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Abstract 

 

In this age of big data, one of the key concerns in the recent days has been bias present 

in the data and hence the need to ensure data fairness. According to dictionary definition, 

fairness refers to impartial and just treatment without any favoritism or discrimination 

among various groups of individuals. There is a need to ensure that bias in the data does 

not reflect in the models decision which in turn treats people from certain race, gender, 

sexual or political orientation unfairly and differently. The goal of fair data generation is 

to remove any prejudice which might be present in the data towards any specific 

demographic group. This is particularly of interest in decision making scenarios like 

financial lending, hiring, pretrial and immigration detention, health care, social services, 

and education where the system might favor one race and is biased towards the other. In 

this thesis, we propose ImpartialGAN to generate fair synthetic data from real data. The 

generated data is not only fair and free from bias but also ensures a good data utility while 

preserving data privacy. Hence this generated data can be used in place of real data for 

predictive analytics. We performed experiments on three datasets UCI Adult dataset, UCI 

German Credit Dataset and COMPAS dataset from ProPublica.  
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Chapter 1 Introduction 

Roughly 2.5 quintillion bytes of data is generated daily in this digital era. Manual processing of 

such huge amounts of data to extract useful information is nearly impossible but with the 

widespread use of machine learning algorithms and their ability to process enormous data in a 

fast, cost-effective, and scalable way has proven to be a preferred choice to glean useful insights 

and solve business problems in many domains. With this widespread use of machine learning 

algorithms there has always been concerns about the ethical issues that may arise from the use 

of this modern technology. While achieving high accuracies, accomplishing trustable  [1], [2] and 

fair machine learning has been challenging. Maintaining data fairness and privacy is one of the 

top challenges faced by the industry as organizations employ various machine learning 

algorithms to automatically make decisions based on trends from previously collected data [3].  

Protected group or attribute [4] refers to the group of individuals towards whom the system has 

some preconceived reservations and hence is discriminatory. Discrimination is the unjustified 

treatment towards a particular category of people based on their race, age, gender, religion, 

sexual orientation, or disability. If we use the data with preconceived reservation or inbuilt 

discrimination towards certain group, then the model trained on such data will also be 

discriminatory towards these specific individuals [5]. 

1.1. Motivation 

While one approach can be to train the classifier without the protected attribute and use only 

the unprotected attribute for training the classifier but in many cases the protected attributes 

information is encapsulated in other unprotected attributes. For example, even if we remove 
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protected attributes such as race and ethnicity from training data, the information related to 

these attributes might be present in other unprotected attributes such as postal zip code, county 

of residence, and country of origin. So, the model will implicitly learn the protected attribute 

information from these attributes and will be biased[6]. Hence, we also need a way to ensure 

that protected information is not stored in other attributes which are not protected and 

ultimately becomes a deciding factor in the model’s outcome. 

Another approach is to generate fair synthetic data from historical datasets. This approach was 

used by [7], [8]. Here in this thesis, we modified and improved FairGAN [7], which could still have 

implicit correlation between protected and unprotected attributes. As in [7], we similarly used 

real data which includes the protected attribute and used it to generate synthetic data which is 

free from bias. We used Generative Adversarial Networks (GANs) to generate synthetic data as 

GANs are able to closely replicate real data distributions and generate good quality synthetic data 

[9]. Once we have the synthetic data, it can be used for predictive modeling instead of using the 

real data that might be biased. 

1.2. Approach  

ImpartialGAN consist of four components: one generator and three discriminators. The first 

discriminator makes sure that the generated data is as close to real data as possible. The second 

discriminator ensures that the generated unprotected attributes along with the associated 

generated decision attribute taken together are jointly independent of the protected attribute. 

These components are very similar to the components in FairGAN [7]. To remove any residual 

correlation between unprotected attributes and the protected attribute, we introduce the third 

discriminator to enforce that, unprotected attributes do not encapsulate any information about 
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the protected attribute. In this work we make sure that the generated data is similar to the real 

data and does not contain any information about the protected attribute while still maintaining 

a good correlation between the unprotected attributes and the output decision. Throughout this 

thesis I will be using the name synthetic and fake data interchangeably. 

1.3. Thesis Organization 

The thesis is organized as follows. Chapter 2 discusses related work about fairness. Chapter 3 

explains the general mechanics of GAN followed by the in-depth components, architecture, and 

pseudocode of ImpartialGAN. The experimental setup along with the results obtained on the 

various datasets are explained in Chapter 4 followed by the conclusion and future work in 

Chapter 5. 
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Chapter 2 Related Work 

Fairness and bias mitigation research have taken three routes: a) remove bias from the real data, 

b) generate synthetic bias free data, and c) build classifiers sans discrimination for predictive 

modeling. Zhang et al. [10] categorize methods for constructing discrimination free classifiers as 

pre-process methods, in-process methods, and post-process methods. Pre- process methods [6], 

[11]–[14] use techniques like massaging, reweighing, or resampling that modify the training data 

to remove bias and then this modified data is used for predictive modeling. For in-process 

methods [15], [16], a fairness constraint or regularization term is applied to the classifier to 

achieve fair classification. Lastly the post-process methods [17], [18] change the predicted label 

to remove discrimination. 

2.1. Causal Graph based Approach 

To achieve fairness, we should be able to identify whether the discrimination is towards a specific 

group. Zhang et al. [19] proposed using causal graphs to find meaningful partitions in the data to 

identify that the discrimination in the decision is caused due to the individual’s protected 

attribute. 

 

 

 

major 

gender 

test_score 

admission 

Figure 2.1-1: Example causal graph (Diagram based on [19]) 
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To understand causal graphs and meaningful partitions the authors used the example of the 

university admission system with only four attributes namely gender, major, test_score and the 

result attribute admission. Figure 2.1-1 shows the causal graph for this university admission 

system. Here an arc between the attributes shows a causation. The cause of each node is its 

parent node. Next to explain a meaningful partition in a dataset they used the example statistics 

shown in Table 2.1-1 . An example of a meaningful partition with respect to the university 

admission system can be one where the data is partitioned based on the combination {major, 

test_score} and there is a substantial difference in the admission rates between male and females 

when a particular group of test score is considered. So, when we consider a test score of ‘L’ Table 

2.1-1 shows discrimination against females based on the number of applicants. Similarly, there is 

discrimination against males when considering a test score of ‘H’. 

Major CS EE 

Gender Female Male Female Male 

Test Score L H L H L H L H 

No. 

applicants 

450 300 150 100 600 300 200 100 

Admission 

Rate 

30% 50% 36% 40% 40% 60% 45% 50% 

 38% 38% 47% 47% 

Table 2.1-1: Example statistics (Table from [19]) 
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Zhang et al. [19] then proposed two approaches to remove discrimination. In the first approach 

they modified the causal graph and used it to generate a dataset free from discrimination which 

can be used for predictive modeling. More specifically they generated data by modifying the 

conditional probability table of the decision attribute. This was done to remove bias from the 

relevant subgroups of the meaningful partitions. Hence the complexity of this approach is 

dependent on two factors: complexity of finding causal graphs and time required to solve 

quadratic programming.  

The authors also suggested a second approach to remove discrimination by modifying the 

dataset. In this approach, random data points are selected with either the positive protected 

attribute and a negative decision or positive attribute and a positive decision. After this the 

decision attributes value is flipped for the selected data points. The complexity of this approach 

is dependent on finding the relevant sub population and the size of the dataset. By using the 

second approach the efficiency of the algorithm is compromised. 

2.2. Achieving Fairness through Latent space de-biasing 

Ramaswamy et al. [20] identified the need to remove the correlation between the decision, and 

the protected attributes in machine vision space. They proposed using GANs for data 

augmentation as they are able to produce realistic images. Their approach involved making 

perturbations in the GAN latent space which removes the correlation between the protected 

attribute and decision in the generated data set.  

To understand the issue in machine vision space, they gave the example of a visual classifier 

where the classifier was trained to recognize whether a person is wearing a hat or not. In general, 
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wearing a hat can be correlated to wearing sunglasses when it’s sunny outside, but this 

hypothesis is not always true. 

In the case of imbalanced training datasets, the classifier will learn this correlation between hats 

and glasses. Hence it will fail to recognize the presence of hat in the absence of sunglasses on the 

other hand in the presence of sunglasses it might falsely predict that the person is wearing a hat 

even when they are not wearing one. To remove this correlation, they proposed data 

augmentation by adding GAN generated images to the training dataset. The generated images 

consisted of both types of images one without hat, but the person is wearing sunglasses and the 

second where the person is wearing a hat but has no sunglasses. This helps in removing the 

correlation between the two attributes. Figure 2.2-1 depicts this approach. 

 

Figure 2.2-1: Picture taken from [20]: Training data augmentation 

Its shortcoming are they do not consider the correlation between the unprotected attributes and 

the protected attributes which can influence the decision for the protected group. 
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2.3. Removing Bias through Adversarial Learning 

Research in the literature has shown well trained models reflect biases that are present in the 

dataset. To mitigate such bias, Zhang et al. in [21] proposed an architecture comprising of two 

models namely a predictor model and an adversarial model. The predictor model is used to 

predict the target variable from the data. Next this prediction is fed as input to the adversary 

network which tries to predict the correct value of the protected attribute. Depending on the 

type of fairness that needs to be achieved whether it is demographic parity, equality of odds or 

equality of opportunity, there may be additional inputs to the adversarial network. The gradient 

of the adversarial model is incorporated in the predictor model via weight update to avoid 

leakage of information about the protected attribute. Figure 2.3-1 shows the architecture of their 

proposed model.  

The aim over here is to maximize the Predictor model’s ability to successfully predict the value 

of the decision/target variable. At the same time the adversarial network ensures the decision 

attribute does not encapsulate any information regarding the protected attribute. In the 

experiments the authors used the UCI Adult dataset for the classification task and used two 

logistic regression models - one for the predictor model and another for the adversarial model. 

However, in general, any gradient based learning models can be used. One of the drawbacks of 

this approach is that if the hyperparameters are not set correctly then the algorithm diverges, 

and the adversarial training becomes hard. 
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2.4. Removing Algorithmic Bias Using Learned Latent Structure  

Amini et al. [22] used an extension of the variational autoencoder also known as debiasing 

variational autoencoder to mitigate bias and to increase classification accuracy. The purpose was 

to remove gender and racial bias in facial detection systems. In general, the system first learns 

all the latent/sensitive variables of the class in an unsupervised manner. Next these variables are 

used to resample the dataset while training so that the classifiers are unbiased. 

Their approach can be better understood from Figure 2.4-1. Their algorithm uses Variational 

Autoencoders to identify the underrepresented attributes in the dataset. Next it increases the 

sampling probability of these attributes. In the Figure 2.4-1 the group of images on the left are 

sampled without debiasing whereas images on the right are with debiasing and hence have more 

diverse attributes like skin color, illumination etc. In their experiments they used images from 

CelebA and ImageNet datasets. 

In facial detection systems the latent attribute can be skin color, age, or gender.  In order to 

implement fairness in such classifiers the distribution of these latent attributes should be 

uniform. This is different from class imbalances. When there is a class imbalance in a training set, 

we try to have roughly the same number of samples of all the classes in a particular batch. Here 

in this proposed algorithm, it means these latent attributes are uniform within a particular class. 

Predictor 

Weights: W 

Adversary  

Weights: U 
ŷ x ẑ 

𝐿𝐴(𝑧Ƹ, 𝑧) 𝐿𝑃(𝑦ො,  𝑦) 

Figure 2.3-1: Model architecture (Diagram based on [21]) 
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Simply put all the latent variables in a particular class should be balanced. For example, for a 

particular sample if we change the value of a latent variable (example skin tone from dark to 

light) then the classifier should still be able to predict the output label correctly. 

 

Figure 2.4-1: Data debiasing (Picture from [22]) 

2.5. Fairness using Flexibly Fair Representations 

Creager et al. [23] used flexibly fair representations to build a fair model for a variety of protected 

groups. Their method can be used for a variety of downstream tasks as learned representations 

are disentangled from multiple sensitive attributes during training. In their experiments they 

satisfied demographic parity so that the prediction label was independent of the set of sensitive 

attributes. Figure 2.5-1 helps in understanding their approach. Here protected attributes are 

referred as sensitive attributes and the unprotected attributes are referred to as non-sensitive.  

Given a dataset D all the unprotected attributes can be represented by x. The set of all the 

sensitive attributes is represented by a and y is the label to predicted. The Variational 
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Autoencoder learns the latent representation of the unprotected attributes which is represented 

by z. Latent representation of the protected attributes are represented by b. The author’s 

approach was to have a latent subspace for each protected attribute in a way that a subspace for 

a particular protected attribute is independent of the subspace of the other protected attributes. 

 

Figure 2.5-1: Architecture of the proposed model (Picture from [23]) 

They performed three tasks namely fair classification, predictiveness, and disentanglement to 

ensure the performance of their method. For fair classification the model was trained to predict 

y given the vectors z and b. Here they removed the concerned protected attributes dimensions 

from b and evaluated the model’s performance on the test set. This task was repetitively 

performed for each protected attribute one by one. 

For the second task on predictiveness a classifier was trained to correctly predict the value of a 

protected attribute from the latent representations b. 

Lastly for disentanglement a separate classifier was trained to predict the value of a specific 

protected attribute say 𝑎𝑖 from the latent space of the unprotected attributes and the latent 

space of the remaining protected attributes. If the classifier loss is low, then this shows 

predictiveness and if the loss is high, it shows disentanglement. 

DocuSign Envelope ID: 213AE552-2504-4459-8D3D-D6E4B997A10D



16 
 

The authors applied their method on two datasets the Communities and Crime Dataset and the 

Celeb-A dataset. One of the drawbacks of their approach is that much of the research uses 

synthetic data which has uniform distribution of the various factors to check for disentanglement, 

which may not be the case in the real world. 

2.6. Fairness using Generative Adversarial Networks  

Xu et al. [7] used a GAN to generate fair synthetic data along with the decision from noise 

conditioned on the protected attribute gender by using an additional discriminator to enforce 

fairness by removing the correlation between the protected attribute gender and the other 

unprotected attributes along with the decision.  

 

 

 

 

 

 

 

 

 

𝑃𝑠        
Protected 

attribute 
𝑃𝑍              

Noise 

𝐺𝐷𝑒𝑐 
Generator 

𝑃𝐺(𝑥, 𝑦|𝑠) 

𝑃𝑑𝑎𝑡𝑎(𝑥, 𝑦|𝑠) 

𝐷1         
Discriminator 

𝐷2         
Discriminator 

fake: (x̂, ŷ, ŝ) (x̂, ŷ|ŝ = 1) 

real: (x, y, s) (x̂, ŷ|ŝ = 0) 

Figure 2.6-1: Diagram taken from [7] : FairGAN architecture 
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Figure 2.6-1 shows the architecture of FairGAN. Since GANs are able to generate good quality 

data the authors used GANs in their architecture. However instead of using one discriminator, 

their framework used two to achieve fairness. They used a modified GAN generator which was 

conditioned on noise and the protected attribute to generate synthetic data. The first 

discriminator ensures that synthetic data is like real data. The second discriminator ensures data 

fairness in the remaining attributes including the decision attribute by ensuring that no 

information regarding the protected attribute is stored. 

While reproducing their experiments we found that the unprotected attributes still had 

information encapsulated about the protected attributes which might be affecting the output 

decision of the model. Our algorithm, ImpartialGAN, removes this correlation between the 

protected and the unprotected attributes. 

2.7. Research Challenges 

As discussed earlier we can leave the protected attribute and use only the unprotected attributes 

for training the classifier but it’s highly likely that the protected attributes information is 

encapsulated in other unprotected attributes. For example, there was an initiative at Amazon to 

automate the hiring process. The algorithm was designed to shortlist the resume of the people 

that Amazon should hire. Later on it was discovered that the algorithm was biased towards 

females as majority of the software engineers hired by the company were males [24]. This 

happened because the historical data on which the algorithm was trained was biased. Now we 

can argue that removing the gender or say the names of the applicants from the resume will 

make the system bias free but in reality, the algorithm can learn about a person’s gender through 

the words mentioned in their hobbies like women’s rugby team and the college they attended. 
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The system can infer that a person is a female if she attended an all-women’s college. So, the 

model will implicitly learn the protected attribute’s information from these attributes and will be 

biased. Hence, we need a way to ensure that protected information is not stored in other 

attributes which are not protected and ultimately becomes a deciding factor in the model’s 

outcome. This issue has been addressed by our proposed algorithm ImpartialGAN. 
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Chapter 3 Approach 

3.1. GAN and Autoencoder setup for generating continuous and discrete data 

GANs consist of two parts: a generator G and a discriminator D. The generator model produces 

synthetic data from random noise z following the noise distribution 𝑃𝑧. The data from the 

generator along with real data x from a training data set are given as inputs to the discriminator, 

which attempts to distinguish between the inputs x and the G(z) data generated by the generator. 

Over the course of the training the generator gets better at creating samples that look more and 

more like the real data by following the real data distribution 𝑃𝑑𝑎𝑡𝑎 while the discriminator is 

unable to distinguish between the real data and the synthetic data.  

 

 

 

 

 

 

 

 

 

Random Input Vector 

Generator 

Model 

Generated Sample Real Sample 

Discriminator Model 

Binary Classification 

Real/Fake 

Update 

model Update 

model 

Figure 3.1-1: Regular GAN architecture 

DocuSign Envelope ID: 213AE552-2504-4459-8D3D-D6E4B997A10D



20 
 

The architecture of a regular GAN is as shown in Figure 3.1-1. For simplicity and consistency, we 

have adopted the same notation convention as in FairGAN [7]. A GAN value function can be 

represented as in Equation 1. 

 

V(G,D) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧

[log (1 − 𝐷(𝐺(𝑧))] 

Equation 1 

 Autoencoders are based on neural networks. Their objective is to first compress the input data 

to a latent space also known as the bottleneck which consists of the most important 

representations of the input data. Next the input is reconstructing from this compressed form. 

This process helps the Autoencoder in learning the most important hidden features in the input. 

 

Figure 3.1-2: Autoencoder architecture (Picture taken from [25]) 

Figure 3.1-2 depicts a general Autoencoder architecture [25]. Autoencoders are only able to 

compress data on which they are trained on. An Autoencoder setup consists of an Encoder and 

a Decoder.  
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An Encoder compresses the data to a lower dimension known as latent representations. These 

representations are different from the original input. Decoder part of the Autoencoder 

architecture tries to reconstruct the original input from the compressed version generated by the 

encoder. 

As GANs are unable to generate discrete data, FairGAN adopted the modified generator 𝐺𝐷𝑒𝑐 

from medGAN [26], and similarly we also used it instead of the generator model from GAN 

architecture. Here, the generator of the GAN generates the salient representations over a noise 

variable z and then the decoder from an autoencoder model tries to reconstruct the synthetic 

data from these representations. The modified generator 𝐺𝐷𝑒𝑐 can be realized by the following 

function 

𝐺𝐷𝑒𝑐(𝑧) = 𝐷𝑒𝑐(𝐺(𝑧)) 

Equation 2 

3.2. ImpartialGAN Model 

ImpartialGAN has four major components one generator and three discriminators. Figure 3.2-

1 shows the architecture of ImpartialGAN. The modified generator 𝐺𝐷𝑒𝑐 produces fake 

samples which consist of i) unprotected attributes, x̂ ii) the decision attribute, ŷ, and iii) the 

protected attribute ŝ. These are generated from noise variable z and the real protected 

attribute s following the joint distribution for (x,y) given the conditional probability of s, where 

x represents the unprotected attributes and y the decision label. 
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Figure 3.2-1: ImpartialGAN architecture 

 

(x̂,ŷ) = 𝐺𝐷𝑒𝑐(z,s) = Dec(G(z,s)), z  �̴�𝑧 

Equation 3 

FairGAN Components of ImpartialGAN. In Equation 3, 𝑃𝑍 represents the noise distribution. 

Discriminator 𝐷1 identifies fake samples (x̂,ŷ,ŝ) from the real samples (x, y, s). This enforces the 

generator to align the fake samples more and more to the probability distribution of the real data 

given the protected attribute from random noise. Once the generated fake samples are marked 

as real, they are fed as input to the discriminator 𝐷2 to enforce the fairness constraint. 
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Discriminator 𝐷2 tries to find the value of the protected attribute given the unprotected 

attributes and the associated decision. It makes sure the unprotected attribute and the decision 

together does not encapsulate any information regarding the protected attribute value.  

New Discriminator for ImpartialGAN. The third discriminator 𝐷3 ensures that there is no 

correlation between the generated unprotected attributes and the protected attribute. In the 

following equations bold expressions indicate extensions provided by ImpartialGAN compared to 

FairGAN. The minmax game between the generator and the various discriminators can be 

described with the following equations: 

 

𝑚𝑖𝑛
𝐺𝐷𝑒𝑐

𝑚𝑎𝑥
𝐷1𝐷2𝐷3 

𝑉(𝐺𝐷𝑒𝑐 , 𝐷1, 𝐷2, 𝐷3) = 𝑉1(𝐺𝐷𝑒𝑐, 𝐷1) +  𝜆1𝑉2(𝐺𝐷𝑒𝑐, 𝐷2) +  𝝀𝟐𝑽𝟑(𝑮𝑫𝒆𝒄, 𝑫𝟑) 

Equation 4 

where, 

𝑉1(𝐺𝐷𝑒𝑐, 𝐷1) = 𝐸𝑠~𝑃𝑑𝑎𝑡𝑎(𝑠),(𝑥,𝑦)~𝑃𝑑𝑎𝑡𝑎(𝑥, 𝑦|𝑠)[𝑙𝑜𝑔𝐷1(𝑥, 𝑦, 𝑠)] +  

𝐸𝑠Ƹ~𝑃𝐺(𝑠),(𝑥Ƹ,𝑦Ƹ)~𝑃𝐺(𝑥,𝑦|𝑠)[log (1 − 𝐷1(𝑥Ƹ, 𝑦Ƹ, 𝑠Ƹ))] 

Equation 5 

 

𝑉2(𝐺𝐷𝑒𝑐 , 𝐷2) = 𝐸(𝑥Ƹ,𝑦Ƹ)~𝑃𝐺(𝑥, 𝑦|𝑠 = 1)[𝑙𝑜𝑔𝐷2(𝑥Ƹ, 𝑦Ƹ)] +  

𝐸(𝑥Ƹ,𝑦Ƹ)~𝑃𝐺(𝑥,𝑦|𝑠=0)[log (1 − 𝐷2(𝑥Ƹ, 𝑦Ƹ))] 

Equation 6 
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𝑽𝟑(𝑮𝑫𝒆𝒄, 𝑫𝟑) = 𝑬(𝒙̂Ƹ)~𝑷𝑮(𝒙̂|𝒔 = 𝟏)[𝒍𝒐𝒈𝑫𝟑(𝒙̂Ƹ)] +  

𝑬(𝒙̂Ƹ)~𝑷𝑮(𝒙̂|𝒔=𝟎)[𝐥𝐨𝐠 (𝟏 − 𝑫𝟑(𝒙̂Ƹ))] 

Equation 7 

In Equation 4, 𝜆1 and 𝜆2  indicates the weightage whether more weight is given to fairness in 

joint combination of unprotected attribute along with the associated decision or to the fairness 

in the unprotected attributes. 

As in FairGAN, using Equation 5, the generator first follows the probability distribution of the 

protected attribute (s) from real data. After that the generator uses the joint distribution of the 

pair (x, y) to generate a tuple (x̂, ŷ, ŝ) from random noise given the conditional distribution of the 

protected attribute (s). Once the generated tuple is close to real data and the discriminator 𝐷1 

marks them as real then using Equation 6 the discriminator 𝐷2 is trained to predict the value of 

(ŝ) from the pair (x̂, ŷ) whereas the generator is trained to ensure that the P (x̂, ŷ|ŝ = 0) = P (x̂, ŷ|ŝ 

= 1) so that the discriminator 𝐷2 is unable to predict the correct value of (ŝ) given a pair (x̂, ŷ). 

This training of 𝐷2 and 𝐺𝐷𝑒𝑐 ensures the generated unprotected attributes and the associated 

decision are not correlated with the protected attribute.  

After achieving this, 𝐷3 and 𝐺𝐷𝑒𝑐  are trained using Equation 7 in ImpartialGAN. The unprotected 

attributes x̂ are given as input to 𝐷3  which is trained to predict the value of (ŝ) while the generator 
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ensures that the P (x̂|ŝ = 0) = P (x̂|ŝ = 1). This joint training of 𝐷3 and 𝐺𝐷𝑒𝑐 ensures data fairness 

in the unprotected attributes. 

3.3. Fairness and discrimination metric 

Ideally, statistical parity or fairness in a dataset should be represented as  

P(y = 1|s = 1) = P(y = 1|s = 0) 

where y is the decision and s is the protected attribute. The metric risk difference yields the 

amount of discrimination in the dataset and is expressed as follows: 

riskDiff(Dataset) = P(y = 1|s = 1) − P(y = 1|s = 0) 

Statistical parity or fairness in a classifier can be determined by replacing the true label y with the 

prediction of the classifier as 

P(η(x) = 1|s = 1) = P(η(x) = 1|s = 0) 

where a classifier uses η(x) function to output decision ŷ. Here, x represents the attributes. While 

the previous formula considers risk difference defined in FairGAN, it does not consider the actual 

true decision. Hence, a classifier with low accuracy can reduce the risk difference easily. To 

address this issue, in our ImpartialGAN, the discrimination of a classifier, η, can be measured by 

the risk difference considering the actual true label as follows 

riskDiff(η) = P((η(x) = 1 and y = 1)|s = 1) − P((η(x) = 1 and y = 1)|s = 0). 
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3.4. Algorithm  

As previously mentioned, we espoused the modified generator from FairGAN [7] which they 

adopted from medGAN [26] to produce discrete data. In order for the decoder to be able to 

reconstruct the data, we first trained the Autoencoder using the loss function in Equation (8). 

Loss = ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑥)) − 𝑥 ||2
2 

Equation 8 

where x represents the input features, Enc is the encoder, and Dec is the decoder in an 

Autoencoder setup.  

Then we used this trained decoder along with the generator of a regular GAN [9] to create the 

generator for ImpartialGAN. The trained decoder produces synthetic data from the 

representations produced by G(z,s). Algorithm 1 shows how the various sub-modules of 

ImpartialGAN are trained. The Autoencoder is trained in lines 6 through 13. The discriminator 𝐷1 

and 𝐺𝐷𝑒𝑐 is trained in lines 14 through 22 so that the synthetic data is as similar to real as possible. 

Then the discriminator 𝐷2 and 𝐺𝐷𝑒𝑐 are trained as in lines 23 through 31 to apply fair constraint 

on (x̂, ŷ) jointly. Lastly, the discriminator 𝐷3 and 𝐺𝐷𝑒𝑐 are trained to apply the fair constraint on 

(x̂) as shown from lines 32 through 40. 
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Algorithm 1 Pseudocode for the implementation of ImpartialGAN 
1 i: the number of iterations 
2 b: the number of train batches 
3 v: the number of validation batches 
4 𝑑𝑇 : training dataset 
5 𝑑𝑉 : validation dataset 
6 for i iterations do 
7  for b training batches do 
8   Train Autoencoder, AE on 𝑑𝑇 using Loss = ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑥)) − 𝑥||2

2 

9  end for 
10  for v validation batches do 
11   Validate AE’s performance on 𝑑𝑉 
12  end for 
13 end for 
14 for i iterations do 
15  for b training batches do 
16   Train Discriminator 𝐷1 on a batch of real and synthetic data using loss 

function in Equation 5 
17   Train Generator 𝐺𝐷𝑒𝑐(𝑧,𝑠) using loss function in Equation 5 

18  end for  
19  for v validation batches do 
20   Validate 𝐷1 and 𝐺𝐷𝑒𝑐(𝑧,𝑠) on 𝑑𝑉 

21  end for 
22 end for 
23 for i iterations do 
24  for b training batches do 
25   Train Discriminator 𝐷2 on a batch of real and synthetic data using loss 

function in Equation 6 
26   Train Generator 𝐺𝐷𝑒𝑐(𝑧,𝑠) using loss function in Equation 6 

27  end for 
28  for v validation batches do 
29   Validate 𝐷2 and 𝐺𝐷𝑒𝑐(𝑧,𝑠) on 𝑑𝑉 

30  end for 
31 end for 
32 for i iterations do 
33  for b training batches do 
34   Train Discriminator 𝐷3 on a batch of real and synthetic data using loss 

function in Equation 7 
35   Train Generator 𝐺𝐷𝑒𝑐(𝑧,𝑠) using loss function in Equation 7 

36  end for 
37  for v validation batches do 
38   Validate 𝐷3 and 𝐺𝐷𝑒𝑐(𝑧,𝑠) on 𝑑𝑉 

39  end for 
40 end for 
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Chapter 4 Experiments 

4.1. Experimental Setup 

In this chapter, we evaluate the performance of ImpartialGAN on three datasets and compare 

with FairGAN’s [7] performance. All the experiments were conducted on a system with Intel Core 

i7-8550U CPU @1.80GHz and 16 GB RAM.  We briefly explain the various datasets and the 

experimental setup used. 

Implementation Details. We implemented and tested ImpartialGAN by varying the values of the 

coefficients 𝜆1 and 𝜆2 to determine the best coefficient values that maintain a balance between 

utility and fairness. We adopted the same architecture for 𝐷1, 𝐷2, 𝐺𝐷𝑒𝑐 as FairGAN [7] and 

extended it to implement 𝐷3. The autoencoder consists of encoder and decoder each having one 

hidden layer with 128 neurons. We trained the autoencoder for 200 epochs. The generator and 

all the discriminators are feed forward neural networks with two hidden layers in each. 

Generator’s each hidden layer has 128 dimensions. The first layer of discriminators has 256 

dimensions, and the second layer has 128 dimensions. First 𝐷1 and 𝐺𝐷𝑒𝑐 are trained for 2,000 

epochs. Next, we trained 𝐷2and 𝐺𝐷𝑒𝑐 for 2,000 epochs. Lastly, we trained 𝐷3 and 𝐺𝐷𝑒𝑐  for 2,000 

epochs. 

Datasets. We conducted our experiments on three datasets, which are UCI Adult Income Dataset, 

German Credit Dataset and COMPAS Dataset. 

4.2. Classification Models and Settings 

After generating the synthetic data using different values of 𝜆1 and 𝜆2, we trained three different 

classifiers to check the utility of the generated data along with the risk difference of the various 
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classifiers: i) linear Support Vector Machine(SVM), ii) Support Vector Machine with Radial Basis 

Function kernel(RBF), and iii) Decision trees and used grid search to find optimal hyperparameter 

values for SVM(RBF). 

We used two different configurations to evaluate the performance of the classifiers. 1) 

(SyntoSyn): We trained the classifiers on the synthetic dataset and evaluated them on the 

synthetic dataset. 2) (SyntoReal):  We trained the classifiers on the synthetic dataset and 

evaluated them on the real dataset. 

4.3. Evaluation on Adult Dataset. 

In our experiments, we used the preprocessed datafile obtained from [7]. Xu et al. used the UCI 

Adult Dataset [27] which contains 48,842 instances. After removing the instances with unknown 

values, the dataset size reduces to 45,222. The instances in the original dataset have 14 attributes 

and the binary decision attribute reflects if the income is less than 50,000 or greater than 50,000. 

Xu et al. preprocessed this dataset by converting each attribute to one hot encoded form and 

then combining the one hot encoded form of each attribute to create a dataset that resulted in 

a total of 58 attributes for each instance. As in [7], in our experiments, we have considered only 

one protected attribute which is the gender of the individual whose values were either male or 

female. The decision attribute income was also binary whose output was either a positive 

outcome or a negative outcome. 
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Real Data FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

0.1989 0.0562 ± 

0.0190 

0.0966 ± 

0.0134 

0.0957 ± 

0.0036 

0.0419 ± 

0.0124 

0.0265 ± 

0.0118 

0.0222 ± 

0.0082 

Table 4.3-1: Adult dataset: Risk difference in real and synthetic datasets 

Risk Difference in Real and Generated Data. We compare the risk difference between FairGAN 

and ImpartialGAN while varying the parameters 𝜆1 and 𝜆2 using 

riskDiff (Dataset) = P (y = 1|s = 1) − P (y = 1|s = 0) described in the previous chapter. The risk 

difference for the real and synthetic datasets are shown in Table 4.3-1. The risk difference in the 

real data is .1989 which shows that the protected attribute information is present in the output 

label, and there is discrimination against females. The risk difference for FairGAN is 0.0562 which 

shows fair data generation but there is still correlation between the unprotected attributes and 

the protected attribute. For (𝜆1 = 0, 𝜆2  = 1) and (𝜆1 = 0, 𝜆2 = 2) the risk difference is lower than 

real dataset but higher than FairGAN as there is still correlation between ŷ and s in the generated 

data. But as we increase the value of 𝜆2  keeping 𝜆1  value constant at 1, the risk difference drops 

as now the correlation between (x̂, ŷ) and s is minimized as well as the correlation between x̂ and 

s. 
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4.3.1 Performance on Adult Dataset 

For the SVM classifier with linear kernel, the regularization parameter C value is set as 1.0. For 

SVM with RBF kernel C value is set as 1 along with the kernel coefficient ϒ as .001. Lastly, for 

decision trees we used the maximum depth of the tree as 5. 

Table 4.3.1-1 presents the risk difference and accuracy for classifiers in RealtoReal setting when 

classifiers are trained and evaluated on the real dataset. We consider these results as baseline 

for comparison purposes. While the accuracy is high for the classifiers in RealtoReal setting so is 

the risk difference. This proves the real dataset is biased, and hence the classifiers trained on it 

are likely to be biased as well. We also believe the most important experimental setting is 

SyntoReal same as emphasized by Xu et al. [7]. For practical purposes we can only train the 

classifiers on synthetic data and then can use these trained classifiers for unbiased prediction on 

real datasets. 

Classifier Risk Difference Accuracy 

SVM(Linear) 0.1295 0.8425 

SVM(RBF) 0.1022 0.8307 

Decision Tree 0.1212 0.8234 

Table 4.3.1-1: Adult Dataset: Classifier risk difference and accuracy for RealtoReal setting 

For training and evaluating these classifiers, we only used the unprotected attributes without the 

protected attribute gender for predicting the income. We also used the classifier (η) risk 

difference, riskDiff(η) = P ((η(x) = 1 and y = 1)|s = 1) − P ((η(x) = 1 and y = 1)|s = 0) as explained in 

the previous chapter to see the fairness of classifiers in predicting the output label. Table 4.3.1-2 

DocuSign Envelope ID: 213AE552-2504-4459-8D3D-D6E4B997A10D



32 
 

shows the accuracy and risk difference results for the classifiers in SyntoReal setting. For 

SVM(Linear) and SVM(RBF), the accuracies are slightly better whereas for decision trees the 

accuracy decreased and then increased while increasing 𝜆2. For all the three classifiers the risk 

difference increased when compared to FairGAN but was still lower than the difference obtained 

in RealtoReal setting. For all the classifiers the change in accuracy proves that ImpartialGAN 

maintains good data utility in SyntoReal setting. Table 4.3.1-3 shows the results we obtained for 

risk difference and accuracy in classifiers when the classifiers are both trained and tested on 

synthetic data. For the risk difference in classifiers for SyntoSyn setting we observed that if 

discriminator 𝐷2 is not used (𝜆1 = 0), the risk difference for the classifiers increased compared to 

FairGAN. But if all three discriminators of ImpartialGAN are used (𝜆1 > 0, 𝜆2 > 0), the risk 

difference dropped significantly. The risk difference shows there is no correlation between the 

protected attribute (s) and (x̂, ŷ). Our classification accuracy increased in most of the cases 

compared to the FairGAN. The accuracy increased for SVM(Linear) compared to FairGAN. 

However, the accuracy slightly dropped for the SVM(RBF) and Decision trees. This can be 

attributed to the drop in the risk difference for both of these models. This proves ImpartialGAN 

is capable of generating fair data while maintaining a good data utility in SyntoSyn setting as well.  

It is noteworthy to mention that in SyntoSyn setting the risk difference of the classifiers dropped 

drastically compared to the risk differences of the classifiers in RealtoReal setting. On the other 

hand, the accuracies for both SyntoSyn and SyntoReal reduced slightly when compared to 

RealtoReal setting. The slight difference in accuracy with significant reduction in risk difference 

emphasizes that the synthetic data has a good data utility. 
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 Classifier SyntoReal 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) 0.0949 ± 

0.0172 

0.1205 ± 

0.0062 

0.1183 ± 

0.0071 

0.1079 ± 

0.0015 

0.1066 ± 

0.0176 

0.1126 ± 

0.0219 

SVM(RBF) 0.0667 ± 

0.0258 

0.0872 ± 

0.0083 

0.0881 ± 

0.0148 

0.0860 ± 

0.0008 

0.0855 ± 

0.0081 

0.0829 ± 

0.0324 

Decision 

Trees 

0.0453 ±  

0.0694 

0.1032 ± 

0.0187 

0.0830 ± 

0.1253 

0.0795 ±  

0.0351 

0.0628 ±  

0.0514 

0.1030 ± 

0.0097 

Accuracy SVM(Linear) 0.8311 ± 

0.0064 

0.8372 ± 

0.0021 

0.8341 ± 

0.0019 

0.8331 ± 

0.0021 

0.8323 ± 

0.0044 

0.8343 ± 

0.0036 

SVM(RBF) 0.8194 ± 

0.0115 

0.8233 ± 

0.0038 

0.8234 ± 

0.0146 

0.8265 ± 

0.0032 

0.8260 ± 

0.0016 

0.8217 ± 

0.0102 

Decision 

Trees 

0.7979 ± 

0.0206 

0.8094 ± 

0.0126 

0.7562 ± 

0.0298 

0.7986 ± 

0.0107 

0.7884 ± 

0.0286 

0.8074 ± 

0.0059 

Table 4.3.1-2: Adult dataset: Classifier risk difference and accuracy for SyntoReal Dataset 
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 Classifier SyntoSyn 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) 0.0177 ± 

0.0288 

0.0485 ± 

0.0070 

0.0337 ± 

0.0021 

0.0166 ± 

0.0077 

0.0079 ± 

0.0143 

0.0063 ± 

0.0112 

SVM(RBF) 0.0051 ± 

0.0258 

0.0146 ± 

0.0064 

0.0158 ± 

0.0086 

0.0055 ± 

0.0062 

0.0037 ± 

0.0115 

0.0033 ± 

0.0115 

Decision 

Trees 

0.0390 ± 

0.0205 

0.0637 ± 

0.0081 

0.0637 ± 

0.0058 

0.0221 ± 

0.0128 

0.0259 ± 

0.0208 

0.0142 ± 

0.0175 

Accuracy SVM(Linear) 0.8271 ± 

0.0115 

0.8319 ± 

0.0130 

0.8257 ± 

0.0051 

0.8306 ± 

0.0094 

0.8292 ± 

0.0011 

0.8309 ± 

0.0179 

SVM(RBF) 0.8096 ± 

0.0143 

0.8022 ± 

0.0246 

0.7998 ± 

0.0177 

0.8080 ± 

0.0146 

0.8082 ± 

0.0058 

0.8069 ± 

0.0287 

Decision 

Trees 

0.8251 ± 

0.0089 

0.8296 ± 

0.0116 

0.8251 ± 

0.0047 

0.8166 ± 

0.0123 

0.8236 ± 

0.0102 

0.8197 ± 

0.0201 

Table 4.3.1-3: Adult dataset: Classifier risk difference and accuracy for SyntoSyn setting 

 

DocuSign Envelope ID: 213AE552-2504-4459-8D3D-D6E4B997A10D



35 
 

4.3.2 Discussion about Adult Dataset 

Measuring risk difference in a meaningful way is challenging. Xu et al. [7] define risk difference 

as , riskDiff(η) = P (η(x) = 1|s = 1) − P (η(x) = 1|s = 0). This formula focuses on the prediction of 

classifier ignoring the correct class, and hence, if a classifier mispredicts it can lower the risk 

difference. In risk difference assessment, rather than just using the prediction, the original label 

should also be used. Then the risk difference would be stated as  

riskDiff(η) = P ((η(x) = 1 and y = 1)|s = 1) − P ((η(x) = 1 and y = 1)|s = 0). This would mean that it is 

more critical to decrease risk difference on correctly predicted data. However, in this case, the 

risk difference will be similar to the risk difference in the dataset.  

The Pearson coefficient for the protected attribute is shown in Table 4.3.2-1 and shows some 

degree of correlation with the attributes relationship and hours worked per week. 

Attribute Names Pearson Coefficient for protected attribute 

Age 0.0888 

Work Class 0.0959 

Education-num 0.0122 

Marital status -0.1293 

Occupation 0.0803 

Relationship -0.2734 

Race -0.0678 

Sex 1 

Capital-gain 0.0484 

Capital-loss 0.0455 

Hours per week 0.2293 

Native Country -0.0081 

Decision 0.2159 
Table 4.3.2-1: Adult Dataset: Pearson coefficient  
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4.4 Evaluation on German Credit Dataset 

For our experiments, we used all numeric datafile produced by Strathclyde University. The data 

file consists of 1000 instances and 25 attributes including the decision attribute. The binary 

decision attribute reflects the credit risk associated with the customer(whether a person is a good 

credit risk or a bad credit risk). We preprocessed this dataset by converting each attribute to one 

hot encoded form and then combining the one hot encoded form of each attribute to create a 

dataset that resulted in a total of 68 attributes. In this dataset we have one protected attribute 

which is the gender of the individual whose values were either male or female. The decision 

attribute credit risk is also binary whose output was either a positive outcome or a negative 

outcome. 

 
Real Data FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

0.0748 0.0460  ± 

0.0322 

0.0366  ± 

0.0453 

0.0072  ± 

0.0262 

0.0050  ± 

0.0378 

0.0088  ± 

0.0801 

0.0342  ± 

0.0327 

Table 4.4-1: German Credit dataset: Risk difference in real and synthetic datasets 

Risk Difference in Real and Generated Data. We compare the risk difference in real data with 

datasets generated by FairGAN and ImpartialGAN by varying the parameters 𝜆1 and 𝜆2. Risk 

difference was calculated using the formula 
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riskDiff (Dataset) = P (y = 1|s = 1) − P (y = 1|s = 0) described previously. The risk difference for the 

real and synthetic datasets are shown in Table 4.4-1. The risk difference in the real data is 0.0748 

and the risk difference for data generated from FairGAN is 0.0460 which shows fair data 

generation but there is still correlation between the unprotected attributes and the protected 

attribute. For (𝜆1 = 0, 𝜆2  = 1) and (𝜆1 = 0, 𝜆2 = 2) the risk difference further decreases as compared 

to real data and FairGAN both. But as we increase the value of 𝜆2  keeping 𝜆1  value constant at 

1, the risk difference drops and then increases slightly (still the risk difference is lower than both 

real data and FairGAN). 

4.4.1 Performance on German Credit Dataset 

For the SVM classifier with linear kernel, the regularization parameter C value is set as 1.0. For 

SVM with RBF kernel C value is set as 10 along with the kernel coefficient ϒ as .01. Lastly, for 

decision trees we used the maximum depth of the tree as 5. 

Table 4.4.1-1 presents the risk difference and accuracy for classifiers in RealtoReal setting where 

classifiers are trained and evaluated on the real dataset. These results are considered as baseline 

for comparison purposes. While the accuracy is not very high for the classifiers in RealtoReal 

setting but the risk difference is still high for this small dataset. The real dataset is biased, and 

hence the classifiers trained on it are likely to be biased as well.  
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Classifier Risk Difference Accuracy 

SVM(Linear) 0.0950 0.726 

SVM(RBF) 0.0743 0.734 

Decision Tree 0.1206 0.702 

Table 4.4.1-1: German Credit dataset: Classifier risk difference and accuracy for RealtoReal setting 

 

For training and evaluating these classifiers, we only used the unprotected attributes without the 

protected attribute gender for predicting the credit risk. We also used the classifier (η) risk 

difference, riskDiff(η) = P ((η(x) = 1 and y = 1)|s = 1) − P ((η(x) = 1 and y = 1)|s = 0) as explained in 

the previous chapter to see the fairness of classifiers in predicting the output label.  

Table 4.4.1-2 shows the risk difference and accuracy results for the classifiers in SyntoReal 

setting. For the risk difference in classifiers for SVM(Linear) and SVM(RBF) we observed that if 

discriminator 𝐷2 is not used (𝜆1 = 0), the risk difference for the classifiers first increased compared 

to FairGAN and then decreased for 𝜆2=2. But if all three discriminators of ImpartialGAN are used 

(𝜆1 > 0, 𝜆2 > 0), the risk difference dropped significantly for 𝜆1=1 , 𝜆2=3. For Decision Trees the 

risk difference was lowest for FairGAN. The risk difference for ImpartialGAN was higher than 

FairGAN but was still lower than the risk difference in RealtoReal setting and kept on dropping 

with increasing values of 𝜆1 and 𝜆2. For SVM(Linear) and SVM(RBF), the accuracies are highest 

for 𝜆1=1 , 𝜆2=2 whereas for decision trees the accuracy decreased with increasing values of 𝜆1 

and 𝜆2. However, the accuracies were still better than FairGAN. For all the classifier’s the change 

in accuracy proves that ImpartialGAN maintains good data utility in SyntoReal setting. 
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Table 4.4.1-3 shows the results we obtained for risk difference and accuracy in classifiers when 

the classifiers are both trained and tested on synthetic data. For the risk difference in classifiers 

for SyntoSyn setting we observed that if discriminator 𝐷2 is not used (𝜆1 = 0), the risk difference 

for the classifiers decreased compared to FairGAN and was lowest for all the three classifiers. But 

if all three discriminators of ImpartialGAN are used (𝜆1 > 0, 𝜆2 > 0), the risk difference started 

increasing but was still lower than FairGAN. The risk difference shows there is no correlation 

between the protected attribute (s) and (x̂, ŷ). Our classification accuracy increased for all the 

three classifiers compared to the FairGAN. This proves ImpartialGAN is capable of generating fair 

data while maintaining a good data utility in SyntoSyn setting.  

It is noteworthy to mention that in both SyntoSyn and SyntoReal setting the risk difference of 

the classifiers dropped drastically compared to the risk differences of the classifiers in RealtoReal 

setting. On the other hand, the accuracies for classifiers increased significantly for SyntoSyn 

setting when compared to RealtoReal setting. The accuracies increased for SVM(Linear) and 

SVM(RBF) but dropped significantly for Decision Trees in SyntoReal setting when compared to 

RealtoReal setting. While the accuracy dropped for Decision Trees it can be attributed to the 

significant drop in risk difference. These results prove that ImpartialGAN maintains good data 

utility in both SyntoReal and SyntoSyn settings. 
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 Classifier SyntoReal 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) 0.0779 ± 

0.0161 

0.0787 ± 

0.0214 

0.0712 ± 

0.034 

0.0698 ± 

0.0247 

0.0717 ± 

0.03 

0.0557 ± 

0.0093 

SVM(RBF) 0.0839 ±  

0.0245 

0.0862 ± 

0.0305 

0.0731 ± 

0.0172 

0.0754 ±  

0.021 

0.0711 ± 

0.0533 

0.0570 ± 

0.0085 

Decision 

Trees 

0.0295 ±   

0.0237 

0.0774 ±  

0.0345 

0.0593 ±  

0.0502 

0.0448 ±  

0.0402 

0.0468 ±  

0.0253 

0.0464 ±  

0.0213 

Accuracy SVM(Linear) 0.7582 ± 

0.0018 

0.7518 

±0.0112 

0.7424 

±0.0096 

0.7520 

±0.0100 

0.7610 ± 

0.0070 

0.7484 

±0.0156 

SVM(RBF) 0.7546 ± 

0.0044 

0.7520 ± 

0.0090 

0.7456 ± 

0.0154 

0.7564 ± 

0.0206 

0.7588 ± 

0.0092 

0.7504 ± 

0.0236 

Decision 

Trees 

0.6468 ± 

0.0752 

0.6980 ± 

0.0320 

0.6632 ± 

0.0408 

0.6720 ± 

0.0400 

0.6656 ± 

0.0364 

0.6640 ± 

0.0320 

Table 4.4.1-2: German Credit dataset: Classifier risk difference and accuracy for SyntoReal setting 
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 Classifier SyntoSyn 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) 0.0763 ± 

0.0550 

0.0154 ± 

0.0535 

-0.0027 

± 0.0836 

0.0081 ±  

0.0459 

0.0282 ± 

0.0615 

0.0481 ± 

0.0713 

SVM(RBF) 0.0777 ± 

0.0594 

0.0229 ± 

0.0632 

-0.0039 

± 0.0700 

0.0080 ± 

0.0405 

0.0257 ±  

0.0763 

0.0378 ± 

0.0695 

Decision 

Trees 

0.0637 ± 

0.0343 

0.0398 ± 

0.0612 

0.0065 ± 

0.0314 

-0.0064 

± 0.0344 

0.0285 ± 

0.0799 

0.0410 ± 

0.0600 

Accuracy SVM(Linear) 0.7828  ± 

0.0352 

0.8092 ± 

0.0328 

0.8160 ± 

0.0120 

0.7748 ±  

0.0412 

0.8236 ±  

0.0304 

0.8208 ± 

0.0252 

SVM(RBF) 0.7852 ± 

0.0388 

0.8088 ± 

0.0352 

0.8124 ± 

0.0176 

0.7884 ± 

0.0276 

0.8296 ± 

0.0384 

0.8292 ± 

0.0308 

Decision 

Trees 

0.7312 ±  

0.0408 

0.7512 ±  

0.0408 

0.7512 ±  

0.0328 

0.7040 ±  

0.0300 

0.7428 ± 

0.0272 

0.7620 ± 

0.0420 

Table 4.4.1-3: German Credit dataset: Classifier risk difference and accuracy for SyntoSyn setting 
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4.4.2 Discussion about German Credit Dataset 

As previously mentioned in the discussion about UCI Adult dataset we used a modified formula 

for calculating the classifier risk difference when compared to FairGAN [7] which has an impact 

on the results. Also, this dataset is very small containing only 1000 instances which further 

impacts the results. Table 4.4.2-1 shows the Pearson Correlation coefficient for the attribute 

gender. The table shows for this dataset gender has high correlation with a person’s status which 

can be single, widowed, married, divorced etc.  

Attribute Names Pearson Coefficient for protected attribute 

Balance Checking account 0.0256 
Loan Months 0.0745 
Credit History 0.0718 
Credit Amount 0.1082 
Savings Balance 0.0350 

Months Employed 0.1970 
Person Status 0.7380 

Person Residence -0.0138 
Property 0.0515 

Age 0.2225 
Other Installment Plans -0.0330 

Number of Existing credits at this Bank 0.0943 
Number of people being liable to provide 

maintenance for 0.2034 
Telephone 0.0760 

Foreign Worker 0.0512 

Purpose Car New 0.0130 
Purpose Car Used 0.0564 

Other debtors / guarantors – None -0.0136 
Other debtors / guarantors – co-applicant 0.0077 

House rent vs Free -0.2228 
House owns vs Free 0.1196 

Job unemployed vs Management -0.0764 
Job unskilled vs Management -0.0108 

Job skilled vs Management -0.0076 
Person Sex 1.0000 

Table 4.4.2-1: German Credit dataset: Pearson coefficient 
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4.5 Evaluation on COMPAS Dataset 

For our experiments, we used the COMPAS dataset published by ProPublica. The data file consists 

of 7214 instances and 53 attributes including the decision attribute. After dropping the attributes 

that did not have any impact on the decision attribute like the name, middle name etc., we were 

left with 13 attributes per instance. The binary decision attribute is recidivism which tells whether 

a person will reoffend or not. We preprocessed this dataset by converting each attribute to one 

hot encoded form and then combining the one hot encoded form of each attribute to create a 

dataset that resulted in a total of 31 attributes for each instance including the decision attribute. 

In this dataset we have one protected attribute which is the race of the individual whose values 

were either African American or others. The decision attribute recidivism is also binary whose 

output was either the person recidivated or not. 

 
Real Data FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

0.1305 0.0034 ± 

0.0207 

0.0018 ± 

0.0223 

-0.0130 

±0.0161 

0.0073 ± 

0.0152 

-0.0051 ± 

0.0267 

-0.0131 ± 

0.02 

Table 4.5-1: COMPAS dataset: Risk difference in real and synthetic datasets 

Risk Difference in Real and Generated Data. Here we compare the risk difference in real data 

with datasets generated by FairGAN and ImpartialGAN again by varying the parameters 𝜆1 and 

𝜆2. As mentioned in this chapter previously Risk difference was calculated using the formula 
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riskDiff (Dataset) = P (y = 1|s = 1) − P (y = 1|s = 0). The risk difference for the real and synthetic 

datasets are shown in Table 4.5-1. The risk difference in the real data is 0.1305 which is high and 

the risk difference for data generated from FairGAN is 0.0034 which shows fair data generation 

but there is still correlation between the unprotected attributes and the protected attribute. For 

(𝜆1 = 0, 𝜆2  = 1) and (𝜆1 = 0, 𝜆2 = 2) the risk difference further decreases as compared to real data 

and FairGAN both. As we increase the value of 𝜆2  keeping 𝜆1 value constant at 1, the risk 

difference drops further and moves in the negative direction. Ideally risk difference should be 

closer to zero. Values further away from zero in either direction be it positive or negative are not 

ideal. 

4.5.1 Performance on COMPAS dataset 

For the SVM classifier with linear kernel, the regularization parameter C value is set as 1.0. For 

SVM with RBF kernel C value is set as 100 along with the kernel coefficient ϒ as .01. Lastly, for 

decision trees we used the maximum depth of the tree as 5. 

Table 4.5.1-1 presents the risk difference and accuracy for classifiers in RealtoReal. We consider 

these results as baseline for comparison purposes in other settings. The accuracy is extremely 

high for the classifiers in RealtoReal setting and so is the risk difference. This proves the real 

dataset is biased, and hence the classifiers trained on it are likely to be biased as well.  
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Classifier Risk Difference Accuracy 

SVM(Linear) 0.1306 0.9706 

SVM(RBF) 0.1306 0.9706 

Decision Tree 0.1323 0.9695 

Table 4.5.1-1: COMPAS dataset: Classifier risk difference and accuracy for RealtoReal Dataset 

 

For training and evaluating these classifiers, we only used the unprotected attributes without the 

protected attribute race for predicting the decision attribute recidivism. As previously 

mentioned, we used the classifier (η) risk difference,  

riskDiff(η) = P ((η(x) = 1 and y = 1)|s = 1) − P ((η(x) = 1 and y = 1)|s = 0).  

Table 4.5.1-2 shows the risk difference and accuracy results for the classifiers in SyntoReal 

setting. For the risk difference in classifiers for SVM(Linear) we observed that if discriminator 𝐷2 

is not used (𝜆1 = 0), the risk difference for the classifiers deceased only slightly compared to 

FairGAN. But if all three discriminators of ImpartialGAN are used (𝜆1 > 0, 𝜆2 > 0), the risk 

difference dropped slightly for 𝜆1=1 , 𝜆2=3. In general for SVM(RBF) we got slightly better results 

than SVM(Linear). For Decision Trees the risk difference was lowest for the setting 𝜆1 =1, 𝜆2 = 1. 

For all the classifier’s the accuracies were roughly the same for both FairGAN and ImpartialGAN. 

Table 4.5.1-3 shows the results we obtained for risk difference and accuracy in classifiers when 

the classifiers are both trained and tested on synthetic data. For the risk difference in classifiers 

for SyntoSyn setting we observed that if discriminator 𝐷2 is not used (𝜆1 = 0), the risk difference 

for the classifier SVM(Linear) decreased significantly compared to FairGAN. The risk difference 
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for all the classifiers was lowest when we only used discriminator 𝐷3. But if all three 

discriminators of ImpartialGAN are used (𝜆1 > 0, 𝜆2 > 0), the risk difference started decreasing 

and started moving in the negative direction (below zero). For all the classifier’s the accuracy was 

highest when we only used discriminator 𝐷3. 

In SyntoReal setting the risk difference and accuracy of the classifiers dropped slightly compared 

to the risk differences of the classifiers in RealtoReal setting. On the other hand, the risk 

difference dropped significantly in SyntoSyn setting while the accuracies remained close to the 

accuracy achieved in RealtoReal setting. 
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 Classifier SyntoReal 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) 0.1306 ± 

0.0000 

0.1306 ± 

0.0000 

0.1296 ± 

0.0010 

0.1306 ± 

0.0000 

0.1306 ± 

0.0000 

0.1298 ±  

0.0008 

SVM(RBF) 0.1306 ± 

0.0000 

0.1305 ± 

0.0001 

0.1289 ± 

0.0017 

0.1296 ± 

0.0010 

0.1306 ± 

0.0000 

0.1298 ± 

0.0008 

Decision 

Trees 

0.1294 ± 

0.0012 

0.1286 ± 

0.0020 

0.1280 ± 

0.0026 

0.1267 ± 

0.0036 

0.1318 ± 

0.0097 

0.1277 ± 

0.0029 

Accuracy SVM(Linear) 0.9695 ± 

0.0000 

0.9695 ± 

0.0000 

0.9686 ± 

0.0009 

0.9695 ± 

0.0000 

0.9695 ± 

0.0000 

0.9683 ± 

0.0012 

SVM(RBF) 0.9695 ± 

0.0000 

0.9695 ± 

0.0000 

0.9681 ± 

0.0014 

0.9686 ± 

0.0009 

0.9695 ± 

0.0000 

0.9683 ± 

0.0012 

Decision 

Trees 

0.9682 ± 

0.0013 

0.9680 ±  

0.0015 

0.9672 ± 

0.0023 

0.9661 ±  

0.0033 

0.9597 ±  

0.0098 

0.9663 ± 

0.0032 

Table 4.5.1-2: COMPAS dataset: Classifier risk difference and accuracy for SyntoReal setting 
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 Classifier SyntoSyn 

FairGAN ImpartialGAN 

𝜆1=1 𝜆1=0 𝜆1=0 𝜆1=1 𝜆1=1 𝜆1=1 

𝜆2=0 𝜆2=1 𝜆2=2 𝜆2=1 𝜆2=2 𝜆2=3 

Risk 

Difference 

SVM(Linear) -0.0089 ± 

0.0238 

-0.0026 

± 0.0124 

-0.0061 

± 0.0293 

-0.0113 

± 0.0185 

-0.0044 

± 0.0262 

-0.0246 

± 0.0127 

SVM(RBF) -0.0092 ± 

0.0241 

0.0025 ±  

0.0128 

-0.0064 

± 0.0296 

-0.0114 

± 0.0186 

-0.0039 

± 0.0257 

-0.0245 

± 0.0121 

Decision 

Trees 

-0.0096 ± 

0.0229 

-0.0026 

± 0.0119 

-0.0081 

± 0.0323 

-0.0109 

± 0.0180 

-0.0033 

± 0.0246 

-0.0252 

± 0.0136 

Accuracy SVM(Linear) 0.9676 ± 

0.0046 

0.9626 ± 

0.0030 

0.9690 ± 

0.0038 

0.9661 ± 

0.0070 

0.9687 ± 

0.0069 

0.9664 ± 

0.0050 

SVM(RBF) 0.9678 ± 

0.0050 

0.9627 ± 

0.0023 

0.9693 ± 

0.0032 

0.9668 ± 

0.0063 

0.9686 ± 

0.0075 

0.9668 ± 

0.0051 

Decision 

Trees 

0.9727 ± 

0.0054 

0.9707 ± 

0.0068 

0.9739 ± 

0.0047 

0.9752 ± 

0.0051 

0.9737 ± 

0.0044 

0.9724 ± 

0.0048 

Table 4.5.1-3: COMPAS dataset: Classifier risk difference and accuracy for SyntoSyn setting 
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4.5.2 Discussion on COMPAS dataset 

As previously mentioned in the discussion about UCI Adult dataset we used a modified formula 

for calculating the classifier risk difference when compared to FairGAN [7] which has an impact 

on the results. Also, this dataset is small containing only 7214 instances which further impacts 

the results. The results show that the discriminator 𝐷2  and  𝐷3 may be affecting each other due 

to the size of the dataset.  Table 4.5.2-1 shows the Pearson Correlation coefficient for the 

attribute race. The table shows for this dataset race is correlated to maybe age, juvenile 

misdemeanor count, priors count, and the flag is recid. However, these correlations are very low, 

and this can be one of the reasons for the algorithm cannot improve the removal of the bias 

further. In other words, 𝐷3 may not lower risk difference further considering low correlation 

between other attributes and the protected in addition to the high accuracy of classifiers.  

Attribute Names Pearson Coefficient for protected attribute 

Sex -0.0229 
Age 0.1339 
Race 1.0000 

Juvenile Felony Count -0.0914 
Juvenile Misdemeanor Count -0.1010 

Juvenile Other Count -0.0727 
Priors Count -0.1889 

Charge Degree Type Count 0.0756 
is_recid flag -0.1335 

is_violent_recid flag -0.0548 
Score Text Type Category 0.0413 

Violent Score Text Type Category -0.0289 
Table 4.5.2-1: COMPAS dataset: Pearson coefficient 
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5 Conclusion and Future Work 

In this thesis, we proposed ImpartialGAN that addresses the correlation between unprotected 

and protected attributes compared to FairGAN [7]. ImpartialGAN consists of one generator and 

three discriminators. The generator produces fake data from noise conditioned on the protected 

attribute given the joint distribution of (unprotected attributes, decision). While the first 

discriminator ensures the fake data is as similar to real data, the remaining two discriminators 

ensure the data is fair and free from bias towards the protected group. The experimental results 

on UCI Adult, German Credit and COMPAS datasets show the effectiveness of ImpartialGAN in 

generating fair data while maintaining the data utility in both SyntoSyn and SyntoReal settings. 

We have used gender as the protected attribute in the UCI Adult and German Credit datasets. 

For the COMPAS dataset, we have tested our approach on the race attribute. 

5.1 Future Work 

The model ImpartialGAN that we proposed in the thesis can be extended as follows: 

1. Currently the model is trained to work on protected attribute whose value is binary. It can be 

extended to support protected attributes whose values are non-binary. 

2. With the ever-changing nature of data, it is possible that there are multiple protected 

attributes present in the dataset. Currently the model takes into consideration only one 

protected attribute, but it can be extended to accept multiple protected attributes (e.g., 

gender and race together). 

3. Currently the Pearson coefficient is calculated on the real data, but we can calculate the 

Pearson coefficient on the preprocessed dataset (one hot encoded form) to ascertain how 

the correlation between the protected attribute and the other attributes changes. 
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4.  As of now the training of the discriminators is done in the order 𝐷1 first followed by 𝐷2 and 

then the last discriminator, 𝐷3, is trained with the generator 𝐺𝐷𝑒𝑐. But we can change the 

order and train the discriminator 𝐷3 before 𝐷2 and see how this affects the risk difference 

and accuracy. 

5. Lastly, we can run more experiments by giving more weightage to 𝜆1 keeping 𝜆2 constant at 

a value to see an in-depth comparison of the discriminators 𝐷2 and 𝐷3 . 
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