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HIGHLIGHTS 

 BrainStat is a toolbox for the statistical analysis and context decoding of neuroimaging 

data 

 It implements univariate and multivariate linear models and interfaces with the 

BigBrain Atlas, Allen Human Brain Atlas and Nimare databases 

 BrainStat handles surface, volume, and parcel level data formats, and provides a series 

of interactive visualization functions 

 The toolbox has been implemented in Python and MATLAB 

 BrainStat is openly available at https://github.com/MICA-MNI/BrainStat, and 

documented on https://brainstat.readthedocs.io/ 

 

 

 

 

ABSTRACT 

Analysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, 

relying not only on statistical methods, but increasingly on associations with respect to other 

brain-derived features such as gene expression, histological data, and functional as well as 

cognitive architectures. Here, we introduce BrainStat - a toolbox for (i) univariate and 

multivariate linear models in volumetric and surface-based brain imaging datasets, and (ii) 

multidomain feature association of results with respect to spatial maps of post-mortem gene 

expression and histology, task-based fMRI meta-analysis, as well as resting-state fMRI motifs 
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across several common surface templates. The combination of statistics and feature 

associations into a turnkey toolbox streamlines analytical processes and accelerates cross-

modal research. The toolbox is implemented in both Python and MATLAB, two widely used 

programming languages in the neuroimaging and neuroinformatics communities. BrainStat is 

openly available and complemented by an expandable documentation.  

 

Key words: neuroimaging, multivariate analysis, univariate analysis 
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INTRODUCTION  

Neuroimaging enables brain-wide measures of morphology, microstructure, function, and 

connectivity in individuals as well as large cohorts (Casey et al., 2018; Glasser et al., 2013; Royer 

et al., 2021). Through an increasing array of powerful image processing techniques (Cameron et 

al., 2013; Esteban et al., 2019; Fischl, 2012; Kim et al., 2005), these data can be brought into a 

standardized frame of reference including stereotaxic voxel spaces such as the commonly used 

MNI152 space (Collins et al., 2003; Dadar et al., 2018), surface-based space such as fsaverage, 

MNI152-CIVET surfaces, or grayordinates (Fischl, 2012; Glasser et al., 2013; Kim et al., 2005; 

Lyttelton et al., 2007; Marcus et al., 2011), as well as parcellation schemes (Desikan et al., 2006; 

Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 2017). Registering neuroimaging data 

to a common space allows for the application of statistical analyses, including mass-univariate 

generalized linear and mixed-effects models that carry out parallel statistical tests at each 

measurement unit. Usually, such analyses need to be carried out using multiple tools and 

programs, reducing the reproducibility of workflows, and increasing the risk of human error. 

With the current paper, we present BrainStat, a unified toolbox to implement these analyses in 

a cohesive, transparent, and open-source framework. 

Advanced analytical workflows of neuroimaging studies increasingly rely on the availability 

of previously acquired datasets across multiple (non)imaging modalities. When mapped to the 

same reference frame as the neuroimaging measures, these datasets can be used for 

contextualization of findings and aid in interpretation and validation of results. For example, 

results may be contextualized within established motifs of the brain’s functional architecture 

such as intrinsic functional communities based on resting-state fMRI (Yeo et al., 2011) or 

functional gradients (Margulies et al., 2016), both allowing for the interpretation of findings 

based on the established brain’s functional architecture. Another common method for 

contextualization is automated meta-analysis with Neurosynth (Yarkoni et al., 2011), NiMARE 

(Salo et al., 2020), or BrainMap (Laird et al., 2005). These tools offer the ability to carry out ad 

hoc meta-analyses across potentially thousands of previously published fMRI studies. 

Correlating a statistical map with a database of brain activation maps related to cognitive 

terms, so-called meta-analytical decoding, offers a quantitative approach to infer plausible 
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cognitive processes related to a spatial statistical pattern. Finally, post mortem datasets of 

transcriptomics (Hawrylycz et al., 2012) and histology (Amunts et al., 2013) mapped to a 

common neuroimaging space enable associations of neuroimaging findings with gene 

expression and microstructural patterns (Markello et al., 2021; Paquola et al., 2021). Such 

findings can provide information on molecular and cellular properties in the brain that spatially 

co-vary with an observed statistical map. By combining these feature association techniques, 

the functional, histological, and genetic correlates of neuroimaging findings can be inferred. 

BrainStat provides an integrated decoding engine to perform these multimodal feature 

associations.  

Our toolbox has a parallel implemented in both Python and MATLAB, two common 

programming languages in the neuroimaging research community. One key design choice of 

BrainStat was, thus, to aim for maximally homogenized implementations, which enhance 

accessibility of the tool and help users aiming to learn one or both programming languages 

without a priori programming expertise. BrainStat relies on a simple object-oriented framework 

to streamline the analysis workflow. The toolbox is openly available at 

https://github.com/MICA-MNI/BrainStat with documentation available at 

https://brainstat.readthedocs.io/. We have compartmentalized the toolbox into two main modules: 

statistics and contextualization (Figure 1). In the remainder of this manuscript, we describe how 

to perform the analyses shown in Figure 1. 
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Figure 1. BrainStat workflow. The workflow is split into a statistics module (dark grey) for 

linear fixed and mixed effects models and a context module (light grey) for contextualizing 

results with external datasets. To use the statistics module, the user must provide voxel-, vertex-, 

or parcel-wise data, must specify a fixed or mixed effects model, and must specify a model 

contrast. Once these have been specified, BrainStat computes t-values and corrected p-values for 

the model. t-value maps, or any other brain map, can then be used in the context module to 

embed the statistical results with markers of task fMRI meta-analyses and established functional 

hierarchies, genetic expression, and histological markers. 

STATISTICS MODULE 

The statistics module was built upon SurfStat, a classic but non-maintained MATLAB package 

for the implementation of fixed and mixed effects linear models (Worsley et al., 2009). To create 

and fit such a model in the BrainStat implementation, the user provides a subject-by-region-by-

variate response matrix as well as a predictor model, created using an intuitive model formula 
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framework. This approach allows for a straightforward definition of fixed/random effects as 

variables of main interest or control covariates, facilitating both cross-sectional as well as 

longitudinal analyses. For mixed effects modelling, BrainStat uses a G-side specification, such 

that it can accommodate multiple random effects as independent effects, with the fitting currently 

being done via restricted maximum likelihood estimation.  

To compare the effects of variables of interest (e.g., healthy/disease, age), a contrast must 

be specified. BrainStat can handle either univariate or multivariate response data and provides 

two widely used analytical options for multiple comparison corrections, namely false discovery 

rate (Benjamini & Hochberg, 1995) and random field theory (Worsley et al., 1999). False 

discovery rate controls the proportion of pointwise (i.e., vertex, voxel, parcel) false positives in 

the data, whereas random field theory corrects for the probability of ever reporting a false 

positive finding (either at the peak or cluster level).  

To illustrate the statistics module, we downloaded cortical thickness and demographic data 

of 70 participants, 12 of whom were scanned twice, of the Microstructure-Informed 

Connectomics (MICA-MICs) dataset (Royer et al., 2021) (Figure 2A). We created a linear model 

with age and sex as well as their interaction effect as fixed effects, and subject as a random 

effect (Figure 2B). These are set up using the FixedEffect and MixedEffect (named as such as it 

may contain both random and fixed effects) classes. Next, we defined the contrast as –age, i.e., 

positive t-values denote decreasing cortical thickness with age. This model was fitted on cortical 

thickness data using a one-tailed test. The t-values, cluster-wise and peak p-values derived from 

random field theory, as well as the vertex-wise p-values derived with a correction for false 

discovery rate were plotted in Figure 2C. We found that, in the MICA-MICs dataset, there is an 

effect of age on cortical thickness at the cluster level based on random-field theory, but no 

significant vertex-wise peaks within these clusters, and marginal significance at a vertex-level. 

This suggests that the effect of age on cortical thickness covers broad regions, rather than local 

foci. Although we used a liberal cluster-defining threshold (p<0.01) for this illustration, we 

generally recommend a more stringent threshold (p<0.001), particularly if data with little 

spatial smoothing are used (Eklund et al., 2016; Woo et al., 2014).  
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The quality and robustness of any fitted model can be assessed at every vertex/parcel on the 

cortex, for a specific vertex/parcel, or for a combination of vertices/parcels. To test for 

normality of the data, our quality control function outputs a histogram of the residuals and a q-

q plot of the residuals versus the theoretical quantile values from a normal distribution. Vertex- 

or parcelwise measures of skewness and kurtosis, characterizing the residual distributions 

across the cortex, are also mapped onto the brain surface.  

 
Figure 2. Example Python code for fitting a fixed effect general linear model of the effect 

of age on cortical thickness with BrainStat. (A) The MICA-MICS data included with 
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BrainStat contains cortical thickness and demographics data. The demographics data contain 

hashed subject IDs (SUB_ID), visit number (VISIT), z-scored age on the day of scanning 

(AGE_AT_SCAN), and sex (SEX). (B) We create a linear model in the form of   

                                         . Note that the intercept is included 

in the model by default. Third, we initialize the model with an age contrast and request both p-

values corrected with random field theory (i.e., ―rft‖) as well as those corrected for false 

discovery rate (i.e., ―fdr‖). Lastly, we fit the model to the cortical thickness data. (C) Negative 

t-values (blue) indicate decreasing cortical thickness with age, whereas positive t-values (red) 

depict increasing cortical thickness with age. Significant peak-wise and cluster-wise p-values 

(p<0.05) are shown for a random field theory (RFT) correction (cluster defining threshold 

p<0.01) as well as vertex-wise p-values (p<0.05) derived with false discovery rate (FDR) 

correction. Figure plotting code was omitted for brevity. Python and MATLAB code for this 

model, as well as code for plotting these figures can be found in the supplemental Jupyter 

notebook and live script. 

 

CONTEXT MODULE 

The context module enables the calculation of bivariate correlations of statistical maps with 

multimodal neural features. As of version 0.3.6, the context module can link to: (i) in-vivo task-

based fMRI meta-analysis, (ii) in-vivo functional motifs derived from resting-state fMRI, (iii) 

post-mortem genetic expression, and (iv) post-mortem histology/cytoarchitecture (Figure 1). 

The meta-analysis submodule tests for associations between brain maps and task-fMRI meta-

analyses associated with particular terms (Salo et al., 2020; Yarkoni et al., 2011). The resting-

state module contextualizes neuroimaging findings relative to functional gradients (Margulies 

et al., 2016; Vos de Wael et al., 2020), a low-dimensional approach to represent the functional 

connectome. The transcriptomics submodule extracts gene expression from the Allen Human 

Brain Atlas (Hawrylycz et al., 2012). Lastly, the histological submodule fetches cell-body-staining 

intensity profiles from the BigBrain (Paquola et al., 2021), a 3D reconstruction of human brain 

cytoarchitecture (Amunts et al., 2013). These submodules all support common surface 

templates and, wherever feasible, custom parcellations. Collectively, they pave the way for 
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enrichment analysis of statistical results with respect to aspects of micro- and macroscale brain 

organization.   

 

Meta-analytic decoding 

The meta-analytic decoding submodule of BrainStat uses data derived from Neurosynth and 

NiMARE (Salo et al., 2020; Yarkoni et al., 2011; Salo et al., 2018) to decode a statistical map in 

terms of its cognitive associations (derived via meta-analyses of prior task-based functional MRI 

findings). In short, a meta-analytic activation map is created for many (cognitive) terms, and 

these maps may be correlated to a given statistical map to identify terms with the strongest 

relationship to the statistical map. This approach allows for the identification of indirect 

associations to cognitive terms used across a wide-range of previously published task-based 

functional neuroimaging studies, without relying on cognitive tasks acquired in the same 

cohort. Indeed, meta-analytic decoding has been used by several groups to evaluate the 

cognitive associations of their neuroimaging findings [e.g., (Chang et al., 2013; Margulies et al., 

2016; Paquola et al., 2019; Vogel et al., 2020; Vos de Wael et al., 2018)].  

 For each term in the term-based meta-analytical Neurosynth database, we computed which 

studies used the term with a frequency of at least 1 in 1000 words (default parameter in 

NiMARE). Next, the meta-analytic maps were computed for these labels using a multilevel 

kernel density Chi-square analysis implemented in NiMARE (Salo et al., 2020; Wager et al., 

2007). For any user-provided surface-based statistical map, we interpolate the map from 

surface to volume space. Lastly, for every meta-analytic map in the database, we compute a 

voxel-wise product-moment correlation between the meta-analytic and statistical map. An 

example of retrieving correlations with meta-analytic terms for the t-statistic map computed 

earlier is shown in Figure 3.  
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Figure 3. Meta-analytic decoding. (A) Using the NiMARE toolbox (Salo et al., 2020) and 

the Neurosynth database (Yarkoni et al., 2011), we derived feature maps for every feature 

name in the Neurosynth database. We show an example association map for the terms 

―memory‖ and ―reward‖. (B) Example Python code for computing the correlations between 

the t-statistic map and every term in the Neurosynth database, and plotting these correlations 

as a word cloud. This code as well as the MATLAB equivalent can be found in the 

supplemental Jupyter notebook and live script. (C) The resultant word cloud from the code in 

Figure 3B.  

 

Resting-state motifs  

The functional architecture of the brain at rest has been described both as a set of continuous 

dimensions, called gradients (Margulies et al., 2016; Vos de Wael et al., 2020). These gradients 

highlight gradual transitions between regions and can be used to embed findings into the 

functional architecture of the human brain by assessing point-wise relationships with other 

markers. Prior studies have used functional gradients to assess the relationship of the brain’s 

functional architecture to high level cognition (Murphy et al., 2019; Shine et al., 2019), 

hippocampal subfield connectivity (Vos de Wael et al., 2018), amyloid beta expression and 

aging (Lowe et al., 2019), microstructural organization (Huntenburg et al., 2017; Paquola et al., 
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2019), phylogenetic changes (Xu et al., 2020), and alterations in disease states (Caciagli et al., 

2021; Hong et al., 2019; Tian et al., 2019).  

The functional gradients included with BrainStat were derived from a resampled mean 

functional connectivity matrix of the S1200 release to fsaverage5 (to reduce computational 

complexity). Connectome gradients were subsequently computed. with BrainSpace using the 

following parameters: cosine similarity kernel, diffusion map embedding, alpha=0.5, 

sparsity=0.9, and diffusion_time=0 (Vos de Wael et al., 2020). Example code for computing 

correlations between the first functional gradient and the t-statistic map are shown in Figure 4. 

We find a low Spearman correlation (ρ=0.17) between these two maps. However, to test for 

significance of this correlation we need to correct for the spatial autocorrelation in the data 

(Markello and Misic, 2021). Three such corrections, namely spin test (Alexander-Bloch et al., 

2018), Moran spectral randomization (Wagner and Dray, 2015), and variogram matching (Burt 

et al., 2020), are included in BrainSpace (Vos de Wael et al., 2020), a dependency of BrainStat.  
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Figure 4. Association to functional gradients. (A) Example Python code for computing 

and plotting the correlation of the t-statistic map and the first functional gradient. Cortical 

surface plotting code was omitted for brevity. See the supplemental Jupyter notebook 

(Python) and live script (MATLAB) for executable versions of this code as well as 

additional figure building code. (B) First functional gradient plotted onto the brain surface. 

(C) Kernel density plot of the t-statistic map and the first functional gradient.  

Genetic Expression 

The Allen Human Brain Atlas (Hawrylycz et al., 2012) is a database of microarray gene 

expression data of over 20,000 genes derived from post-mortem tissue samples obtained from 

six adult donors. This resource can be used to derive associations between neuroimaging data 

and molecular factors (Arnatkeviciute et al., 2021a) and, thus, yields insights into the 

mechanisms giving rise to anatomical and connectomic markers. For example, such data may 
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be used to study associations between genetic factors and functional connectivity (Cioli et al., 

2014; Krienen et al., 2016; Richiardi et al., 2015), anatomical connectivity (Goel et al., 2014; 

Park et al., 2021a), as well as alterations of connectivity in disease (Park et al., 2021b; Romme 

et al., 2017, Lariviere et al. 2022). The genetic decoding module of BrainStat leverages the 

abagen toolbox (Markello et al., 2021) to compute genetic expression data for a given 

parcellation. Default parameters from abagen follow guidelines established (Arnatkevičiūtė et 

al., 2019) and perform the following procedure. First, it fetches and updates the MNI152 

coordinates of tissue samples of all six donors using coordinates provided by the alleninf 

package (https://github.com/chrisgorgo/alleninf). Next, it performs an intensity-based filtering 

of the probes to remove those that do not exceed background noise. Subsequently, for probes 

indexing the same gene, it selects the probe with the highest differential stability across donors. 

The tissue samples are then matched to regions in the parcellation scheme. Expression values 

for each sample across genes and for each gene across samples are normalized using a scaled 

robust sigmoid normalization function. Lastly, samples within each region are averaged within 

each donor, then averaged across donors. For details on the procedures with non-default 

parameters please consult the abagen documentation (https://abagen.readthedocs.io/). In 

Python, BrainStat calls abagen directly, and as such all parameters may be modified. In 

MATLAB, where abagen is not available, we included genetic expression matrices precomputed 

with abagen with default parameters for many common parcellation schemes. In Figure 5, we 

show an example of fetching the genetic expression for a previously defined functional atlas 

(Schaefer et al., 2017), and correlating the output to the t-statistic map. The expression derived 

from this module can then be used in further analyses, for example by deriving the principal 

component of genetic expression and comparing it to previously derived statistical maps. 
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Figure 5. Association to genetic expression. (A) BrainStat leverages data from the Allen 

Human Brain Atlas (Hawrylycz et al., 2012), provided by the Allen Institute for Brain Science, 

and processed with abagen (Markello et al., 2021) to derive transcription levels of several 

thousands of genes. Shown are the locations of all probes as well as the expression of a single 

gene (WFDC1) within 100 functionally defined regions (Schaefer et al., 2017). (B) Example 

Python code for computing the genetic expression based on a surface parcellation. (C) The 

genetic expression matrix depicts the genetic expression, normalized to a range of [0, 1], of all 

parsed genes across all parcels. Black rows denote regions without samples. (D) Correlation 

between the t-statistic map and the WFDC1 gene expression. Figure plotting code was omitted 

for brevity. See the supplemental Jupyter notebook (Python) and live script (MATLAB) for 

executable versions of this code as well as additional figure building code. 

Histology  

The BigBrain atlas (Amunts et al., 2013) is a three-dimensional reconstruction of a sliced and 

cell-body-stained human brain. With a digitized isotropic resolution of 20 micrometers, it is the 

first openly available whole-brain 3D histological dataset. As such, it is well suited for relating 

neuroimaging markers to histological properties. This resource can be used, for example, to 

cross-validate MRI-derived microstructural findings (Paquola et al., 2019; Royer et al., 2020), 
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defining regions of interest based on histological properties (Sitek et al., 2019), or relating 

connectomic markers to microstructure (Arnatkeviciute et al., 2021b). The histology submodule 

aims to simplify the integration of neuroimaging findings with the BigBrain dataset. This 

submodule uses surfaces sampled from the BigBrain atlas (Amunts et al., 2013), at 50 different 

depths across the cortical mantle (Paquola et al., 2021). Covariance of these profiles, also 

known as microstructural profile covariance (Paquola et al., 2019), is computed with a partial 

correlation correcting for the mean intensity profile. Principal axes of cytoarchitectural 

variation are computed from microstructural profile covariance using BrainSpace with default 

parameters (Vos de Wael et al., 2020). An example of this is shown in Figure 6. We find a 

correlation between the first eigenvector and the t-statistic map of ρ=-0.28.  

 

 

Figure 6. Association to histological markers. (A) Selected sagittal and coronal slices 

from the BigBrain atlas. (B) Example Python code for computing gradients of 

microstructural profile covariance for the Schaefer-400. Histology profiles, as computed in 

the BigBrainWarp toolbox, are loaded. From these profiles, a microstructural profile 

covariance matrix is built, and used to compute gradients of histology. (C) Gradients 

derived from the microstructural profile covariance of the BigBrain atlas. (D) The scatter 

plot of the t-statistic map and the first gradient of microstructural profile covariance. Figure 

plotting code was omitted for brevity. See the supplemental Jupyter notebook (Python) and 

live script (MATLAB) for executable versions of this code as well as additional figure 

building code. 
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Run time evaluations 

Despite being currently a single threaded implementation in both Matlab and Python, BrainStat 

heavily relies on matrix multiplications and allows for fast computations, even when larger 

datasets are analyzed. As an example, we performed a series of experiments on our test data 

and used bootstrap approaches to scale up simulated datasets to assess computation time.  

  
Model : Y=b0 + b1x1 + b2x 

Dataset Python Matlab 

Tutorial data (n=82) 
1.96±0.08 2.90±0.07/3.03±0.11 

Surrogate data 1 (n=82) 
2.08±0.03  2.87±0.04/3.10±0.16 

Surrogate data 2 (n=700) 
2.98±0.11  3.72±0.19/6.64±0.38   

Surrogate data 3 (n=7000) 
12.14±2.57  11.95±0.04/10.49±0.61 

 

Table 1. Run time evaluation. Time in seconds to solve a generic linear model for 

Python/Matlab code. The script involves defining the terms (here, Age, Sex), fitting the models 

(here, M= 1 + Age + Sex), building the contrast (here, -Age), as well as multiple comparison 

correction (via False Discovery Rate and Random Field Theory). Data are represented on 

fsaverage5 surfaces (20,484 vertices). Computations have been run on a MacBook Pro (2.9 GHZ 

quad core intel i7, 16 GB Memory, with Matlab R2022a and Python 3.9), and shown are average 

run times across 10 runs with the same model in seconds. Two times are presented for Matlab, 

with/without implicit parallelization. Surrogate datasets were generated using bootstrap-based 

resampling of included subjects.  
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DISCUSSION 

The analysis of brain imaging data demands tools for uni- and multivariate statistical inference, 

and increasingly leverages data from multiple resources to facilitate interpretation and 

contextualization of significant results. Although many tools have been made available by the 

neuroimaging community to perform individual analytical steps (Larivière et al., 2021; Markello 

et al., 2022, 2021; Paquola et al., 2021; Salo et al., 2020; Yarkoni et al., 2011), there is currently 

no package that unifies statistical inference and contextualization approaches. Indeed, several 

previous tools allow for statistical analysis of neuroimaging data, including SPM in Matlab 

(https://www.fil.ion.ucl.ac.uk/spm/) SurfStat in Matlab 

(https://www.math.mcgill.ca/keith/surfstat/), as well as nilearn in Python 

(https://nilearn.github.io/), among others. Furthermore, multiple resources allow for 

contextualization of findings, including neuromaps 

(https://github.com/netneurolab/neuromaps) and the ENIGMA toolbox (https://enigma-

toolbox.readthedocs.io/). By being the only tool (i) that natively combines statistical analysis 

and contextualization, and (ii) that is implemented in both Python and Matlab, BrainStat aims 

to further facilitate and consolidate analytical workflows as a fully open access tool. We hope 

that this parallel implementation will facilitate teaching and training of analysts and researchers 

working in the field. Notably, the modular setup of the toolbox allows running statistical and 

contextualization analyses independent from one another. Furthermore, BrainStat is 

complemented with a thorough and easy-to-follow online documentation, providing novice and 

expert users alike an entry into integrated analyses of brain imaging data.   

Linear models are a core technique for neuroimaging-based inference. Many common 

univariate and multivariate statistical analyses, including t-tests, F-tests, multiple linear 

regression, and (M)AN(C)OVA, can be considered special cases of the general linear model 

(Friston, 2005; Nichols and Holmes, 2002). As such, usage of general linear models is 

widespread throughout the neuroimaging literature [e.g., (Bernhardt et al., 2018; Clarkson et 

al., 2011; Truong et al., 2013)]. Despite their prevalence, their implementation is not trivial. 

BrainStat’s statistics module aims to provide a flexible multivariate linear modeling framework 

for neuroimaging data (Worsley et al., 2009). The focus of this manuscript was to present the 
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possibilities provided by BrainStat, and outline an accessible tutorial for the toolbox’s key 

functionality. As such, we illustrate the use of mixed effects models for testing the effects of 

age on cortical thickness. However, given the versatility of linear models, a large variety of 

models may be specified within the same framework. The flexible specification of a contrast 

simplifies testing of fitted models, with the toolbox furthermore providing initial quality control 

functions to verify model assumptions and model fit.  

Recent years have seen an uptick in the usage of external datasets for the contextualization 

of MRI-derived results (Markello et al., 2022). These datasets can be leveraged for their unique 

advantages such as the unprecedented spatial resolution of the BigBrain histological atlas 

(Amunts et al., 2013), the vast number of task-fMRI studies included in the Neurosynth meta-

analytical database (Yarkoni et al., 2011), and 3D maps of post mortem human brain gene 

expression information aggregated in the Allen Human Brain Atlas (Hawrylycz et al., 2012). 

These external datasets allow for more comprehensive studies of brain organization and may 

advance our understanding of fundamental principles of brain organization (Hansen et al., 

2021; Larivière et al., 2019). Prior studies have used these datasets to relate task meta-

analyses, genetic expression, and histology to markers of morphology (Valk et al., 2020; 

Wagstyl et al., 2020; Whitaker et al., 2016), function (Benkarim et al., 2021; Krienen et al., 2016; 

Margulies et al., 2016; Paquola et al., 2019), and structural connectivity (Romme et al., 2017; 

Vos de Wael et al., 2021). Though numerous packages exist to enable these analyses (Markello 

et al., 2021; Paquola et al., 2021; Salo et al., 2020; Yarkoni et al., 2011), these are generally 

distributed independently and their integration requires expertise, and often proficiency in 

specific programming languages as there are generally no cross-language implementations. 

BrainStat brings these tools together into a unified multi-language framework, thereby 

increasing their accessibility and streamlining the analytics processes of neuroimaging studies. 

It is of note that while the context module works natively with BrainStat-derived outputs, it is 

also possible to run this tool on other results (results obtained from other statistical packages, 

or simple brain feature maps). Collectively, the functionalities and datasets of the context 

module pave the way for enrichment analysis of research discoveries with respect to aspects of 

micro- and macroscale brain organization. Ultimately, we hope to reduce the barrier to entry of 
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these techniques, reduce the chances of human error, and thereby accelerate cross-modal 

research in the neuroimaging community. 

In its current implementation, BrainStat implements workflows for contextualization against 

microscale (i.e.., transcriptomic and histological) and functional (e.g., fMRI meta-analyses and 

resting-state networks) features. This allows users to adopt increasingly popular analytical 

approaches in basic and clinical neuroimaging. It is worth noting that in general, the application 

of contextual association analysis does not necessarily imply any assumption on the 

directionality of associations between micro- and macroscale properties of brain organization, 

nor between structure and function. Indeed, microscale-macroscale associations 

(Arnatkeviciute et al., 2021; Fornito et al., 2019; Scholtens et al., 2022; Wang et al., 2022; 

Markello et al., 2021) as well as structure-function relationships (Benkarim et al., 2022; Goñi et 

al., 2014; Honey et al., 2009; Paquola et al., 2022; Suárez et al., 2020) in the human brain, 

remain a topic of highly active research, often suggesting complex, and bidirectional relations 

between different domains.  

For task-based meta-analytical decoding, the current implementation of BrainStat interfaces 

with nimare (Salo et al. 2020), which performs meta-analytical inference in voxel (i.e., MNI152) 

space. One potential limitation of this approach is that surface-to-voxel transformations do per 

se not lead to a dense representation within the cortical ribbon. BrainStat thus uses a ribbon-

filling approach with either linear or nearest neighbor interpolation to generate a voxel-based 

approximation of a given surface map that is then cross-referenced in nimare. This step was 

chosen to avoid generating a surface-based clone of the (possibly evolving) nimare database.  

We would, furthermore, like to emphasize that future updates to BrainStat could capitalize on 

ongoing advances in meta-analytic decoding methods and tools to enhance reliability and 

interpretability. As an example, the use of topic-based meta-analysis using Latent Dirichlet 

allocation (LDA) to determine the meta-analytic sample of studies may provide a broader set of 

terms for each meta-analytic map, addressing drawbacks of term-based meta-analytic 

methods, notably redundancy and ambiguity of single terms. In particular, generalized 

Correspondence LDA (GC-LDA) has been suggested to add spatial and semantic constraints 
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(Rubin et al. 2017), providing an even more nuanced functional decoding. Expanding from the 

Neurosynth database, the NeuroQuery database contains more extensive vocabulary and a 

richer representation of the studies' text, thereby adding nuance and precision in associating 

brain activations with written study content (Dockès et al. 2020).” 

 

 

Theoretical and empirical studies have shown the importance of replicability in science 

(Ioannidis, 2005; Moonesinghe et al., 2007; Open Science Collaboration, 2015). The 

proliferation of open-access datasets (Di Martino et al., 2014; Miller et al., 2016; Royer et al., 

2021; Van Essen et al., 2013) and software (Fischl, 2012; Marcus et al., 2011; Paquola et al., 

2021; Tournier et al., 2012; Vos de Wael et al., 2020) may increase reproducibility by allowing 

others to redo experiments with identical data and procedures, as well as reducing human error 

in the analysis (Milham et al., 2018; Poldrack et al., 2017). BrainStat may contribute to this 

process. By unifying statistical processing and multidomain feature association into a single 

package across two programming languages, the resulting code will require less customization 

and technical expertise from the end-user. Furthermore, BrainStat may increase the 

accessibility to all these methods for researchers in places that lack the institutional expertise 

to set up such integrated pipelines. Researchers and users are encouraged to contribute to 

continuously enhance functionality and scope of the BrainStat toolbox. Users seeking help are 

encouraged to post their questions to the GitHub Issues page (https://github.com/MICA-

MNI/BrainStat/issues). Similarly, integration of new analytic methods from users around the 

world is supported through GitHub pull requests (https://github.com/MICA-

MNI/BrainStat/pulls) and can be made part of future releases.  
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METHODS 

Tutorial dataset 

We studied 70 healthy participants [30 females, age = 31.9 + 8.9 (mean+SD); 12 of them (5 

female) came in for a second visit with age = 32.8 + 7.5] of the MICS dataset (Royer et al., 2021). 

Note that these data include subjects not part of the current MICS release. The Ethics 

Committee of the Montreal Neurological Institute and Hospital approved the study, and written 

informed consent was obtained from all participants. For each visit, two T1w images were 

derived with the following parameters: MP-RAGE; 0.8mm isotropic voxels, matrix = 320 x 320, 

224 sagittal slices, TR = 2300ms, TE = 3.14ms, TI = 900ms, flip angle = 9°, iPAT = 2, partial Fourier 

= 6/8. Scans were visually inspected for motion artefacts. Processing was performed with 

micapipe (https://github.com/MICA-MNI/micapipe). In short, cortical surface segmentations 

were generated from the T1w scans using Freesurfer 6.0 (Fischl, 2012). Participant’s cortical 

thickness estimates were transformed to the fsaverage5 template and smoothed with a 10mm 

full-width-at-half-maximum Gaussian kernel. 
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DATA AND CODE AVAILABILITY 

BrainStat is freely available through PyPi (https://pypi.org/project/brainstat/; installable with 

`pip install brainstat`), FileExchange 

(https://www.mathworks.com/matlabcentral/fileexchange/89827-brainstat; installable with 

the add-on manager in MATLAB), and GitHub (https://github.com/MICA-MNI/BrainStat). 

Documentation is available at https://brainstat.readthedocs.io/. BrainStat supports Python 3.7-

3.9 and MATLAB R2019b+ on Windows, macOS, and Linux. However, we advise users to consult 

the installation guide in our documentation for up-to-date requirements. All data used herein 

can be accessed through the BrainStat data loaders. 

The examples provided in the paper are available on the Github repository (Matlab: 

https://github.com/MICA-MNI/BrainStat/blob/master/extra/nimg_figures_matlab_code.mlx; 

Python: https://github.com/MICA-

MNI/BrainStat/blob/master/extra/nimg_figures_python_code.ipynb).  

Moreover, our tutorials on linear models (Matlab: 

https://brainstat.readthedocs.io/en/master/matlab/tutorials/tutorial_1.html; Python: 

https://brainstat.readthedocs.io/en/master/python/generated_tutorials/plot_tutorial_01_basics.htm

l) and context decoding (Matlab: 

https://brainstat.readthedocs.io/en/master/matlab/tutorials/tutorial_2.html; 

Python: https://brainstat.readthedocs.io/en/master/python/generated_tutorials/plot_tutorial_02_co

ntext.html) are also available on the GitHub repository. 
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