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Abstract
Control charts originate from industrial statistics, but are constantly seeing new areas
of application, for example in health care (Thor et al. in BMJ Qual Saf 16(5):387–
399, 2007. https://doi.org/10.1136/qshc.2006.022194; Suman and Prajapati in Int J
Metrol Qual Eng, 2018. https://doi.org/10.1051/ijmqe/2018003). This paper is about
the Markovchart package, an R implementation of generalised Markov chain-
based control charts with health care applications in mind and with a focus on
cost-effectiveness. The methods are based on Zempléni et al. (Appl Stoch Model
Bus Ind 20(3):185–200, 2004. https://doi.org/10.1002/asmb.521), Dobi and Zempléni
(Qual Reliab Eng Int 35(5):1379–1395, 2019a. https://doi.org/10.1002/qre.2518, Ann
Univ Sci Budapestinensis Rolando Eötvös Nomin Sect Comput 49:129–146, 2019b).
The implemented ideas in the package were motivated by problems encountered by
health care professionals and biostatisticians when assessing the effects and costs of
different monitoring schemes and therapeutic regimens. However, the implemented
generalisations may be useful in other (e.g., engineering) applications too, as they
mainly revolve around the loosening of assumptions seen in traditional control chart
theory. The Markovchart package is able to model processes with random shift
sizes (i.e., the degradation of the patient’s health), random repair (i.e., treatment) and
random time between samplings (i.e., visits) as well. The article highlights the fexibil-
ity of themethods through themodelling of different disease progression and treatment
scenarios and also through an application on real-world data of diabetic patients.
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1 Introduction

Since their frst applications in the 1920s, control charts have proliferated to many
areas, and several of these are outside of the traditional industrial settings (Mont-
gomery 2009; Zhou and Zhang 2015; Sales et al. 2016; Brooks et al. 2013). One of the
less-traditional areas is health care where many different types of control chart appli-
cations have been introduced (Thor et al. 2007; Suman and Prajapati 2018). Several
applications focus on quality control such as mortality rate, length of hospital stay,
number of complications, etc. Control charts have also been applied for themonitoring
of the state of patients, see e.g., Correia et al. (2011). The Markovchart R (R Core
Team 2020) package deals with this kind of control, namely problems emerging from
the monitoring of a single patient at a time.

Often, the goal of control charts (and generally of statistical process control) is to
improve a process from a certain point of view e.g., minimise the number of faulty
products. There are different approaches to themeasuringof control chart performance,
one of which is statistical optimality. This approach aims to maximise the in-control
(IC) average run length (ARL) and minimise the out-of-control (OOC) ARL, which
is the average time until an alarm signal, see Montgomery (2009) for further read on
the subject. Another approach is to defne costs to various parts of the control chart
model and try to optimise the setup by minimising the total cost. One of, if not the
most popular cost-effcient model is Duncan’s cycle model (Duncan 1956).

There are many different statistical process control models and implementations
across various platforms. Themost popular control charts and their visualisationmeth-
ods can be found in R (R Core Team 2020), SAS (SAS Institute Inc. 2013), Stata
(StataCorp LLC 2019),SPSS (IBMCorporation 2019),Excel (Microsoft 2019; But-
trey 2009) etc. Statistical-process-control-related packages in R include spc (Knoth
2020), edcc (Zhu and Park 2013b), qicharts (Anhoej and Roeder 2017), qcc
(Scrucca et al. 2017), qcr (Flores et al. 2020), ggQC (Grey 2018) and possibly other,
more elusive ones.

In R, only the edcc package (Zhu and Park 2013a) has methods for cost-
optimisation to the authors’ knowledge. The package essentially implementsDuncan’s
cycle model for multiple chart types, carries out optimisation with respect to the
expected cost per hour and provides visualisation. The free parameters in the pack-
age are the sample size, sampling interval and the critical value. The Markovchart
package also provides many of the same functionality, but based on different, more
general methodology with focus on health care applications.

TheMarkovchart package implements aMarkov-chain-based cost-optimisation
framework developed originally by Zempléni et al. (2004). It is similar to Duncan’s
model in a sense that it also partitions the process into different states. The advantage
of the framework is that it allows for extensions that are required in the monitoring of
several process types. Random shift sizes were described already in Zempléni et al.
(2004). Random repair effectiveness and random sampling time were introduced in
Dobi and Zempléni (2019a), and different shift size distributions in Dobi and Zem-
pléni (2019b). These generalisations are all necessary for proper modelling of certain
processes, especially in health care. It can be noted though, that similar processes and
monitoring problems also arise in many areas, e.g., Zempléni et al. (2004) applied the
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method for pulp production for a Portuguese pulp plant. As the package was made
available at the Comprehensive R Archive Network (Dobi and Zempléni 2020), users
from many areas can use the framework in their own setting of application.

The additional features in the Markovchart package come at a price though:
the implemented optimisation uses only two free parameters, the sampling interval
and the critical value. There is no theoretical obstacle for optimisation with respect to
the sample size or any other parameters, in fact the article of Zempléni et al. (2004)
shows examples for optimisation using the sample size, and in this article we compare
repair mechanisms (i.e., therapies) in Sect. 5. The problemwith the implementation of
sample sizes greater than 1 is that it makes practical implementation and calculation
a serious hurdle. Nonetheless, this is an inconsequential problem in most cases, as the
goal of the Markovchart package is the monitoring of a single patient for a time
period.

The Markovchart package features three main functions: Markovstat for
process behaviour estimation, i.e., stationary distribution calculation. This function
has highly customisable parts which provide a general framework for many processes
and monitoring environments. Markovchart is the main function of the package
and is used for cost calculation and optimisation. It is possible to plot the results of
this main function as a function of the free parameters using a plotting method. The
third function, Markovsim is for simulating processes with the assumptions used by
the control chart models.

The rest of the article is organised in the following way: Sect. 2 describes the
mathematical model used in the R package Markovchart. Section 3 documents
the implemented methods and functions with examples. Section 4 compares differ-
ent model results, including comparison to the edcc package. In Sect. 5, we show
an example application based on the real-world data of diabetic patients. Section 6
concludes the article.

2 Mathematical background

The description of the Markov chain-based framework below is just a brief introduc-
tion and summary necessary for understanding the mechanics of the Markovchart
package. For further reading andmore detailed descriptions see Zempléni et al. (2004),
Dobi and Zempléni (2019a, b).

2.1 Notions and notations

Inmanypatientmonitoring situationswe are only interested in one-sided deteriorations
e.g., high blood pressure, high blood lipid level, high blood sugar level, etc. The
opposite of these examples (low levels) can also be harmful to the patient, but those
symptoms usually fall under different diseases, thus can be treated as separate but
still one-sided monitoring problems. Patient state deterioration in the process control
sense is modelled here as a shift in the expected value of the monitored characteristic.
Because of these considerations, we shall assume that only positive shift occurs in the
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expectation of the characteristic in case of no alarm. This model corresponds to an
X -chart setup with sample size n = 1, time between samplings (sampling interval) h
and one-sided critical value k. There are two free parameters which are in the focus
of optimisation: k and h.

k and h are free parameters, but the following values are supposed to be known and
other aspects of the model are also assumed [many of these assumptions also appear
in general control chart theory, see e.g., Montgomery (2009) and Mortarino (2010)]:

– The distribution of themeasurement error is knownwith expectation 0 and standard
deviation σ .

– The shift intensity (1/s = the inverse of the expected number of shifts in a unit
time) is constant and assumed to be known.

– The shift size distribution and its parameters are assumed to be known.
– The process does not repair itself. The distribution describing the repair size (effec-
tiveness) and its parameters are assumed to be known.

– The sampling might not take place or may be unsuccessful. The distribution
describing the sampling probability and its parameters are assumed to be known.

The above point may require some elaboration: The time between shifts are usually
assumed to be exponentially distributed, we will also use this principle. Also, let the
cumulative distribution function (CDF) of the measurement error be denoted by φ.
During implementation we will assume that the IC process distribution is normal with
parameters μ0 (target value/IC expectation) and σ (process standard deviation). The
OOCprocess distribution is consequently also normal with shiftedμOOC expectation
and the same σ standard deviation, as shifts are assumed to only change the expected
value. Regarding repair, as the process does not repair itself the repair is initiated by
an alarm and it is treated as an instantaneous event, thus all costs related to repairing
should be included in the repair cost. For example if a major repair entails higher
cost, then this should also be refected in the calculation. Also, the repair may not be
perfect, in this case the process remains at a strictly higher expected value than the μ0
target value, even after repair. At least part of the repair cost may also occur during
OOC operation. This is necessary because in many medical applications treatment is
continually present (e.g., medicine has to be taken daily). The time between shifts,
the shift sizes and repair effectiveness are all assumed to be independent from each
other. The costs only depend on the distance from the target value μ0, thus repair
effectiveness and costs are only connected through the initial state before repair (i.e.,
a successful repair does not incur higher costs than an unsuccessful).

Using the above assumptions, the future distances from μ0 are only dependent
on the current distance. This way, one can defne a Markov chain. The states of this
Markov chain are defned at the sampling times and the states can be identifed by the
measured value and the actual (unobservable) background process, namely whether
there was a shift from the target value in the parameter andwhether there was an alarm.
The difference between the measured value and the unobserved background process
is due to the process standard deviation. So we can defne four basic state types:

– No shift—no alarm: in-control (IC)
– Shift—no alarm: out-of-control (OOC)
– No shift—alarm: false alarm (FA)
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– Shift—alarm: true alarm (TA)

The above assumptions leave ample room for parameters to be estimated for practical
use. See Sect. 5 for examples.

2.2 Generalisedmodel

As mentioned in Sect. 1, our approach contains three important differences com-
pared to the traditional economic control chart models. First is the random shift size,
introduced for the cost-optimal approach by Zempléni et al. (2004). The second is
the random repair size and the third is the random sampling time, both introduced
in Dobi and Zempléni (2019a). Moreover, Dobi and Zempléni (2019b) introduced
the possibility of different shift size distributions, which is also implemented in the
Markovchart package. In the next paragraphs the mathematical defnition of the
processes and distributions involved in the Markov chain-based cost-optimal control
chart models are given.

Let τi denote the random shift times on the real line and let ρi be the shift size
at time τi . Assume that all ρi are non-negative and independent random variables,
and that the shift sizes are independent from τi as well. Let the number of shifts in
the time interval (0; t) be denoted by νt . νt has a discrete distribution with support
overN0. The resulting random process Zt has step functions as trajectories, which are
monotonically increasing. Thus the CDF of the actual (unobservable) process values
at a given time t from the start (where it was in the in-control state) can be written the
following way (assuming that there was no alarm before t):

Zt (x) =
{
0 if x < 0,

νt (0) + ∑∞
k=1 νt (k)Ψk(x) if x ≥ 0,

(1)

where Ψk is the CDF of the k-fold convolution of shift sizes ρi . The case x = 0 means
there was no shift till t (its probability is νt (0)). Ψk(0) = 0 since only positive shifts
can occur.

Currently two shift size distributions are implemented in the Markovchart pack-
age: exponential and exponential-geometric mixture shifts. In the case of the frst one
Ψk simply becomes the gamma (Erlang) distribution as it is a sum of k independent,
identical exponentially distributed random variables. The second one has a more com-
plicated form as the convolution of the negative binomial (sum of the geometric shifts)
and the gamma (sum of the exponential shifts) distribution. For further reading see
Dobi and Zempléni (2019b). νt is implemented in the package as the Poisson distri-
bution with parameter st (the expected number of shifts per unit time multiplied by
the length of the interval), as we assume that τi depends on neither the previous shifts
nor the current process value, so the shift times form a homogeneous Poisson process.

The next generalisation is imperfect repair, which means that the treatment will not
have perfect results on the health of the patient, or—in industrial settings—that the
original condition of themachines cannot be fully restored. In this case, the imperfectly
repaired states act as OOC states. It is assumed that the repair cannot worsen the state
of the process, but the operation of an imperfectly repaired process will still cost the
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same as an equally shifted OOC process, thus ’repaired’ and ’regular’ OOC states do
not need distinction during the cost calculation. The imperfect repair has to ft into
the Markov chain-based framework, thus it is assumed that alarms, shifts and repair
effectiveness are all independent. Let the random variable R determine the proportion
of the remaining distance from μ0 after repair. In the R implementation we assume
that R has a Beta(α, β) distribution with known parameters (see Sect. 3.1 for more
details).

Yet another generalisation is the random sampling time. In certain environments,
the occurrence of the sampling at the prescribed time is not always guaranteed. For
example in health care, the patient or employee compliance can have signifcant effect
on the monitoring, thus it is important to take this into account during the modelling
too. Here it is modelled in a way, that the sampling is not guaranteed to take place—
e.g., the patient may not show up for control visit. This means that the sampling
can only occur according to the sampling intervals, for example at every nth days,
but is not a guaranteed event. One can use different approaches when modelling the
sampling probability, the Markovchart package implements two cases. The frst
one assumes that too frequent samplings will decrease compliance. This assumption is
intended to simulate the situation inwhich too frequent samplingsmay cause increased
diffculty for the staff or the patient—leading to decreased compliance. The probability
of a successful sampling as a function of the prescribed time between samplings is
modelled in this case using a logistic function:

Th = 1

1 + e−q(h−z)
,

where q > 0 is the steepness of the curve, z ∈ R is the value of the sigmoid’s midpoint
and h is the time between samplings.

In the other implemented approach it is assumed that too frequent samplings will
decrease compliance and increased distance from the target value will increase com-
pliance. This assumption means that a heavily deteriorated process or health state will
ensure a higher compliance. The probability of a successful sampling as a function
of the prescribed time between samplings and the distance from the target value is
modelled using a beta distribution function:

T ∗
h (v) = P

(
Wh <

v

V

)
, (2)

where Wh is a Beta(a/h,b) distributed random variable (representing the aversion
from sampling), v is the distance from the target value, h is the time between samplings,
V is the maximum distance from μ0 taken into account (thus 0 < v < V is assumed;
this notation will be used throughout the paper). V here is effectively the distance
where we expect maximal possible compliance.

Example curves for the successful sampling probability can be seen in Fig. 1. It
shows that longer time between samplings and greater distances from the target value
increase the probability of successful sampling.

A process with the above assumptions and generalisations is visualised in Fig. 2.
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Fig. 2 Defnition of states. Dashed line: expected value, Black vertical line: shift in the expected value,
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One can see that the process starts from an IC state at μ0. Even though there is no
shift, an alarm signal is still possible, which is a FA. After some time, there may be
multiple shifts (to μ1 and later to μ2) in the value of the monitored characteristic (i.e.,
expected value), which create OOC states. During this phase an alarm is called a TA,
which induces a repair which is not perfect, thus the process stays OOC, but at a level
(μr ) which is closer to μ0 than before the repair. It is possible that the sampling will
not take place, as seen between the 8th and 9th samplings.

2.3 Transitionmatrix and stationary distribution

For cost optimisation purposes we would like to fnd a discrete Markov chain that
describes the patient’s state. The stationary distributionof this chain essentially approx-
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imates the distribution of the monitored characteristic at the time of samplings. This
requires the discretisation of the above defned functions, which in turn will allow
us to construct a discrete time Markov chain with discrete state space. For technical
details on this discretisation see Sect. 3.1.

The size and composition of the transitionmatrix—let us denote itwithΠ—depends
on whether or not we are considering random shift sizes. The traditional model which
is similar to Duncan’s cycle model has a 4 × 4 transition matrix corresponding to
the 4 possible states described in Sect. 2.1. Transition probabilities can be written
in this case using the φ process distribution (including measurement error) and the
cumulative distribution function of the exponential distribution (time between shifts).
Using the generalised model, the transition probabilities can be written using the φ

process distribution, the Zt shift size distribution (see (1)), the Beta(α, β) repair size
distribution and the Th (or T ∗

h , see (2)) sampling probability. Note that in every scenario
the states are defned at the time of samplings before repair and only positive shifts
are possible between samplings. It is not necessary to use all generalisations at once:
it is possible e.g., to use perfect sampling, while keeping the random shift size and
the random repair. (There is a restriction though, namely that both the random repair
and the random sampling time are only implemented for random shift sizes.) Let Vd
be the number of considered distances - discretised shift sizes within the V -length
interval. The size of the transition matrix is 2Vd × 2Vd in the generalised case since
every shift size has two states: one with and one without alarm. We assume that the
frst Vd columns are states without alarm, the second Vd are states with alarm. Once
the process leaves the in-control state it will only return, if the repair is perfect. This
is due to the nature of the imperfect repair we have discussed above. Whether or not
the repair is perfect depends on the assumptions, this is parametrisable in the package.
For a more detailed description of the transition matrix and the transition probabilities
see Dobi and Zempléni (2019a).

In the perfect repair case the transition matrix Π defnes a Markov chain with a
discrete, fnite state space with one positive recurrent class. If the repair is imperfect,
the transition matrix has one transient, inessential class (the IC and the FA state)
and one positive recurrent class (OOC and TA states). In fnite Markov chains, the
process leaves a transient class with probability one. The problem of fnding the
stationary distribution of the Markov chain is thus reduced to fnding a stationary
distribution within the recurrent class of the chain. Since there is a single positive
recurrent class which is also aperiodic, we can apply the Perron–Frobenius theorem
to fnd the stationary distribution (Meyer 2000). Consider now Π for only the positive
recurrent class (this is the only class if the repair is perfect), let us denote it by Π∗.
The stationary distribution—which is the left eigenvector of Π∗, normalised to sum
to one—is unique and exists with strictly positive elements. Finding the stationary
distribution is then reduced to solving the following equation: Π∗T f0 = f0, i.e., f0 is
the left eigenvector of Π∗. This amounts to solving as many equations as the number
of states in the recurrent class for the same number of variables. In the setup described
above there is always a solution since the transition matrix has a unique largest real
eigenvalue and the corresponding eigenvector can be chosen to have strictly positive
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components. The stationary distribution is then:

P = f0∑N
i=1 f0i

,

where N is the number of states within the recurrent class of the Markov chain which
(depending on the generalisations used) can be 4, 2Vd or 2Vd − 2.

2.4 Cost function

The authors have documented (Zempléni et al. 2004; Dobi and Zempléni 2019a)
general-purpose but fxed-form cost functions to be used in the Markov chain-based
control chart model. On the other hand, the Markovchart package implements a
highly parametrisable cost function. The general form of the expected cost function
per unit time is

E(C) = c · P, (3)

where E(C) is the expected cost per unit time, c is a vector of the total cost per unit time
associated with each state and P is the stationary distribution (vector of probabilities),
defned above. It is the expected value of the discrete distribution defned by the costs
and the stationary distribution of the Markov chain. As the calculation of the c vector
is highly customisable in the Markovchart package, here we will mainly show the
default functions.

In the classical fxed shift size case, the c vector is

c =
{
cs
h

,
cs + c f

h
,
cs
h

+ co,
cr + cs

h
+ coBh

}
, (4)

so the coordinates correspond to the IC, FA, OOC and TA states respectively. cs is the
sampling cost, c f is the FA cost, cr is the TA (repair) cost and co is the OOC operation
cost per unit time. Bh is the fraction of time between consecutive observations where
the shift occurred and remained undetected (Zempléni et al. 2004; Mortarino 2010).
The sampling and repair costs need to be divided by the length of the sampling interval
in order to get the cost of a unit time of operation. (It can be noted though that this is
parametrisable for the repair cost in the package.) The OOC cost should be given by
default as per unit time, so it has not to be divided.

In the random shift size case, co and cr need to be defned for each distance from
the target value. The relationship between the distance from the target value and the
resulting OOC cost may be non-trivial. Many potential models could be used, in the
Markovchart function the calculation is based on a Taguchi-type loss function.
This means that a squared loss function is assumed. The default cost function of the
OOC cost is:
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co(v) = cob + cosA2
h(v),

where cob is the base OOC cost per unit time, whereas cos is the distance-scaling OOC
cost per unit time. v is the distance from the target value andA2

h(v) is the expected total
squared distance from this starting value on the condition that the sampling interval is
h. This A2

h(v) incorporates the distances (the base of the losses) incurred not just at
the time of the sampling, but also between samplings—hence the dependency on h: if
the process operates for long times without check and thus without alarms and repairs,
it is expected that it will be more deteriorated with respect the squared average. The
distances are squared as we use a Taguchi-type loss function. The calculation is more
complicated than the one for Bh at Eq. 4, because the shift size is not fxed here, so
an expected value needs to be computed. The calculation is based on the expected
behaviour of the process between the current sampling and the next one, for more
details onA2

h(v) see Dobi and Zempléni (2019a, b). Even if the user defnes a custom
cost function for the OOC cost this A2

h(v) term must be included. A closed form
solution has been developed and implemented for the calculation of the total expected
squared distances, considerably decreasing the running times (Dobi and Zempléni
2021). For details, see the “Appendix”.

The default function for the repair cost in the random shift size case is a linear
function:

cr (v) = crb + crsv,

where crb is the base TA (repair) cost and crs is the distance scaling TA cost. Since
there is no fxed squared term, a custom function can be defned more freely here.

Thus the total cost per unit time associated with an alarm state v distance from the
target value is

cv,T A(v) = cs
h
Th(v) + co(v) + cr (v)

h
,

and with an OOC state is

cv,OOC (v) = cs
h
Th(v) + co(v) + pr cr (v)

h
. (5)

pr is the amount (proportion) of repair cost occurring during OOC operation. As we
mentioned before, this is necessary because in many medical applications treatment is
continually present. In classical, industrial settings pr would be 0 inmost applications.
Again, the sampling and repair costs need to be divided by the length of the sampling
interval and the OOC cost should be given by default as per unit time. Whether or not
the repair cost is given per unit time or as the total cost of treatment is optional and
is parametrisable in the package. The cost of sampling needs to be weighted by the
probability of the sampling (Th(v)). This probability is incorporated into the stationary
distribution—this is why it is not needed for the repair cost in the equation above. If
the sampling is not random then Th(v) ≡ 1.
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In certain felds of application, the reduction of the cost standard deviation can be
just as or even more important than the minimisation of the expected cost, see e.g.,
McCracken and Chakraborti (2013). It is usually straightforward to calculate not just
the expected value, but further moments and the variance as well. In the classical
industrial setting with fxed shift size, it can be assumed that the process is the only
source of the variance, as it is expected that the same OOC and repair cost will be
incurred every time if the same problem (shift size) occurs. This of course can be
different in certain felds and applications, but for the simplicity of the most basic
model we will not assume further sources of cost variance here, which is then simply
Var(C).

However, the generalisedmodel has random shift sizeswith possibly random repair.
Also, in health care settings it cannot be assumed that a disease level (distance from
μ0) will incur the same costs each time. Thus it is necessary to estimate not just costs
but their variances as well. In this case, the total variance can be calculated using the
law of total variance, i.e., using the cost variance due to the process (Var(C)) and the
weighted sum of the additional variances associated with each state:

Vartot (C) = ς tot · P + Var(C), (6)

where ςtot is the vector of the total variances associated with each state. For one
element (a v distance) this can be written as ςtot (v) = ςo(v) + ςr (v), i.e., the sum
of the OOC and repair cost variance components. The sampling cost is constant, thus
does not add variance to the system. The default functions for cost variance estimation
have the same form and restrictions as above for the costs. Note, that for fxed shift
size Vartot (C) = Var(C) in the Markovchart package. Of course there could be
e.g., random costs associated with fxed shifts but we did not (yet) explore this model
in our package.

During optimisation one can consider a linear combination of the expected cost and
the cost standard deviation:

G = pE(C) + (1 − p)sdtot (C). (7)

G is the value to be minimised, p is the weight of the expected cost (0 ≤ p ≤ 1) and
sdtot (C) = √

Vartot (C). The standard deviation is preferred over the variance during
model interpretation as it keeps the unit of measurement.

3 Implementation

3.1 Discretisation details

In our approach a vector of probabilities is needed to represent the stationary distri-
bution due to the discrete state space time-homogeneous Markov chain. This means
that many aspects of the continuous model need to be discretised, including the shift
size PMF. Discretisation may introduce a bias: in reality, the distance from the target
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value can fall anywhere within a discretised interval, which has to be represented by
a single value—for this the midpoint of the interval is used.

Let Δ be the unit of the discretisation (length of intervals) and Vd the number of
states created by discretisation. The IC state is denoted by 0, thus the upper endpoints
of the intervals are 0, . . . , (Vd −1)Δ. We defne a function for notational convenience,
this will be used for reducing the discretisation bias:

Δ+(u) = uΔ + Δ

2
, u = 0, . . . , Vd − 1,

uΔ would simply be the lower boundary of the interval in consideration. The Δ
2 term

is added to get the middle of the interval.
We can defne the discretised shift size PMF for a t long sampling interval, given

that the starting state is i and the size of the shift (measured in discretised units) is j :

zt,i ( j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νt (0) if j = 0, i = 0,∑∞
k=1 νt (k)

(
Ψk( jΔ) − Ψk(( j − 1)Δ)

)
if 1≤ j ≤Vd−1, i = 0,

νt (0) + ∑∞
k=1 νt (k)Ψk(Δ+(0)) if j = 0, i 	= 0,∑∞

k=1 νt (k)
(
Ψk(Δ+( j)) − Ψk(Δ+( j − 1))

)
if 1≤ j ≤Vd−i−1, i 	= 0,

(8)
where Ψk is the CDF of the sum of k independent, identically distributed ρi shift
sizes. For j = 0 the function is the probability of staying at the current level. The
i = 0 case represents shifts from the healthy, IC state. This case requires special
treatment, since this value is exactly given, unlike the other cases, where the value can
fall anywhere within the discretised interval (and is represented by the midpoint of the
interval). Naturally, the infnite sums can only be approximated during application.
This discretisation scheme works for continuous, discrete and mixture distributed
shifts as well.

The discretised version of the repair size distribution can be written the following
way:

R(l,m) = P

(
m

l + 1/2
≤ r <

m + 1

l + 1/2

)
,

where r is a Beta(α, β) distributed random variable. l is the number of discretised
distances closer to μ0 than the current one. m is the index for the repair size interval
we are interested in (m ≤ l), with m = 0 meaning the best possible repair. The
repair is assumed to move the expected value towards the target value by a random
percentage, governed by r . Even though discretisation is required for practical use
of the framework, in reality the repair size distribution is continuous. To refect this
continuity in the background, the probability of perfect repair is 0 (m = 0 corresponds
to cases in the nearest interval to the target). l is set to be 0 if there is nothing to be
repaired, thus R(0, 0) = 1. The 1/2 terms are necessary because of the discretisation,
i.e., because the actual value in the interval is approximated by the midpoint.
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In case when the sampling probability also depends on the shift size,

Th(i) = P

(
Wh <

i + 1/2

Vd

)
, i = 0, . . . Vd − 1,

whereWh is the beta distributed random variable introduced in Eq. 2, i is the i th state’s
distance from the target value in discretised units as in Eq. 8 (note that the smallest
discretised distance is 0 and thus the greatest is Vd − 1). Vd is again the number of
considered intervals. The +1/2 term is necessary because we use the midpoint of
an interval due to discretisation. The probability is defned in a way to avoid 0 or
1 sampling probability, as the patient behaviour is not assumed to be deterministic.
Other distributions may be considered for modelling but the beta distribution allows
for a wide range of shapes, thus many different patient behaviours can be modelled
this way.

3.2 Function Markovstat

The Markovstat package features three main functions. The print method will also
be highlighted in further subsections. These are all connected to the Markovchart
function:

– Markovstat for process behaviour, i.e., stationary distribution.
– Markovchart for cost calculation with optimisation.
– plot.Markov_grid for plotting the results of Markovchart as the function
of the free parameters (h and k).

– Markovsim, a function for simulating processes handled by Markovchart.

Work with the package usually starts with the Markovstat function, as the frst
parameter of the Markovchart function is created by it. The description of the most
important parameters can be seen below:

– shiftfun: A string defning the shift size distribution to be used. Must be either
’exp’ (exponential), ’exp-geo’ (exponential-geometric mixture) or ’deg’
(degenerate). Use ’deg’ for fxed shift size with perfect repair and guaranteed
sampling, i.e., Duncan’s traditional cycle model.

– h: The time between samplings. Must be a positive value.
– k: The control limit (critical value). Must be a positive value. Only one sided shifts
are allowed, thus there is only one control limit.

– sigma: Process standard deviation (the distribution is assumed to be normal).
– s: Expected number of shifts in an unit time interval.
– delta: Expected shift size. Used as the parameter of the exponential distribu-
tion (shiftfun = ’exp’ or ’exp-geo’), or simply as the size of the shift
(shiftfun = ’deg’).

– probmix: The weight of the geometric distribution in case of exponential-
geometric mixture shift distribution; should be between 0 and 1.

– probnbin: The probability parameter of the geometric distribution in case of
exponential-geometric mixture shift distribution; should be between 0 and 1.
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– RanRep: Logical. Should the repair be random? Default is FALSE (the repair is
perfect, the process is always repaired to the target value). The repair is always
perfect (non-random) for shiftfun = ’deg’.

– alpha: First shape parameter for the random repair beta distribution.
– beta: Second shape parameter for the random repair beta distribution.
– RanSam: Logical. Should the sampling be random? Default is FALSE (no). The
sampling is never random for shiftfun = ’deg’.

– StateDep: Logical. Should the sampling probability also depend on the distance
from the target value (state dependency)? (If TRUE, a beta distribution is used for
the sampling probability, if FALSE then a logistic function.)

– a: First parameter · h for the random sampling time beta distribution. The frst
shape parameter is a/h to create dependency on the time between samplings as
described at the StateDep parameter.

– b: Second shape parameter for the random sampling time beta distribution.
– Vd: Integer discretisation parameter: the number of states in the equidistant dis-
cretisation of the state space.

– V: Numeric discretisation parameter: the maximum (positive) distance from the
target value taken into account.

The type of models and features allowed depend foremost on the type of shift size
distribution used. This can be degenerate (fxed shift size), exponential and mixture
(exponential-geometric). Random shift size, random repair and random sampling are
tied to non-degenerate distributions.

The value of the function is a Markov_stationary object, which is a list of
length 3, detailing the properties of the stationary distribution and the transitionmatrix.

– Stationary_distribution: Stationary distribution of the Markov chain.
The probabilities in the stationary distribution are labelled. If shiftfun is
’deg’ then the stationary distribution is always of length 4. In this case the out-
of-control and true alarm states are at a distance delta from the target value, and
the in-control and the false alarm state are always at the target value. If shiftfun
is not ’deg’ then there are multiple out-of-control and true alarm states. In this
case the stationary distribution of the Markov chain is a named numeric vector of
length Vd*2. The length is double of Vd because each state has an alarm and a
non-alarm (OOC) version. There is one IC and one FA state but there are multiple
OOC and TA states (for all discretised distances). The label contains the follow-
ing information separated by the ’_’ character: state type, state index number,
distance from μ0 represented by the state (the midpoint of the interval).

– Transition_matrix: The transition matrix of theMarkov chain. Not printed.
– Param_list: Parameters given to the function and various technical results used
by the Markovchart function. Not printed.

The simplest case is the same as Duncan’s cycle model on an X̄ chart with a sample
size of 1. An example can be seen below:

> stat_simple <- Markovstat(shiftfun = ’deg’, h = 1, k = 1,
+ sigma = 1, s = 0.2, delta = 2.5)
> stat_simple
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$Stationary_distribution
In-control False-alarm OOC True-alarm
0.68001029 0.12823186 0.01281081 0.17894704

This example highlights that—even though there are several generalisations
implemented—it is possible to use a simple model which requires the estimation of a
relatively small number of parameters. The print method omits the transition matrix
and other, ancillary results, but they are nonetheless stored in the resulting object.

There are many possible setups that can be modelled using the Markovstat
function. Showing an example for each would be nigh impossible and redundant.
Above, the simplest Markov-chain based model was shown, next we shall use all
generalisations and customisation options at once i.e., the most argument-heavy setup:
the model below has exponential-geometric mixture distributed random shift size,
random repair, state-and-interval-length-dependent random sampling time:

> stat_expgeo <- Markovstat(shiftfun = ’exp-geo’, h = 1.5,
+ k = 2, sigma = 1, s = 0.2, delta = 1.2,
+ probmix = 0.7, probnbin = 0.8, disj = 2,
+ RanRep = TRUE, alpha = 1, beta = 3,
+ RanSam = TRUE, StateDep = TRUE, a = 1,
+ b = 15, Vd = 100, V = 8)
> head(stat_expgeo[[1]])

In-control False-alarm OOC_1_0.04 OOC_2_0.121
0.0000000000 0.0000000000 0.0008830967 0.0011367170
OOC_3_0.202 OOC_4_0.283

0.0013968075 0.0016466962

It can be seen that the stationary distribution is expanded due to the random shift
size, thus additional information is shown in the probability value labels. There is one
IC and one FA state but there are multiple OOC and TA states (for all discretised
distances). For the latter two the label contains the following information separated
by the ’_’ character: state type, state index number, distance from μ0 represented by
the state (the midpoint of thee interval).

3.3 Function Markovchart

The Markovchart function is the main function of the package, used for cost cal-
culation and optimisation. The function comes with many arguments, which is due to
the fact that the function incorporates the above-described mathematical methods in a
highly customisable way. This design was motivated by two main reasons: one is that
even though the methods have differences in assumptions, their outputs in the form of
cost-related statistics are similar. The second reason is that it allows the user to quickly
test different models with the change of argument values instead of whole functions.
Also, if a complex model with all generalisations is not feasible or necessary, the user
can leave out generalisations and/or leave several arguments blank and the model will
still work for the given options and data. The list of the most important arguments can
be seen below:
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– statdist: The stationary distribution of the Markov chain. Must be an object
of class Markov_stationary, preferably created by Markovstat.

– h: The time between samplings. Must be a positive value, can be a numeric vector.
For optimisation, this is the initial value. Inherited from statdist if not given.

– OPTIM: Logical. Should the resulting G-value (weighted average of the expected
cost and cost standard deviation) be optimised by fnding the adequate value of h
and k.

– k: The control limit (critical value). Must be a positive value, can be a numeric
vector. For optimisation, this is the initial value. Only one sided shifts are allowed,
thus there is only one control limit. Inherited from statdist if not given.

– p: The weight of the cost expectation in the calculation of the G-value; should be
between 0 and 1.

– constantr: Logical. Should the repair cost be assumed to constantly occur
over time (TRUE) or assumed to only occur when there is a repair due to an alarm
(FALSE, default)? If TRUE, then the repair cost should be given per unit time.

– ooc_rep: Numeric value between 0 and 1. The proportion of repair cost occurring
during out-of-control operation. Default is 0. If a value greater than 0 is set, then
constantr should be TRUE, but it is not forced.

– cs: Sampling cost per sampling.
– cofun: A function describing the relationship between the distance from the
target value and the resulting out-of-control costs.

– coparams: Numeric vector. Parameters of cofun.
– crfun: A function describing the relationship between the distance from the
target value and the resulting repair costs.

– crparams: Numeric vector. Parameters of crfun.
– cf: Numeric. The false alarm cost. Only relevant when shiftfun is ’deg’.
– vcrfun: A function describing the relationship between the distance from the
target value and the resulting repair cost variance.

– vcrparams: Numeric vector. Parameters of vcrfun.

The details of the cost calculation method differs between shift size distributions.
Closed-form calculation of the expected squared distances between shifts is straight-
forward in the fxed shift size case, but have been solved for exponential shifts and
exponential-geometric mixture distributions.

The returned value depends on the parameters:
If h and k are both of length 1, then the value of the function is a Markov_chart

object, which is a list of length 4, detailing the properties of the control chart setup.
Optimisation does not change the structure of the output, as only the optimal h and k
parameters are evaluated in the end.

– Results: A named numeric vector consisting of:

– G-value: The G-value as defned by Eq. 7
– Expected cost (C): E(C) as defned by Eq. 3
– Total cost std. dev.: Vartot (C) as defned in Eq. 6, only relevant and
calculated for non-degenerate shift size distributions

– Cost std. dev. due to process var.: Var(C)

– Second process moment: E(C2)
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– Third process moment: E(C3)

– Fourth process moment: E(C4)

– Subcosts: Vector of sub-costs that are parts of the total expected cost. This can
be especially useful when the goal is to fnd which cost component infates the
total cost.

– Parameters: A vector that contains the time between samplings (h) and critical
value (k) which was used in the control chart setup.

– Stationary_distribution: The stationary distribution of the Markov
chain. Further information about the stationary distribution can be calculated using
the Markovstat function.

If either h or k have length greater than 1, then the G-value (weighted average of
average cost and cost standard deviation, as defned at (7)) is calculated for all given
values without optimisation. The value of the function in this case is a Markov_grid
data frame with length(h)*length(k) number of rows and three columns for
h, k and the G-value.

Let us take a look at the simplest case again, now with cost calculation:

> res_simple <- Markovchart(statdist = stat_simple, cs = 1,
+ crparams = 20, coparams = 50)
> res_simple

$Results
G-value Expected cost Cost sd due to process var.

1 12.40682 12.40682 18.14134
2nd process moment 3rd process moment 4th process moment

1 483.0373 21268.82 972450.5

$Subcosts
In-control cost False-alarm cost Out-of-control cost

1 1 2.564637 0.6405403
True-alarm cost

1 8.20164

$Parameters
Time between samplings (h) Critical value (k)

1 1 1

coparams and crparams are simple numeric values here, but can be numeric
vectors for the more complex models.

Setting OPTIM = TRUE prompts the function to optimise with respect to the G-
value. (As the default value of p is 1, the G-value here is simply the expected total
cost.) Optimisation is conducted using the optimParallel package (Gerber 2020),
which provides parallel thus fast computation for the L-BFGS-B method. Parallel set-
tings are automatically set, but can be changed manually using the parallel_opt
argument. In case of optimisation the given h and k parameters are only starting val-
ues, the optimal parameters can be seen in the Parameters section of the output
list. The structure of the output is otherwise the same as above:
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> res_simp_optim <- Markovchart(statdist = stat_simple,
+ OPTIM = TRUE, cs = 1,
+ crparams = 20, coparams = 50)
> res_simp_optim

$Results
G-value Expected cost Cost sd due to process var.

1 10.73634 10.73634 21.39669
2nd process moment 3rd process moment 4th process moment

1 573.0874 37380.25 2502524

$Subcosts
In-control cost False-alarm cost Out-of-control cost

1 2.166483 1.014868 1.701831
True-alarm cost

1 5.853159

$Parameters
Time between samplings (h) Critical value (k)

1 0.4615776 1.933419

Let us also compute costs for the exponential-geometric model seen above. We
will further detail our model by using a custom repair variance function and G-value
calculation which involves the cost standard deviation with a 0.1 weight (p = 0.9):

> vcrfun_new <- function(mudist, vcrparams){
+ mudist <- mudist
+ vcrb <- vcrparams[1]
+ vcrs <- vcrparams[2]
+ vcrs2 <- vcrparams[3]
+ vcr <- vcrb + vcrs / (mudist + vcrs2)
+ return(vcr)}
>
> res_expgeo <- Markovchart(statdist = stat_expgeo, cs = 1,
+ p = 0.9, coparams = c(10, 6),
+ crparams = c(20, 3),
+ vcoparams = c(10000, 100),
+ vcrfun = vcrfun_new,
+ vcrparams = c(50000, -600000, 1.5))
> res_expgeo

$Results
G-value Expected cost Total cost sd

1 38.04535 30.88199 102.5155
Cost sd due to process var. 2nd process moment

1 16.12781 1213.804
3rd process moment 4th process moment

1 59777.51 3552291

$Subcosts
Sampling cost Repair cost OOC cost
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1 0.6666667 5.386237 24.95974

$Parameters
Time between samplings (h) Critical value (k)

1 1.5 2

It can be seen that now the G-value and the expected cost have different values.
Also, the total cost standard deviation (as defned in Eq. 6) is added to the output.

As mentioned above, the Markovchart function also provides a vectorised
method for calculating G-values for a vector of h or k values, in which case the output
is a data frame. Vectorised calculation uses parallelisation with the doParallel
(Wallig et al. 2020b) and foreach (Wallig et al. 2020a) packages. In this case, the
output of the function is an object of class Markov_grid and data.frame with
three columns:

> stat_exp <- Markovstat(shiftfun = ’exp’, h=0.14, k=0.3,
+ sigma = 1, s = 0.2, delta = 2,
+ RanRep = TRUE, alpha = 1,
+ beta = 3, V=18)
>
> hvec <- seq(0.14, 1, (1 - 0.14) / 15)
> kvec <- seq(0.3, 2, (2 - 0.3) / 15)
> Gmtx <- Markovchart(statdist = stat_exp, h = hvec,
+ k = kvec, p = 0.9, cs = 1,
+ coparams = c(10, 3),
+ crparams = c(1, 2))
> head(Gmtx,2)

h k value
1 0.14 0.3000000 21.05456
2 0.14 0.4133333 20.74024

3.4 Method plot.Markov_grid

plot.Markov_grid is a convenience method for plotting G-values in a contour
plot as the function of h and k. The method uses the ggplot2 (Wickham et al.
2020) and the metR package (Campitelli 2020) for visualisation. The most important
function arguments are listed below:

– x:Adata.framewith three columns (preferably createdby theMarkovchart
function): h, k and the G-values.

– y: The name of the scale.
– xlab: A title for the x axis.
– ylab: A title for the x axis.
– low: Colour for the low end of the gradient.
– mid: Colour for the midpoint.
– high: Colour for the high end of the gradient.
– nbreaks: Number of contour breaks.
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Fig. 3 Contour plot of G-values, black dot: optimal h and k parameters

The output of the function is a plot object of class gg and ggplot produced using
the ggplot2 package.

As the Markovchart function provides vectorised method for calculating G-
values, one can easily create the data required by the plot.Markov_gridmethod.
We have already assembled a dataset in the end of Sect. 3.3 and we can run the
plot.Markov_grid plot method on it. See the example in Fig. 3.

plot.Markov_grid is mainly a convenience method for quick plotting and
exploration of the relationship between the parameters and the resulting G-value. It
can be modifed like any other plot produced by the ggplot2 package as can be seen
in the added dot in the example. The data can also be modifed if, for example, one
would like to use a different currency.

3.5 Function Markovsim

The Markovsim function is able to simulate processes with assumptions described
in Sect. 2. The same type of processes are handled by the Markovchart function,
but in that case all calculations are analytic. The only new parameters compared to the
Markovchart function are num, which is the length of the simulation measured in
sampling intervals, detail, which is the number of simulated data points within a
sampling interval (including the sampling itself) and burnin, which is the number
of samplings deemed as a burn-in period. The burn-in period is necessary because the
starting distribution is a degenerate distribution concentrated on the IC state, which is
to say that the process is assumed to always start from the target value.

The output of the function is a Markov_sim object, which is a list of length 4:

– Value_at_samplings: The process value at sampling.
– Sampling_event: The event at sampling. The event at sampling can be success
(there was a sampling but no alarm), alarm (sampling with alarm) and failure (no
sampling occurred).

– Simulation_data: The simulated data (distances from the target value).
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– Stationary_distribution: The stationary distribution of the Markov
chain, created by discretising the simulated data.

Note that many, but not all features can be found here that we saw at the documenta-
tion of Markovchart. The reason behind this is that the main focus of the simulator
is to be able to give support for setting up complicated models with Markovchart.
In practice it was found that comparing simulations with theoretical results can be
useful for parameter tuning (e.g., fnding discretisation parameters that give accurate
results but keep running times low). Thus simulations for trivial cases—i.e., the tra-
ditional fxed shift size model—were not implemented as there is no discretisation,
random repair and random sampling which would introduce bias or uncertainty.

An example can be seen below:

> res_sim <- Markovsim(shiftfun = ’exp-geo’, num = 10000,
+ h = 1.5, k = 2, sigma = 1, s = 0.2,
+ delta = 1.2, probmix = 0.7,
+ probnbin = 0.8, disj = 2,
+ RanRep = TRUE, alpha = 1, beta = 3,
+ RanSam = TRUE, StateDep = TRUE, a = 1,
+ b = 15, Vd = 100, V = 8, burnin = 500)
>
> str(res_sim, width = 60, strict.width = ’cut’)

List of 4
$ Value_at_samplings : num [1:10000] 0 0 0 0 0 ...
$ Sampling_event : chr [1:10000] "failure" "fail"..
$ Simulation_data : num [1:1500000] 0 0 0 0 0 0 0 ..
$ Stationary_distribution: Named num [1:200] 0 0 0.0291 0..
..- attr(*, "names")= chr [1:200] "In-control" "False-a"..

- attr(*, "class")= chr [1:2] "Markov_sim" "list"

The frst element is a numeric vector of the true process value (the one without
error). The second is the event at the time of the sampling. The third element is the
rawdata,where not only the values at the times of the samplings but between samplings
are available. (The raw data is actually the true process value without measurement
error.) The fourth element is the stationary distribution of the Markov chain, created
by discretising the simulated data. The stationary distribution is calculated by omitting
the data from the burn-in period.

As mentioned above, the simulator can be useful to check the results of the
Markovchart function. Below we will compare the previously shown exponential-
geometric model with simulated results using the same parameters. A good basis of
comparison is the stationary distribution, as all further results can be calculated from
it. For better visualisation the stationary distributions produced by the Markovstat
and Markovsim functions can be transformed in away that does not take into account
the type of the state, only the distance:

> Vd = 100
> distance_dist <- stat_expgeo[[1]][c(1, (Vd+2):(Vd*2))] +
+ stat_expgeo[[1]][2:(Vd+1)]
>
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Fig. 4 Simulation and theoretical calculation comparison for the stationary (distance) distributions, simu-
lation was run for 10,000 sampling intervals with the frst 500 regarded as burn-in

> discr_sim <- res_sim[[4]][c(1, (Vd+2):(Vd*2))] +
+ res_sim[[4]][2:(Vd+1)]

The simplifed theoretical and simulated stationary distributions can be seen in
Fig. 4. The related code chunks are not implemented in the package as it is an ad-
hoc comparison. Users may need a completely different measure such as costs or the
fraction of alarm states.

The probability of the IC state is 0 here, due to the imperfect repair and the highest
probability can be seen at the state just above the target value. The increase in probabil-
ity at the furthest distance taken into account is due to the fnite number of states, (since
the support of the distributions in reality is not fnite). The effect of the geometric dis-
tribution can clearly be seen, as the distribution is multimodal. The peaks correspond
to intervals around the multiples of the geometric shift size which is 2 (probmix =
0.7, disj = 2). Following the peaks, a near-exponential decrease can be seen in
the probability. This can be attributed to the effect of exponentially distributed shifts
added to the discrete shift. The shape of the repair size distribution in this setup is
also such, that it promotes repairs relatively close to the target value (alpha = 1,
beta = 3). We can assess that the simulated and theoretical results ft each other
well. It can be noted that the ft depends on the discretisation parameters used, i.e., V
and V_d should be suffciently large to reach good results. What constitutes as suf-
fcient changes from problem to problem: Different parameters should be evaluated
and the resulting stationary distribution inspected. A good rule of thumb is that the
sum of the remaining probabilities (above V) should be relatively low. In other words,
the bump at the last probability should be small on the fgure. Regarding the value of
V_d, a minimum of 30 states is advisable in most cases.

4 Model comparisons

It was mentioned previously that the edcc R package provides some features that
can also be found in the Markovchart package. The authors of the edcc package
have successfully validated their method in Zhu and Park (2013a), thus it provides
a good basis for comparison. The intersection of the two packages are models that
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use the assumptions of Duncan’s traditional cycle model with a sample size of one
in a one-sided shift case. In the Markovchart package it corresponds the use of
fxed shift size (shiftfun = ’deg’). Let us now compare the results of the two
package based on the fxed shift size model shown in Sect. 3.3:

> res_edcc <- ecoXbar(C0 = 0, C1 = 50, Cf = 20, b = 1, n = 1,
+ delta = 2.5, lambda = 0.2, d1 = 0, d2 = 0,
+ T0 = 0, Tc = 0, Tf = 0, Tr = 0, Cr = 20,
+ a = 0, sided = ’one’, par = c(1, 1))
>
> res_edcc

$optimum
Optimum h Optimum L Optimum n ECH
0.4616145 1.9332665 1.0000000 10.7363411

$cost.frame
Optimum h Optimum L Optimum n ECH
0.4616145 1.933266 1 10.73634

$FAR
[1] 0.05500826

$ATS
[1] 0.4187628

> res_simp_optim

$Results
G-value Expected cost Cost sd due to process var.

1 10.73634 10.73634 21.39669
2nd process moment 3rd process moment 4th process moment

1 573.0874 37380.25 2502524

$Subcosts
In-control cost False-alarm cost Out-of-control cost

1 2.166483 1.014868 1.701831
True-alarm cost

1 5.853159

$Parameters
Time between samplings (h) Critical value (k)

1 0.4615776 1.933419

Both models optimise the free parameters with respect to the total expected costs.
Thus it is straightforward to compare the values of ECH vs. Expected cost
(C), Optimum h vs. Time between samplings (h) and Optimum L vs.
Critical value (k) in the edcc and the Markovchart package results
respectively. Based on these, the packages provide near-identical results which further
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proves that the packages provide two different approaches to the same underlying
process.

As the Markov chain-based model has many parameters, description of their rela-
tionship is a high dimensional problem. Many associations between parameters and
the resulting expected costs and cost standard deviations have already been described
in Zempléni et al. (2004), Dobi and Zempléni (2019a, b). Reproducing all of the pre-
vious results would be redundant and out of the scope of this article, thus here we only
give a brief summary of the most important fndings and highlight some new ones.

The most important difference between models is the shift size distribution as it
governs the deterioration. The fxed shift size distribution represents its own category
and cannot be compared directly to the exponential and the mixture distribution. Zem-
pléni et al. (2004) analysed this classical case in detail and their results agree with
traditional control chart theory. They found that the optimal time between samplings
is less for higher OOC costs and optimal critical values increase with shift size. They
also found that lower shift frequency leads to longer optimal sampling intervals. The
expected costs of the optimal parametrisation showed a decreasing trend for increasing
shift sizes. This trend can be explained by the increasing diffculty in detecting smaller
shifts, which may lead to more incorrect decisions.

Dobi and Zempléni (2019b) compared exponential and exponential-geometric shift
size distributions. The inspection of the stationary distributions revealed markedly
different shapes, where the effect of the shift size distribution is clearly visible, as we
could also see here, on Fig. 4. Their results also show that practically only the frst two
moments are important—although it could be suspected that higher moments would
play a role as well. The relationship between the optimal parameters and the resulting
expected costs and cost standard deviations were similar for both distributions.

The relationship between the parameters and the results in the recently-developed
models were analysed by Dobi and Zempléni (2019a, b). In cost-optimised models
they found that typically the critical value increases and the time between samplings
decreases with the increased expected shift size. This result is the opposite of what
was seen with fxed shift sizes. The difference can be explained by the fact that random
shift sizes allow stacking of shifts, while the fxed shift size does not. The stacking
of great shifts can easily overshadow the beneft of easier detection. Other parameters
may play a role as well (e.g., repair costs). They also found that higher expected shift
sizes entailed higher expected costs and cost standard deviations. It was seen that with
the increase of the OOC cost the critical value usually stagnated, the time between
samplings decreased, and the expected cost and the cost standard deviation increased.
The incorporation of the cost standard deviation in the optimisation procedure sub-
stantially lowered the standard deviation while the cost expectation barely increased.
Namely costs standard deviations could almost be halved in the tested scenarios while
the expected cost only increased by roughly 20%. This is important, because it shows
that the cost standard deviation can be lowered sometimes quite substantially while
the expected cost is only moderately increased.

An important part of health care applications of the control chart model is the choice
of therapy. Health care professionals can often choose from a range of therapies which
have different effectiveness and entail different costs. In the model this is essentially
a set of additional free parameters, namely the repair size distribution parameters, the
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repair cost function and its parameters and any other aspect of the process that may
be connected to the therapy. Separate models can be defned for different therapies
and compared: e.g., a cheap therapy may not be cost-optimal in the long run if it is
ineffective and thus generates huge costs due to a badly managed chronic illness. We
discuss this topic in detail in Sect. 5 below.

5 Application example

In this section we will apply the Markovchart package to randomised real-world
data of diabetic patients.

5.1 Patient data

Our analysis is based on a month-aggregated time series data of diabetic patients from
Hungarywhichwas gathered from the period of 2007September–2017September. The
data came from two sources: the National Health Insurance Fund of Hungary and the
South-Pest Central Hospital. The frst source provided information about diagnoses,
treatments, health care event and related costs while the latter provided laboratory
data regarding blood sugar level. Patients with International Classifcation of Diseases
(ICD) codes (diagnosis) of E10, E11 and E14, and at least one blood sugar measure-
ment were included initially. Only the data of patients with at least one E11 (type II
diabetes) diagnosis in the study period was kept. An additional homogenising flter
was the requirement of age above 40 at the time of the frst diagnosis. Disease progres-
sion and therapy effectiveness estimation required at least two blood sugar (HbA1c)
measurements with simultaneous therapy data. A total of 4434 patients satisfed all
conditions out of which 2151 had at least two HbA1c measurements.

The example study focused on two therapy types: insulin analogues (artifcial
insulins) and glucagon-like peptides (GLP, promotes insulin secretion). Of course
there are more treatment types, the database also lists oral antidiabetics (OAD) and
human insulins, but we choose to make the analysis simpler by focusing on GLP and
analogue therapies. For the sake of comparison the therapies are grouped in this way:
the frst group is insulin analogues with possible parallel OAD therapies but human
insulin and GLP excluded. The second group is GLP therapies with possible parallel
OAD and insulin analogue therapies but human insulin excluded. Essentially we are
comparing the effect and cost of insulin analogueswith the effect and cost of additional
GLP therapies.

The monitored characteristic of the control chart is the blood sugar level, namely
the HbA1c level. This is the glycated haemoglobin measured in percent and is slow-
changing. The medical aspects of the disease, therapies and blood sugar measurement
will not be discussed further as these fall outside of the scope of this example.

The data contains sensitive, patient level information, thus we would only able to
show fgures, statistics and aggregated data in the paper. However, we pseudonymised
and randomised the data in a way that creates fake data but still retains most of the
important characteristics and the connections between variables. Namely, random
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Table 1 Number of patients in the randomised dataset

Patient group Total Analogue GLP

Total (all have E11 & are over 40) 800 630 170

E11 ICD & over 40 & at least two HbA1c 492 272 99

numbers were added (or subtracted) to the date of sampling, the number of sampling
per month, costs, HbA1c measurements (both average and standard deviation) and
the age of the patient. Furthermore, a subsample was taken from the available patient
sample to not even keep the order of patients. The otherwise often very complicated
therapeutic regimens were simplifed into GLP and analogue categories. This simpli-
fcation sometimes meant the overwriting of the true therapy used. This is meant to
further complicate the identifcation of patient by e.g., therapeutic pattern. The number
of sample elements in the fnal, randomized dataset can be seen in Table 1.

5.2 Parameter estimation

This section will provide succinct information about parameter estimation and thus
the disease, therapies and the related costs. The aim of the application is to show
as many aspects of the Markovchart package to an R user as possible. Due to
this, some estimates come from simplifed calculations. During industrial or academic
applications a group of data scientists and healthcare professionals could providemore
accurate estimates, but the work of such a research group is out of the scope of this
paper. For cost calculations, the 2021 March 21 EUR-HUF exchange rate was used (1
EUR = 369.05 HUF).

Parameters related to disease progression, namely the expected number of shifts
per unit time (days) (inverse of shift intensity argument s in the Markovchart
function) and the expected shift size δ (delta argument in the Markovchart
function) were estimated using the time series data of HbA1c measurements. The
δ estimate was calculated from a fltered dataset where we required a HbA1c change
larger than 2σ andmore than 90 but less than 184 days between samplings. The former
was necessary to fnd actual shifts and not just random fuctuations and the latter to
try to estimate the size of one shift and not the size of multiple stacked shifts. The
expected shift size was δ = 1.16%.The restriction during estimation of the expected
time between samplings was less strict: it was required that the samplings should be
at maximum one year (<367days to account for leap years) from each other.The time
between shifts were then gathered from this fltered database and averaged. The shift
intensity was calculated by taking the reciprocal of this average and was s = 0.0045.

Measurement error (the process standard deviation σ , sigma argument in the
Markovchart function) was estimated using lucky anomalies: the HbA1c level
should not be measured more frequently than three months, because the measured
values should barely change, and, in relation to this, only 4measurements are supported
per year by the National Health Insurance Fund of Hungary. Nonetheless there were
221 cases in the original data set where HbA1c measurement occurred more than

123



Markovchart: an R package for cost-optimal patient… 1679

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Therapy effectiveness 

(HbA1c level after therapy divided by the level before)

B
et

a 
di

st
rib

ut
io

n 
de

ns
ity  Analogue

GLP

Fig. 5 Therapy effectiveness comparison using the estimated beta distributions

once per month. This number was boosted in the randomised dataset to 692. This data
essentially provides information about the measurement error as the actual HbA1c
level should change only mildly within such a short time frame. Our estimate with
this simple method was σ = 0.34. It is diffcult to compare this result with existing
literature due to different methodologies but our estimate is close to the one calculated
by Phillipov and Phillips (2001) (even on the randomised data).

Therapy effectiveness was estimated using the defnition of effectiveness in the
Markov chain-based control charts: the proportion of distance from the target value
after treatment compared to the distance before. The target value was set to be 4%
HbA1c level, which is the lowest healthy level (Wang 2017). Setting it to a higher value
would exclude data, as the target value is the lowest considered. When estimating
therapy effectiveness, after the initial fltering of the data (see Sect. 5.1), we also
restricted HbA1c data to cases where the initial value (after which improvement was
seen) was 6%. This was because we wanted to see effect of the therapies only in
cases where there is some notable deviation from the healthy state. Improvement was
defned as > 2σ (sigma argument in the Markovchart function). Again, values
lower than this threshold were considered stagnation (which could also be caused
by an effective therapy followed by a degradation, thus making it unreliable) and
were not included in the effectiveness estimation. To minimise autocorrelation and the
effect of degradation parallel to therapies, only samplings where where more than 90,
but less than 184 days elapsed between the two were considered. Parameters of the
repair size beta distributions were estimated from the mean and the variance of the
ratios of consecutive HbA1c values between samplings. The estimated distribution for
analogue therapies was beta(2.63, 2.05)and for the GLP therapiesbeta(3.85, 3.11).
The estimated beta distributions for both therapies can be seen in Fig. 5.

It can be seen that the GLP therapy is marginally better based on this dataset than
the analogue therapy (judging by the mode). The effectiveness of analogue therapies
have a somewhat greater variance. Of course, this method does not take into account
the HbA1c level itself, only the change (as a proportion).

Random sampling (i.e., patient non-compliance) was not taken into account as our
data did not provide information about this. Nonetheless a sensitivity analysis could
be conducted to see the effect of different hypothesised compliance levels, but we
choose not to complicate the scenario with such an analysis.
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For daily therapy cost estimation (on top of the initial fltering) we also restricted
the data to cases where HbA1c levels were less than or equal to 10%.We observed that
cost data as a function of HbA1c level becomes unreliable above this value. This may
be due to several factors, one being that patients in highly deteriorated states might
have other illnesses (comorbidities) and complications. HbA1c values in between-
sampling time periods were imputed using linear interpolation. This was necessary,
as therapies were ongoing even between samplings. To be able to estimate vari-
ances, the HbA1c level was discretised into 150 categories. The relationship between
the therapy costs, costs variances and the HbA1c level was then estimated using
(non-)linear least squares. This was accomplished with the R function nls. GLP
therapy and complication (i.e., OOC) costs in relation of the HbA1c level were esti-
mated and calculated using the default cost and cost variance functions, discussed
in Sect. 2.4. However, the analogue therapy cost and cost variance estimation used a
function of the form

cr (v) = crb + crs1
v + crs2

,

where v is again the distance from the target value. The resulting functions were the
following (everything is given in euro):

canalogue(v) = 3.3 + −12.22

v + 9.37
, cGLP (v) = 1.69 + 0.07v,

ςanalogue(v) = 7.09 + −3.32

v + 1.08
, ςGLP (v) = 7 − 0.2v,

where v is the HbA1c level.
The same restrictions, discretisation and nls function was used when estimating

the relationship between the OOC (health care event) cost, cost variance and HbA1c
level. Additionally, as there may be a lag between a deteriorated patient state and the
resulting health care event, a 6-month cumulative cost was calculated. The resulting
functions were the following:

co(v) = 0.62 + 0.0062A(v)2h, ςo(v) = 5.12 + 0.13A(v)2h,

where v again is the HbA1c level.
The resulting lines ftted to the data together with standard deviation bands can be

seen in Fig. 6.
It can be seen that analogue and GLP therapies have similar costs, while compared

to these, the OOC costs (especially for higher HbA1c levels) are considerably lower.
This is expected as diabetes requires constant treatment while complications may or
may not occur. Also, it is understandable to keep patients relatively healthy (thus
complication-free) even at a high treatment cost.

There are some more parameters that are worth mentioning: for model ft time
between samplings and the critical value was also estimated from the data. h was the
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Fig. 6 Therapy and medical complication costs (e)

mean time between samplings (206.22 days), calculated from the randomised patient
data. k was determined according to the medical guidelines (7%, see Ton et al. 2013).
constantr = TRUE and ooc_rep = 1 (pr in Eq. 5) were used, as the therapy
is constant and occurs even if there is no alarm (alarm states still play an important
role as HbA1c reduction can only be initiated by an alarm).

5.3 Stationary distribution and cost estimation with the Markovchart function

Before we can feed the estimated parameters to the Markovchart function, we
have to defne the above-mentioned custom cost and cost variance functions in R.
Afterwards we can run the Markovchart function for both the analogue and the
GLP therapy group.

> crfun_ANALOGUE <- function(mudist, crparams){
+ mudist <- mudist
+ crb <- crparams[1]
+ crs <- crparams[2]
+ crs2 <- crparams[3]
+ cr <- crb + crs / (mudist + crs2)
+ return(cr)}
> vcrfun_ANALOGUE <- function(mudist, vcrparams){
+ mudist <- mudist
+ vcrb <- vcrparams[1]
+ vcrs <- vcrparams[2]
+ vcrs2 <- vcrparams[3]
+ vcr <- vcrb + vcrs / (mudist + vcrs2)
+ return(vcr)}
>
> stat_ANALOGUE <- Markovstat(
+ shiftfun = ’exp’, h = 206.22, k = 3,

123



1682 B. Dobi, A. Zempléni

+ sigma = sigma_param, s = s_param,
+ delta = delta_param, RanRep = TRUE,
+ alpha = as.numeric(ANALOGUE[1]),
+ beta = as.numeric(ANALOGUE[2]),
+ Vd = 100, V = 18)
> res_ANALOGUE <- Markovchart(
+ statdist = stat_ANALOGUE, p = 1,
+ constantr = TRUE, ooc_rep = 1,
+ cs = sampling_cost,
+ coparams = summary(mod.COST)$coef[ , 1],
+ crfun = crfun_ANALOGUE,
+ crparams = summary(mod.ANALOGUE)$coef[ , 1],
+ vcoparams = summary(mod_var.COST)$coef[ , 1],
+ vcrfun = vcrfun_ANALOGUE,
+ vcrparams = summary(mod_var.ANALOGUE)$coef[ , 1])
>
> stat_GLP <- Markovstat(
+ shiftfun = ’exp’, h = 206.22, k = 3,
+ sigma = sigma_param, s = s_param,
+ delta = delta_param, RanRep = TRUE,
+ alpha = as.numeric(GLP[1]),
+ beta = as.numeric(GLP[2]),
+ Vd = 100, V = 18)
> res_GLP <- Markovchart(
+ statdist = stat_GLP, p = 1,
+ constantr = TRUE, ooc_rep = 1,
+ cs = sampling_cost,
+ coparams = summary(mod.COST)$coef[ , 1],
+ crparams = summary(mod.GLP)$coef[ , 1],
+ vcoparams = summary(mod_var.COST)$coef[ , 1],
+ vcrparams = summary(mod_var.GLP)$coef[ , 1])

Before inspecting the cost elements of the results, it is useful to check the stationary
distribution of the Markov chains and compare them to the empirical HbA1c data. We
can do this in a visually appealing fashion by creating a distance distribution from
the stationary distribution (by not taking into account the type of the state, only the
distance, as we did in Sect. 3.5). The comparison can be seen in Fig. 7.

We can assess that the stationary distribution fts the data at an acceptable level. This
is actually a very benefcial result, as the main focus of the function is cost estimation
which is based on the stationary distribution.

Now that we have assured that there are no anomalies in the stationary distribution
estimation, let us check the expected costs and costs variances. The costs statistics are
shown in Table 2.

One can see that the total expected cost per day is 3.17e for the analogue and
2.78e for the GLP group, with considerable standard deviation (>3.7e) in both cases.
(Note that p = 1, thus the G-value is simply the expected cost.) The main source
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Table 2 Total expected costs, sub-costs and cost standard deviation (e)

Data/therapy Analogue GLP

Empirical Average cost Average cost

4.18 2.36

Sampling Therapy Event Sampling Therapy Event

0.04 2.32 0.8 0.04 1.88 0.43

Cost standard deviation Cost standard deviation

4.35 3.49

Markovchart Expected cost Expected cost

3.17 2.78

Sampling Therapy Event Sampling Therapy Event

0.04 2.39 0.74 0.04 2 0.73

Cost standard deviation Cost standard deviation

3.75 3.71

of the costs is the therapy cost, as we have seen during the parameter estimation.
We can also compare the results to the empirical data for additional goodness of ft
evaluation. It can be seen that the estimates of the Markovchart function are quite
close to the ones estimated directly from the empirical data. Naturally there is room
for improvement in some cases. For example the difference in the event costs is quite
clear between therapies from the empirical data, while the Markovchart estimates
do not refect this. This is mainly an assumption problem: it is assumed that event
(i.e., OOC) costs solely depend on the states of the chain (i.e., HbA1c level), thus due
to the similar stationary distributions (see Fig. 7) there will not be much difference
between the event costs either. This of course can be solved by separate event cost
estimates in the patient groups but since the absolute difference is small it is not
important in this case. The sampling costs are exactly the same, as the empirical mean
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Fig. 8 Contour plot of expected costs (e) related to analogue therapy

time between samplings (estimated from the whole patient population) was used in
all cases. Overall, we can say that both the stationary distributions and the costs ft
the data at an acceptable level. This is useful, because it means that we have a good
baseline model which allows scenario exploration (i.e., changing various parameters
to check their effects on the costs).

We will now use the vectorisation feature of the Markovchart function and
explore how the expected daily cost changes with different days between samplings
and critical HbA1c levels. The code is almost the same as before, only the value of h
and k is changed to numeric vectors.

We can use the plotmethod to quickly assess the results. The contour plot for the
analogue therapy patient group is presented in Fig. 8.

It can be seen thatmore frequent samplings and lower critical values entail less daily
costs on average. The optimal parameters fall outside of the plotted area. This is due
to the fact that lower parameter values are not viable. Namely, HbA1c measurements
within 90 days of each other become redundant due to the slow variation and HbA1c
values lower than 4% are actually indicating too low blood sugar. Nonetheless the
results provide useful information about the relationship between the parameters, for
example we can see that the expected daily costs is less sensitive on the differences
between greater parameter values.

Since we have two different therapies it may be benefcial to compare them. We
could simply plot the data of theGLP patient groupwith the plotmethod but since there
are only two therapies a 3D might provide better understanding of the relationships.
Figure 9 contains the contour plots of both therapy groups. (The implementation of
this plotting system into the package was considered but was eventually discarded as
it is convenient only in rare cases and requires a lot of fddling to achieve a visually
appealing result.)

We can see the same contour plot on the upper half of the fgure, as before in Fig. 8. In
addition, GLM therapy related costs are shown in the lower part. It is clear that the total
expected daily cost is higher in case of analogue therapy for all h andk combinations.
Costs related to both therapies are the cheapest when the time between samplings and
the criticalHbA1c level is as low as possible.However,we can also assess thatGLP and
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analogue therapy-related costs are similarly sensitive to the parameters (see contour
lines). This is a potentially important information for health care professionals and
insurance companies in setting up cost-effcient therapeutic and monitoring regimens.
It can be noted that this is a cost effectiveness viewpoint based on randomised data.

Cost standard deviation can play an important role in decision making, thus it
is benefcial to inspect this aspect too. By changing the p = 1 parameter in the
Markovchart function to p = 0, we can create the same fgure, but now the
z axis will be the cost standard deviation related to therapies. The results can be
seen in Fig. 10. The fgure uses the same colour coding as before. The difference
of the costs standard deviations between therapies is much less than what we saw
with expected costs. It can also be seen that the costs standard deviation are not very
sensitive on the parameters (the range of standard deviations is roughly 3.3–4.3e).
The most important—and most visible—result is the overlapping surfaces (contours),
which means that order of therapies in the sense of the higher cost standard deviation
depends on the free parameters. In other words, when both the time between samplings
and the critical HbA1c value are relatively low the analogue therapy performs better
cost standard deviation wise, but at higher parameter values the GLP therapy is a
better choice. This result highlight the importance of multidimensional analysis and
the usability of the functions provided by the package.Again, this is a cost effectiveness
viewpoint based on randomised data and may not hold for a real-life situation or data.

It is useful to conduct a sensitivity analysis on the most important parameters. The
above models assume that repair cost at OOC states (thus when there is no alarm and
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image) and GLP therapy (above towards the front of the image)

no intervention) are the same as during an alarm state (ooc_rep = 1).We can refne
these models by assuming that intervention costs more than the usual treatment. We
will focus on the insulin analogue treatment. One can use the ooc_rep argument to
set the percentage of repair cost occurring during OOC operation. For now, we will set
it to be 0.67, meaning that two-third of the repair cost will occur during OOC operation
instead of 100%. The effect of sampling cost should also be inspected as the current
one only takes into account strictly the cost directly related to the inspection. There
could be additional hidden cost related to sampling such as equipment maintenance.
We shall frst assess the effect of a ten-fold sampling cost. Figure 11 shows the results
with the modifed parameters (note that the axes have different units than previously).

It can be seen that the optimal h andk parameters (black dot) now appear in the
viable feld of values. As alarm states (i.e., intervention/therapy change) costs more
than the ’usual’ therapy, the model discourages too low critical values, while increased
sampling costs result in more time between samplings then previously seen. The
positive, linear relationship between the parameters is interesting: as the time between
samplings increase one should use higher critical values to minimise costs. This can
be explained by the joint effect of constant (but not fxed) therapy costs and relatively
low OOC (i.e., healthcare event) costs: namely, when a patient visits less often, the
probability of a deteriorated state increases and this generates higher costs. To evade
even higher costs due to intervention, the critical value needs to be increased. Of course
this is a strictly cost-effcient viewpoint and not a medical one.
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Fig. 11 Contour plot of expected costs (e) related to analogue therapy with modifed ooc_rep = 0.67
and cs = sampling_cost * 10 parameters
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Fig. 12 Relationship between the optimal parameters and costs (e) in case of insulin analogues

How does ooc_rep and cs affect the optimal parameters and the resulting
expected cost and cost standard deviation in general (between the investigated val-
ues)? We can use the Markovchart function on different parameter setups and
visualise the results as seen in Fig. 12.

The y axis represents the percentage of the repair cost occurring during OOC
operation (ooc_rep) on a continuous scale. The colour of the lines depends on
the sampling cost (cs) multiplier used. The x axis is different on each plot, giving
information about the value of an optimal parameter or result. The original model (as
seen in Fig. 8) corresponds to the rightmost (ooc_rep = 1) part of the fgures and
solid lines. We can see that if above around 97% (ooc_rep > 0.97) of the repair
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costs also occur during OOC operation the model becomes somewhat unstable. The
optimal critical value plummets to the lowest possible value. In this scenario there
is no reason not to constantly try different therapies on a patient (the treatment cost
will occur anyway). However, when ooc_rep < 0.97 then the model produces
non-extreme optimal parameter values. The scenario seen in Fig. 11 corresponds to the
leftmost part of the plots and dashed lines. If we check the values in-between, we can
see that the ooc_rep parameter substantially affects the optimal parameters if cs
is increased. Namely, in this case lower ooc_rep values entail more days between
samplings and higher criticalHbA1c values.We can also see that higher sampling costs
generally increase the optimal parameters and the resulting costs and cost standard
deviations. The ooc_rep parameter only moderately affects the resulting expected
cost and cost standard deviation.

6 Conclusion

Asdata becomeavailable in never-before-seen abundance inmanyfelds, it is important
to develop tools for their proper analysis. The Markovchart package aims to give
health care professionals and biostatisticians a tool to model, simulate and visualise
complex processes involving disease development, treatment, patient non-compliance
and related costs. The package’s main use is the development of cost-optimal monitor-
ing and treatment regimens, focusing on individual patients (and homogeneous patient
groups), by optimising the time between samplings and the treatment-inducing critical
disease level. Even though the generalisations were developed with health care appli-
cations in mind, many other areas could beneft from the models, as the package is an
R implementation of theMarkov chain-based cost-optimal control charts developed in
more-general-focus papers in Zempléni et al. (2004), Dobi and Zempléni (2019a, b).

Themost important generalisations implemented in the package are the randomshift
size (degradation), random repair (treatment) and random sampling time (patient non-
compliance). The package is thus capable of modelling and simulating many different
illnesses and therapies. The simplest models are very similar to Duncan’s cycle model
(Duncan 1956) which were also implemented in the edcc package (Zhu and Park
2013b). In this simplest case the results of the two packages are virtually identical. We
have shown through an application on diabetes data that the package’s modelling and
cost calculation tools are capable of highlighting non-trivial relationships between the
therapies, time between samplings, critical value, costs and cost standard deviations.
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AOut of control cost for different shift size distributions

The goal of the calculations below is to fnd the total accrued costs generated by an
out-of-control process in time h, given that the starting distance from the target value
is j. The cost itself is a function of the squared distance from the target value, thus
the value we are looking for is actually an area under the curve from the starting time
until h. For further information, see Dobi and Zempléni (2019b, 2021).

Exponentially distributed shift size Let us assume frst that the shift times form
a homogeneous Poisson process, and the size of a single shift is exponentially dis-
tributed, independently of previous events. The number of shifts is modelled by a
Poisson distribution, with parameter ts—the expected number of shifts per unit time
multiplied by the time elapsed. The shift size distribution for k shifts is a special
case of the gamma distribution, the Erlang distribution E(k, 1

δ
),which is the sum of

k independent exponential variates each with mean δ.
Applying the formula proposed by Dobi and Zempléni (2019b) we can calculate

the total squared cost incurred:

C2h, j =
∫ h

0

[
e−ts j2 +

( ∞∑
k=1

(ts)ke−ts

k! ·
∫ ∞

0
(x + j)2

(1/δ)k xk−1e−x/δ

(k − 1)! dx

)]
dt

=
∫ h

0
e−ts j2 +

∞∑
k=1

(ts)ke−ts

k!
(
kδ2 + (kδ + j)2

)
dt
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=
∫ h

0
2δ2ts + (δts + j)2dt = h2sδ

(
δ + hsδ

3
+ j

)
+ hj2,

where frst we have used the law of total expectation—the condition being the
number of shifts within the interval. If there is no shift, then the distance is not
increased between samplings, this case is included by the e−ts j2 term before the
inner integral. Note that the inner integral is just E(X + j)2 for a gamma—namely
an Erlang(k, 1

δ
)—distributed random variable. When calculating the sum, we used the

known formulas for E(Y 2), E(Y ) and the Poisson distribution itself—where Y is a

Poisson(ts)distributed random variable.
C2
h, j
h can be used to calculate the average cost

per unit time generated by the process.
Mixture distribution as the shift size Let us assume now that the size of a single shift

has a distribution which is a mixture of an exponential and a geometric distribution:

Fm(x) = ζ Fg(x) + (1 − ζ )Fe(x),

where ζ ∈ [0, 1] is themixing parameter, Fg() is theCDFof the geometric distribution,
Fe() is the CDF of the exponential distribution, and Fm()denotes the CDF of the
resulting mixture distribution. Such a distribution can model processes with slow
degradation, mixed with sudden jumps. Different defnitions are available for the
geometric distribution, the one used here has support over {1, 2, . . .}, thus Fg(x) =
1 − (1 − ξ)x ,with probability parameter ξ . A negative binomial distribution can be
defned as the sum of independent geometrically distributed random variables with
the same parameter. Its PMF can be written in the following way:

fnb(x) =
(
x − 1

x − r

)
· ξ r (1 − ξ)x−r , (9)

where r is the number of summed geometrically distributed variables. The support of
this distribution is x ∈ {r , r + 1, r + 2, . . .}.

Let us assume now thatk shifts occurred in a given time interval, and r of these
were geometrically, while the rest were exponentially distributed. The previously used
formula can also be used with this new shift size distribution, but the calculation
of a closed form using the density function is impossible in this case, because it
does not exist for this mixed distribution. Thus, some reformulation is needed. For
the following paragraphs, let X denote an E(k − r , 1

δ
) (Erlang) distributed random

variable, which is the sum of n − r independent exponential variates each with mean
δ, and letY denote a NegBin(r , ξ) (negative binomial) distributed random variable,
which is the sum of r independent geometric variates each with parameter ξ . Note, that
for the negative binomial distribution we are using the defnition given at Eq. (9). Also,
for practical use, one may wish to have discrete jump points other than the integers
defned by the support of the negative binomial distribution (as it is implemented in the
Markovchart package). We can simply multiply the random variable by a constant
(let us denote it by J ) to create arbitrary jump-intervals. The initial equation thus takes
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the form

C2h, j =
∫ h

0

[
e−ts j2 +

( ∞∑
k=1

(ts)ke−ts

k! · E((X + JY + j)2)

)]
dt

The innermost expectation, which was previously simply the expectation of (X +
j)2, now is replaced by E((X + JY + j)2). Observe that every other part of the
equation stays the same. It is easier to present the calculation in parts, as it will result
in a long expression. Firstly,

E((X + JY + j)2)

=
k∑

r=0

(
k

r

)
ζ r (1 − ζ )k−r

[(
k − r

1/δ

)2

+ k − r

1/δ2
+

(
J
r

ξ

)2

+ J 2r
1 − ξ

ξ2
+ j2

+ 2
k − r

1/δ
J
r

ξ
+ 2

k − r

1/δ
j + 2J

r

ξ
j

]
. (10)

Notice that we only expanded E(X + JY + j)2 based on the well-known form of
(a + b + c)2, operating with the constant j as a random variable with degenerate
distribution, and using the beneft of independence between variables. The number of
geometric variables follow a binomial distribution, hence the formula in the beginning
of the left hand side of the equation.k in this equation is a positive integer constant,
but otherwise is modelled by a Poisson distribution as in the purely exponential case
above. The expectation is reduced to

E((X + JY + j)2) = kδ2 + ( j − kδ(ζ − 1))2

+ 2kζ J ( j + δ(k + ζ − kζ − 1)) − ξk(δζ )2

ξ

+ kζ J 2(2 − ξ + ζ(k − 1))

ξ2
(11)

The frst line of the expectation is similar to the result calculated for the simple expo-
nential shift size case, with the ζ mixing parameter appearing here. Notice however,
that the result cannot be simply partitioned into a purely Erlang or a purely negative
binomial part. The rest of the calculation is the same as for the exponential (non-
mixture) shift size case, albeit with more complicated expressions:

C2
h, j =

∫ h

0
e−ts j2 +

∞∑
k=1

(ts)ke−ts

k!
(
E((X + JY + j)2)

)
dt

=
∫ h

0
j2 + 2 jst(δ(ξ − ξζ ) + ζ J )

ξ
+

+ st(δ2ξ2(ζ − 1)(−2 + st(ζ − 1)) − 2δξζ st J (ζ − 1) + ζ(2 − ξ + ζ st)J 2)

ξ2
dt
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= j2 + δhjs − δhjζ s + hjζ s J

ξ
+

+ hs(−6δ2ξ2(ζ − 1) − 3(ξ − 2)ζ J 2 + 2hs(δ(ξ − ξζ ) + ζ J )2)

6ξ2
(12)

The generality of the formula is highlighted by its application on mixture distribu-
tions, since there is no density function to be used to ease the calculations, like in the
simpler, exponential case above. For more details and more general results, see Dobi
and Zempléni (2021).
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