cart position. Thus, we first add a 3rd state to 
directly represent cart position. This can be achieved with by 
integrating the control velocity, providing one means of 
estimating the cart’s location  



�̇�' = 𝑉𝑐	 (20) 

Alternatively, the cart position can be directly measured 
from the stepper motor control signal, by appropriately 
counting drive pulses. The latter approach is more accurate 
since it represents what is actually happening to the cart, and 
was used in our controller implementation. 

 The additional positional state 𝑥' further expands the state 
space matrix representation of the system. In addition, we can 
include a 4th state to represent the integrated deviation of 
position state x3 from the origin. Such incorporation of integral 
action has the effect of removing steady-state positional errors 
in cart position. This will ensure the system is able to 
effectively maintain the cart at its starting location. 
Incorporation of the additional two states x3 and x4 leads to the 
state space equations:  
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y = [1 0 0 0]
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To output pendulum angle from the state space model, 

which is later necessary to provide a correction for the 
observer used in the controller (discussed in the next section), 
we choose the C matrix to select state x1, which corresponds 
to pendulum rod angle. Note that there is no D matrix term. 

D. Designing the state feedback controllers 

To stabilize the pendulum in its inverted configuration, we 
use a full state feedback controller. This can maintain balance 
even when noise and disturbances are present. To implement 
such a controller, we need to calculate the state feedback gain 
vector K. This gain can be found in many ways, including 
using pole placement or by optimal control methods, which 
we adopted here. To find gain K to implement a linear 
quadratic regulator, we made use of the MATLAB lqr 
command [11].  

For velocity control, we base the design on the 2x2 system 
shown in equations (15,16). Diagonal terms in the 2x2 Q 
matrix and 1x1 R matrix were specified to appropriately 
penalized the system states and control respectively.  

We note that penalizing state ensures it approaches its 
desired target value – in our case it keeps the pendulum angle 
near zero, resulting in effective balancing. Penalizing R 
suppresses excessively high velocity movement of the cart.  
The optimal control cost terms Q and R were found by 
experimentation. 

Q = V
1 0

0 1
X (23)	 

 
R = 0.1 (24)	 

 
For position control using integral action, we base the 

design on the 4x4 system shown in equations (21, 22). 
Diagonal terms in the 4x4 Q matrix and 1x1 R matrix were 
specified to appropriately penalized the system states and 
control respectively. The optimal control cost terms Q and R 
were again found by experimentation. 

Q =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 5⎦
⎥
⎥
⎥
⎥
⎥
⎤

(25)	 

 
R = 0.5 (26)	 

 
Notice to achieve cart position control, we more heavily 

weight the integral action state x4 and ignore state x3 in the 
optimization. Changing operation between velocity and 
position control can be achieved by switching between the 
corresponding gains. Note it is necessary to reset the integral 
state x4 to zero each time the mode changes.  

In position mode, using integral action, the reference input 
is set to zero to maintain cart position at its current location. 
In velocity control mode, to achieve good tracking of the 
desired reference velocity input, it is necessary to compute the 
feedforward pre-emphasis term 𝑁g: 

𝑁g = −[C(A − BK))%	B])% (27) 

The pre-scaling of the reference velocity input by 𝑁g 
ensured the robot position moves at the desired velocity. Here 
we note that 𝑁g  had a value of 1, since the reference input 
directly controlled the output cart velocity of the system.  

E. Designing the Luenberger observer 

 We used an observer to estimate full system state. The 
Luenberger update for estimated system state is given by 

𝑋l̇ = 𝐴𝑋l + 𝐵𝑈 + 𝐿(𝑌 − 𝐶𝑋l) (28) 

Where the hat symbol denotes state estimate. Here we 
once again use the MATLAB lqr command, to design the 
Luenberger gain L by designing another linear quadratic 
regulator. Again, diagonal terms in the 2x2 Q matrix and 1x1 
R matrix were specified to penalize the system states and 
control respectively. Once again, the parameter values were 
found by experimentation. 

Q = V
1000 0

0 1000
X (29)	 

 
R = 0.1 (30)	 

Notice that we used strong penalization on both observer 
states. Also, we note that we do not predict the velocity or 
position of the cart using the observer. Indeed, we can easily 



estimate the velocity of the cart, since we use velocity control 
of the stepper motor.  

III. MECHANICAL DESIGN OF THE INVERTED PENDULUM 

A. Pensulum rod 

   The pendulum rod was constructed from a relatively short 
340mm length of brass. Brass was chosen since it is an easy 
to machine and relatively high-density material. It was tapped 
at one end so it could be screwed firmly into a mounting clamp 
attached to the main shaft to ensure very firm attachment (Fig. 
2). A short pendulum length makes balancing more 
challenging since the cart needs to move and react faster due 
to the system’s correspondingly higher natural frequency 𝜔#. 
However, a short rod length is easier to accommodate and is 
less dangerous to the operator, since the chances of hitting 
anyone is much reduced. It is also a better model for other 
smaller systems, such as balancing robots.  

 A round flat 3D printed disc was attached to the end of the 
pendulum to improve safety and to provide a platform on 
which to balance objects. A PLA 3D printed cart plate 
supported a shaft that attached to the pendulum rod so it could 
swing freely. It made use of a bearing on one end and an 
encoder the other end so the angle of the rod to vertical could 
be measured (Fig. 2). In addition, a low-cost MPU-6050 6 
DOF gyro/accelerometer IMU was attached to the pendulum 
rod close to its axis of rotation, providing an additional means 
of angle measurement.  

B. V-groove profile 

The mechanical design made use of V-groove profile 
section for the linear axis to facilitate construction using an 
off-the-shelf gantry plate, which ran along the V-grooves in 
its sides. The pendulum structure was supported on a base 
constructed from profile. (Fig. 3). The cart was driven back 
and forwards along the aluminum V-rail using a GT2 belt 
operated by a NEMA 23 stepper motor located at the end of 
the rail. An encoder was mounted on its shaft to enable 
measurement of cart position to be made (Fig. 4).  

 

 
Fig 2. 3D printed Pendulum Cart. The pendulum shaft is supported by a 
bearing on the RHS and an encoder on the LHS. The encoder measures 
angular position of the pendulum rod. The IMU is located on the 
pendulum rod assembly on a support such that when the pendulum is in 
its inverted  configuration, rotation occurs around the y-axis of the IMU 
sensor, with its x-axis  pointing downwards in the opposirte direction to 

the rod, with the z-axis in the horizontal plane. The directions of IMU y- 
and z-axes are shown in yellow. 

IV. DIN RAIL CONTROLLER PANEL 

A. DIN rail construction 

As part of this project, a DIN rail controller panel was 
constructed that would operate the current inverted pendulum 
system, and also support future projects.  

 
Fig 3. Side view of the pendulum. The stepper motor with encoder fitted  
is mounted on the RHS and drives a GT2 timing belt loop. The latter runs 
the length of the rail and  it kept tight using a pulley system on the LHS. 
The belt attaches to the cart shown here in the middle of the rail. The rail 
assembly is firmly attached to an aluminum profile base to minimize 
unwanted movement during operation. 

 
Fig 4. The custom-made mechanical components were 3D printed with 
PLA using a Creality 6SE printer, such as the encoder mount for the 
stepper motor. 

B. Top connection panel 
The controller panel used a female USB-B connection to 

connect the Arduino Mega 2560 within the controller 
assembly with the PC that was used to develop software and 
also send control commands.  

C. D connectors 
The panel also made use of 7 female D-connectors to 

interface to one SPI device, one encoder, one I2C device and 
4 stepper motors. This panel is easy to connect-up to the 
inverted pendulum apparatus due to the use of the D-
connectors.  

 
The plugs on each of the different attached component 

connected into this panel have a unique connection pattern, to 
prevent accidental inappropriate connections causing damage. 
The power pins assignments were the main issue here, and 
care was taken to keep them away from other signal inputs and 
outputs to ensure connection errors would not lead to 



component damage. The panel connector interface and wring 
diagrams are shown in Figs. 5-9. 

 

 
Fig 5. 3D design in Autodesk Fusion of the controller panel cover 

 

 
Fig 6.Rear view of solder D-Connections between two stepper motors 
and control panel 

 
Fig 7. Rear view of solder D-Connections between encoder and control 
panel 

 
Fig 8. Rear view of solder D-Connections between I2C and control panel 

The internal space of the controller panel was divided up by 
three rails; a power supply rail, a motor driver and power 
converter rail and a microcontroller rail (Fig. 10). In addition, 
slotted conduit was placed between the rails to route and 
organize the cables, and avoid any chance of the cables 
touching and interfering with other components. To construct 
a robust and neat DIN rail system, where possible we made 
use of components which had rear DIN rail mounts. In the 
cases where the components were not already setup for use in 
the DIN rail system, supports were designed and fitted with 
DIN rail clamps. 

 

Fig 9. Rear view of solder D-Connections between SPI and the control panel 

The power rail was divided in three main parts, 1) an AC 
circuit breaker section. 2) a PULS Dimension DIN rail power 
supply section, which supplied 24v at 5A, and 3) a section 
consisting of three DC Circuit breakers to enable power to the 
main control components be disconnected individually and to 
protect against possible short circuit damage. 

D. Motor drivers 

The motor driver and power converter rail operated up to 
four stepper motors that could be interfaced the control panel. 
This rail used two 3D printed stepper motor carriers and each 
of them supported two A4988 stepper motor drivers. They 
were supplied with 24v from the mains AC/DC power supply 
via the motor driver power breaker.  

The A4988 chip has 8 different types of micro-stepping 
resolution. This project used ¼ step resolution for all four 
stepper motors, which meant the full step was sub-divided into 
4 smaller sub-steps and smoothed-out the rotation of the 
motor. To select ¼ stepping mode, DIL switches on the 
expansion boards were set appropriately. The A4988 can run 
from a supply voltage between 8v and 35v, and deliver a 
current between 1.5A and 2.2A. The breakout board has a 
potentiometer that allows manual setting of its current limit. 
To do so, it is necessary to measure the voltage on the 
potentiometer and use the following formula to calculate the 
required output voltage: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑖𝑚𝑖𝑡 = 𝑉𝑅𝑒𝑓 ∗ 2 (31) 
It was important to adjust this value to ensure the stepper 

motors would run properly, and in this case the current limited 
needed for our NEMA23 stepper motors was 1.5A. Higher 
current could damage the motors and the drivers. Also, if the 
current was set less than 1.5A, the motors would not operate 
correctly and could possibly stall.  

To avoid the motor drivers overheating, it was crucial to 
place a small cooling fan just in top of them, to cool them. 
Thus, to avoid thermal of damage of these chips, two DC axial 
fans were used, which need a supply voltage of 12v and was 
supplied using a Buck converter operating on the 24v power 
supply output (Fig. 11). 

The micro-controller rail was at the heart of the controller 
panel and also communicated with the host PC. The Arduino 
Mega 2560 [12] was chosen as the microcontroller in the panel 
because it has good I/O capabilities; 54 digital input/output 
pins, with 15 that can be used for PWM, a flash memory of 
256KB and a clock speed of 16MHz (Fig. 13). 



 
Fig 10. Controller panel internal layout, showing the partition into power, 
motor control and microcontroller sections. 

 
Fig 11. A4899 Driver Module DIN Rail holder designed in Autodesk 
Fusion. This assembly firmly attached two stepper controller bearout 
boards onto a DIN rail. It also housed two cooling fans needed to 
prevenbt the controller from overheating. 

 

V. SOFTWARE IMPLEMENTATION ON THE ARDUINO 
After the inverted pendulum controller was designed, it 

was tuned and tested using a MATLAB simulation. This 
involved examining the inverted pendulum whilst setting the 
initial conditions of the second state to non-zero values to 
simulate the effect of small knocks, as well as varying the 
reference input to move the cart. Example results for the 
integral action position mode are shown in Fig. 12. 

 The control processing was finally implemented on the 
Arduino Mega, with the state feedback controller operating 
within the Arduino main loop. The control procedure first 
involved reading the encoder. To support extended 
operational capabilities, the MPU-6050 IMU was also read, 
and an associated complementary filter was run. The selected 
feedback controller then calculated the velocity control signal 
and used it to generate an output pulse train to drive the stepper 

motor to move the cart at the appropriate velocity to balance 
the pendulum. Euler integration was used to compute the state 
updates [13]. 

 

 

Fig 12. MATLAB inverted pendulum simulation in integral action 
position control mode. Upper panel shows screen shot of animation 
used to examine behaviour. Lower panel shows signals arisng from 
the sigmulation, indicating the pendulum angular trajectory, 
correspoiding control velocty signal and cart position whilst tracking 
a rerefence carty postion. 

 

 
Fig 13. Arduino Mega 2560 pinout connections in the controller panel.  

For the controller to operate, it needed an estimation of the 
full state of the system. This was achieved by implementing a 
Luenberger observer, and directly measuring cart position and 
calculating the integral error. Then the full state estimate was 
scaled by the feedback gain and used generate the control 
command. Pseudocode for the Arduino implementation is 
shown here: 



% initialize the state estimate 
Initialize xHat to zero value 

% run controller 
for (each time point) 
{ 
Read pendulum angle, which is the real pendulum output 

Read the cart position and use to directly set state variable x3 

Compute state feedback control variable u on basis of SFC gain K and the 
estimated observer state xHat: 
U = -K * xHat 

Calculate the observer correction term using the real pendulum output: 
ycorr = L * (y – C * xHat) 

Update the observer state Xhat using Euler integration with correction term 
for the states x1, x2 and x4 (NB: x3 is explicitly set above): 
Xhat = Xhat + h * (A * Xhat + B * U + ycorr) 
 

 
Fig 14. Angle decay of pendulum as a functon of time, measured with an 
encoder. This trace provided a means to estimate the canonical parameters off 
the 2nd order pendulum system. 

VI. EXPERIMENTAL RESULTS 

A. Testing task-dependent disturbance 
To examine the dynamical characteristics of the 

uncontrolled pendulum, it was pushed and allowed to swing 
whilst hanging-down in its stable configuration (Fig. 14). It 
can be seen that 31 cycles were made in the period of 30 
seconds. In addition, the envelope of the oscillations decayed 
to 50% in 17.7s. This yielded damping and natural frequency 
values of 0.006 and 1.03Hz respectively. Using equations 
(9,10) and the physical parameters of the pendulum, we 
calculate the viscous damping factor of the pendulum system 
as 0.00049. This value was used to set the numeric state space 
model coefficients given in equations (17-19). 

An enlightening way to investigating how the control laws 
behave involved simultaneously recording cart position and 
the pendulum angle (measured by the encoder located on the 
stepper motor and pendulum axis respectively) during 
balancing and then applying a disturbance. Results from a 
simple test during position control mode shown in Fig. 15A. 
After first being brought into the balancing condition, the 
pendulum was repeatedly tapped. The effect of this 
disturbance can be seen in both traces pendulum angle and cart 
position traces. The pendulum encoder plot (which indicates 
pendulum angle) shows small changes in angle of the 
pendulum and at the same time, it can be seen in the motor 

encoder values, that the cart repositioned rapidly to find a 
stable balance of the system, and then slowly moved back to 
the starting location.  

 

 
 
Fig 15. Relative balancing pendulum reponses to discurbances. A shows 
the reaction of the pendulum to being tapped whilst under position 
control. B shows the reaction of the pendulum to being tapped whilst 
under velocity control. 

 
Fig 16. Comparing encoder (red) and IMU reading (blue) during 
pendulum movement. Initially the traces show moving the rod a few 
times times by hand between around ±40 degrees, and then free damped 
oscillation of the pendulum. It can be seen the two estimate of rod angle 
are in close agreement. 

The pendulum was also examined in velocity control 
mode, as shown in Fig.15B. Again, the pendulum was 
brought to the upright position where it immediately activated 
the position controller and started to balance effectively. 
Velocity control was then switched on using a keyboard 
command and a velocity of 0.05 meters per second selected, 
which resulted in a corresponding movement of the cart. The 
cart was able to move both left and right. In order to test 
resistance to knocks (which constitute impulsive 
disturbances) whilst balancing in position mode, the rod was 
again lightly tapped. It was shown to be quite stable and able 
to compensate the disturbance. We then ran a test in both 
position control and velocity control modes, which we 
balanced a roll of wire on the top of the pendulum to 
demonstrate that it could also maintain balance when 
additional loads are placed on the pendulum, even though 
they change its dynamical characteristics (see YouTube video 
link in video demonstrations section).  



B. Testing IMU 

To test the validity of the IMU as a function of time and 
verify that there is little offset at any point arising from drift, 
the pendulum was moved from about ±40° and held relatively 
stationary at these angles for a couple of seconds. After 
repeating this twice, the pendulum was released and allowed 
to oscillate freely. Fig. 16 shows angular measurements from 
both IMU and encoder sensors, indicating there was good 
agreement between the two sources of measurement. Finally, 
we briefly mention that we ran the pendulum balancing tasks 
as before but made use of the IMU instead of the encoder as a 
source of pendulum angle. The IMU proved slightly less 
robust that using an encoder, but balance could be maintained 
and resistance to disturbances was still achieved. 

C. Video demonstrations 
Operations of the inverted pendulum on these tests, as well 

as others, are shown on the YouTube channel: Robotics, 
Control and Machine Learning in the playlist: ICSSE2022 & 
NSSSE2022 Inverted Pendulum:  

https://www.youtube.com/playlist?list=PLjKvJX8cBCKWv0DIV5zhKSC-Z-qn4UiKP 

VII. DISCUSSION 
Here we built a new pendulum to investigate state 

feedback control of balancing. We first simulated the 
pendulum system in MATLAB using a position controller and 
a velocity controller, both based on the state-space model of 
the linearized dynamical system of the pendulum. We 
constructed a general-purpose control panel to implement our 
control tasks that could also easily be used for other tasks in 
the future too. Specifically, in order to implement a real-time 
controller, a DIN rail based micro control panel was designed 
and built. The panel had sufficient functionality to enable it to 
record critical signals from the pendulum system, including 
position of the cart and angle of the pendulum rod to vertical.  

We investigated balancing during static operation under 
position control and also during constant velocity movement. 
We ran tests on the system and investigated behavior when we 
perturbed the balanced pendulum rod using impulses 
generated by tapping lightly. We show difference in behavior 
between the velocity controller and the position controller. We 
found the control was more responsive in static balance mode 
and more resistant to perturbations than it was in velocity 
control mode. This is perhaps unsurprising because when it is 
controlling both the velocity and also balancing, the 
controllers resources are somewhat more divided. The 
problem of controlling velocity while balancing is clearly 
more challenging than just maintaining a static posture and 
balancing at a fixed position. Of course, the gains found here 
using LQR were done so on the basis of experimentation, so 
it is always possible better values also exists for both modes. 
In the future it will also be interesting to further investigate 
human behavior on such tasks and compare it to control 
models [14,15], as well as the factors that affect control in both 
human and machines, such as the latency of the sensory 
feedback [16]. 

In this work we made use of state feedback control. We 
note that is certainly possible to use PID control for this task, 
and may previous designs have adopted this approach. 
However, here we specifically chose to use full state feedback 
control instead since it is less frequently used to control a 

pendulum and because LQR controller design lets the 
engineer formulate the criterion of controller optimality, and 
corresponding feedback law, in a principled way. We also note 
that the slight increase in computational complexity of a state 
feedback control approach over PID is relatively small and the 
computational load needed the for-motor controller 
implementation certainly did not lead to any problems on the 
Arduino Mega microcontroller used. 
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