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Abstract: We present an extension of the Loewner framework, an established data-driven
reduction, and identification method. This will be referred to as the one-sided Loewner
framework since only one set of interpolation conditions are explicitly and exactly matched. For
the other set of conditions, approximated interpolation is imposed. We describe how to explicitly
characterize new interpolation conditions, derived from the latter set. We also show connections
to the iterative AAA algorithm. Typical applications include constructing reduced models from
frequency response data measured from systems in electronics or mechanical engineering. We
illustrate the application of the main method on a large-scale benchmark example.
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1. INTRODUCTION

Complex physical processes used in many real-world ap-
plications typically require as models dynamical systems
that are simple/small enough to be simulated or to be
used for control design purposes. Model order reduction
(MOR) is a well-established technique used for reducing
the computational complexity of mathematical models in
numerical simulations. Many modern mathematical mod-
els of real-life processes pose challenges when used in nu-
merical simulations, due to the large size, or its complexity.
By means of MOR tools, the computational complexity of
such problems is lowered, such as for simulations of large-
scale dynamical control systems. Typically, most MOR
methods aim at conserving some inherent properties and
characteristics of the full order model. For example, these
include stability or passivity in electronics engineering.
Additionally, the surrogate models thus obtained typically
inherit the structure of the original system, together with
some relevant mathematical features, e.g., dominant poles
in common, and similarity of the transfer functions.

Model order reduction (MOR) techniques Antoulas [2005],
Benner et al. [2017], Antoulas et al. [2020] play a crucial
role in obtaining such surrogates. MOR is usually based
on the full knowledge of the system’s structure, which
can be derived from physics laws (so-called intrusive tech-
niques). However, the availability of measured data and
the rise of data-driven applications together with machine
learning techniques require incorporating measurements
when modeling or controlling a system. As such, we will
concentrate in this work on data-driven methods. The
Loewner framework (LF) Mayo and Antoulas [2007] is
a non-intrusive data-driven reduction technique in the
frequency-domain based on interpolation and is of partic-

ular relevance in this context. For recent tutorial papers
on LF for linear systems, we refer the reader to Antoulas
et al. [2017] and to Karachalios et al. [2021], and for an
extension that uses time-domain data, we refer the reader
to Peherstorfer and Willcox [2016]. In recent years, an
iterative and adaptive extension of the LF was proposed
in Nakatsukasa et al. [2018]. Additionally, the Loewner
framework has been recently extended to certain classes
of nonlinear systems, such as bilinear systems in Antoulas
et al. [2016]. It is to be mentioned that another one-sided
interpolation framework was proposed in Astolfi [2010].

In what follows, we analyze linear systems characterized
in state-space realization by the following equations:

[Ex(t) = Ax(t) + Bu(t),
= { y(t) = Cx(t) + Du(t),

where E,A € C"*", B,CT € C" and D € C (we analyze
here the SISO case, with m = 1 input and p = 1 output).
From measured data, i.e., samples of the transfer function
H(s) = C(sE — A)™!B + D evaluated at particular
interpolation points, the goal is to compute reduced-order
models (ROMs) as in (1), without having access to the
original realization (E, A, B, C, D).

(1)

The goal of this paper is to present one-sided extensions of
the LF, and to link these with the newly-proposed AAA
algorithm in Nakatsukasa et al. [2018]. The latter is a very
robust and effective method, that is based on applying LF
iteratively, until a reasonable approximation on the data
has been achieved. AAA explicitly enforces interpolation
on the set of support points of the barycentric form (see
Berrut and Trefethen [2004] for details) of the rational
approximant, which are the so-called right interpolation
points in the LF, see Antoulas et al. [2017]. We propose
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an one-sided Loewner framework (OSLF), that is based
on a similar philosophy as AAA. However, the method
proposed here is not iterative, and a novel result is the
explicit characterization of ”compressed” left interpolation
points, that bridges the LF and AAA methodologies. After
the introduction is established, Section 2 briefly reviews
the LF and AAA methods. The theoretical discussion in
Section 3 (which presents the main method and contribu-
tion) is illustrated by numerical examples in Section 4.

2. THE METHODS UNDER CONSIDERATION

2.1 The Loewner framework in Mayo and Antoulas [2007]

In this section we present a short summary of the Loewner
framework (LF), as introduced in Mayo and Antoulas
[2007]. It is to mentioned that LF has its roots in the
earlier work of Antoulas and Anderson [1986].

The LF is based on frequency-domain measurements
H(ww;) corresponding to the transfer function of the under-
lying (potentially unknown) system. Typically, frequency
response data are used which can be inferred in practice
from various experiments. The interpolation problem un-
der hand is formulated as follows; we are given data values
and data points, partitioned into two disjoint sets

right data: {(A\;,H(\;)), j=1,...,k}, and, @)
left data : {(u;, H(ps)), i=1,...,q}.
For simplicity, all points are assumed distinct, and it

considered that the left and right sets have the same
dimension, i.e., ¢ = k.

We seek to find a rational function H(s), such that the
interpolation conditions hold for all 4,5 =1,... k:

H(pi) = H(pi) == v, H(N;) =H(Aj) :=w;. (3)
The case of data subsets with different dimensions, i.e., in

which k # ¢ is also compatible in the Loewner framework;
see Antoulas et al. [2017], and Antoulas [2016].

The Loewner matrix L € CF** and the shifted Loewner
matrix Ly, € C*** are defined as follows

Liig) = % Lis(ig) = W:i _);jwj, (4)
while the data vectors V € Ck, WT € C* are as:
Vi =vi, Wy =wy, fori=1,...k j=1,....k (5)
The (double-sided) Loewner quadruple is composed of:
E=-L A=-L,, B=V, C=W. (6)

Theorem 1. Here, we assume that the Loewner pencil
(L, L) is regular. The transfer function of the (double-

sided) Loewner model in (6), given by: 3 : (E, A, B, C)
constructed above, matches both the left & right data, i.e.:
where the transfer function is computed as follows:

H(s) = € (B - A)_l BoW(—sL+L)'V. (8)

Proof 1. We refer the reader to the original contribution
Mayo and Antoulas [2007] and to Antoulas et al. [2017].

Additionally, the next Sylvester equations in [Antoulas
2005, chap. 6] are satisfied by the Loewner and shifted

Loewner matrices (L=RT =1, =1 --- l]T € Ck):

ML — LA = VR — LW, )
ML, — L,A = MVR — LWA,

where M = diag(p1,- -, pr) and A = diag(Ay, -+, Ag). It
also follows that:
L; =LA+ VR =ML + LW. (10)

In practical applications, the pencil (ILg, L) is often sin-
gular. In these cases, perform a rank revealing singu-
lar value decomposition (SVD) of the Loewner matrices.
Then, compute projection matrices X,., Y, € C**" as the
left, and respectively, the right truncated singular vector
matrices. More details can be found in Antoulas et al.
[2017]. Here, r < n represents the truncation index. The
system matrices corresponding to a projected Loewner
model of dimension r can be computed

E=-XLY,, A=-X'L)Y,, B=X'V, C=WY,.

2.2 The AAA algorithm

The AAA algorithm Nakatsukasa et al. [2018] represents
an adaptive extension of the interpolation-based method
in Antoulas and Anderson [1986]. It is a robust and fast
method used for rational interpolation applications. AAA
is a multi-step algorithm, that computes a rational approx-
imant of order (k — 1,k — 1) in barycentric representation
at step k > 1 . Additionally, as for the Loewner method,
we restrict the presentation to the SISO case and point to
the MIMO extension in Gosea and Giittel [2021].

The algorithm enforces a data splitting at step £:
{zn 3t = {v; Yo v {22 ‘ 1
{fu}ih = {hy}i=1 U {gi}: 2M e, Y

Note that the values f5, in (11) represent the measurements
evaluated at the points zj, while h; and g; are the ones
evaluated at v;, and respectively at 7;.

data points :

data values :

The rational interpolant Hy, obtained after k iterations of
the AAA algorithm, is written in the barycentric form as

CINING

k
:z::s—l/j Zs—jyj’
(k)

j=1
with nonzero barycentric weights a;’ € C, pairwise
distinct support points v; € C, and function values h;.
Based on (12), interpolation is enforced at the points
{l/j}f:l, ie, Hiy(v;) = hj for 1 < j < k. In order to
completely determine the rational approximant Hy, one
needs to also find the barycentric weights. This is done by
solving a least squares problem; the next support point is
chosen by means of a greedy selection.

(12)

Based on the representation of the transfer function at step
¢ in (12), one can formulate the minimization problem as
2M

D (He(z) — fr)?

L BTy

oM ZZ a;m(fk_hj) 2 (13)

. Jj=1 2 —Vj
& min ) @
k=1 Zé %
- J=1 zp—v;
Instead of solving the nonlinear problem in (13), one solves

a linearized problem derived from it. For more details and
exact implementation, see the Nakatsukasa et al. [2018].
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3. THE ONE-SIDED LOEWNER FRAMEWORK

In this section we will outline the main procedure proposed
in this work. We will start by introducing the quantities of
interest, that will be used in computing rational approx-
imants for the given data. The first scenario treated here
(in Section 3.1) is the one for which the right data has one
entry more than the left data. We show that interpolation
is enforced on all the sampling points. The more relevant
case for this contribution will be treated in the second part
of this section, i..e, in Section 3.2. There, the left data set
is (much) larger than the right set, and we will show how
to impose explicit interpolation on a smaller (compressed)
left data set. This scenario is of particular relevance since
it appears in the AAA algorithm.

As in classical formulation of LF in Section 2.1, the
Loewner matrix L. € C?** stays unchanged, i.e., Lajy =
Vi — W,
Hi—Aj

C2*k (for the left side) and L,* € C9%¥ (for the right side),
are defined as follows Antoulas et al. [2017]:

while the one-sided shifted Loewner matrices L " €

V; — Wy A Uy — Wy
—A
Bi = A
forall i = 1,...,q, 7 = 1,...,k. Note that the newly-
introduced matrices in (14) can be factored in terms of
the Loewner matrix as:
L = ML, L, =LA. (15)
Additionally, note that the data vectors V € R?, WT ¢ R*
are defined as in (5). Here, we concentrate mostly on the

case of one-sided right interpolant, hence we are using L
(the converse results also apply to Lg").
I
{ ol ] , where

T
_1k71

m

— . J —
Lty =ty =y, Lot = (14)

7

Let J,_; € C*(*=1) g0 that J,_; =

Lo =[1--1" eck1,

Intuitively, by multiplying a matrix X € C*** with matrix

Ji_1 to the right has the effect of subtracting the kth
column of X from the previous k£ — 1 columns, i.e. for
X = [X; Xz -+ Xj], we have that:

XJpo1 = [Xl_Xk Xy =Xy -

Since R = 1{, we get that RJ;_1 = 0x_1. From (9) and
(15), it directly follows that the Loewner matrix L satisfies
the following identity:

ML — L,* = VR — LW. (16)

Definition 1. We introduce new matrices, computed from
the original ones defined earlier, by multiplying them with
the matrix J;_1, to the right, as:

L=LJi, L, =L I 1, and W=WJ,_,. (17)
By multiplying (16) with J;_; to the right, we get that:

MLJ;,_1 — L Jp 1 = VRI,_y — LWJ,_q,

=L =ML+ LW (18)

We will show that such a relation, i.e., as in (18), holds
also for the case in which the left interpolation points are
compressed (by means of projecting).

. Xk—l o Xk] e Ckx(kfl).

8.1 The case with q =k — 1

Theorem 2. Let ¢ = k—1 and define the following rational
function in terms of the quantities from before:

B (s) = wp — (5 = M)W (s L - IALS/\>71Lek, (19)

wheree, =00 --- 1]T € C*. Tt follows that H*(s) in (19)

satisfies the 2k — 1 interpolation conditions in (2), i.e.:
H() = H(wi), i=1,...,k—1, (20)
H \) =H(\), j=1,....k (21)

Proof 2. We start with proving the first set of interpola-

tion conditions in (20). For 1 <i < k — 1 we can write:
1

N . o Y

H (1) = wi, — (s — M)W (Mz‘ L— L ) Ley
. . . -1

= wyp — (115 — \e)W (m L-M L—LW) Ley.

Now, since M = diag(u1, o, - .., pr—1), it follows that

el (,ui L-ML- LW) = —W, and we can hence write:
. . . -1

W(M IL—MIL—LW) — 7.

K2

(22)

Finally, since L ) = Z;’;Z for 1 <i <k —1, it follows:

I:IA([Li) = wy, + (i — Mp)el Leg = wy + (v; — wy) = v;.
Now, we continue with the second set of interpolation
conditions in (21). Obviously, for s = Ay, it follows that
I:IA(/\;C) = wy,. Choose now 1 < j < k — 1 and proceed as:

N N ~ ~ A\ 1
HA(Aj):wk—(Aj—Ak)W(AjL— ILS> Ley,

~ A 1
= Wk — ()\j — )\k)W ()\j]LJ;C_l — ]LS Jk—l) ]Lek.

By using that:
NLIp 1 =LA =L (NI = A)Jg g,

it follows that we can write:

(MLIkt =L Ty

1
e;.
A=A 7
Then, by using the previous identity, we get that:
1

1
Lek =

Connections to barycentric forms In what follows, we
connect the barycentric representation of the rational
interpolant as in Antoulas and Anderson [1986], to the
previously-defined representation in (19).

We compute the SVD of the Loewner matrix L € Ck—1)xk
L =XSY". (23)

Now, since the matrix I has one more columns than rows,
it admits (at least) one vector in the right null-space (given
by the last column of Y), i.e., LYeg = Og—_1.

Lemma 3. The following identity holds true for all s € C,

i.e.,, the rational interpolant in (19) has the following
barycentric representation:

Zk Yjw;
J=1 s—=X;

~ R ~ A\ L
wk—(s—)\k)W(s}L— }LS) Lekzz,?1 i
J=1 s—=Aj
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where the ”weights” values y;’s are entries of the last right
singular vector of the Loewner matrix L, i.e., the last

column of matrix Y: [y1 y2 --- yk]T = Ye;,.

3.2 The case with g > k (more interpolation conditions in
the left data subset)

Assume now that ¢ > k, i.e., the left interpolation
conditions are more numerous or the same number as
the right ones (as it is typical the case for AAA). The
first step is to compute a compact SVD of the matrix
L =LJy_q € Coxk-D) a5

L =XSY*, (24)
with unitary matrices X € Cax(k=1) and Y € Ch-Dx(k=1)
i.e., satisfying XTX =I;_; and Y*Y = YY* =I,_;, and
with the diagonal matrix S € Ch—1Dx(k—1),
Definition 2. We define the left-compressed Loewner quan-
tities, as:

L=%xL, L, =% L) L=%XL  (2)

Now, by multiplying the identity in (18) with X* ot the
left, and by using the notations in (24) and (25), it follows:
X L) =X'M L +X'LW
-
XSy
= L= (X*MX) SY* + Lw.

(26)

Definition 3. Let M = X*MX € CH-Dx(=1) phe the
matrix obtained by compressing the original diagonal
matrix M € C9%7 (that contains the left interpolation
points on its main diagonal).

Now, since X*X = I, 1, it follows that L = X*L =

X* (XéY*) = SY*. By combining this result with that
in (26), it holds true that:

L, =ML+ LW (27)

Definition 4. The left compressed interpolation points are
identified as the eigenvalues of the compressed matrix

M = X*MX € Ck=Dx(k=1)

Finally, consider the EVD decomposition of matrix M as:
M = UMU "}, (28)
with U,M € Ch=Dx(*-1) and M = diag(jiy, - , fh—1).
The left compressed interpolation points are hence denoted
with [Ll,ﬁ27 e ,/?kal'
Definition 5. We define left-compressed Loewner quanti-
ties by applying a change of coordinates from (25), i.e., by
multiplying those matrices with U~ to the left, as:

L=0U"'L, L,=0"'L,
and also M = U~'MU.

o

L=U"'L, (29

By multiplying equality (27) with U~! to the left, and
substituting the notations in (29), it follows that the
following equality holds true:

L =ML+ LW | (30)
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Additionally, we have that:

LU L U-% LUK LI, ., (31)
and let L € C*~D*k he a matrix so that
L=U"'X"L. (32)

Note that, from (31) and (32), it follows that L = LJ4_;.
The matrix defined in (32) will explicitly appear in the
rational interpolant constructed in what follows. We are
now ready to state the main result.

Theorem 4. For ¢ > k — 1 we introduce the following

rational function in terms of the Loewner matrices and
other matrices previously defined, as:

9]

B (5) = wy — (s = M)W (s L iﬁ)_l Ley. (33)

It follows that H*(s) defined above satisfies the original k
right interpolation conditions:

HM)\)=H(\), j=1,...,k (34)
and also new k — 1 left interpolation conditions:
H(ji) =¥, i=1,....k—1. (35)

Proof 3. The first set of interpolation conditions in (34)
can be proven similarly as in the proof of Theorem 1.
Hence, we proceed by explicitly proving the second set
of conditions in (35). For 1 <4 < k — 1 we can write:

M (j15) = wy, — (i — M)W (s L
~ o o o -1
:wr(mﬁk)w(ni L-ML- LW)
Now, since

M = diag(ﬁlaﬁ@a s

|
i
w
>
N———
L
&
[¢]
>

o

aﬁk—l)) L= [gl ce ZIc—l] )
it follows that e;fr (ﬁl L-ML- iW) = —ZW, and we
can hence write:
~ o oo o ~\—1 o
W (u L-ML- LW) —
Finally, for all 1 <7 < k — 1, the following holds true
H(jii) = wi + ({1 — A )e] Ley/4;
= wi, + (i — M) Li g/l
This result provides the exact value that is matched, i.e.
'lu)i = wg + (/11 — )\k) _]Li’k/&, for all 1 < ) < k—1.
Remark 1. Now, obviously, this interpolation value need

not correspond to the evaluation of the original transfer
function H(s) at the interpolation point ji;, i.e.,

H(fi;) # ;. (37)
However, as it was observed in practice (from various
numerical examples, as shown also in Section 4.1), the

values H(ji;) and H*(ji;) are indeed similar (they are equal
only when the original system is identified).

(36)

Remark 2. This property is relevant for the AAA frame-
work since it shows that the systems fitted by AAA (see
Section 2.2) are indeed (purely) interpolatory.

Remark 3. We note that the left compressed interpolation
points are purely imaginary, provided that the original
left ones are also purely imaginary. This follows from the
identity M = X*MX. This is mostly relevant for practical
scenarios, for which frequency response data is typically
the only (main) format available.
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4. NUMERICAL EXAMPLES

A toy example (small RLC network)  Consider the RLC
circuit in Fig. 1. The control input v is the voltage drop
over the circuit, while the observed output y is the current
through the resistor R. The two state variables z; and
X are respectively, the voltage drop over the capacitor
C, and the current through the inductor L. The following
equations are derived from classical Kirchhoff circuit laws:

xr1 = Lj:27

y & | T2
- ||

Fig. 1. A simple RLC circuit.

Hence, we are able to write a state-space representation of
the underlying linear system that describes the dynamics:

. 1 1 1
$1:—@J)1—5$2+mu o A -
g = Ly EX—A:X—&—B}L

4 1 y =CX+ Du
Yy=—5T1+ [uU

By choosing R = L = C = 1 (for simplicity), the new
system matrices can be written as

=[] a3 ] o[ 3] n-[1].

and D = 1. Note that the transfer function H(s) is
computed as follows: H(s) = 325-7-71_-}-1’ vV s € C. In what

follows we discuss only the recovery of the linear model
of the circuit (by means of the proposed methods), i.e.,
without reduction, which will be illustrated for a larger-
scale benchmark example in Section 4.1.

First experiment In order to perfectly recover the origi-
nal transfer function H(s), we need to choose k = 3 (three
right interpolation points). Start by choosing ¢ = k—1 = 2
in order to have a direct recovery (no compression on
the left side). Let A\; = —ji, where « = /=1, where
1 < j < 3. Additionally, choose ¢ logarithmically-spaced
left interpolation points in the interval [0, 10]z. Since ¢ = 2,
we have p; = 10 and po = 102. The right data is given by

wy; =0, wy = _3 and we = 8
L Y 2T 843
Next, compute a Loewner matrix L. € C2*3 which is of

rank 7 = 2 (the minimal number of variables needed to
represent H(s)). Note that L has indeed a right null-space

given by vector [y1 Y2 yg]T € C3. Finally, the original TF
is recovered exactly by computing H(s) as in (19). Tt is
to be noted that the D-term can be recovered as follows:
3
Zj:l Yjw;
3
Zj:l Yj
Second experiment Next, we keep the same three right
interpolation points as before, but we increase the number
of left interpolation points (to 5, 50, 500, or even 5000),
again logarithmically-spaced in the interval [0, 10]z. Then,
we apply the procedure outlined in Section 3.2 to compute

the two ”compressed” points. The results are presented in
Tab. 1. As shown there, as we are increasing the number

Drec = =1= lim I:I)\(S).

§—00

(38)

u=yR+x1 = u= RCx1+Rxs, y=Ci1+xs.

of left interpolation points, it was observed that the two
compressed values ji; and [is tend to approach a particular
value, i.e., stagnate with increasing the left points.

Table 1. The compressed left interpolation points.

fin fi2
q=>5 1.05302 3.2253q
q =50 1.22152 | 3.30282
q = 500 1.2422: | 3.33182
q = 5000 1.24444 3.3348:

4.1 MOR of a benchmark example (ISS 12A)

In this section, we analyze an established MOR benchmark
example, i.e., the 12A component (Solar Arrays P3/P4)
of the ISS (International Space Station) model. For more
specific details on the model (the equations and how to
derive them) we refer the reader to Gugercin et al. [2001].
In the numerical examples reported here, we have used
the system matrices (MATLAB files) publicly available on
the MOR repository in The MORwiki Community [2022].
The ISS12A model is a multi-input and multi-output linear
time-invariant system (3 inputs and 3 outputs) charac-
terized by n = 1412 state variables. In the experiments
performed, we select the first input and first output, so
that the analyzed model is written as in (1).

Since we are analyzing data-driven methods, the first step
is to compute data. We start by choosing 200 interpolation
points, logarithmically-spaced in the interval [0.4, 40]s, i.e.,
a range in the frequency response containing dominant
oscillations. We sample the transfer function of the original
large-scale model at these value, and obtain ”the data”.
Using this set of measurements, we will compute three
ROMs (of order r = k — 1, where k = 40 and ¢ = 160) by
means of the following methods:

(1) The Loewner framework outlined in Section 2.1 (LF);
(2) The AAA algorithm outlined in Section 2.2 (AAA);
(3) The one-sided LF introduced in Section 3.2 (OSLF).

First, we apply the OSLF framework as presented in
Section 3.2, for k = 40 and ¢ = 160 (in total 200 data
points). Hence, the right data set contains 20% of the data
values, while the left data set accounts for the remaining
80%. We use a sub-sampling approach for splitting the
data set: one in five measurements pertains to the left data.

We compute a rational approximant on the data, denoted
with H*(s), as given by (33). The results are presented in
Fig. 2. Clearly, by construction, the right data values are
perfectly matched (as depicted in the upper part). Next,
we show the fit on the left data set in the lower part of
Fig. 2. We conclude that a reasonable fit was achieved.

Right data set
Vo

- -©-Original| ' '
10° g o / o
10 Fmsdq O.O,O'CO OOOQ cOOF’ boco
5 o coco 0/ LA ;1\’0 h
10 \/
'S
10° 10

Left data set

o
&

~©-Original '
@ ‘Fitted

o
ot
Tl

Magnitude

o
&

10° 10!
. Frequency (Hz)
Fig. 2. Approximation on the left and the right data sets.
Next, we compute the left compressed interpolation points

{i]1 <i < k—1} as in Definition 4. We evaluate H*(s)
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at these points and compare these values with the original
transfer function evaluations (to H(y;) for 1 <i <k —1).
We depict the magnitude of these two quantities in Fig.
3. As expected, the values are indeed similar, in particular
the ones of higher magnitude.

Evaluation on the projected left interpolation points

102 : i
Original n
-8 Fitted g
1y :\1“
N N
3 A o g !
; ': \ " . l\ . '?’.J‘ ,' VR [ ]
20 .I I"I‘Id! \iBE Re "R ¥e
=10% # ¥ @ AN 8
1
L | v I‘.'l
'y ¥
.
105 ¢ d ) o . E
10° 10'
Frequency (Hz)

Fig. 3. Approximation on the compressed left interpolations points.
Next, we choose 400 logaritmically-spaced data points in
the interval [0.1,100]:. We evaluate the original transfer
function H(s) at these points, and compare these samples
to those computed by evaluating the transfer functions of
the 3 ROMs. The results are depicted in Fig. 4. It can be
observed that all three approximated transfer functions
faithfully approximate the original response; in particular,
the high amplitude peaks are accurately matched.
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Fig. 4. Comparison of the frequency responses.
Finally, we depict the approximation errors generated by
the ROMs computed with the 3 methods under considera-
tion. Comparing the largest magnitude, all 3 error curves
provide comparable results. However, in the high/low fre-
quency ranges, OSLF seems to yield better approximation.
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Flg. 5. Approximation errors for the three ROMs.

One bottleneck for LF is that it relies on a full SVD of
potentially-large matrices while AAA relies on a heuris-
tic for choosing right interpolation points, hence being
quite fast (since it deals with ”tall and skinny” Loewner
matrices). On the other hand, the chosen heuristic may
not always be optimal for the application under hand.
For the OSLF (and LF), we need to rely on a particular
data partition as in (2), that is decided a priori. This
may constitute an advantage (to explicitly interpolate at
measurements unaffected by noise, or of high magnitude),
but could also be challenging when an obvious choice lacks.

Ion Victor Gosea et al. / IFAC PapersOnLine 55-30 (2022) 377-382

5. CONCLUSION

We have proposed a data-driven model reduction method
that is an extension of the classical (double-sided) Loewner
framework. The new method allows to explicitly process
data subsets with different dimension. In particular, we
analyzed the case for which the left data set is larger than
the right set, and interpolation is explicitly enforced on
the latter. This approach has been performed before, being
one kez concept of the AAA algorithm. Additionally, we
have explicitly described the extra interpolation conditions
(on the left side), that the rational approximant enforces.
Finally, we have illustrated the theoretical findings on two
numerical examples. Future research could include further
elaborating on the connections to AAA, characterizing
the compressed left /right points in more depth, imposing
stability of the computed models, and finding parallels to
the one-sided method in Astolfi [2010].
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