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Classical analysis of biological samples requires the destruction of the tissue’s integrity by cutting or grinding it down to thin slices for
(Immuno)-histochemical staining and microscopic analysis. Despite high specifcity, encoded in the stained 2D section of the whole
tissue, the structural information, especially 3D information, is limited. Computed tomography (CT) or magnetic resonance imaging
(MRI) scans performed prior to sectioning in combinationwith image registration algorithms provide an opportunity to regain access to
morphological characteristics as well as to relate histological fndings to the 3D structure of the local tissue environment. Tis review
provides a summary of prevalent literature addressing the problem of multimodal coregistration of hard- and soft-tissue in microscopy
and tomography. Grouped according to the complexity of the dimensions, including image-to-volume (2D⟶ 3D), image-to-image
(2D⟶ 2D), and volume-to-volume (3D⟶ 3D), selected currently applied approaches are investigated by comparing the method
accuracy with respect to the limiting resolution of the tomography. Correlation of multimodal imaging could position itself as a useful
tool allowing for precise histological diagnostic and allow the a priori planning of tissue extraction like biopsies.

1. Introduction

Examination of pathological alterations in human tissue by
histology is an integral part of clinical routine. Countless
staining protocols and immunohistochemistry applications
have been developed for histology, thus enabling the
identifcation of specifc cell types, subcellular structures,
substrates, and disease biomarkers, which renders this ap-
proach extremely versatile.

However, histological evaluation requires access to tissue
specimens. Such specimens are usually obtained by biopsy,
with the associated discomfort and risks. Based on the
specimen type, histology can be divided into (i) soft-tissue

histology in which the specimen is typically embedded in
parafn and cut with a microtome utilizing a static blade and
(ii) hard-tissue histology for which the samples are em-
bedded in resin, cut with a diamond saw, and then grinded
down to a slice thin enough to be stained and imaged under a
microscope. In both scenarios, the cutting is typically done
lacking any a priori knowledge regarding the position of the
region of interest (ROI), which in turn limits the prognostic
value of the histology analysis and/or leads to a very time-
consuming serial cutting of the specimen. In hard-tissue
histology, this situation is further complicated by the fact
that the specimens are typically opaque and cut-grind
techniques result in the loss of a substantial percentage of the
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material. Since classical histology is based on the evaluation
of micrometer thin tissue slices by microscopy, the biopsies
are typically only sparsely sampled, bearing the risk of
missing important key aspects. In addition, intrinsically
three-dimensional features such as metastatic volumes, fber
orientations, and so on cannot be efectively accessed in
planar slices. Tis can, in theory, be solved with serial
sectioning and 3D reconstruction, but this is extremely
labor-intensive.

A solution to some of these current shortcomings could
be a combination of histology with high-resolution 3D-
imaging techniques such as micro-CT and micro-MRI
performed prior to sectioning. Tis would allow histology to
be supplemented with measures of 3D features and to
spatially localize the fndings of histology within the local 3D
tissue environment thereby raising the prognostic value of
the analysis. Furthermore, this combination would enable
“guided sectioning” as demonstrated by Albers et al. [1] by
using micro-CT scans of lung tissue to plan the subsequent
sectioning and isolation of the ROI. Rau et al. [2] embedded
artifcial markers together with their tissue specimen in
order to accurately reconstruct the extracted human tem-
poral bone based on landmark-registration. Tey argue that
the presence of fducial markers and an additional planning
phase before cutting can benefcially aid image-guided
sectioning and computer-aided surgery.

One of the main problems of image fusion between
histology and 3D-imaging is that the process of sectioning
(especially in soft-tissue) can introduce nonuniform de-
formation which needs to be compensated by the employed
registration pipeline. To account for this problem, a vast
variety of combinations of diferent imaging techniques and
registration strategies have been proposed. In the scope of
this review, we assessed and grouped these strategies
according to their dimensionality in three diferent chapters:
(i) extracting a corresponding 2D cut section from the 3D
data set for subsequent 2D-2D registration with the histo-
logical slice, (ii) placing the 2D histological slice into a 3D
data set, and (iii) fusion of 3D serial sectioning with the 3D-
imaging data. Tere is also a large variety of algorithms that
are used in each of the diferent scenarios, starting from a
simple manual registration of the data as performed by
Mourad et al. [3] for the fusion of histology and micro-CT
down to elastic image registration as employed by, for in-
stance, Albers et al. [1, 4, 5]. Tus, the three chapters are
subdivided into applications of elastic and nonelastic
methods. Figure 1 illustrates the typical pipeline of com-
bined 3D-imaging and histological tissue analysis as well as
the discussed structure of the review.

Te reported relative registration accuracies are com-
pared based on the resolution of the data to facilitate fnding
a suitable strategy for the task at hand.

We started our search for literature intending to fnd
approaches concerning the terms “CT,” “MRI,” and “his-
tology” in synergy with the topic of “multimodal registra-
tion.” In order to keep the number of publications tractable,
we excluded publications printed before 2010. Te search
was conducted through Google Scholar and Web of Science.
Tis resulted in a preselection of forty-three papers, which

we investigated for solutions to the problem of registration
of hard- or soft-tissue with CT or MRI scans. Out of these
forty-three papers, we identifed 19 that addressed the
problem of multimodal image registration between MRI or
CT and histology and thus met our criteria and were con-
sidered for this review. Research addressing monomodal
registration was not excluded from our scope. Te described
process is visualized in the literature including fowchart
depicted in Figure 2.

2. Multimodal Image Registration

Te typical procedure of image registration is illustrated in
Figure 3: in our case, one data set (in our case, the 3D data of
CTor MRI or a virtual slice of those) is considered to be the
ground truth and is not modifed during the entire process,
usually referred to as “fxed image” [6–8].Te second dataset
(here the histology slice or a set of histology slices) is de-
formed during the process to “optimally” match the un-
derlying fxed image; this image is usually called the “foating
image.” Registration, as described here, has been imple-
mented in prominent software libraries dedicated to image
processing like elastic [9]. Te presented algorithms difer
mainly in two key aspects: (i) which type of deformation they
allow for the foating image and (ii) which criteria (metric)
they use to assess matching quality.

An important aspect of image registration is how the two
images are compared once an ideal transformation of the
foating image has been achieved. Two main strategies are
commonly employed: (a) using the entire image information
by, for instance, cross-correlation or mutual information
and (b) using landmarks (either intrinsic ones if, for in-
stance, implants are present in the data or generated by
algorithms such as speeded up robust features-SURF or
scale-invariant feature transform-SIF, to only name a few).
In the frst case, the registration process is typically robust
and tolerates partially missing data in the images or the
presence of artifacts. However, both data sets have to have a
large degree of similarity, like, for instance, CT and
chemically stained histology. Te second case can also deal
with vastly diferent image content like CT and immuno-
histochemistry, but identifcation of good landmarks may be
challenging.

One drawback to comparing the performance of dif-
ferent registration algorithms or picking the optimal pro-
cedure for a given task is the lack of standardized quality
measures. Typically, the same metric used for the registra-
tion process is used to perform quality assurance. Especially
in the case of landmark-based approaches, an ideal match of
the landmarks does not necessarily imply optimal regis-
tration of the entire data. A large variety of measures can be
utilized to assess the quality of a given registration approach,
with the simplest being a sheer calculation of the transla-
tional and rotational errors in plain units of distance and tilt.
Other approaches estimate the L1-distance between two
points in the target and moving images, as implemented by
[10, 11]. If of interest, statistical metrics associated with the
used imaging technique like the Dice index [12] (also called
F1-Score) are used.
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In order to provide some means of comparison of the
presented algorithms, we calculated relative accuracies based
on the spatial resolution of the applied imaging techniques
(although not all publications listed those parameters). In a
later section, we compiled these values into three tables
according to the dimension of the registration approach.

In the following, we will discuss registration strategies
loosely grouped according to the dimension of the input
data.

2.1. Slice-to-Volume Registration (2D⟶ 3D). Tis ap-
proach may seem most straightforward in terms of com-
bining histology with CT or MRI. Te aim is to place the
histology section into the 3D context of CT or MRI as
depicted in Figure 4 for an application combining a
Sanderson’s Rapid Bone and Van Gieson-stained section
with a micro-CTscan of a resin embedded vertebrae of a rat.
Figure 4(a) illustrates the whole scan, which was iterated
through in search of the best ftting cutting plane

(Figure 4(b)). Finally, both the histological section and the
cut CT volume are fused in Figure 4(c).

Following the CT scan, the embedded vertebrae were
sectioned using a combination of a diamond-cut grinder and
a LASER microtome. Te resulting section was stained with
Sanderson’s Rapid Bone and Van Gieson, scanned with a
microscope (Axiovert 200 inverted microscope, Zeiss) and
then manually positioned in the 3D data set visualized in
VGStudioMax (Volume Graphics), a 3D rendering and
analysis software. Figure 4(c) indicates a nearly precise
match which proves two aspects: frstly the cutting plane
refects a “strict” plane in the 3D data set and, therefore,
allows to reduce the problem to a 2D-2D registration
problem, if the correct virtual plane in the 3D data set can be
identifed and secondly that hard-tissue embedded in resin is
not subjected to relevant nonuniform deformations during
the cutting process which eases the registration process as
only a ridged body transformation needs to be found. In
terms of parafn-embedded, soft-tissue sectioning results in
local deformations especially in porous tissue like the lung as

histological workflow
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embedding

3D-
imaging

sectioning

staining

microscopy
3D → 3D

2D → 2D

2D → 3D

structure of the review

non-elastic

elastic

deformation of the
histological section

multimodal
registration of 3D

scans and 2D sections

topics considered

implemented categorization
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Figure 1: An overview of the presented review concerning multimodal registration of 3D scans and 2D sections. Te methods described
here extend the classical histological workfow with 3D imaging before sectioning. Tus, image representations of the tissue are present in
two modalities. Te research considered is grouped according to the dimensionality of the addressed problem into slice-to-volume
(2D⟶ 3D), slice-to-slice (2D⟶ 2D), and volume-to-volume (3D⟶ 3D) registration. Each category is further subdivided into elastic
and non-elastic algorithms. Tis results in a specialized selection of algorithms that match and remedy the corresponding severity of
deformations introduced during the sectioning process.
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reported by Albers et al. [1]. However, even in lung tissue,
the deformation is mainly restricted to the cutting plane due
to the nature of the cutting system. Tus, in all cases, the
approach can be split into the identifcation of the in silico

cutting plane in the 3D data set and subsequent registration
with the histological slice. Albers et al. used elastic image
registration, treating the a priori acquired micro-CT as
ground truth for that [5]. In order to reduce deformations

Papers that include the
keywords
n ≈ 44000

Papers that were published
after 2010
n ≈ 16300

Papers preselected that
include mono- or multimodal

regsitration of MRI, CT or
Histology

n = 43

Papers found that addressed
multimodal image

registration between MRI or
CT and histoloy

n = 19

Figure 2: Visualization of the process behind the inclusion of the selected literature. Starting with over 44000 initial hits for the stated search
terms, 16300 were published after 2010 and considered for further investigation. From this group, we identifed 43 papers concerning image
registration in the context of CT, MRI, and histology. From this group, we further extracted 19 that addressed multimodal registration.
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Figure 3: A fow diagram of a basic registration approach.Te reference or fxed image is used as a ground truth, while the foating image is
iteratively altered by transformation and alteration until the optimal overlay is achieved. Te registration process is completed when the
optimal value for the similarity (based on a specifc metric) between the two images is found.
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between the individual sectioned planes, the integration of
3D printing slicers or cutting boxes has been proposed [13],
where the sectioning process is optimized through the in-
clusion of a 3D segmented model of the tissue. Tis model is
then used as a reference for the creation of a specimen
cutting in a 3D modelling or computer-aided design pro-
gram and subsequent printing.

Depending on how strongly the histological image is
distorted in comparison to the in-silico plane, 2D-regis-
tration algorithms with diferent degrees of freedom need to
be applied. Tis can be loosely grouped into nonelastic, i.e.,
rigid or afne, and elastic registration algorithms as pointed
out by [6] and confrmed to be still valid later by the same
authors in [7]. Tus, the main problem is identifying the in-
silico plane. For this purpose, multiple strategies are pro-
posed, ranging from manual identifcation of the plane by
Albers et al. [1] to complete automatic detection. In many
cases, deformation or loss of tissue in the histological slide
complicates the search for the corresponding plane in the 3D
volume. Due to possible shifts in the slicing of the tissue, the
problem cannot therefore be simplifed to a 2D⟶ 2D
transformation.Tese shifts are commonly prevalent in soft-
tissue sections as a result of the physical cut of the micro-
tome. Hence, a two-step approach with a preliminary coarse
and subsequent fne alignment was proposed [11, 14, 15].
Te plane in the 3D volume is coarsely aligned frst by
matching to a group of candidate slices, followed by refned
correction of plane shifts and tilts. Te initial alignment of
the two modalities may be performed feature-free by the
alignment of corresponding extrinsic markers and matched
pixel/voxel intensities.

2.1.1. Nonelastic Approaches for Slice-to-Volume Registration
(2D⟶ 3D). Lundin et al. [14] sampled a group of can-
didate planes from micro-CT scans of porcine vertebrae
trabecular bones with the corresponding specifc orientation
parameters. Candidate planes were determined by searching
for the maximum number of identifed Harris corner

detector key points detected in the histological image. From
each key point, a descriptor vector is generated with a
simplifed version of the histogram of oriented gradients
(HoG) algorithm [16] that is matched with a given CT-plane
key point through an implementation of the nearest-
neighbor algorithms. Te binarized histological slice was
then rigidly aligned by its center at a low resolution with all
candidate planes based on the matched key points and
optimized through RANSAC. Te rotation was estimated
based on pixel-intensity values using the Radon transform
[17, 18]. Te Radon transform is based on measuring the
length of lines between two points and returns the per-
pendicular distance between the origin and the destination
as well as the angle between the line and the y-axis. Te latter
was used to estimate the rotation. Trough calculating the
sum of the edge distances [17] between a CT-plane and the
histological slice in an inverted order, a cost function was
established in order to optimize the Radon transform.

If extrinsic markers like implants are present, segmen-
tation-based approaches to estimate coarse positioning can
be considered [11, 15]. Based and expanding on the work by
Sarve et al. [15], Becker et al. [11] used Chamfer matching
[17] to preliminarily align images of specimens containing
dental implants on the basis of thresholding. Due to the
infexible nature of the implant, initialization was
approached through alignment of the corresponding axis,
which was approximated through principal component
analysis (PCA) [19]. Te edge vectors of the histology and
µCT images were centered and saved in a matrix. From this
matrix, the covariance matrix and eigenvalue composition
were calculated, where the eigenvector with the largest ei-
genvalue yielded an approximation of the implant axis.
Using the implant axis as an initialization, an extraction of
adjacent slices was conducted, following an extraction of
adjacent slices. Candidate slices were then determined by the
estimation of the optimal Chamfer distance [17], a measure
to identify the nearest edges between two planes, and the
smallest root-mean-squared error (RMSE) was approxi-
mated. In order to further refne the initial alignment,

(a) (b)

2 mm

(c)

Figure 4: Exemplary fusion of a CT scan with a histological slide. Representative images of a rat vertebrae by CT. (a) Te plane of
interest in the scan. (b) Te fusion of the scans allows for the combination of specifc histological features present in the stained tissue
of the 2D section and (c) the global geometrical structure of the specimen found in the CT scan. Te correlation was realized by
superimposing both the estimated CT-plane (b) and the corresponding histological section (c).
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candidate slices were identifed through a rotation in 5-
degree steps orthogonal to the identifed implant axis. A
subsequent 10-degree rotation in 1-degree steps was per-
formed at the positions that resulted in the highest similarity.
Te similarity of adjacent slices was quantifed using an
alignment score (L-score) that was composed of the aver-
aged L1-Norm between two aligned pixels. Plane parameters
were extracted based on the optimal L-score, which was
considered to be equal to a coarse alignment of the histo-
logical image in the CT volume.

In the case of registration methods based on extracted
features in both modalities, a prime alignment step can be
neglected in favor of grouping mechanisms performed in a
higher dimensionality space [14, 20–22]. Feature points can
be extracted from each image and represented as vector
points. Based on the proximity of these points in the vector
space, an afliation and subsequent geometric dependency
can be detected. Tese descriptors can, for example, be
obtained by utilizing a Harris corner detector [23] and HoG
[16] as presented by [14] or SURF [24] and SIFT [25] al-
gorithms shown by [20], who neglected the initial alignment.
Corresponding feature clouds were matched by either cal-
culating the Euclidean distance or by utilizing a variant of
the nearest-neighbor algorithm [25, 26], where data points
are grouped together based on their proximity to one an-
other. Te validity of these detected matches was verifed by
a variant of the random sample consensus (RANSAC) op-
timization scheme [27, 28], which resulted in transforma-
tions with six degrees of freedom. RANSAC arbitrarily
defnes a minimum number of data points sufcient to
describe the target shape, with three points as the minimum
representation of a plane. In an iterative process, the number
of points inside a given distance interval, so-called inliners, is
counted. Te parameters of the plane are then updated until
the number of inliers decreases. If data points that do not ft
the plane, called outliers, are still present at that point, the
process is started again with a diferent subset of points. An
example of a feature-based approach is depicted in Figure 5.

Given that both images have been preliminarily matched
regarding translation and rotation, fne alignment can be
achieved through intensity-threshold-based approaches like
simulated annealing [30] for fne afne alignment of the
histology image onto a predetermined slice in the volume as
presented by [11]. To refne the coarse alignment estimated
by the chamfer distance, they moved on to fnd the trans-
formation parameters that yielded the optimal alignment of
both modalities. Taking inspiration from annealing in
metallurgy, a global optimal position was searched in a slow
iterative process instead of a fast estimation of a local
minimum [30–33]. Tis was achieved by predicting if a
higher alignment score, calculated through an alteration of
the L1-norm between two pixels (L score, see description
above), can be achieved between the fxed histological slide
and two adjacent CT-planes predicted by the initial place-
ment. Simulated annealing yields six degrees of freedom in
translation and rotation, allowing for transformation with
the goal of maximizing the L-score and thus minimizing the
ofset between two given sections of both modalities. While
this approach produces acceptable results (median L score:

91 out of 100, CT isotropic nominal resolution: 8.6 µm), they
argue that their results can be hardly improved due to
limiting segmentation from artifacts introduced during
preprocessing of the tissue or irregularity of the staining.
Tis workfow by Becker et al. [11] is highly dependent on
the presence of distinguishable artifacts like implants and
can be categorized as a landmark-based registration ap-
proach. Image segmentation and the manual determination
of a suitable threshold are the method’s bottlenecks. Te
applicability of this method to other problems is therefore
not fully guaranteed.

Utilizing the initial placement of the histological slide in
the volume, Lundin et al. [14] continuously afnely regis-
tered several adjacent parallel planes with the image, relying
on feature points detected by a Harris corner detector [23].
Each key point was subsequently utilized to extract de-
scriptor vectors, which were then matched by employing the
nearest-neighbor matching algorithm. Depending on
whether the validity of the match was determined by the
means of optimal RANSAC [28], an afne registration was
estimated according to the greatest number of valid matches.
Te authors state that the presented approach is diferent
from previously conducted research due to the fully auto-
mated plane estimation and its applicability to distinguish
highly structured objects. Employing simulated and real 2D
data, an average orientation error of 0.6° was found. Te
target registration error, i.e., the distance between two
manually annotated points in target andmoving images, was
computed based on manually defned landmarks and de-
termined to be 106.3 µm (corresponding to about 10 pixels
in the diference between the target and moving landmark).
Te validation was performed without any prior knowledge
of the geometrical shape of the volume. Two diferent va-
rieties of CT scans were used: one with a lower resolution of
85.6 µm for coarse alignment and one with a resolution of
21.4 µm for fner alignment (nominal CT resolution:
10.7 µm), while the pixel resolution of the histological image
was measured to be 2.55 µm. A clear reduced performance
was observed for nonartifcial data due to deformations
introduced to the specimen during preprocessing, which
could be accounted for by introducing countermeasures for
local deformations.

As described before, thresholding as a preprocessing step
for alignment may not apply to all datasets or may even
possibly limit the overall superimposing performance [11].
Chicherova et al. [20] proposed a feature-based approach to
automatically and without any a priori knowledge rigidly
align a histological slide to an arbitrary plane in the CT
volume of jawbones based on their earlier work [29].
Employing a SURF detector [24], a subset of feature points
and respective descriptor vectors were determined from
both histological images and predetermined slices of the
micro-CT volume. Corresponding feature points were then
chosen by calculating the Euclidean distance through a
second nearest-neighbor criteria and a given threshold to
validate a candidate match. Tis process was then repeated
for all slices of the micro-CTdataset. To correctly defne the
ftting plane, a RANSAC optimization scheme [27] was used
to obtain a descriptive four-dimensional normal vector.
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Chicherova et al. [20] found an average error distance of
0.25mm for correctly matched slices, leaving room for
improvement with a 75% success rate. Tey analyzed
specimens smaller than a tube of 3mm in diameter and
12mm in length, which were scanned with a resolution of
about 4 µm (depending on the specimen) [29]. Te authors
state that they plan to develop a more suitable feature de-
tector with an elastic matching approach. In subsequent
research, the described workfow was adapted by Khim-
chenko et al. [21] with the additional use of the Demon
registration tool [34]. By afnely deforming the tomographic
image, they aligned both modalities and verifed their results
through comparison to expert 2D⟶ 3D registration. Tey
show that they improved their former workfow for their
specifc test cases, yielding radial and longitudinal stretches
of 6% and 15%, respectively. Overall, they state that the
resolution of themicro-CTwas limited to the size of the focal
spot (around 0.9 µm) thus limiting the overall achievable
registration results. Trough the comparison of their results
with the expert-based ground truth, a mean diference of
4 µm between the characteristic landmarks and the auto-
matic and manual registration planes was observed. Chi-
cherova et al. improved their work in a later publication [22]
through the addition of an elastic registration step and
normalized mutual information. Teir work will be pre-
sented in the following chapter.

2.1.2. Elastic Approaches for Slice-to-Volume Registration
(2D⟶ 3D). With an elastic optimization scheme based on
normalized mutual information, Chicherova et al. extended
their previous workfow in [22]. Instead of solving the
problem of fnding an optimal elastic deformation through
B-Splines, they opted for a Legendre polynomial, which
considered the entire space of possible deformations instead
of a piecewise deformation model. In an iterative step, the
plane obtained by the RANSAC scheme is subsequently
altered with the goal of optimizing the alignment. Te co-
efcients are calculated as the result of the least square

solution of a system of linear equations. Trough an opti-
mization framework, the coefcients are further refned with
the aim of maximizing the normalized mutual information.
In order to investigate an improvement of the new opti-
mization scheme, the authors tested the algorithm for both
rigid and deformable cases using the established jaw bone
(CT resolution: 4.57 µm) [29] and cerebellum specimen
datasets (CT resolution: 3.5 µm, resized to 7 µm in-silico)
[21]. For the rigid jaw bone images, there was a clear im-
provement with a median error of 8.4 µm. In the case of the
deformable cerebellum specimens, the overall median dis-
tance between the landmarks resulted in 21.6 µm. While this
value is signifcantly higher, the authors argue that overall
registration improved due to a limitation in the dispersion of
the distances.

Museyko et al. [35] matched micro-CT scans (15 µm
isotropic resolution) with histological images of vertebrae
and tibiae obtained from diferent wild-type mice through
segmentation-based registration (SegReg) and conventional
intensity-based approaches and compared the results (Fig-
ure 6). For the SegReg, both modalities were frst binarized
and preliminary aligned based on visual inspection of
corresponding landmarks. A secondary automated regis-
tration was implemented for a fner alignment.Te intrinsic,
i.e., intensity-based registration approach was not preceded
by an additional segmentation step.Te authors have chosen
diferent complexities regarding the transformation of
vertebrae (afne) and tibiae (elastic) specimens. Both reg-
istration methods were implemented using the insight
segmentation and registration toolkit (ITK) [36].A B-Spline
algorithm was used for a fner alignment. Mean Squared
Diference (MSD) and Mattes Mutual Information (Mattes
MI) [37] were applied as metrics for SegReg and intensity
registration, respectively. Both approaches were compared
using the Jaccard Distance, which is also known as the found
exclusive disjunction (XOR-values). Quantifcation of the
positional error of the slice in the volume was achieved by
varying the position of the section by translating it into all
three-dimensions and tilting it around the orthogonal axis

1
2
3

700

Figure 5: Exemplary workfow of a feature-based approach by Chicherova et al. [20] based on data originating from extracted human
jawbones [29]. First, SURF-feature points (blue dots) were detected in all 700 planes of the CT scan and the histological image (left).
Tese descriptors were then compared in a higher-dimensional space (middle). Matching descriptors of both modalities form a plane
that was used as a basis to estimate the position of the histological section in the CT volume (right). Te plane was then further
optimized by utilizing RANSAC (right). Reprinted by permission from Springer Nature customer service center GmbH: patch-based
techniques in medical imaging. Patch-MI 2017. Lecture notes in Computer Science, vol 10530, Histology to μCTdata matching using
landmarks and a density-biased RANSAC, Chicherova, N., Fundana, K., Müller, B., Cattin, P.C., Copyright© 2014 springer in-
ternational publishing Switzerland.
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Figure 6: Continued.
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based on six rotations. Te resulting eight XOR-values were
then computed, leading to a calculation of precision through
root-mean-square (RMS) and standard deviation (SD). In
this study, the accuracy of the resulting alignment could not
be improved signifcantly for SegReg for afne registration
approaches but showed that better results were obtained for
elastic registration indicated by the decreasing overall reg-
istration error from 43% to 23%. Figure 6 compares the two
registration methods investigated by [35] for the histological
and micro-CT images of one mouse tibia.

Te comparison of SegReg and the intensity-based ap-
proach was quantifed using the standard deviation of eight
specimens and the found exclusive disjunction, which was
computed from the deviations in translation and rotation in
eight positions. Te authors found that the error in trans-
lation and rotation estimated by a standard deviation of the
RMS value was lower in the SegReg (0.0039) compared to the
intensity-based registration (0.1227) for translational errors
in elastic registrations. Te rotational error was noted to be
an RMS of the standard deviation for both approaches of
0.0471 and 0.1189, respectively (micro-CT voxel size: 15 µm;
histology pixel size: 7.25 µm). Furthermore, the authors

computed and compared the ofset for the afne and elastic
registrations by comparing it to the best rigid transforma-
tion. Tis rigid transformation was created by neglecting the
nonrigid components. Te overall mean ofset was com-
puted to be 52 µm.

A fexible framework for the non-rigid registration of
individual histological two-dimensional images obtained
from human brains to a three-dimensional MRI volume
based on intensity-based criteria was proposed by Ose-
chinskiy and Kruggel [38]. Teir approach was designed
specifcally for cases in which there are only a sparse number
of slides, but an MRI scan was performed beforehand. Te
framework was built up in a modular manner, starting with
geometric transformation using a deformation model. First,
a preliminary alignment of the slice in the bounds of theMRI
volume was performed by translating and rotating the image
by Procrustes or rigid transformation, resulting in nine and
six degrees of freedom, respectively, with the assumption
that no scaling was needed. Next, several options for the
deformations can be chosen, namely, Tin Plate Splines
(TPS) [39], Gaussian Elastic Body Spline Deformation Field
[40], and B-Spline Free-Form Deformation Field [41, 42]. In

(e)

Figure 6: Comparison of the results achieved by SegReg and intensity-based registration for mouse tibia tissue [35]. Stained histological
images (von Kossa staining) (a) and CT-plane (b) of mouse bone tibia were matched using SegReg. For this example, both afne and elastic
registration techniques were applied. (c) Te outcome of the afne registration approach. (d) Te result of elastic registration. Te overall
diference was portrayed in (e) with the corresponding diference in the registration vector feld superimposed. Reprinted by permission
from Informa UK Ltd: Taylor and Francis online computer methods in biomechanics and biomedical engineering, 18 :15, 1658–1673,
histology to μCTregistration of 2D histological sections with 3D micro-CTdatasets from small animal vertebrae and tibiae, Oleg Museyko,
Robert Percy Marshall, Jing Lu, Andreas Hess, Georg Schett, Michael Amling, Willi A. Kalender, and Klaus Engelke, Copyright© 2014
Informa UK Limited.
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a similar fashion, diverse options to calculate the similarity
measure and optimization procedures were ofered. Te
framework was assessed on MRI scans with an isotropic
resolution of 0.35mm× 0.35mm× 0.7mm and histological
scans at a resolution of 12.7 micrometers/pixel. Tey
demonstrated that the best performance was achieved by
TPS in combination with a NEW Unconstrained Optimi-
zation Algorithm (NEWUOA) [43], optimization, and a
correlation-coefcient-based cost function. Te similarity
between histological sections and MRI planes of human
brains was measured by calculating the sum of seven co-
efcients [38].

2.2. Image-to-Image Registration (2D⟶ 2D).
Image-to-image registration in the presented context refers
to the alignment of the histology slice to the optimal plane
inside the volume. Tus, concerns about geometrical in-
tegrity and optimal in-plane ftting of the three-dimensional
bodies are discarded. However, after the accurate registra-
tion of both modalities, eforts may be put into the re-
construction of a virtual histological model.

2.2.1. Nonelastic Approaches for Image-to-Image Registration
(2D⟶ 2D). Te optimal alignment of two images sourced
by diferent modalities is a complex task, with a need to
defne a means of comparison. Furthermore, if two stacks of
images are present, an individual correspondence needs to
be established.While this correspondence may be defned by
manual labor, it is a labor-intensive process, highly de-
pendent on expert knowledge [10, 15, 21]. In order to
overcome this problem and match histological slices and
MRI slices of the human prostate, Xiao et al. [10] proposed
the utilization of an iterative group-alignment scheme to
estimate corresponding images and then individually
compare the pixel value distribution of both modalities in
opposition to the established pairwise comparison of two
images. Teir approach consists of three modules. First, all
histological andMRI-images were separated into two groups
according to the imaging modality (MRI or histology), with
the goal of estimating a selection of MRI-slices that resulted
in an optimal match based on the computed Mutual in-
formation (MI) [44, 45]. Te K-top ranked matches were
then averaged to distinguish between a probable and less
likely match. While this step yielded an educated guess for
the correspondence of both modalities, it did not account for
distortion that might have occurred in the preprocessing of
the tissue or the organ deformation experienced in the case
of in vivo-MRI scanning with an endorectal coil. Terefore,
the fnal alignment was conducted in an afne registration
process, transforming the histological slice by calculating the
MI of the two images and a simple optimization method.
Xiao et al. [10] demonstrated that the proposed group-wise
alignment results in a higher degree of similarity than
pairwise comparison, e.g., a brute-force approach. Tis was
evidenced by a lower proprietary error norm based on the
L1-distance. According to their calculations, based on ex-
pert-generated ground truth, a pairwise alignment performs
only half as well as their group alignment. Both approaches

were assessed on the same data set with anMRI resolution of
0.27mm/pixel. Teir experiments showed that the group-
wise alignment produced a smaller error than the pairwise
comparison method. Figure 7 shows a practical example of
applying the group-wise alignment scheme to 5 µm thick
slices of human prostate tissue.

Quantifed through their error norm, they measured
values ranging from 0 to 2.7 for the group scheme and 1.7 to
5.2 for the pairwise scheme. While the pairwise matching set
the individual slices in order, the complete generation of an
authentic three-dimensional model still posed a challenge
due to overlaps and ofsets introduced to the slices during
preparation. Te authors addressed this problem with a
3D⟶ 3D afne registration [10], which we present in a
later section concerning higher dimensional registration.

2.2.2. Elastic Approaches for Image-to-Image Registration
(2D⟶ 2D). Te correlation of histological slices with the
scanned volume in an image-to-image registration approach
relies on a priori knowledge of the section to plane corre-
spondence, i.e., the position of the extracted histological
image in the 3D-stack. If the order of sections is conserved
during the preparation process, this a priori information
may be used to establish such correspondence and may even
allow for more sophisticated 3D⟶ 3D registration ap-
proaches as presented by [46]. However, changes in ori-
entation may need to be accounted for. Te sectioning
process can be further optimized through the inclusion of
3D-printed slicers that are created with an a priori scan of
the tissue [13]. For example, Absinta et al. [47] showed
qualitative improvements in the creation of serial sections of
human brain tissue, allowing for the enhancement of the
subsequent superimposition of 3D scan and histology.
Turkbey et al. [48] segmented prostate tissue and generated
3D models with the use of the ANALYZE software (Mayo
Clinics, AnalyzeDirect, Inc., Overland Park, KS, USA).
Using the surfaces of these models, slicer molds were created
and 3D-printed to allow sectioning without distortion.

Matching an individual plane to not only its adjacent
neighbors but to a group of peers has been proposed [10, 49]
in order to avoid the pitfalls of error propagation. One
approach used by [49] involved the implementation of the
feature point detection and feature description algorithm
AKAZE [50]. Here, the feature points of the N preceding
slices were matched symmetrically. Robust estimation of an
afne transformation matrix was done by employing
RANSAC [27]. In addition, the planned cutting plane was
marked in the micro-CT volume beforehand, allowing for
the allocation of corresponding images. Other approaches
reconstruct the histological image stack through an initial
alignment of each image to its en face or block face rep-
resentation, referring to an image of the front side of a
sectioned tissue (see, for example, [46, 51]). Manually placed
landmarks in both histological and en face images of soft-
tissue specimens of arteries with plaques were incorporated
by Groen et al. [51] to register preand postprocessing re-
cordings. Te annotated landmarks were assigned through a
B-Spline control point displacement [42] calculated by the
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means of MI and optimized using a gradient-descent al-
gorithm. Next, the MRI and CT-slices were registered to the
en face images to (i) determine the orientation of the slices
and (ii) compensate for scaling errors that might have oc-
curred. Te former registration was performed as an au-
tomated rigid transformation, also incorporating MI as the
similarity measure. Registration of CT- and en face images
was based on manually edited landmarks using a rigid
transformation as well as isotropic scaling. Tey reached an
optimum of a 5-degree and 7-degree rotation error and a
corresponding translational mean error of 0.6mm and
1.2mm (CT resolution: 18 µm and histology resolution:
1.82 µm).

In a two-step approach, Seise et al. [52] frst afnely align
pairs of binarized images of pig livers based on the relative
overlap metric (Kappa-Statistic in ITK https://www.itk.org)
[53]. Te centers of the vessels depicted in the matched
segmented images as well as interactively defned locations
were then used as the initial group of corresponding points
for TPS. Focusing on just the registration of histology to
micro-CT, an average accuracy of about 0.5mm (CT res-
olution: 0.4mm) has been determined while the entire
framework, including a 3D⟶ 3D similarity transform
between three-phase contrast-enhanced CT and micro-CT
and 2D⟶ 3D CT and histology registration, achieved a
mean deviation of 2mm. Considering the nature of the
problem at hand, registering vessels, the presented approach
produced satisfactory results when compared to its peers
[54, 55], but limited applicability to other tasks can be as-
sumed. Furthermore, the chosen implementation was a
rather labor-intensive task.

Based on their previous work [1, 4], Albers et al. [5] used
an inverted individual or overall color channel represen-
tation of the histological image to match the slide with the
corresponding CT-plane. Following the aforementioned
coarse matching using the Fourier-Mellin algorithm [56, 57],
the fne alignment was achieved through the means of a
B-spline deformation model implemented by elastic [9] and
optimized through MI. Te results were quantifed using a
displacement index [1] that computes the displacement and

MI based on block matching. Ideally, this value should
correspond to 0; however, for the case at hand, an overall
value of 6.9± 2.0 was achieved for the transformed dataset,
due to diferent image content shown in both histology and
micro-CT. While the manual sectioning of the CT volume
may complicate the reproducibility and applicability in an
analog problem scenario, the overall result of the two-step
approach produced a good outcome considering that the
displacement was unlikely to equal 0 due to the diferent
modalities involved.

Magee et al. [58] extended the intensity matching criteria
approach by representing each pixel of each image with a
feature vector constructed from the results of a Gaussian
Filter on color and grayscale channels as well as texture
features built upon their previous work [59]. Tis resulted in
a common visual representation of images created through
diferent modalities. Tese feature descriptors were labeled
using prototypes and clustered together. Clusters were
assigned to so-called tissue-classes that represent a multi-
channel representation of a given tissue using preexisting
mapping functions. Next, a tissue class co-occurrence matrix
of two mapping functions was generated. In order to
quantize the similarity of said matrices, the MI was calcu-
lated and maximized by incorporating a greedy search al-
gorithm. Tis process was repeated until each image was
present in the same representation. Finally, the actual reg-
istration of the converted images was performed. Based on
the idea of realizing a nonrigid registration by a set of rigid
registrations on subimages, the images were frst padded to
the same size, rigidly aligned using phase correlation, and
then divided into overlapping image pairs. Tese patches
were superimposed by determining the rotation and
translation ofsets by calculating the phase correlation [60].
For each local registration, fve transform vectors were
created and overlapped with their peers using a least squares
minimization method and subtracted from each other. Te
resulting vector set was then approximated by a B-Spline
using a robust least squares-minimizing method [61]. Tese
steps were repeated at diferent resolutions to achieve the
best result. Te authors employed their methodology to

(a) (b) (c)

Figure 7: Aligned histological slide andMRI-plan of human prostate tissue through the group-wise scheme proposed by [10]. A histological
slice of human prostate tissue (a) was through the group-wise alignmentmatched with a candidateMRI plane (b) and then afnely registered
(c).Te dotted polygons in (a) and (c) represent cancer cell distributions marked by experts. Reprinted from computerized medical imaging
and graphics, 35/7–8, Gaoyu Xiao, B Nicolas Bloch, Jonathan Chappelow, Elizabeth M Genega, Neil M Rofsky, Robert E Lenkinski, John
Tomaszewski, Michael D Feldman, Mark and Rosen, Anant Madabhushi, determining histology-MRI slice correspondences for defning
MRI-based disease signatures of prostate cancer, Pages 568–578, Copyright (2011), with permission from Elsevier.
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register MRI and histological images. Tis method out-
performed iterative methods with an absolute error of
5.7± 5.8% in 100 µm thick sections imaged at an MRI iso-
tropic resolution of 50 µm for specimens with low collagen
quantifcation. Sections with a thickness above 100 µm
resulted in worse performance, with an error starting at 50%
[59]. In their work, the others state that the achieved quality
of registration was found to be within 200 µm.

Approaches that already used feature points in a pre-
vious step logically tend to reuse them for a more advanced
matching procedure. For completing the feature extraction
of the CT-dataset, Nagara et al. [49] employed AKAZE as
they have preceded to do for the histological images.
Appointing the features of two corresponding slides as nodes
of a Markov random feld [62, 63], an elastic registration
based upon normalized cross-correlation (NCC) was pro-
posed. Te resulting experiments showed promising results,
with the best match quantifed by a mean dice index of 0.744,
a mean Jaccard index of 0.595, and a NCC of 0.608 (CT
resolution: 49 µm and 52 µm; histological image resolution:
22 µm). Figure 8 illustrates the quantitative results of their
approach by visually linking matched features.

Based upon the manually annotated landmarks, Katsa-
menis et al. [64] matched CT planes and histological slides
according to the best visual correspondence in a preliminary

step. In order to achieve a more accurate registration, an
elastic vector-spline registration of the Fiji [65] Plugin
UnwarpJ (available at https://bigwww.epf.ch/thevenaz/
UnwarpJ/) [66], implementation was used. Te proposed
method was realized in an almost exclusively manual
workfow, which complicates its possible applicability to
other problems. Furthermore, no indication of a similarity
measure or accuracy quantifcation was provided.

2.3. Volume-to-Volume Registration (3D⟶ 3D). A full
registration of two three-dimensional models poses the most
challenging approach for multimodal image fusion and is
commonly composed of a multistep workfow in which
lower-level matching methods are applied iteratively.
Consistency with regard to the geometrical integrity or
geometry consistency of the resulting model is a frequently
addressed problem that is visually noticeable in layer shifts
found in the z-axis, in cases of curved objects, also referred to
as the “banana efect” [67, 68]. Tis could result from a
sparse number of histological slices as well as distortion or
lesions introduced during the slicing process. Furthermore,
changes in the intensity of the aligned planes or sections
need to be accounted for. A visualization of the problem at
hand is presented in Figure 9.

(a) (b)

Figure 8: Matched histological slice with a CT-plane of a H and E-stained lung specimen following the method presented by Nagara et al.
[49]. Te original histological image (a) was converted into a grayscale representation and subsequently matched with the corresponding
CT-plane based upon AKAZE features (b). Te individual colors represent unique feature points identifed in both modalities, which are
connected by lines. Reprinted by permission from Springer Nature customer service center GmbH: Springer Nature patch-based techniques
in medical imaging. Patch-MI 2017. Lecture notes in computer science vol 10530. Micro-CT guided 3D reconstruction of histological
images, Kai Nagara, Holger R Roth, Shota Nakamura, Hirohisa Oda, TakayasuMoriya, Masahiro Oda, and KensakuMori., copyright© 2017
springer international publishing AG.

Geometric integrity Intensity integritySections to be registeredOriginal object

Figure 9: 3D-volume reconstruction based on subsequent image-to-image registration poses a challenge in the conservation of the
geometric consistency of the sectioning tissue. In order to register a histological image with a scanned volume, the individual sections frst
need to be aligned together, e.g., the volume needs to be reconstructed while geometrical consistency is maintained. Consecutive registration
of individual slices needs to be performed until the original shape of the sectioned tissue is reconstructed in silico. Subsequently, in-
consistencies in the intensity can be accounted for.
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Te following research tackles the problems of (i)
reconstructing the specimen from the slices and (ii)
matching this 3D representation with a scanned model. It is
worth mentioning that the topic of 3D virtual histology has
been addressed by other authors who did not rely on a scan
of the specimen as a ground truth and therefore did not
implement multimodal registration as evidenced by [69–71].

Full 3D⟶ 3D registration could contribute and expand
on existing approaches through the almost exact correlation
of 3D scan and histology. With the addition of a registration
of the reconstructed histology volume and an MRI scan in
the workfow of Turkbey et al. [72], future research may
produce an increased degree of correlation between both
modalities, thus providing further aid in the diagnostic
process.

2.3.1. Nonelastic Approaches for Volume-to-Volume Regis-
tration (3D⟶ 3D). In addition to the established group-
wise alignment scheme explained in the previous section,
Xiao et al. [10] used the plane and slice correspondence to
create a three-dimensional representation of the histological
image stack and registered it to the volume. Retaining the
interslice distance of the MRI-scan as well as the order of the
individual slices, they created a pseudo-volume of the
stained tissue. Missing values were compensated for by zero-
padding, essentially leaving absent parts blank. In order to
align both volumes, the MRI was used as the transformed
volume in an afne registration process. Te authors opted
to avoid overftting and therefore deliberately chose a
nonelastic approach. As they have done for their 2D⟶ 2D
registration algorithm, MI and a dedicated simplex opti-
mization approach were applied. Te authors did not state
the achieved margin of accuracy or similarity for the
implemented 3D registration. A qualitative example of their
results is portrayed in Figure 10.

2.3.2. Elastic Approaches for Volume-to-Volume Registration
(3D⟶ 3D). After the histological processing of the tissue
specimen and subsequent imaging, a three-dimensional

virtual model reconstructed from the individual slices needs
to be obtained in order to match it with the volume.Tis can
be achieved by registering the histological images to their
respective block face or en face representation based upon an
MI implementation [37, 44, 45, 73] as a basis for 3D Reg-
istration and the 2D⟶ 2D approaches described in the
image-to-image registration section of this review. In the
case of Mancini et al. [74], whole brain specimens were
divided after an MRI scan to realize a histological section of
smaller blocks. To preserve the overall anatomical structure
of the brain, these blocks were matched to whole-slice
photographs using SURF [24] and RANSAC [27]. After
obtaining the full virtual histological model, a 3D registration
was proposed by frst resampling the MRI of the brain
according to the block orientation. Ten, each slice pair was
coarsely matched by the means of NiftyReg [75], realizing a
nonelastic transformation. A subsequent fne alignment was
implemented through stationary velocity felds [76].

Alegro et al. [46] realized their 3D registration through
asymmetric difeomorphic registration [77]. Facing the ill-
posed problem of geometrical altering of the tissue during
processing, they propose to preserve the geometrical in-
tegrity of the virtual histological image stack by 2D regis-
tering the sections to an a priori ground truth captured in
block face images of the whole postmortem human brain
acquired during sectioning. Te authors claimed that their
methodology prevents shifts in the geometrical integrity, i.e.,
the z-efect. Te registration was implemented using ad-
vanced normalization tools (ANTs) [78] and an afne
registration algorithm based on Mattes MI [37]. Following
intensity correction and resampling, both 3D-stacks were
then registered. Difeomorphic nonlinear registration
[77, 79] was implemented to compensate for artifacts present
in the histological samples with Mattes MI [37] as the
matching criterion. Teir results were quantifed using the
Dice-coefcient [12] and yielded experimental results of
0.59, 0.65, and 0.75, respectively, with a relatively low MRI
isotropic voxel resolution of 1mm3. A visual representation
of the reconstruction of a three-dimensional histological
model of a brain specimen is displayed in Figure 11.

(a) (b) (c)

Figure 10: Expanding on their group-wise image-to-image registration, Xiao et al. [10] undertook eforts to reconstruct the original tissue in
silico. Te rendered MRI volume (a) was registered with the reconstructed histology volume (b) of the human prostate. Te resulting joint
volume is portrayed in (c). Reprinted from computerized medical imaging and graphics, 35/7–8, Gaoyu Xiao, B Nicolas Bloch, Jonathan
Chappelow, Elizabeth M Genega, Neil M Rofsky, Robert E Lenkinski, John Tomaszewski, Michael D Feldman, Mark Rosen, Anant
Madabhushi, Determining histology-MRI slice correspondences for defning MRI-based disease signatures of prostate cancer, pages
568–578, copyright (2011), with permission from Elsevier.
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Rusu et al. [80] fused histological images and MRI scans
of lung specimens to detect features of pulmonary infam-
mation based on three-dimensional registration. In a scheme
with increasing complexity, the authors frst rigidly aligned
neighboring histological slices based on MI. Using elastix
[9], a virtual histology model was reconstructed through
registration with an ex-vivo scan of the lung, thus limiting
the spatial deformations introduced during sectioning.
Utilizing a three-level pyramid afne registration optimized
by MI as the scoring function, the processes were realized.
Next, the histological volume was registered to an in vivo
scan by afne and deformable transformation. Te align-
ment was further optimized with regard to the individual
lobular units extracted from the specimen. Utilizing the
entire gamut of the information held by the histological
images, both volumes were further merged, allowing for the
mapping of pulmonary infammation onto the in vivo scan.
Te histological model was warped onto the in vivo-MRI
scan using a B-spline based elastic registration based on a
three-level registration scheme to optimize MI. With an

ultimate grid spacing of 4mm, a fnal alignment error of
0.85± 0.44mm (root-mean-square deviation between the 17
landmarks) (in vivo-MRI resolution: 250 µm, histological
resolution: 0.75 µm) was achieved.

In a vastly diferent approach in comparison to the prior
research concerning matching criteria and implemented
metrics, Lee et al. [81] reconstructed the surface of a cochlea
based on histological images and CT scans by using an it-
erative closest point (ICP) algorithm [82]. Both modalities
were processed in order to generate a wireframe represen-
tation of the surface. Substructures of these wireframes,
constructed of triangular faces, were used to identify corre-
sponding markers and subsequently match them using the
ICP algorithm. In an iterative process, the optimal defor-
mation function to map these points onto another was de-
termined by minimizing the distance between the sum of all
points. Te process was optimized by observing the RMS
value between successive slides. After partial alignment, the
entire surface was matched connecting the individual wire-
frames. Tis fnal registration was done using an afne

(a) (b)

(c) (d)

Figure 11: Comparison of the reconstructed three-dimensional histology with the MRI volume of a whole postmortem human brain [46].
Te complete reconstruction of the histology volume (a). (b, c) Te correlation of both modalities. A reference of the MRI (d). Reprinted
from IEEE conference on computer vision and pattern recognition workshops (CVPRW), 2016, Maryana Alegro, Edson Amaro, Burlen
Loring, Helmut Heinsen, Eduardo Alho, Lilla Zöllei, Daniela Ushizima, Lea T Grinberg, multimodal whole brain registration: MRI and high
resolution histology, pp. 634–642, copyright (2016), with permission from IEEE.
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transformation.Te mean distance between two points in the
reconstructed surface model was calculated for several RMS
and averages to about 0.0805mm (micro-CT resolution:
30 µm; histology images: 300 pixels/in (about 12 pixels/mm)).

3. Comparison of the Presented
Registration Approaches

Tis summary presents a prevalent excerpt of registra-
tion strategies to implement an optimal alignment
transformation of a 2D histological image with the analog
three-dimensional plane representation. Given that the
analogous objective is the multimodal registration of
complementary imaging techniques, we believe that a
broader scope can aid the implementation of an akin so-
lution. For the purposes at hand, accuracy in terms of the
quality of alignment is paramount. Due to the authors’
diferent mission statements manifested in the dimension-
ality of the registration method, a variety of targeted types of
tissue, and the desired outcome, a variety of metrics were
chosen to estimate the individual performance. With dif-
ferent equipment and software used by the authors for
imaging and preprocessing, a universal solution through

direct inspection and subsequent appointment is ambigu-
ous. However, with a quantitative comparison of the selected
research, a trend for a subset of algorithms can be observed.
Trough the found variety of similarity measures and stated
accuracy, we quantifed the performance of the individual
approaches, for the cases where it was possible, by weighing
them with the stated resolution of the three-dimensional
imaging technique and calling this relative accuracy. Since
histology imaging has a higher native resolution, the a priori
MRI or CT scan can be characterized as the limiting factor.
In Tables 1–3, the presented research, according to the
established dimensionality categories, is summarized by
their achieved similarity, resolution of the scan, and relative
accuracy. Tis accuracy is computed with the 3D isotropic
resolution and the found similarity measure, therefore,
allowing us to directly compare the precision of the given
approach concerning the multimodal registration of his-
tology and scan if measurements with equal units are
provided. Possible results range from 0 to 1, with 1 being the
optimal relative accuracy. Trough this comparison,
Tables 1–3 were compiled to create an overview of the
achieved performance. Starting with Image-to-Volume
registration approaches, the presented literature is

Table 1: Quantitative comparison of diferent slice-to-volume registration approaches through the calculation of the relative accuracy.

Author Matching criteria Stated similarity 3D resolution (per pixel) Relative accuracy
Lundin et al. [14] Feature 106.3 μm 10.7 μm (nominal) 0.1
Becker et al. [11] Landmark L score: 91/100 8.6 μm (nominal) —
Chicherova et al. [20] Feature 250 μm 4 µm 0.02
Chicherova et al. [22] Intensity 21.6 µm 7 µm 0.3
Khimchenko et al. [21] Feature 4 μm 0.9 μm 0.2
Museyko et al. [35] Intensity XOR-score 15 μm —
Osechinskiy and Kruggel [38] Intensity Similarity measure of CC, LC, RC. . . 350 μm× 350 µm× 700 µm —

Table 2: Quantitative comparison of the stated similarities and resolution for the image-to-image strategies taken from the literature
discussed.

Author Matching criteria Stated similarity 3D resolution (per pixel) Relative
accuracy

Xiao et al. [10] Intensity L1-norm 270 µm —
Nagara et al. [49] Feature Dice index, Jaccard index, recall, and NCC Dataset 1 : 49 µm, dataset 2 : 52 µm —
Groen et al. [51] Intensity 600 µm (best value used) 18 µm 0.03
Katsamenis et al. [64] Landmark — 8.84 µm —

Seise et al. [52] Intensity/
landmark 500 µm (worst value used) 400 µm 0.8

Albers et al. [5] Intensity Displacement index 2.33 µm —
Magee et al. [58] Intensity 200 µm 50 µm 0.25

Table 3: List of volume-to-volume registration strategies discussed in this review. Due to a lack of information, a direct comparison
according to the relative accuracy was not possible since only Rusu et al. [80] and Lee et al. [81] provided sufcient data.Terefore, there can
be no quantitative evaluation.

Author Matching criteria Stated similarity 3D resolution (per pixel) Relative accuracy
Xiao et al. [10] Intensity L1-norm 0.27mm —
Rusu et al. [80] Intensity 0.85mm 250 µm 0.3
Mancini et al. [74] Feature — 200 µm× 200 µm× 400 µm —
Alegro et al. [46] Intensity Dice 0.59, 0.65, and 0.75 1mm —
Lee et al. [81] Landmark 850 µm 30 µm (maximum resolution) 0.04
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quantitatively compared by the reported performances of
the described approaches and put into context with the
limitations of the three-dimensional scan. We documented
this efort through the introduction of a relative accuracy
that is computed as the ratio of the found similarity
(depending on the values stated by the authors) and 3D
isotropic resolution in Table 1.

Due to the diferent approaches the authors took to
quantify their results, a clear comparison through the
computed relative accuracy is not always feasible. However,
among the three papers in which sufcient measurements
were provided, a distinct diference in the performances is
observed. Since these papers provide their found accuracy as
plain distances measured in µm, a calculation of the relative
accuracy is possible. In Table 2, we applied and listed the
found similarity and isotropic resolutions and, if possible,
calculated the relative accuracy, which we have been using as
a means for quantitative comparison but now apply to the
image-to-image registration cases presented in this paper.

For the problem of 2D⟶ 2D registration, a compre-
hensive comparison is rather difcult to establish due to the
coarse isotropic resolution of the scans. Tis manifests itself
as a second factor to be considered when choosing a reg-
istration approach. One should be aware of the stated res-
olution when choosing an approach for proprietary
problems. Finally, in Table 3, we list the observed perfor-
mance of the volume-to-volume registration approaches
taken from the individual publications, respectively.

A comparison of the provided data was not possible for
the 3D⟶ 3D. Either the data was not provided or not
applicable for the calculation of the relative accuracy. Fur-
thermore, there is less research being conducted in this
domain possibly due to the complexity of the task.

4. Conclusion

Te herein presented review of image registration algo-
rithms aims at providing a broad overview of techniques that
can be used for the registration of histological slides with 3D-
imaging modalities such as CT and MRI. Since there is a
strong interest and intensive research in this feld, we fo-
cused on reports published in the last ten years. Te pub-
lications were sorted based on the complexity of the
transformation, allowed degrees of freedom and the di-
mensionality of the problem at hand. Here, a clear dis-
crepancy in the amount of research published was observed,
with 2D⟶ 2D and 2D⟶ 3D being signifcantly more
prominent than 3D⟶ 3D applications. Te latter feld
seems less well understood given the limited information
about the used algorithms and the focus on very specialized
use cases. Furthermore, we conclude that even though
microscopic images of processed hard-tissue typically show
fewer deformations than observed in soft-tissue histology,
dedicated algorithms for this specifc task are less prominent
in the literature. Instead, a majority of elastic solutions are
presented for precise superposition, while, on the other
hand, nonelastic methods are primarily used for preliminary
alignment of both modalities. A majority of the presented
publications that deal with complex slice-to-volume or

volume-to-volume registration strategies divide the process
into distinct substages: (i) three-dimensional registration is
initiated by a priori matching of the corresponding planes,
resulting in transferring the original 3D problem into a
2D⟶ 2D registration problem, (ii) typically iterative re-
fnement of the position of the histological section in the
scanned volume is applied to increase the precision, and (iii)
fnally, for 3D⟶ 3D registration, an additional arrange-
ment step is utilized to match both structural and geo-
metrical properties.

In order to loosely compare the performance of the
proposed strategies, we calculated the relative accuracy
based on the stated matching error in relation to the lowest
spatial resolution of the used image datasets. Tis proved to
be practical for most nonelastic approaches; methods
employing more sophisticated similarity measures or novel
quantifcation strategies can hardly be compared in this way
due to their heterogeneous nature and the involvement of
complex alignment schemes. Also, in the case of elastic
registration, our simple comparison metric cannot be ap-
plied. Nevertheless, we found large variations in the
achievable relative accuracy and hope that this information
will help the reader pick the ideal technique for his/her
application.

Taking the above-declared limitation into consideration,
we, however, observed that for the literature considered in
this review, a clear tendency to favor the use of intensity-
based approaches generally tends to perform better than
their feature or landmark-based counterparts. However, this
might change if feature-based image processing methods are
incorporated with registration approaches, which are pre-
dominantly realized by intensity matching. Te visible de-
formation introduced to the specimen during histological
sectioning will continue to be a major hindrance for ex-
traction algorithms.

Overall, we observed the dominance of relative accu-
racies or measures instead of a transparent distance quan-
tifcation (e.g., in micrometers). However, a set of
standardized methods to quantify the resulting alignment of
two images after the registration may hold the key to ef-
ciently establishing a unique approach that could be suitable
as a commonly recognized means to evaluate the quality of a
registration approach and thus allow for direct comparison
of the individual algorithm’s performances.

(i) Vectorized Norm. Prior knowledge of individual
landmarks and points of interest can be obtained, or
expert knowledge is provided. A vectorized norm
may be provided to (i) determine the overall per-
formance in slice correspondence [10] or to (ii)
normalize the deviation between two markers
present in both images [11]. While plain distance
measurements are also feasible, the norm approach
should also be considered if the registration
methodology is based on feature descriptors or if the
image is transformed.

(ii) Set Teory Approaches. If no prior knowledge of
plane correspondence is available, methods based
on logic operations may be used. Quantifcation of
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alignment for intensity values through Intersection
of Union, i.e., Jaccard index [34], provides a per-
formance statement based on the resulting overlap
which can be expressed in percentages or in values
ranging from 0 to 1. Terefore, a universal com-
parison could be achieved by estimating the simi-
larity and diference in pixel-based intensity values
after the two images are superimposed.

(iii) Benchmarking. In image processing applications and
machine learning, benchmark-data sets have been the
gold standard to verify and validate the performance
of dedicated algorithms, e.g., [83–86]. Typically, these
images stem from real objects or were artifcially
generated. If such a multimodal dataset, with constant
resolutions and unspecifc staining protocols, in-
cluding expert-based ground truth and a defned set of
metrics, is to be established, future work needs to be
conducted based on the achieved performance. Using
such benchmark data could be used to verify and
validate results found by other researchers who al-
ready considered expert-based matching as ground
truth, e.g., [21] in an attempt to reduce inductive bias.
A ground truth-based evaluation set for the bench-
marking for the reconstruction of 3D-volumes by
2D⟶ 2D registration has already been proposed by
Lobachev et al. [87]. Furthermore, diferent staining
protocols need to be accounted for. Tis problem is
currently being tackled by the participants of the
Automatic Nonrigid Histological Image Registration
(ANHIR) Challenge [85, 86, 88, 89].

Tis review shows that the registration of hard- and soft-
tissue histology to a prior generated 3D scan of the specimen
is of broad interest. However, each of the presented approaches
difers not only in the pursued goal but also in the registration
method. Tus, a comprehensive comparison of performance
and accuracy can only be achieved with great difculty. Tis
underlines the need for a general quantifcationmethod and an
agnostic procedure to compare and evaluate each workfow
objectively. With this review, we hope to provide researchers
new to the feld of image registration an easy decision tree to
pick the optimal strategy for their registration problem. In
analogy to the structure of this review, one should frst be aware
of the dimensionality of the problem to be tackled and then
decide how severe the alterations introduced to the tissues are
and fnally decide on the metric which promises the best
optimization opportunity.
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