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ABSTRACT

Context. Magnetars are highly magnetized neutron stars that can produce a wide diversity of X-ray and soft gamma-ray emissions
that are powered by magnetic dissipation. Their magnetic dipole is constrained in the range of 10'*~10'° G by the measurement of
their spin-down. In addition to fast rotation, these strong fields are also invoked to explain extreme stellar explosions, such as hy-
pernovae, which are associated with long gamma-ray bursts and superluminous supernovae. A promising mechanism for explaining
magnetar formation is the amplification of the magnetic field by the magnetorotational instability (MRI) in fast-rotating protoneutron
stars (PNS). This scenario is supported by recent global incompressible models, which showed that a dipole field with magnetar-like
intensity can be generated from small-scale turbulence. However, the impact of important physical ingredients, such as buoyancy and
density stratification, on the efficiency of the MRI in generating a dipole field is still unknown.

Aims. We assess the impact of the density and entropy profiles on the MRI dynamo in a global model of a fast-rotating PNS. The model
focuses on the outer stratified region of the PNS that is stable to convection.

Methods. Using the pseudo-spectral code MagIC, we performed 3D Boussinesq and anelastic magnetohydrodynamics simulations in
spherical geometry with explicit diffusivities and with differential rotation forced at the outer boundary. The thermodynamic back-
ground of the anelastic models was retrieved from the data of 1D core-collapse supernova simulations from the Garching group. We
performed a parameter study in which we investigated the influence of different approximations and the effect of the thermal diffusion
through the Prandtl number.

Results. We obtain a self-sustained turbulent MRI-driven dynamo. This confirms most of our previous incompressible results when
they are rescaled for density. The MRI generates a strong turbulent magnetic field and a nondominant equatorial dipole, which repre-
sents about 4.3% of the averaged magnetic field strength. Interestingly, an axisymmetric magnetic field at large scales is observed to
oscillate with time, which can be described as a mean-field Q) dynamo. By comparing these results with models without buoyancy
or density stratification, we find that the key ingredient explaining the appearance of this mean-field behavior is the density gradient.
Buoyancy due to the entropy gradient damps turbulence in the equatorial plane, but it has a relatively weak influence in the low Prandtl
number regime overall, as expected from neutrino diffusion. However, the buoyancy starts to strongly impact the MRI dynamo for
Prandtl numbers close to unity.

Conclusions. Our results support the hypothesis that the MRI is able to generate magnetar-like large-scale magnetic fields. The results
furthermore predict the presence of a @2 dynamo in the protoneutron star, which could be important to model in-situ magnetic field
amplification in global models of core-collapse supernovae or binary neutron star mergers.

Key words. stars: magnetars — supernovae: general — gamma-ray burst: general — dynamo — magnetohydrodynamics (MHD) —

methods: numerical

1. Introduction

Magnetars are a special class of neutron stars that corresponds to
isolated young neutron stars that are characterized by their vari-
able high-energy emission, which is powered by the dissipation
of enormous internal magnetic fields (Kouveliotou et al. 1998;
Turolla et al. 2015; Kaspi & Beloborodov 2017; Esposito et al.
2021, and references therein). Observations of their pulsed X-ray
activity constrain their rotation period P and spin-down P, two
important timing parameters from which a magnetic field
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can be inferred under the assumption that only the dipolar
field brakes the neutron star. Their activity can be explained
by the decay of their ultrastrong magnetic field and includes
short bursts (Gotz et al. 2006), large outbursts (Coti Zelati et al.

2018, 2021), and giant flares (Hurley et al. 2005; Svinkin et al.
2021) with quasi-periodic oscillations in their signal (Israel et al.
2005; Roberts et al. 2021). In addition, absorption lines that
were interpreted as proton cyclotron lines have been detected
in two outbursts (Tiengo et al. 2013; Rodriguez Castillo et al.
2016), suggesting a nondipolar surface field stronger than the
dipolar component derived from Eq. (1). Another class of tran-
sients that can be modeled using magnetars is represented by
fast radio bursts (FRBs), that is, millisecond-duration bursts of
radio waves discovered in 2007 (Lorimer et al. 2007) that are
observed from all directions in the sky. While the exact origin
of these events is not yet well known, the observation of the sig-
nal FRB 200428 from the Galactic magnetar SGR 193542154
(Bochenek et al. 2020; CHIME/FRB Collaboration 2020) con-
firms that the magnetar model may be able to explain FRBs.
The formation of magnetars in the presence of fast rotation
might also be important to explain the most extreme supernovae:

A94, page 1 of 26

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Open access funding provided by Max Planck Society.


https://doi.org/10.1051/0004-6361/202142368
https://www.aanda.org
http://orcid.org/0000-0002-7834-0422
mailto:alexis.reboul-salze@aei.mpg.de
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs

A&A 667, A% (2022)

hypernovae (also called broadline type Ic supernovae) associ-
ated with long gamma-ray bursts (Drout et al. 2011) and super-
luminous supernovae (Nicholl et al. 2013; Inserra et al. 2013;
Margalit et al. 2018). These two classes of outstanding stellar
explosions are rare events, representing 0.1% and 1% of all
supernovae, respectively. The first are characterized by a kinetic
energy that is ten times higher than that of standard supernovae,
and the second by a luminosity that is one hundred times higher
than that of standard supernovae. The central engine that can
explain the kinetic energy of hypernovae is based on a strong
large-scale magnetic field that can efficiently extract the high
rotational energy of a fast-rotating protoneutron star (PNS).
This large-scale magnetic field would then launch jets and lead
to a magnetorotational explosion (e.g., Moiseenko et al. 2006;
Shibata et al. 2006; Dessart et al. 2008; Winteler et al. 2012;
Mbsta et al. 2014; Obergaulinger et al. 2018; Bugli et al. 2020;
Kuroda et al. 2020). The jets that are launched by a millisec-
ond protomagnetar could also lead to (ultra) long gamma-ray
bursts (Duncan & Thompson 1992; Metzger et al. 2011, 2018a).
Millisecond magnetars have also been invoked to power super-
luminous supernovae with their spin-down luminosity, which
corresponds to a delayed energy injection (Nicholl et al. 2013;
Inserra et al. 2013; Margalit et al. 2018). Other high-energy
events could be explained by millisecond magnetars, such as
short gamma-ray bursts (Metzger et al. 2008) and X-ray tran-
sients in the aftermath of binary neutron star mergers (Xue et al.
2019). A millisecond magnetar might indeed form during
neutron star mergers, thus providing an explanation for the
plateau phase and the extended emission in X-ray sources
associated with short gamma-ray bursts (Metzger et al. 2008;
Bucciantini et al. 2012; Rowlinson et al. 2013; Gompertz et al.
2014).

A scenario that might explain the magnetic field of some
magnetars is magnetic flux conservation during the collapse of
a highly magnetized progenitor. For example, the collapse of
progenitors resulting from a stellar merger could lead to the
strongest magnetic fields (Schneider et al. 2019). However, this
scenario predicts slowly rotating progenitors and therefore can-
not explain the formation of millisecond magnetars. To have
both fast rotation and a strong magnetic field, an in-situ mag-
netic field amplification must be considered. Two mechanisms
have been studied: convective dynamos (Thompson & Duncan
1993; Raynaud et al. 2020, 2021; Masada et al. 2022), and the
magnetorotational instability (MRI; see Akiyama et al. 2003;
Obergaulinger et al. 2009; Reboul-Salze et al. 2021).

The MRI has first been studied in Keplerian accretion disks,
both analytically (Balbus & Hawley 1991) and numerically in
local shearing box models (Hawley & Balbus 1992). The first
studies, which considered the incompressible ideal magneto-
hydrodynamics (MHD) framework, showed that in the pres-
ence of differential rotation, the turbulent velocity and magnetic
field reach a statistically stationary state. Important physical
ingredients, such as thermal stratification due to entropy and
composition gradients and diffusivities (viscosity, resistivity,
and thermal diffusion), were then taken into account by semi-
analytical linear analysis (Acheson & Gibbons 1978; Balbus
1995; Menou et al. 2004; Pessah & Chan 2008) and numer-
ical studies (Fromang etal. 2007; Lesur & Longaretti 2007;
Simon & Hawley 2009; Longaretti & Lesur 2010; Meheut et al.
2015; Guilet & Miiller 2015). An important aspect of disk mod-
els that include vertical density stratification is the appear-
ance of oscillating dynamo cycles shaping the structure of the
axisymmetric magnetic field (Davis et al. 2010; Shi et al. 2016;
Deng et al. 2019).
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In the context of core-collapse supernova (CCSN), numeri-
cal studies have shown that the MRI is a viable mechanism to
efficiently amplify the small-scale magnetic field on timescales
shorter than the successful explosion time (typically a few hun-
dred milliseconds; Obergaulinger et al. 2009; Guilet & Miiller
2015; Rembiasz et al. 2016). In protoneutron stars, the physi-
cal conditions differ from accretion disks in several ways. The
strong differential rotation inside the PNS (Akiyama et al. 2003;
Ott et al. 2006; Bugli et al. 2020) is non-Keplerian because of
the important role of the pressure gradient in the hydrostatic
force balance (Masada et al. 2012). Due to the high density and
temperature, neutrinos play an important role in the dissipation
of the kinetic energy, which can be modeled as a strong viscos-
ity (Masada et al. 2007; Guilet et al. 2015). Finally, the MRI tur-
bulence can be reduced by the buoyancy forces driven by the
gradients of entropy and lepton fraction in the case of stable
stratification (Guilet & Miiller 2015).

The impact of spherical geometry, global entropy, and
density gradients on MRI turbulence is still unknown. The
first attempts to address this question rely on semi-global
models that include radial gradients of density and entropy
(Obergaulinger et al. 2009; Masada et al. 2015). However, these
models remain local at least vertically, and therefore only
describe the small-scale turbulence. Mésta et al. (2015) showed
the development of MRI turbulence in the first simulations by
describing a quarter of the PNS whose resolution was high
enough to resolve the MRI wavelength. These simulations
started with a relatively strong initial large-scale magnetic field,
and due to their high computational cost, they could not last
long enough to show dynamo cycles. Reboul-Salze et al. (2021,
hereafter referred to as Paper I) showed that the MRI is able
to robustly generate a large-scale field with magnetar-like inten-
sities under the incompressible approximation, and we extend
these promising results to a more realistic setup including global
gradients here.

This article investigates the impact of a density gradient and
stable stratification on the global properties of the MRI in a 3D
spherical model. The anelastic approximation allows us to take
the effects of density and entropy gradients into account while
filtering sound waves, which drastically increases the time step
and enables long simulation times. The paper is organized as
follows: in Sect. 2 we describe the physical and numerical setup.
The results are then presented in Sect. 3 for the saturated nonlin-
ear phase of the MRI and in Sect. 4 for the comparison between
different global models of the MRI. Finally, we discuss the valid-
ity of our assumptions in Sect. 5 and draw our conclusions in
Sect. 6.

2. Numerical setup
2.1. 1D protoneutron star model

The simulations performed in this article are designed to rep-
resent the outer region of a fast-rotating PNS, which is stable
to the convection and unstable to the MRI. To model this sta-
bly stratified region, we used the same methods and internal
structure as Raynaud et al. (2020), but focused on a different
part of the PNS. The PNS we considered has a baryonic (final
gravitational) mass of 1.78 (1.59) M, and was taken from a
1D core-collapse supernova simulation from Hiidepohl (2014).
This simulation used the high-density equation of state LS220
(Lattimer & Swesty 1991) and the nonrotating 27 M, progeni-
tor s27.0 by Woosley et al. (2002). The calculations were per-
formed with the code Prometheus-Vertex, which combines the
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Fig. 1. 1D radial profiles of the entropy per baryon (black line) and
density (blue line) of our PNS model at = 0.2 s post-bounce. Our sim-
ulation domain corresponds to the outer stably stratified layer delimited
by the thick black line.

hydrodynamics solver Prometheus with the neutrino transport
module Vertex (Rampp & Janka 2002). This module solves the
energy-dependent moment equations of three species of neutri-
nos and antineutrinos using a variable Eddington factor closure
and including a most recent set of neutrino interaction rates. The
energy and lepton number transport by convection is modeled
with a mixing length treatment. We chose the physical param-
eters to represent the PNS at + = 0.2 s after bounce according
to the 1D CCSN simulation, whose profiles of density and spe-
cific entropy are shown in Fig. 1. While the models presented
in Raynaud et al. (2020) focused on the convective zone, our
simulation domain spans the outer stably stratified region, thus
extending from r; = 25.5km to r, = 39.25 km, corresponding
to the PNS surface defined by the density p, = 10'' gcm™. All
background profiles of density, temperature, entropy gradient,
and gravitational acceleration (0, T,VS, and g) were fit from the
PNS model described above with fifth-order to eleventh-order
polynomials, hence reproducing the profiles with a good accu-
racy. Their values at the outer boundary are noted with the letter
‘0’ as a subscript. To have a self-consistent anelastic model, the

thermal expansion coefficient at constant pressure &t = — (g—‘;)P
was computed using the following thermodynamic relation:

din7 _1d, &g

; @)

dr cp dr Cp

where ¢, = 3.6 X 103 erg K~! g7! is the specific heat capacity at
constant pressure, assumed to be uniform. The profiles of the 1D
CCSN model and the anelastic reference state agree well (see
Appendix A). For the sake of simplicity, several assumptions
are made in this work. In order to describe the buoyancy associ-
ated with both entropy and lepton number gradients, we used an
effective entropy gradient assuming the thermal and lepton num-
ber diffusivities to be identical. In our model, we also assumed
that the neutrinos are in a diffusive regime, so that the effects on
the dynamics can be modeled by thermal and viscous diffusiv-
ities, x and v, respectively. The magnetic diffusivity n was also
explicitly included in our simulations. Finally, we assumed all
the diffusivities «, v, and 7 to be constant inside the simulation
domain.

2.2. Governing equations

We adopted the anelastic approximation to model the flow inside
the PNS in order to take the density and effective entropy gra-
dient into account while filtering out sound waves. The MHD
anelastic equations describing the dynamics of the PNS in a
rotating frame at an angular frequency Qo = 958rads™! read
(Jones et al. 2011)

V.ﬁu:O’ (3)
D P = 8
—u:—V(T)—ZQOeZXu—&TTs—ger
Dt o Cp
1
+— (VXB)XB+F, “
Ho P
- [(Ds’ . =
ﬁT( : +u.vS):Kv-(ﬁTVs’)+<I>V+1(Vx8>2, )
Dt Ho
oB
E:Vx(uxB)HszB, (6)
V-B=0, D

where u is the flow velocity, B is the magnetic field, P is the
pressure, s’ is the entropy perturbation, and y is the vacuum
permeability. In this system, viscous force and viscous heating
are given by F} = ﬁ‘lﬁjmj and ®, = 0;u;0;j, where o; =
2pv(e;; — ex0;;/3) is the rate of strain tensor and ¢;; = (9;u; +
0ju;)/2 is the deformation tensor. Tensors are expressed with the
Einstein summation convention and the Kronecker symbol J;;.

2.3. Numerical methods

In order to integrate the system of Egs. (3)—(7) in time, we used
the benchmarked pseudo-spectral code MagIC' (Wicht 2002;
Gastine & Wicht 2012; Schaeffer 2013). MagIC solves the 3D
MHD equations in a spherical shell using a poloidal-toroidal
decomposition for the velocity and the magnetic field,

pu=VxVxWe)+Vx(Ze,),
B:VxVx(ber)+V><<ajer),

®)
©))

where W and Z are the poloidal and toroidal kinetic scalar
potentials, respectively, while b and a; are the magnetic poten-
tials. The scalar potentials and the pressure P are decomposed
on spherical harmonics for the colatitude 6 and the longitude
¢ angles, together with Chebyshev polynomials in the radial
direction. The linear terms are computed in the spectral space,
while the nonlinear terms and the Coriolis force are computed
in the physical space and transformed back to the spectral space.
For more detailed descriptions of the numerical method and the
associated spectral transforms, we refer to Gilman & Glatzmaier
(1981), Tilgner & Busse (1997), and Christensen et al. (2015).

The simulations presented in this paper were performed
either using a standard grid resolution of (n,ng,ng) =
(257,512,1024) or a higher resolution of (n;,ng,ngs) =
(385,768, 1536). The resolution was chosen to ensure that the
dissipation scales were resolved. For model Standard, about
nine cells resolve the resistive scale as the maxima of viscous and
resistive dissipation are at the spherical harmonic orders /, ~ 70
and [, ~ 100, respectively.

! https://magic-sph.github.io
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2.4. Initial conditions

Many core-collapse simulations with a fast-rotating progenitor
have shown that the PNS rotates differentially for several hun-
dred milliseconds (e.g., Akiyama et al. 2003; Ott et al. 2006;
Obergaulinger et al. 2018; Bugli et al. 2020). In order to sustain
differential rotation in our simulations for a similar duration,
we forced the outer boundary to rotate according to the initial
rotation profile, with a similar method as we used in our incom-
pressible study (Paper I). The rotation profile was then evolved
dynamically inside the simulation domain. The initial cylindri-
cal rotation profile was inspired by the simulations of Bugli et al.
(2020) and was composed of an inner part in solid-body rota-
tion and an outer part in differential rotation with a cylindrical
profile,

Q;
0.05°
(1+ ()"

where s is the cylindrical radius, g, = 1.5 corresponds to the
shear rate

Q(s) =

(10)

s dQ

1° 0 a

)
at the outer boundary, and Q; = 3822 rad s~! is the rotation rate
of the inner core. This rotation rate (; was computed so that the
ratio of total angular momentum over the moment of inertia was
equal to the frame rotation rate € defined in Sect. 2.2. This was
computed with the following formula:

19
O = ~005 > (12)

i b (14 (o)) av

where s is the cylindrical radius, V is the volume of the domain,
and [ is the moment of inertia of the simulation domain. This
initial rotation profile was inspired by those found in the fast-
rotating and magnetized core-collapse supernova simulations by
Bugli et al. (2020). The shear rate ¢, = 1.5 might seem high for
protoneutron stars, but the shear rate ¢ is lower inside the domain
than at the boundary, as already shown in Paper I.

For the initial magnetic field, the toroidal component was
set to zero and the poloidal component was initialized with a
random superposition of modes with spherical harmonics indices
(I, m) with a radial dependence based on Fourier modes as in
Paper I, but with a radial modulation of their amplitude to keep
a constant Alfvén speed, defined by

B
VHoP

This initialization implies that the initial magnetic field is
stronger in the inner region, which has a higher density (see
the left panel of Fig. 2). For all the simulations, the Fourier and
spherical harmonic modes were selected so that their wavelength
was between [0.3D, 0.5D], with D the shell width,

13)

A =

D=ry—r = 13.7km. (14)

The initial root mean-square magnetic field strength at the outer
boundary ranged from B, = 1.5 x 10 G to B, = 3.3 x 10"* G
depending on the model. This strong magnetic field allowed us
to be sure that the MRI was well resolved: the wavelength of
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the fastest-growing mode in ideal MHD with B, = 1.5 x 10* G
reads (Balbus & Hawley 1991)

8 B, 5
~(0.69D ~ 9.5 x 10° cm.
CIO(4 - QO)QO Vlloﬁo

Our strong initial magnetic field may represent the magnetic
field generated by the first MRI amplification on small scales
found in local models of PNS (Obergaulinger et al. 2009;
Guilet & Miiller 2015; Rembiasz et al. 2016), as explained in
Paper L.

AMRI = (15)

2.5. Boundary conditions

We assumed nonpenetrating boundary conditions (u, = 0). At
the inner boundary, we used a stress-free condition, where the
viscous stress vanished. For the outer boundary, we forced u, to
match the initial profile at all times, and the other components of
the velocity were set to zero, exactly like in our previous setup
(Paper I). For the magnetic field, we used insulating boundary
conditions (matching a potential field outside the domain), while
the entropy perturbations were set to zero at both boundaries.

2.6. Physical parameters and dimensionless numbers

In fast-rotating fluids, the impact of stable stratification on the
MRI is characterized by the ratio of the Brunt—Viisila frequency
squared N? over the rotation frequency squared Q?, with

dYe)
ps dr )’

NZE_Q(@
p\aS

where Y, is the electron fraction and P is the pressure of the ref-
erence state of the PNS model. In our model, this ratio is higher
than for the model studied in Guilet & Miiller (2015), especially
at the equator (see Fig. 3). Our stratification remains small com-
pared to typical values of N>/Q? ~ 10°-10* in the radiative
zone of intermediate and massive stars (Fuller et al. 2019). The
Brunt—Viisili frequency at the outer boundary is N, = 4136571,
Accordingly, we might expect the buoyancy to dampen MRI-
driven turbulence (Guilet & Miiller 2015), but the thermal dif-
fusivity « also plays an important role as it reduces the impact
of the stable stratification on radial scales smaller than a critical
length L.. One way to estimate L. is to compare the timescale for
thermal diffusion to the timescale of gravity waves, from which
we obtain

d§ op
+
dY,

(16)

[), Y, dr

K

L=
No

17)
For the uniform thermal and viscous diffusivities, we used the
values from the 1D CCSN model taken in the middle of the sta-
ble zone r =~ 3.3 x 10° km, which are x = 1.61 x 10" cm s~2 and
v = 8.03 x 10! cms~2, respectively. While all our models share
the same constant kinematic viscosity, we considered three dif-
ferent values for the thermal diffusivity, x = {1.61 X 10'4,4.02 x
10'3,8.03 x 10'2} cm s2, which means that the thermal Prandtl
number is

Pr = E = {0.005, 0.02, 0.1}. (18)
Our standard value of the thermal Prandtl number Pr = 0.005
corresponds to the value resulting from the 1D core-collapse
supernova model (Hiidepohl 2014). With these values, the crit-
ical length ranges from L. = 0.14L = 1.97 x 10°cm to
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L. = 0.031L = 4.4 x 10*cm. In our simulations, the ratio of
the Brunt—Viisild frequency N, at the outer boundary to frame
rotation Q, was fixed by the following formula:

N,  [-RakE?
Qy pr
where the Ekman number E (characterizing the importance of
viscosity over the Coriolis force) reads

19)

v

E=—— =444x107", 20
0 D (20
and the Rayleigh number Ra is defined by
aroTogoD* |dS
Ra = _ @10l 090 g Q1)
CpVK dr |,

The Ekman number was kept identical for all the models pre-
sented in this article. Therefore, to keep the Brunt—Viisild fre-
quency constant between our models with buoyancy effects
while varying the thermal Prandtl number, the Rayleigh number
was also varied from Ra = —4.73 x 10° to Ra = —9.46 x 10°.
With these dimensionless numbers, we can estimate the
regime of boundary forcing in our simulations. The viscous
timescale 7, = L?/v can be compared to the Ekman spin-up
timescale T = +/L2/(Qov) and the Eddington-Sweet circula-

tion timescale 7gp = L*NZ/(kQ5), (Gouhier et al. 2021, 2022).
This gives

2
T VE=0021 <« 2 - Pr(%) =0.093 < :— =1 (22)

Ty Ty 0 v

for the simulation Standard. This order (i.e., Tg < Tgp < T,)
corresponds to the Eddington-Sweet regime, but as Pr increases
for some simulations, it approaches the viscous regime (i.e.,
Tg < Ty < TED)-

We used a constant resistivity of 7 = 5.0x 10'° cm s, which
gives a magnetic Prandtl number

Pm = - =16.
n

(23)

As in Paper I, the choice of this value for our simulations was
forced by the high cost of simulating high Pm models, and it
lies well below a realistic parameter regime. The neutrino vis-
cosity is very high compared to the typical resistivity of a degen-
erate electron gas inside a PNS. Realistic estimates of the mag-
netic Prandtl number predict Pm ~ 10'3 (Thompson & Duncan
1993; Masada et al. 2007), which cannot be reached in direct
numerical simulations. The magnetic Reynolds number that
characterizes the relative importance of induction to magnetic
diffusion is

2
Rm=2"% _ 36« 10°,
n

(24)

and, for the same reasons, it is quite small compared to realistic
estimates. Overall, the only parameters that were varied in this
study were the thermal Prandtl number Pr and the Rayleigh num-
ber Ra, which in two simulations was also set to zero to remove
the thermal stratification and allow a clearer assessment of the
impact of buoyancy in our models.

N2/Q?

64.8
57.6
-50.4
-43.2
-36.0
-28.8

-21.6

L14.4

7.2

0.0

Fig. 2. Ratio of the squared Brunt—Viisild frequency N? (Eq. (16)) to
the squared initial rotation frequency Q2 (Eq. (10)). The buoyancy influ-
ence is strongest in the red regions.

3. Typical anelastic simulation
3.1. Quasi-stationary state of an MRI-driven dynamo

We start by describing the magnetic field produced by one fidu-
cial simulation in which we obtain an MRI-driven dynamo,
hereafter called model Standard. For this model, we used the
standard diffusivities and an initial magnetic field intensity of
B, = 1.5 x 10" G (see Table B.1). Figures 3 (right panel) and 4
show selected snapshots of the toroidal magnetic field and the
magnetic field lines that highlight the complex geometry of the
MRI-driven turbulence. On the meridional cuts in Fig. 3, the spa-
tial distribution of the small-scale turbulence is particularly strik-
ing for several reasons. First, almost no turbulence is observed
in the equatorial plane, while strong turbulence develops in mid-
latitude regions. The same feature can be seen for the kinetic
turbulence on the radial velocity u,. This phenomenon can be
explained by the influence of the buoyancy force (see Sect. 4.2
for more details). Second, the high-density regions at lower radii
are devoid of MRI turbulence because only wide patches of mag-
netic field can be observed there without small-scale turbulence.
This is more unexpected and is discussed in Sect. 5.1. More-
over, the region close to the rotation axis is in solid-body rota-
tion and is therefore stable to the MRI, which leads to no tur-
bulence, as expected. Finally, the comparison between the initial
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Fig. 3. Meridional slices at ¢ = 0 of the initial poloidal magnetic field B, (leff) and of the toroidal magnetic field B, at ¢ = 773 ms (right) for model

Standard.

and saturated magnetic field shown in Fig. 3 suggests that the
magnetic field has lost the memory of its initial configuration.

The contrast between the equatorial plane and mid-latitude
regions is present in the magnetic field lines as well, where
strong and elongated field lines in the azimuthal direction can
be seen in the mid-latitude regions of Fig. 4. These field
lines are generated by the expected winding of the magnetic
field by the shear. Some small-scale loops of field lines can
also be seen, with a weaker magnetic field in the mid-latitude
regions.

For a more quantitative assessment, we now examine the
energetics of this MRI-driven dynamo. Figure 5 shows the time
evolution of the toroidal and poloidal magnetic energy densi-
ties and the turbulent kinetic energy density. The latter was
computed by subtracting the contribution of the axisymmetric
rotation from the averaged kinetic energy density in order to sep-
arate the differential rotation and the MRI-driven turbulent flow.
After several hundred milliseconds, we obtain a statistically sta-
tionary state with a mean magnetic field of B ~ 1.4 x 10 G in
the full simulation volume. If we reduce the volume to take the
localization of the turbulence into account, the resulting mean
magnetic field is B =~ 2.25 x 10'* G.

In order to compare the intensity in the full volume to our
previous incompressible study (Paper I), where the density p, =
4x 10" gcm™ was higher, we used the dimensionless magnetic
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field strength defined by the Lorentz number,

B
VOorto DQ

We have 8 ~ 0.096 for model Standard and 8 =~ 0.064 for
Paper I, which is lower but on the same order of magnitude.
This difference is discussed in further details in Sect. 4.4. Com-
pared to Paper I, most of the ratios of the energies or magnetic
fields are similar. The kinetic energy is about ten times lower
than the total magnetic energy, and the toroidal magnetic field
is about ~2.5 times larger than the poloidal magnetic field. The
main difference with Paper I is the increased axisymmetric com-
ponent of the toroidal magnetic field, which is higher than the
total poloidal magnetic field and is almost equal to the nonax-
isymmetric toroidal magnetic field, as we discuss in Sect. 4.1.
An interesting new feature compared to Paper I are synchronous
oscillations of the magnetic and kinetic energy densities. These
oscillations suggest a dynamo cycle, as we show in Sect. 3.2.
To understand how the magnetic and kinetic energies are dis-
tributed over different scales, instantaneous toroidal and poloidal
spectra are presented in Fig. 6. On the small scales, the nonax-
isymmetric poloidal and toroidal magnetic spectra are similar to
those of Paper 1. For the poloidal component, the nonaxisym-
metric contribution dominates at all scales, as in Paper 1. By

B = (25)
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Fig. 4. 3D rendering of the magnetic field lines in simulation Standard
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Fig. 5. Time evolution of the magnetic and turbulent kinetic energy den-
sities for model Standard with B, = 1.5 x 10'* G. The black and blue
lines are the toroidal and poloidal contributions of the magnetic energy
density, and the red line is the turbulent kinetic energy density (i.e.,
the energy of the nonaxisymmetric component of the velocity). The
magenta line is the axisymmetric contribution to the toroidal magnetic
energy density.

contrast, at large scales, the toroidal magnetic spectrum is domi-
nated by the axisymmetric component, with a particularly strong
quadrupole. These strong axisymmetric modes are a new feature
of the toroidal spectrum and are linked to the stronger axisym-
metric toroidal energy and the mean-field dynamo described in
the next section. Overall, these spectra show that the total mag-
netic energy comes essentially from the axisymmetric contri-
bution at large scales and the nonaxisymmetric contribution at
small scales.

Axisymmetric structures that are symmetric with respect to
the equatorial plane, such as the rotation and meridional cir-
culation, translate into oscillations between odd and even har-
monic order / visible in the kinetic spectra (Gubbins & Zhang
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Fig. 6. Instantaneous volume-averaged spectra of magnetic and kinetic
energies at t = 773 ms. Top: spectrum of the poloidal magnetic energy
(red) and the toroidal magnetic energy (blue) normalized by the total
magnetic energy as a function of the spherical harmonics degree . The
dotted (solid) lines correspond to the axisymmetric (nonaxisymmetric)
contributions to these energies. Bottom: spectrum of the poloidal kinetic
energy (red) and the toroidal kinetic energy (blue) normalized by the
total kinetic energy as a function of the spherical harmonics order /.

1993). The kinetic spectra are comparable to those of Paper I
because small and intermediate scales are dominated by turbu-
lence, while differential rotation dominates at large scales.

We now highlight the time evolution of the magnetic dipole
because it is the component inferred by observations. The dipole
energy translates into an intensity Bgi, =~ 6.3x 102 G, which rep-
resents ~4.5% of the total magnetic field (Fig. 7). This intensity
may seem weak, but the dimensionless magnetic field strength
Bgip corresponding to this dipole intensity gives By, = 0.0043,
which is higher than the value By, =~ 0.0032 obtained for
Paper 1. Furthermore, the evolution of the dipole energy sug-
gests that the dipole is tilted toward the equator because the axial
dipole is twice lower than the average dipole. With the same
method as Paper I, an averaged tilt angle of 64, ~ 100° can be
computed from the magnetic dipole moment. Overall, this model
produces results that are qualitatively consistent with those in
Paper I, with a stronger dimensionless dipole.

To study the dipole geometry in more detail, we show in
Fig. 8 the time evolution and radial dependence of the modes
(! = 1,m = 0)and (!l = 1,m = 1). The dipole is mainly
present in the low-density region (outer radii), where the tur-
bulence is the strongest. Both modes are radially coherent and
form large-scale structures. The equatorial dipole rotates at a dif-
ferent rotation speed than the simulation frame, which leads to
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Fig. 7. Time evolution of the axial dipole (dashed orange), total dipole
(dashed blue), and total magnetic (solid black) energy densities of the
model Standard.

oscillations of the equatorial dipole. The timescale of these oscil-
lations (about 50 ms) is much longer than the rotation period of
the frame, which means that the magnetic dipole rotates with
a frequency close to that of the simulation frame. The time
evolution of the axisymmetric component of magnetic dipole
is characterized by slower periodic reversals, which again sug-
gests that a mean-field oscillatory behavior is present in the
simulations.

3.2. aQ dynamo

The previous subsection indicated a mean-field dynamo by
pointing out an oscillatory behavior. The general mean-field the-
ory has been developed by Moffatt (1978) and Krause & Raedler
(1980) and has been widely used to study dynamos. We used the
mean-field concept to understand which processes dominate the
generation of the mean magnetic field. The basic idea of a mean-
field dynamo is that a large-scale magnetic field is generated
by small-scale turbulence. The velocity and magnetic fields are
therefore decomposed into a mean and a small-scale component,

which we represent using the following notation: X = X+ x.
The definition of mean here is the axisymmetric average oper-
ator noted =, which verifies the Reynolds averaging rules. The
approach of the mean-field theory is to expand the electromo-
tive force (EMF) & only in terms of the mean quantities (&’ and

B¢) and the statistical properties of the fluctuating quantities (z’
and B’). We now focus in more detail on the characterization of
this mechanism. The most common realization of a mean-field
dynamo with differential rotation is the so-called @€2 dynamo.
The Q effect corresponds to the shearing of the magnetic field
by differential rotation that generates a toroidal magnetic field
from a poloidal field. With our cylindrical differential rotation,
the Q effect reads

—
0B —dQ
a_: = 5B, . (26)

and it ¢sh0uld induce an anticorrelation between the radial
field B, in cylindrical coordinates and the azimuthal magnetic

field B.
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Fig. 8. Radius-time diagram of the dipolar modes. Top: radius-time dia-
gram of the axial dipolar mode B,(! = 1,m = 0). The period of the
dipole reversal is Py, ~ 410ms. Bottom: radius-time diagram of the
equatorial dipolar mode amplitude B.(I = 1,m = 1) at a given azimuth
¢ = 0 in the rotating frame of the simulation. The fast oscillations are
due to the rotation of this dipole mode.

The « effect comes instead from the closure relation of the
mean EMF,

—,¢
E=u xXB", (27)

and B = B - §¢,
the mean magnetic field §¢,

where ' = u — u’ expressed as a function of

8,’ = CX,‘_,‘E? +ﬁij (V X B

—"’)j, (28)

where «;; and §;; are tensors that do not depend on §¢ and i, j
refer to spherical r, 8, ¢ or cylindrical coordinates s, ¢, z. The
diagonal components of the a tensor correspond to the compo-
nent of the EMF in the direction of the mean magnetic field, and
their effect is physically described as the twisting of the mean
magnetic field lines by the cyclonic turbulence, which forms
magnetic field loops that can generate poloidal magnetic field
from the toroidal magnetic field and vice versa.

In our case, the generation of the poloidal magnetic field by
this effect can be seen as a correlation between the toroidal com-
ponent of the EMF and the toroidal component of the magnetic
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field By in the form of &5 = a¢¢B_¢¢. The diagonal compo-
nents of the B tensor are in the direction of the mean current

J¢ = Ky 'V x B¢, and their effect is physically described as a
turbulent diffusivity, which adds to the magnetic diffusivity 7.
Another effect that has been proposed to complete the dynamo
loop in the case of the MRI is the nondiagonal resistivity By,
which could generate a poloidal field from the toroidal field
(Lesur & Ogilvie 2008). In this case, the azimuthal component
of the electromotive force &, would be correlated with the radial

current 7? in cylindrical coordinates. One (or both) of these
two effects, in combination with the Q effect, may therefore
be expected to complete the dynamo cycle, leading to a self-
sustained magnetic field.

The usual way to characterize an @2 dynamo is to compute
space-time diagrams of By, B, and &, which are often referred
to as butterfly diagrams. Figure 9 shows these azimuthally aver-
aged quantities in the southern hemisphere at » = 0.86 r, (which
lies in the middle of the turbulent region). First, the butterfly dia-
grams show large coherent structures in the mid-latitudes, which
is consistent with a mean-field oscillatory dynamo with a period
of P = 410 ms. This period is estimated by taking the peaks of
the mean toroidal magnetic field at different colatitudes and aver-
aging the frequencies for each hemisphere. The visual inspection
of the butterfly diagrams suggests that the dynamo can be inter-

preted as an Q2 dynamo. The components F(Z and EZJ are anticor-

related, which shows that Ez is mainly generated by the Q effect.
On the other hand, the electromotive force &y is correlated with

Ez, which suggests that the @ effect plays an important role.

To corroborate the visual correlations of the butterfly dia-
grams, we computed the Pearson correlation coefficient between
two quantities X and Y with the following formula:

Jx = 00de [(¥ = (Y))dr

Cr(X,Y) = ,
VO = Q0020 (Y = ryp2dny

(29)

where (-), represents a time average. Figure 10 shows the corre-

lation coefficients between &y and Eﬁ and the radial current 7?
in order to test the nondiagonal resistivity hypothesis. We find

that Ez and & are well correlated, while no correlation is found

between J and &;. This means that the « effect is prominent in
our simulations. Moreover, the antisymmetry of the correlation
matches the expected symmetry of the components of the tensor «.

We can estimate the value of the diagonal components of the
a tensor with the formula

A~
(B &)

(@B G0

ii

This estimation assumes that the EMF is only due to the « effect,
which is a good approximation in the case of high correlation
values. A theoretical estimation is possible under the second-
order correlation approximation, which considers only second-
order fluctuating quantities, in addition to several hypotheses
(Moffatt 1978; Krause & Raedler 1980). The turbulence is, in
fact, assumed to be statistically homogeneous and isotropic, and
the mean flow % is usually also neglected. The second-order
correlation approximation is valid when one of two dimension-
less numbers are small: the magnetic Reynolds number Rm, or
the Strouhal number St = V7/L, where V, 7 and L are typi-
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Fig. 9. Butterfly diagrams of B), (top), B, (middle), and &, (botiom) in
the southern hemisphere of model Standard. Each butterfly diagram
is computed at the same spherical radius r = 0.86r, in the turbulent
region.
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Fig. 10. Time-averaged correlation coefficients (Eq. (29)) between &,

and EZ (blue) and between &, and 7: (red) taken at r = 0.86 r,, in model
Standard.

cal values of the velocity, time variation, and length scale of the
turbulence. Under these hypotheses, the diagonal components of
the a tensor are proportional to the kinetic helicity A,

Te—v——9¢
aji = —?cu' -Vxuw

Te
= —— 1
3 €1y
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where 7, is the correlation timescale of the turbulence. Although
the conditions that are theoretically necessary for the validity
of this formula are not satisfied in our simulation?, we find a
quantitative agreement between Eqs. (30) and (31) for 7, =
2.5ms = 0.38 X 27/Q with a peak value of @y ~ 6X 10° cms™!
(see Fig. 11). This empirical turbulent correlation time is consis-
tent with the timescale of MRI turbulence, which is typically a
fraction of the rotation period.

Finally, the value of @44 can be used to estimate the the-
oretical frequency of an a€Q dynamo using the relation (e.g.,
Busse & Simitev 2006; Gastine et al. 2012; Gressel & Pessah
2015)

12

Ly , (32)

PRI B PR

1/2 1
_ ’2

waQ:’

where k, is the vertical wavenumber. We computed the shear rate
g = —0.65 and the rotation rate Q = 688 rad s~! in the middle of
the turbulent region from a vertically and azimuthally averaged
rotation profile, which gives lower values than ¢, and Q. We
estimated k. ~ 2.79 x 107 cm™! by taking the longest verti-
cal length in the turbulent region at mid-latitudes and obtained
a period of Pyn = 2m/we0 = 324 ms, which is roughly agrees
with the period inferred from the butterfly diagrams. The small
difference between the two values is compatible with the uncer-
tainties in our estimate of the different parameters and may, for
example, be due to an overestimation of the « effect, as we take
its peak value in the turbulent region. If we consider an average
on the angles 6 € [30°,60°], we obtain a period P,o = 393 ms,
which is closer to the measured period P ~ 410 ms. Moreover,
according to the theoretical Parker- Yoshimura rule (Parker 1955;
Yoshimura 1975), the dynamo wave should propagate in the
direction of —agpes X VC, that is, from the equator toward the
pole in our case. Unfortunately, a difficulty arises here because
the full pattern does not have a clear propagation direction, as
shown in Fig. 9. Overall, all these results show that the MRI-
driven dynamo we obtained in our simulations can be described
as an €2 dynamo.

2 The Strouhal number is on the order of unity and the magnetic
Reynolds number is on the order of a few hundred.
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4. Comparison with other models

After demonstrating with a realistic PNS setup that the MRI
can produce a subdominant dipole and a turbulent dynamo with
a mean-field behavior, we aim at understanding the influence
of the different physical ingredients we added in the anelas-
tic model (shell aspect ratio, buoyancy, thermodynamic back-
ground, etc.). We discuss in particular the impact of the density
profile (Sect. 4.1), the entropy profile (Sect. 4.2), and the ther-
mal diffusivity (Sect. 4.3). We compare these results with our
previous incompressible study (Sect. 4.4).

4.1. Impact of the density gradient

We compared the results of four simulations under different
approximations: the Boussinesq approximation (i.e., no density
gradient) or the anelastic approximation (i.e., with a density gra-
dient), both with or without buoyancy (N> > 0 or N> = 0). For
Boussinesq models, constant density was taken to be equal to the
density p, = 10" gecm™ at the outer boundary of the anelastic
model. All the other simulation parameters were kept identical.
In order to simplify the interpretation of the results, we start by
describing the effect of the density gradient.

The comparison of the snapshots of B, in Fig. 12 gives qual-
itative insights into the effect of the density gradient. While the
maximum intensity of the magnetic field is slightly higher for
Boussinesq simulations, the striking difference between Boussi-
nesq and anelastic simulations is their structure: for the former
models, MRI-driven turbulence develops throught the domain,
except at the poles. It is restricted to the outer low-density lay-
ers for the latter. It also seems that at mid-latitudes, the magnetic
field has structures at slightly larger scales in the anelastic cases.
These differences are due to the background density gradient
because both anelastic simulations (with or without buoyancy)
have a similar magnetic field structure.

The presence of the background density gradient also
impacts the angular velocity. The bottom panels of Fig. 12 show
that the flow inside the domain rotates more slowly with a den-
sity gradient. This can be understood as a consequence of the
lower efficiency of the inward transport of the angular moment
by the outer boundary forcing in the presence of a density gradi-
ent due to the low density at the outer boundary.

Figure 13 compares the time evolution of the turbulent
magnetic (green) and kinetic (orange) energy densities and the
axisymmetric magnetic energy density (purple). Both Boussi-
nesq simulations have a higher turbulent magnetic energy and
kinetic energy. This is at least partly due to the presence of
turbulence in only half of the domain for anelastic simula-
tions compared to the full domain for Boussinesq simulations
because the maximum field strength difference in the snapshots
is too low to explain the difference in magnetic energy. On the
other hand, the Boussinesq model with buoyancy has a sim-
ilar axisymmetric magnetic energy density such that the ratio
of the axisymmetric magnetic energy and turbulent magnetic
energy is higher for anelastic simulations. The axisymmetric
component for the Boussinesq model without buoyancy, called
model Incompressible, is quite peculiar because it increases
faster than the turbulent magnetic energy and reaches a higher
energy than all other models. The ratio of axisymmetric mag-
netic energy to turbulent magnetic energy also saturates at higher
levels. Another important point, however, is that clear oscilla-
tions occur only for anelastic simulations, which suggests that
there is no mean-field dynamo with a constant density.

In a similar fashion to axisymmetric magnetic energy, the
dipole energy density seems to be on the same order for all
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Fig. 12. Meridional cuts of B, (top) and azimuthal average of Q (bottom) at a statistically stationary state for incompressible (panels a and e),
Boussinesq (panels b and f), anelastic without buoyancy (panels c and g), and anelastic including buoyancy (panels d and h) models.

simulations, except for model Incompressible, which is
higher at late times (Fig. 14). Because their total magnetic energy
also increases, both Boussinesq models have a similar ratio of
dipole field to total magnetic field of ~3.4%, which is lower
than the ratios of the anelastic models ~4.3%, as we discuss
in Sect. 4.4. The dipole energy density is also dominated by its
equatorial component in all simulations, which indicates that the
inclination of the dipole toward the equator is a robust feature of
the MRI.

To confirm the mean-field behavior, we show in Fig. 15

the butterfly diagrams of E‘; For Boussinesq simulations (pan-
els a and b), the MRI-unstable region is noisier. It is hard to
observe clear signs of coherent mean-field patterns with buoy-
ancy (panel a), while without buoyancy (panel b), an increasing
quadrupole develops after 400 ms. This quadrupole is rather puz-
zling because its strength is higher than the incompressible mod-
els of Paper I, and it does not match the a2 behavior. There is
no clear signal in the toroidal component of the EMF &, and we

find that the correlation coeflicients between the EMF &y and Eﬁ
are low, with an average Cp(&y, EZ) ~ (.04 in both hemispheres.

We find no correlations either between the EMF & and 7? The
physical origin of this toroidal quadrupole is so far uncertain. We
would like to point out that this region is not turbulent, and the
patterns found there (which can also be seen in the Boussinesq
model with buoyancy in panel a) are probably not caused by a
true mean-field mechanism. These results suggest that it is more
difficult to have a mean-field behavior without density stratifica-
tion. The stronger ratio of dipole to total magnetic field in the
case of anelastic models might be due to the mean-field dynamo
boosting the generation of the dipole.

4.2. Impact of buoyancy

To study the influence of buoyancy, we focused first on the com-
parison of model Incompressible to the Boussinesq model
with buoyancy. The comparison between the snapshots of B
shows that the structure of the turbulence is rather similar,
while the turbulent magnetic field is stronger without buoy-
ancy (Fig. 12). This result is also found in terms of turbulent
energy density for the magnetic and kinetic energies (Fig. 13).
It can be expected that the higher magnetic field increases the
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Fig. 14. Time evolution of the axial dipole (green), total dipole (blue),
and total magnetic (black) energy densities of the same models as dis-
played in Fig. 13.

angular momentum transport, thus decreasing the angular fre-
quency near the axis. As mentioned in the previous section,
the physical origin of the high axisymmetric energy density of
model Incompressible is uncertain, and this feature is not
discussed.

For anelastic models, we see a difference in the equatorial
plane where MRI-driven turbulence is damped with buoyancy
(panels ¢ and d of Fig. 12). Moreover, the butterfly diagrams
in Fig. 15 suggest that the model with buoyancy (panel c) per-
sistently suppresses small-scale fluctuations in the equatorial
region, while without buoyancy (panel d), turbulence is fully
developed. This effect may be expected because in the equato-
rial plane, the buoyancy quenches the motions in the direction of
the differential rotation gradient, which reduces the MRI turbu-
lence (Menou et al. 2004; Guilet & Miiller 2015). The weaker
turbulence in the equatorial plane with buoyancy may partly
explain the lower turbulent magnetic and kinetic energy densi-
ties of model Standard compared to the model without buoy-
ancy (Fig. 13).
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By contrast, the mid-latitude regions are less impacted by
the buoyancy. The magnetic field By is similar in strength and
structure outside of the equatorial plane (Fig. 12). In the anelas-
tic model without buoyancy, a mean-field dynamo also produces
a field with a similar amplitude to model Standard at the mid-
latitudes (see panel ¢ and d in Fig. 15). This leads to a simi-
lar axisymmetric toroidal energy density (Fig. 13) and dipole
energy density (Fig. 14) for both anelastic models. In terms of
dynamo periods, both theoretical dynamo periods are similar,
even though the patterns have a longer cycle without buoyancy.
The dynamo frequencies agree within 15% with buoyancy and
24% without buoyancy (see Table B.1). For these two models,
the dynamo periods are more difficult to measure due to the com-
bination of short and long patches of magnetic fields, and this
can lead to differences between the hemispheres (see Table 1 for
model standard). Considering the different uncertainties in our
estimate, the two models give consistent results with theoretical
values, which shows that buoyancy has a weak influence on the
dynamo mechanism at Pr = 0.005.

4.3. Influence of the thermal Prandtl number

The previous section shows that except in the equatorial plane,
buoyancy has a rather small impact on the anelastic simula-
tions overall, which might be due to the high thermal diffusivity.
To further study the influence of the thermal diffusion, we ran
two anelastic simulations with a lower thermal diffusivity cor-
responding to larger Prandtl numbers, Pr = 0.02 and Pr = 0.1,
respectively. By comparing the timescale for thermal diffusion to
compensate for the entropy fluctuations to the timescale of grav-
ity waves, we may expect the thermal diffusion to reduce the
effects of buoyancy on scales smaller than the critical length L,
defined by Eq. (17). For our simulation Standard at Pr = 0.005,
the critical length at mid-latitudes L, =~ 0.14D is on the same
order of magnitude as the turbulent scale of the radial velocity,
such that buoyancy effects are expected to be marginal. By con-
trast, the critical length decreases to L. =~ 0.03D at Pr = 0.1,
hence decreasing the range of scales where turbulent motions
are suppressed by buoyancy (i.e., for scales larger than L.). As a
consequence, the typical scale of the radial velocity is expected
to be smaller at higher Pr.

To verify this expectation, we compare snapshots of the
radial velocity in Fig. 16. For increasing Pr, we observe a
decrease in the size of the velocity structures and in the maxi-
mum amplitude of the radial velocity.

This trend is also confirmed in the radial velocity spectrum of
the different simulations (Fig. 17). The peak values of the spec-
trum in the small scales for / > 20 are lower and shifted toward
smaller scales with increasing Pr. For models with Pr = 0.02 and
Pr = 0.1, they also seem to match the theoretical critical degree
I~ £ well, corresponding to the critical length.

The suppression of small scale-turbulence can also be seen
to some extent in the corresponding kinetic energy time series in
Fig. 18. The kinetic energy of the simulation at Pr = 0.1 (dotted
lines) is indeed the lowest during most of the simulation time.
The turbulent magnetic energy follows the same trend with Pr as
the turbulent kinetic energy (green curves).

Despite the differences in the turbulence properties, the
axisymmetric toroidal magnetic energy is not strongly dependent
on Pr and the characteristic oscillations of a mean-field dynamo
are present in all three simulations. This suggests that buoy-
ancy does not strongly impact the mean-field behavior at mid-
latitudes. The main difference is the weaker turbulence in the
equatorial plane for model Standard, while no turbulence can
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Fig. 15. Butterfly diagrams of B atr =092 1, for the models shown in Fig. 12 for Boussinesq with buoyancy (panel a), Boussinesq without
buoyancy (panel b), anelastic with buoyancy (panel c), anelastic without buoyancy (panel d), and anelastic with buoyancy with Pr = 0.02 (panel e)
and Pr = 0.1 (panel f). Each butterfly diagram is computed at the same spherical radius r = 0.92 r, (in the turbulent region). (a) V - u = 0, N> > 0,
Pr =0.005. (b) V-u =0, N*> = 0, Pr = 0.005. (c) V- (pu) = 0, N> > 0, Pr = 0.005. (d) V - (Bu) = 0, N*> = 0, Pr = 0.005. (¢) V - (pu) = 0, N> > 0,

Pr=0.02. (f) V- (pu) = 0, N> > 0, Pr = 0.1.

be seen for the other models. The butterfly diagrams in the turbu-
lent region at mid-latitudes are similar for Pr = 0.02 (panel e of
Fig. 15) and the south hemisphere of the Standard simulation at
Pr = 0.005 (panel c), with a similar dynamo period (see Table 1).
One noticeable difference between panels ¢ and e in Fig. 15 is the
poleward propagation of the dynamo wave, which is consistent

with the Parker-Yoshimura rule for the simulation at Pr = 0.02,
probably due to the lack of turbulence in the equatorial plane.
To determine whether the specific behavior at different Pr is
still an @Q2 dynamo, we compare in Fig. 19 the a4s component
for the different Prandtl numbers. At Pr = 0.02, we find a mean
gy = 8.0 X 10° cms~! in the turbulent region, which translates
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Fig. 16. Radial velocity u, and «, for anelastic models with buoyancy and for increasing Prandtl numbers. Top: snapshots of the radial velocity
u,. From left to right, the slices correspond to Pr = 0.005 at # = 773 ms, Pr = 0.02 at t = 1128 ms, and Pr = 0.1 at r = 1128 ms. Bottom: 2D
distribution of ay, for Pr = 0.005 (left), Pr = 0.02 (middle), and Pr = 0.1 (right). The dashed line represents the spherical radius r = 0.92 r,.

into a period P,o =~ 300ms using the same k, and Eq. (32).
This agrees with the measured dynamo frequency within 17%.
Moreover, both values are relatively close to those measured and
estimated for the southern hemisphere of model Standard.

The 2D meridional distribution of @44 (bottom left and bot-
tom center panels of Fig. 16) also shows that there is little dif-
ference between these two models for the mean-field dynamo.
This can be interpreted as follows: most of the kinetic turbu-
lence is still at smaller scales than the critical wavelength for the
buoyancy, as seen in the u, spectra (Fig. 17), and the MRI is not
as much impacted by buoyancy at mid-latitudes. Therefore, the
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change in the velocity spectrum is not important enough to mod-
ify the « effect strongly, and both models have a similar mean-
field dynamo.

At the higher Prandtl number Pr = 0.1, oscillating dynamo
cycles are still present, but have different characteristics. In the
northern hemisphere, the patterns look like those in the other
anelastic simulations, albeit with a lower frequency PNorn =
493 ms. However, in the southern hemisphere, we observe mean-
field patterns of similar amplitude, but higher frequency (with a
period of Psoun = 213 ms). Moreover, the pattern propagates
toward the equator, which is in the opposite direction to the
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integral over | of the Standard model spectrum. The dashed lines cor-
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Table 1. Periods of the different mean-field patterns for Pr = 0.005,
Pr=0.02, and Pr = 0.1.

Model Pr PNorth PSoulh P(IQ

- [ms] [ms] [ms]
Standard 0.005 530 401 342
Anel Pr0® 02 0.02 357 366 300
Anel Pro 1 0.1 493 213 366

Parker-Yoshimura rule. The meridional distribution of a4 (bot-
tom left panel of Fig. 16) also highlights the smaller turbulent
region and the lower amplitude of a4y than in the other two
models.

At Pr = 0.1, we measure @45 ~ 4.57 X 10°cms™" in the
northern and a4y ~ 4.47%10° cms™" in the southern hemisphere
(Fig. 19). By assuming that the turbulent region is 20% smaller
than the region from simulation Standard, we obtain a theo-
retical prediction of the period P,o = 366ms in the northern
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Fig. 19. Time-averaged values of the a4y component estimated using
Eq. (30) at r = 0.92 r, in the turbulent region for three different Prandtl
numbers: Pr = 0.005 (blue), Pr = 0.02 (orange), and Pr = 0.1 (green).

hemisphere, which agrees within 27% with the numerical value.
The similar @44 value in the southern hemisphere would lead to
a similar period and therefore disagrees more strongly with the
measured numerical value. This result, combined with the oppo-
site direction of propagation, may suggest a significant deviation
from the @Q) dynamo formalism. This new behavior of the south-
ern hemisphere with Pr = 0.1 remains obscure and might result
from being close to the dynamo threshold. This idea is also sup-
ported by the fact that a more typical €2 dynamo occurs in the
northern hemisphere, but with a weaker « effect. All in all, the
results presented in this section show that a low Prandtl number
diminishes the impact of buoyancy on the MRI dynamo, whereas
the buoyancy force can limit the MRI-driven dynamo for Prandtl
numbers closer to unity.

4.4. Comparison to our previous incompressible models

One of the important results of Paper I is the robust linear rela-
tion between the dipole intensity and the averaged magnetic field
strength (see their Fig. 16). In order to directly compare the
ratios measured in simulations that have different densities and
parameters, we reproduce the same figure by using the dimen-
sionless dipole strength defined by Baip = Baip/( ViofoDE2)
and the dimensionless total magnetic field strength By, =
Biot/ (Voo DQ) instead of the magnetic intensities. For anelas-
tic simulations, we find a greater magnetic strength By, and
dipole strength Bg;p than in Paper I. However, the ratio of B,
to By of anelastic simulations is quite similar, if slightly lower
(=4.3%) than the linear relation of Paper I.

For our Boussinesq simulations, the differences with Paper I
are stronger. The magnetic strength B,y is higher by a factor
of approximately three due to the stronger turbulence, and the
dipole strength By;, is twice stronger. This gives a different linear
relation of ~3.4% between the magnetic dipole and the magnetic
field strength. This change in linear relation between the Boussi-
nesq models here and the incompressible models of Paper I is
probably due to the difference in the aspect ratio between the
models. With a smaller shell gap D, the forcing of the differ-
ential rotation by the outer boundary is expected to be more
efficient, which might lead to stronger turbulence for a similar
dipole intensity. This result highlights the importance of devel-
oping global models that take the full PNS structure into account.
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Fig. 20. Dimensionless dipole strength Bgpoe as a function of the
dimensionless magnetic field strength B,,,. The simulations of this work
are plotted in blue (anelastic models) and green (no density stratifica-
tion), and the incompressible simulations from Paper I are shown in red.
Dimensionless magnetic field strengths 8 were used in order to compare
results with different densities p, and parameters.

5. Discussion
5.1. Spatial distribution of the turbulence

One puzzling feature of the turbulence in the anelastic models
is its concentration in the low-density region. The MRI modes
can be damped by the viscosity or the resistivity if the initial
magnetic field is lower than a critical value. In order to inves-
tigate whether the lack of turbulence in the high-density region
is due to the initial magnetic field, we ran a simulation with a
higher resolution (n,, ng, ny) = (385,768,1536) and a magnetic
field that was twice as high B, = 3.3 x 10'*G. We find similar
results for the magnetic field as model Standard as shown in
Table B.1, which confirms that our results converge well and are
not an artifact of the initial magnetic field. Our interpretation of
the absence of turbulence in the high-density region is that the
forcing of the differential rotation is not efficient enough to sus-
tain the turbulence in this region. As shown in the bottom panels
of Fig. 12, the angular velocity in the domain is slower than at the
outer boundary. This result might change with a different forcing
method or when the magnetic Prandtl number is increased with
a lower physical resistivity, which would make the turbulence
easier to sustain.

5.2. aQ versus a’Q dynamo

As shown in the previous sections, the dynamos observed in
our anelastic models are consistent with an @2 mechanism.
Although the anticorrelation of B and By in the butterfly dia-
grams (Fig. 9) suggests that the Q effect generates the toroidal
field, we would like to assess this more quantitatively. For this
purpose, we compared the Q effect to the generation of toroidal
field by the diagonal components @, and agy (see Appendix D),
which would be relevant in the case of an o>Q dynamo. To dis-
tinguish between an aQ and a’Q dynamo, we computed the
ratio of the two dynamo numbers C, = max(a,, ag)R/n and
Cq = QR?/n in the turbulent region, which gives

Cq
— = — =100,
C, @
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(33)

where R is taken as the middle radius (r; + r,)/2. This estimate
therefore confirms that the Q effect largely dominates the gener-
ation of the toroidal field and that the dynamo in our simulations
is an Q) dynamo.

5.3. Properties of the a tensor components

The MRI-driven o€ dynamo in our simulations was charac-
terized by estimating the tensor components «;;. Our method
assumes that the EMF component &; is only due to the contri-
bution of the mean magnetic field component B; and neglects
the contribution of the other components of the a tensor and the
turbulent resistivity tensor S components. In the azimuthal EMF
&4, the contribution from o and g can be neglected because
the Pearson correlation coeflicients between &y and By or B, are
much lower in the turbulent region than they are for B, (panels c
and d of Appendix C). The @4y component is well estimated
and is therefore the main contribution to the generation of the
poloidal magnetic field. Due to their weaker correlation in the
turbulent region, the other a; components (Appendix D) may
be incorrectly estimated, and they do not drive the generation
of the poloidal field. The other @ components do not dominate
the generation of toroidal field because the dynamo cannot be
described as an a>Q dynamo.

In the case of a statistically symmetric velocity field with
respect to the equator, mean-field theory predicts that the com-
ponents of the «;; tensor (Eq. (28)) are either equatorial-
symmetric (@9, Qgr, @gs, Qgg) OF equatorial-antisymmetric
(rrs g, gy, Qrg, @gg), (Gubbins & Zhang 1993). The estima-
tion of the components «;; (Fig. 11 and Appendix D) shows that
these properties are verified in our simulations.

We also compared the signs of the a tensor components to
the study of the MRI by Gressel & Pessah (2015), who used
the test field method to measure them, taking the contribution
of all components into account. For the diagonal components,
we also find that the sign of @ is opposite to that of a, (see
Appendix D), which corresponds to the radial component a,,
in Gressel & Pessah (2015). Interestingly, in our models the off-
diagonal elements of the « tensor have opposite signs across the
domain with respect to their conjugate, but they do not have the
same amplitude, contrary to the expectations of mean-field the-
ory in the case of isotropic turbulence (Krause & Raedler 1980).
By contrast, in local simulations of the MRI with stratification,
they are found to have the same sign, which has been interpreted
as a significant anisotropy of the MRI turbulence (Brandenburg
2008; Gressel & Pessah 2015). This different behavior might be
due to the difference in geometry between a local model with a
vertical stratification and a spherical global model with a radial
stratification.

5.4. Diffusive processes

Ideal MHD without any explicit diffusion has sometimes been
used to study the MRI, but convergence studies have shown
that the strength of MRI turbulence then depends on reso-
lution (Fromang & Papaloizou 2007; Pessah et al. 2007). To
avoid this issue, we considered explicit diffusivities and used
pseudo-spectral methods (which have low numerical dissipa-
tion), making sure that the diffusive scales are well resolved.
This constraint forced us to use diffusivities that were some-
times higher than the expected values in a PNS. In particular,
the value of the magnetic Prandtl number Pm we adopted in our
simulations is much lower than the value expected in a PNS.
This is a significant limit to our models because the quantitative
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results of the MRI turbulence are heavily dependent on Pm, as
shown by studies of accretion disks (Lesur & Longaretti 2007;
Fromang et al. 2007; Longaretti & Lesur 2010; Meheut et al.
2015) and in Paper 1. The magnetic field strength that would be
reached at higher Pm is probably higher than the field strengths
presented in this work, which should therefore be considered
as lower bounds. The turbulent region may also be larger and
occupy the entire domain in this regime, if its size is indeed
affected by the magnetic diffusivity in the denser region.

Last, we assumed that neutrinos are in the diffusive regime,
which is valid when the considered scales are longer than the
neutrino mean free path. As the simulation domain is close to the
PNS surface, the neutrino mean free path is large (=5 x 10° cm
at r = 33km) and most of the turbulence would therefore be
impacted by a neutrino drag. In this regime, Guilet et al. (2015)
showed that the neutrino drag, weaker in the outer layer of the
PNS (for a radius >30km), does not impact the linear modes
of the MRI. Therefore, the MRI is able to grow freely on small
scales in this region. However, the impact of the neutrino drag
has been studied only in the linear phase, but never in nonlin-
ear simulations. It would be especially important to assess it if
we consider that the turbulence in our simulations is close to
the PNS surface, where the diffusive approximation is less valid.
The evolution of the MRI in this regime is postponed to future
studies.

5.5. Validity of the anelastic approximation

The anelastic approximation is used in our models to include
density stratification with a reduced computational cost with
respect to standard MHD, as it allows filtering out sound waves.
The filtering of sound waves is justified when the different veloc-
ities of our system, such as fluid velocity u, Alfvén velocity va,
and gravity wave v, velocity, are much lower than the sound
speed ¢ of the fluid. From the 1D CCSN simulation used to
compute our anelastic reference state, we can compute the sound
speed, which ranges from ¢, ~ 4 x 10° cms™! at the inner bound-
ary to ¢g ~ 2.9x 10° cms~! at the outer boundary. Using the val-
ues of Alfvén speed shown in Fig. 20, we can verify a posteriori
that vi/ ¢ < 1072, Because the turbulent kinetic energy is lower
than the magnetic energy, we also have u?/c? < v} /c2 < 1072
For the gravity waves, we ran some hydrodynamic tests in the
anelastic model with Pr = 0.1 and a rotation that was a thou-
sand times slower. The results agree well with the frequency and
damping rate expected from large-scale gravity modes (I < 6).
To justify the filtering of sound waves, we also verified a pos-
teriori in our anelastic simulations that the oscillation frequency
of these modes is lower than the Lamb frequency wp,mp = csk,

where k = +/I(I+1)/r? is the horizontal wavenumber of the
spherical harmonics. Furthermore, the LBR anelastic approxi-
mation (Lantz 1992; Braginsky & Roberts 1995) that we used
describes the propagation of gravity modes well when compared
to compressible equations (Brown et al. 2012). Last, we also ver-
ified that relative density perturbations dp due to entropy pertur-
bations are small: 6p/p ~ &Tf‘s’/(cpﬁ) < 1.

The main limitation in our implementation of the anelas-
tic approximation is that the thermodynamical background was
assumed not to evolve over the timescale of the simulation. Our
simulations lasted approximately one second, but the 1D CCSN
simulation shows that during this time, the width of the outer sta-
bly stratified region shrinks from approximately 15km to 5 km,
while the PNS radius contracts from 40 km to 20 km. It is diffi-
cult to take this structural evolution in our models into account.

We therefore postpone the study of MRI-driven dynamos at later
times to future works.

6. Conclusions

We have investigated the effect of the density gradient and stable
stratification on the generation of large-scale magnetic fields by
the MRI in 3D spherical PNS models. We developed anelastic
models using a thermodynamic background describing the sta-
bly stratified region of a PNS based on 1D CCSN simulations
and compared our results to those obtained with incompressible
and Boussinesq models. The main findings of our study are sum-
marized below.

We obtain a quasi-stationary state with a MRI-driven
dynamo in presence of density stratification and stable thermal
stratification. The averaged magnetic field strength is ~1.4 X
10'* G and the (mostly) equatorial magnetic dipole represents
~4.3% of the averaged magnetic field. These results are con-
sistent with our previous incompressible study when they are
rescaled for the different densities.

The MRI-driven dynamo shows a qualitatively different
behavior in presence of density stratification, with a promi-
nent axisymmetric component of the magnetic field displaying
oscillations on a timescale significantly longer than the rota-
tion period. This mean-field dynamo and its oscillation period
can be described by an €2 mechanism. The dynamo frequen-
cies in our simulations agree relatively well with the theoretical
dynamo frequency explained by an « effect, which is consis-
tent with the theoretical calculations based on the local kinetic
helicity.

A low thermal Prandtl number prevents the buoyancy from
damping the MRI turbulence, except in the equatorial plane.
When Pr is increased, the radial velocity is distributed at smaller
scales, which can impact the MRI-driven dynamo and its €
mechanism.

These findings support the hypothesis that the MRI is able to
generate a strong large-scale magnetic field in presence of realis-
tic physical ingredients. This means that it is an important mech-
anism that can help explain magnetar formation.

Although the magnetic dipole of 6 x 10'> G obtained in our
simulations may seem weak to form a magnetar, we note that
these results are obtained with a large PNS with a radius of
ro = 39.25km, that is, before the contraction to the final size
of a cold neutron star with a radius close to 12km. Under the
plausible hypothesis that magnetic flux is conserved during this
contraction, the magnetic field could be amplified by a factor of
~10 and the dipole would then be close to the lower end of the
magnetar range 10'*—10'3 G. In addition to this dipolar mag-
netic field, the MRI in our anelastic models generates a large-
scale toroidal field of B ~ 8 x 103 G that can be amplified to
~10" G by flux conservation. Finally, we note that there are rea-
sons to expect that our simulations may underestimate the inten-
sity of the magnetic field generated by the MRI. Importantly, as
highlighted in the discussion, a higher magnetic Prandtl number
will quantitatively change the results, leading most likely to an
increase in the magnetic field strength. Higher magnetic Prandtl
numbers may also enable a fully turbulent state extending to the
higher-density region at smaller radii, where we may expect a
stronger magnetic field.

An important limitation of our approach concerns the evo-
lution of the PNS structure. The 1D CCSN simulation we used
shows that the PNS contracts in about 5s and becomes almost
fully convective with a thin stably stratified outer layer of a few
kilometers. We did not take this evolution into account so far
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because the required developments are beyond the scope of the
present study. Forthcoming improvements will consist of model-
ing the entire PNS, which includes the stably stratified and con-
vective zones. In the latter, the onset of a convective dynamo
with fast rotation can generate magnetar-like magnetic fields
(Raynaud et al. 2020). This leads to a strong magnetic field that
is buried below the stably stratified zone, which could impact the
MRI-driven dynamo. The stably stratified region may also influ-
ence the convective dynamo, as shown in some studies of plane-
tary dynamos (Gastine & Wicht 2021). The interplay between
the convective dynamo and the MRI-driven dynamo is there-
fore a key question of magnetorotational explosions because the
magnetic field at the PNS surface has the strongest impact on
the launch of the explosion (Obergaulinger & Aloy 2017, 2020;
Bugli et al. 2020, 2021).

The core-collapse dynamics may be impacted by the large-
scale magnetic field that we obtain in our simulations. The dipole
field in our models may be slightly low for directly launching jets,
especially because the equatorial component is less efficient than
the aligned component, as shown by Bugli et al. (2021). Nonethe-
less, other large-scale mean-field structures, such as the toroidal
mean magnetic field, may still impact the supernova dynamics.
The mean-field dynamo in our simulations opens exciting per-
spectives for modeling the generation of large-scale magnetic
fields in core-collapse simulations. Our results can be used to cal-
ibrate a subgrid model of the MRI-driven turbulence with an aQ
dynamo mechanism. This would allow models to describe an in-
situ amplification of the PNS magnetic field instead of relying on
an unrealistically strong initial magnetic field.

Magnetic fields are also important in the context of binary
neutron star mergers because magnetars are invoked to power
short gamma-ray bursts and kilonovae, such as the GW170817
event (Metzger et al. 2018b). A stable magnetar could indeed
explain the high luminosity of the kilonova associated with the
recent short gamma-ray burst GRB200522A (Fong et al. 2021).
This interpretation was also invoked to explain an X-ray tran-
sient as the aftermath of a binary neutron star merger (Xue et al.
2019). To support this scenario, the MRI has been invoked to
amplify the magnetic field, as similar conditions in terms of
neutrino radiation and differential rotation can be found in neu-
tron star mergers (Guilet et al. 2017). Realistic simulations have
shown that the MRI amplifies the magnetic field from an ini-
tial strong axial dipole (Siegel et al. 2013; Kiuchi et al. 2018;
Ciolfi et al. 2019; Mosta et al. 2020). It is difficult to study large-
scale field generation in realistic models of neutron star mergers
because it requires taking many different physical ingredients
into account: general relativity, treatment of neutrino physics,
equation of state of hot and dense matter, and MHD. The
development of idealized models with methods similar to those
employed in this study will help to understand the effects of dif-
ferent physical processes and provide a useful reference for com-
parison and calibration of @Q dynamos in merger simulations
(Shibata et al. 2021).

Investigating the different scenarios of magnetar formation
is a promising avenue of research as more statistics will be
available for transients events in the multi-messenger era. For
instance, new statistics on FRBs and their host galaxies may give
new insights on magnetar formation in further galaxies because
magnetars are at least one of the FRB progenitors.
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Appendix A: Reference state of the anelastic model

The comparison of the reference model in the simulation to the
mixing-length theory model of 1D CCSN simulations is pre-

sented in this appendix.
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Fig. A.1. Comparison of the reference state considered in this study (magic model) with the mlt model of the 1D CCSN simulation by Hiidepohl
(2014). (a) Background density profile, (b) effective entropy profile, (c) temperature profile, (d) gravity profile, and (e) thermal expansion profile

as a function of the normalized radius. Dimensional and dimensionless units are converted by simple multiplication by the reference values at the
outer boundary.
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Appendix B: Parameters of our global simulations

Table B.1. Overview of the global models. All simulations use Pm = 16 and insulating magnetic boundary conditions. The (n,,ng,ns) =
(257,512, 1024) resolution is called “Medium” and the (n,, ng, n,) = (385,768, 1536) resolution is called “High”. Ra corresponds to the Rayleigh
number linked to the Brunt-Viiséld frequency (see Eq. 21), Pr to the thermal Prandtl number, B, to the initial magnetic field strength at the outer
boundary. Magnetic field and dipole field strengths are time and space averaged. Py, corresponds to the estimated period of the mean-field dynamo
patterns at » = 0.92r,, k, to the vertical wavenumber and gQ to the value in the turbulent region (at » = 0.92r,). k,, gQ2 and the alpha component
a4 are used to compute the theoretical @€ period Poq.

Model Resolution Ra Pr B, Magnetic field Dipole Pgim k; qQ 7% P.o
- - - [10™G] [10G] [10“G] [ms] [em™'] [rads™'] [cms™']  [ms]
Standard Medium -4.73e5 0.005 1.5 1.40 0.063 401 2.3e-6 385 7.7e5 342
High Res High -4.73e5 0.005 33 1.36 0.053 351 2.3e-6 454 7.0e5 329
Incompressible High 0.0 - 1.5 2.36 0.085 NO - - - -
Boussinesq High -4.73e5 0.005 1.5 1.85 0.0548 NO - - - -
Anel Ra® Medium 0.0 0.005 1.5 1.41 0.051 461 2.3e-6 369 7.8e6 349
Anel Pr@ 02 Medium -1.892e6 0.02 1.5 1.59 0.074 363 2.3e-6 479 8.0e5 300
Anel Prg 1 Medium -9.46e6 0.1 1.5 1.36 0.062 493 2.7e-6 480 4.5e5 366

A94, page 21 of 26



A&A 667, A%4 (2022)

Appendix C: Correlation coefficients between the EMF and the magnetic field
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Fig. C.1. Time-averaged values of the correlation coefficient between the EMF and the magnetic field taken at r = 0.86 7.
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Appendix D: Estimation of the components of the a tensor
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Fig. D.1. Time-averaged values of the o tensor components estimated by the correlation between the EMF and the magnetic field taken at r =

0.867r,.
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Appendix E: Azimuthal average of magnetic and velocity fields at quasi-stationary state
E.1. Simulation Standard

B, [G]
x10%3 x10%4
3.0 4.0
1.5 2.0
0.0 0.0
_15 -2.0
%107 %x10°
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-1.0
-1.5
-2.0

Fig. E.1. Snapshots of the azimuthal average of magnetic field components and velocity field components for the simulation Standard. Top:
Snapshots of the azimuthal average of the magnetic field components B, B,, and By at t = 773 ms for the model Standard. Bottom: Snapshots
of the azimuthal average of the velocity field components i,., iig, iy, and the turbulent kinetic helicity 4. The angular velocity component can be
found in Fig. 12.
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E.2. Simulation Boussinesq
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Fig. E.2. Snapshots of the azimuthal average of magnetic field components and velocity field components for the simulation Boussinesq. Top:
Snapshots of the azimuthal average of the magnetic field components By, B,, and By at t = 511 ms for model Boussinesq. Bottom: Snapshots of
the azimuthal average of the velocity field components #,, ity, ii, and the turbulent kinetic helicity 4. The angular velocity can be found in Fig. 12.
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E.3. Simulation Pr=0. 1
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Fig. E.3. Snapshots of the azimuthal average of magnetic field components and velocity field components for the simulation Pr=0.1. Top:
Snapshots of the azimuthal average of the magnetic field components By, B,, and By at ¢ = 1128 ms for model Anel Pr® 1. Bottom: Snapshots
of the azimuthal average of the velocity field components i,, iy, iis, and the turbulent kinetic helicity 4.
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