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Derived Categories of Hyper-Kähler
Manifolds via the LLV Algebra

T. Beckmann

Abstract. We mostly review work of Taelman (Derived equivalences of hyperkähler
varieties, 2019, arXiv:1906.08081) on derived categories of hyper-Kähler
manifolds. We study the LLV algebra using polyvector fields to prove that it
is a derived invariant. Applications to the action of derived equivalences on coho-
mology and to the study of their Hodge structures are given.

1. Introduction

In this note we discuss the (bounded) derived category Db(X) := Db(Coh(X)) and
its group of auto-equivalences Aut(Db(X)) for projective hyper-Kähler manifolds
X. The situation in dimension two, that is for K3 surfaces, is fairly well understood
and we refer to [7, Sec. 10] for an overview. Therefore, we will only concentrate
on the higher-dimensional case. More precisely, we mainly present the first part of
Taelman’s paper [12].

These notes are, for the most part, light on derived categories and focus more
on a different perspective of the Looijenga–Lunts–Verbitsky (LLV) Lie algebra g(X)
[8,13] which will allow us to show the following.

Theorem 1.1. (Taelman) A derived equivalence Φ: Db(X) ∼− �� Db(Y ) between pro-
jective hyper-Kähler manifolds induces naturally a Lie algebra isomorphism

Φg : g(X) ∼− �� g(Y ).

The induced isomorphism of quadratic spaces

ΦH : H∗(X,Q) ∼− �� H∗(Y,Q)

is equivariant with respect to Φg.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant
HyperK, Grant agreement ID 854361. The talk was delivered on May 21, 2021. The author is
supported by the International Max-Planck Research School on Moduli Spaces of the Max-Planck
Society.
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The theorem will be proven in Sect. 5.
We start these notes by introducing the main objects of study and a collection

of known results prior to [12]. Afterwards, we introduce a new Lie subalgebra of
the (ungraded) endomorphism algebra End(H∗(X,C)) which is better suited for the
study of derived categories. In the subsequent section we establish Theorem 1.1
via proving that the newly defined Lie subalgebra coincides with the well-known
LLV Lie algebra g(X) ⊗Q C with scalars extended to the complex numbers. The
next three sections will draw consequences from this result for the action of derived
equivalences on cohomology and for Hodge structures of derived equivalent hyper-
Kähler manifolds.

Notation

We work over the complex numbers. Throughout these notes X and Y will be
projective hyper-Kähler manifolds of dimension 2n. All functors will be implicitly
derived.

2. Derived Categories

2.1. General Theory

For a thorough introduction to derived categories we recommend [7]. Let us recall
one of the most important results in the study of derived equivalences proved by
Orlov [9].

Theorem 2.1. Let Z and T be smooth projective varieties and Φ: Db(Z) ∼− �� Db(T )
be an exact derived equivalence. Then Φ is isomorphic to a Fourier–Mukai functor,
i.e. there exists E ∈ Db(Z × T ) such that

Φ � FME := pT ∗ ◦ (E ⊗ ) ◦ p∗
Z .

Orlov’s result is in fact stronger in that it applies also to fully faithful exact
functors between the derived categories of smooth projective varieties. The resulting
isomorphism is an isomorphism of exact functors.

Moreover, a derived equivalence as in the theorem naturally induces isomor-
phisms of several invariants associated with the varieties such as (topological) K-
theory [7, Sec. 5.2]. For us the most important invariant will be singular
cohomology. Namely, every derived equivalence FME induces a cohomological Fourier–
Mukai transform FMH

E given by the correspondence v(E) ∈ H∗(Z × T ) where
v = ch( )

√
td is the Mukai vector. These are compatible via the Mukai vector,

i.e. the following diagram commutes

Db(Z) Db(T )

H∗(Z,Q) H∗(T,Q).

FME

v v

FMH
E

(2.1)

Hence, the study of derived categories leads naturally to cycles on hyper-Kähler
manifolds.
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Remark 2.2. Let us mention properties of the cohomological Fourier–Mukai trans-
form FMH

E .
• Since v(E) ∈ ⊕pHp,p(Z × T ) is algebraic, the isomorphism FMH

E respects the
weight-zero Hodge structure on H∗(Z) (respectively H∗(T )) given by

H−i,i(Z) =
⊕

q−p=i

Hp,q(Z)

for i ∈ Z where the Hodge structure on the right-hand side is the usual one [7,
Prop. 5.39].

• The isomorphism FMH
E respects the generalized Mukai pairing, see [3].

• The cohomological Fourier–Mukai transform FMH
E respects neither the cup

product structure on cohomology nor the cohomological grading as can be
seen by considering the equivalence given by tensoring with a non-trivial line
bundle.

2.2. Case of Hyper-Kähler Manifolds

We know that if a smooth projective variety Z is derived equivalent to a hyper-
Kähler manifold X, then the dimensions of X and Z coincide and the canonical
bundle ωZ is trivial [7, Sec. 4]. Huybrechts and Nieper–Wißkirchen [5] have proven
that Z must in fact also be an irreducible hyper-Kähler manifold.

3. Recollection of the LLV Lie Algebra

We quickly recall the definition of the LLV Lie algebra introduced independently by
Looijenga–Lunts [8] and [13]. For a more thorough discussion we refer to [2].

Let X be a hyper-Kähler manifold and λ ∈ H2(X,Q) be a cohomology class.
We attach to it the operator

eλ := λ ∪ ∈ End(H∗(X,Q))

given by cup product with the class λ. We say that λ has the Hard Lefschetz property,
if for all i the maps

ei
λ : H2n−i(X,Q) ��H2n+i(X,Q)

are isomorphisms. The class λ is often called a Hard Lefschetz class. We denote by
h ∈ End(H∗(X,Q)) the grading operator acting on Hi(X,Q) via (i − 2n)id. For a
Hard Lefschetz class λ ∈ H2(X,Q), the triple

(eλ, h, fλ),

where fλ is the dual Lefschetz operator, spans a Lie subalgebra of End(H∗(X,Q))
isomorphic to the Lie algebra sl2.

Definition 3.1. The LLV Lie algebra g(X) is the Lie subalgebra of End(H∗(X,Q))
generated by all sl2-triples (eλ, h, fλ) for λ ∈ H2(X,Q) Hard Lefschetz.

As said in the beginning, we refer to [2] or [8,13] for more details and properties
of g(X). Our main goal is to relate the Lie algebra g(X) to Db(X). Note that since
a cohomological Fourier–Mukai functor does not respect cup product nor grading,
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which are the defining properties of the LLV algebra, it is a priori not clear how
this can be done. The main ingredient for it is the ring of polyvector fields, to be
introduced now.

4. Polyvector Fields

Definition 4.1. The ring of polyvector fields HT∗(X) is the graded C-algebra whose
degree k part is

HTk(X) := ⊕p+q=kHq

(
X,

p∧
TX

)
.

The ring structure is induced from the exterior algebra.

For X a hyper-Kähler manifold we can choose a symplectic form σ ∈ H0(X, Ω2
X)

which induces isomorphisms
p∧

TX � Ωp
X

which, in turn, induce a graded C-algebra isomorphism

HT∗(X) = H∗
(

X,
∗∧

TX

)
� H∗(X, Ω∗

X) � H∗(X,C). (4.1)

Thus, as a graded C-algebra, the ring of polyvectors is isomorphic to the de Rham
cohomology.

In this note, we are mostly interested in another viewpoint of the polyvector
fields. Namely, the ring of polyvectors acts on the de Rham cohomology by con-
traction. That is, given v ∈ Hq(X,

∧p TX) and x ∈ Hq′
(X, Ωp′

X) the action is defined
as

v�x ∈ Hq+q′
(X, Ωp′−p

X ).

The following is immediate, see also [12, Lem. 2.4].

Lemma 4.2. For X a hyper-Kähler manifold the de Rham cohomology is a free mod-
ule of rank one over the polyvector fields generated by a Calabi–Yau form σn ∈
H0(X, Ω2n

X ).

The reason why the ring of polyvectors is of interest to us is the following cru-
cial result. It relies on the modified Hochschild–Konstant–Rosenberg isomorphism
identifying Hochschild (co)homology with polyvectors and the de Rham cohomology
[4].

Theorem 4.3. A derived equivalence Φ: Db(X) ∼− �� Db(Y ) induces naturally a C-
algebra isomorphism ΦHT : HT∗(X) ∼− �� HT∗(Y ) such that the action of the polyvec-
tor fields is equivariant for the induced isomorphism ΦH : H∗(X,C) ∼− �� H∗(Y,C).

Spelling this out, for v ∈ HT∗(X) and x ∈ H∗(X,C) we have

ΦH(v�x) = ΦHT(v)�ΦH(x) ∈ H∗(Y,C).
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5. Reinventing the LLV Lie Algebra

We will define a new Lie algebra, which will turn out to be isomorphic to g(X) with
scalars extended to C. This will prove Theorem 1.1 from the introduction.

Recall that X is a hyper-Kähler manifold of dimension 2n. We consider the
holomorphic grading operator hp and the antihomolorphic grading operator hq

defined by acting on Hk,l(X) via

hp = (k − n)id, hq = (l − n)id.

To avoid confusions, the indices p and q do not relate to k or l in any way, but just
refer to the standard convention that the holomorphic degree of a smooth form is
usually denoted by p and the antiholomorphic degree of a form by q.

With these definitions the usual grading operator h for the cohomological grad-
ing is just h = hp + hq. We define the Hodge grading operator h′ := hq − hp.

h′-grading�� −− ��
H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

...

H2n,0 H2n−1,1 . . . Hn,n . . . H1,2n−1 H0,2n

�⏐⏐⏐	h-grading

...
H2n,2n−2 H2n−1,2n−1 H2n,2n−2

H2n,2n−1 H2n−1,2n

H2n,2n

With this definition the action of the polyvector fields HT∗(X) on the de Rham
cohomology H∗(X,C) alluded to in Lemma 4.2 has degree two with respect to the
grading h′.

For μ ∈ HT2(X) we define the operator

eμ := μ� ∈ End(H∗(X,C)).

We say that μ is Hard Lefschetz if the operator eμ satisfies the Hard Lefschetz iso-
morphisms with respect to the grading operator h′. The Jacobson–Morozov theorem
asserts that this is equivalent to the existence of an operator fμ ∈ End(H∗(X,C))
such that

(eμ, h′, fμ)

generates a Lie subalgebra of End(H∗(X,C)) isomorphic to sl2.

Definition 5.1. The complex Lie algebra g′(X) is defined to be the smallest Lie sub-
algebra of End(H∗(X,C)) containing all sl2-triples (eμ, h′, fμ) for all Hard Lefschetz
μ ∈ HT2(X).

Equivalently, one could have defined the Lie algebra g′(X) as the Lie subalgebra
of the endomorphism algebra End(HT∗(X)) containing all sl2-triples with μ Hard
Lefschetz. Through the isomorphism

HT∗(X)�σn � H∗(X,C)
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these two definitions are identified.
Recall from (4.1) that the choice of a symplectic form produces an abstract

graded C-algebra isomorphism

HT∗(X) � H∗(X, Ω∗
X) � H∗(X,C).

Thus, the choice of a symplectic form leads to the following result.

Lemma 5.2. There is an isomorphism of complex Lie algebras

g(X) ⊗Q C � g′(X).

We also deduce the following consequence from Theorem 4.3.

Proposition 5.3. For a derived equivalence between hyper-Kähler manifolds Φ: Db

(X) � Db(Y ) the isomorphism

ΦHT : HT2(X) ∼− �� HT2(Y )

induces naturally a Lie algebra isomorphism

Φg : g′(X) ∼− �� g′(Y )

such that the induced isomorphism

ΦH : H∗(X,C) ∼− �� H∗(Y,C)

is equivariant with respect to Φg.

Spelling this again out means that for j ∈ g′(X) and x ∈ H∗(X,C) we have

ΦH(j.x) = Φg(j).ΦH(x) ∈ H∗(Y,C).

The connection between all that has been said so far and the main tool for all the
applications we will present is the following main theorem of [12] which was also
implicitely proven (but not stated in the form below) by Verbitsky [14].

Theorem 5.4. The Lie algebras g(X) ⊗Q C and g′(X) are equal as Lie subalgebras
of the Lie algebra End(H∗(X,C)).

Proof. Verbitsky showed that there is an isomorphism of ungraded vector spaces

η : H∗(X,C) ∼− �� H∗(X,C).

The explicit description of η is not import, we only need the following two properties
shwon by Verbitsky. Firstly, η conjugates the two Lie algebras, i.e.

η (g(X) ⊗Q C) η−1 = g′(X).

Secondly, the isomorphism η is obtained by integrating the action of the Lie algebra
g(X), that is it lies in the subgroup of automorphism Aut(H∗(X, (C))) generated
by integrated operators of g⊗QC. Since all such operators μ contained in the above
subgroup satisfy

μ (g(X) ⊗Q C) μ−1 = g(X) ⊗Q C.

one can conclude the proof.
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We will, however, follow Taelman’s proof. From Lemma 5.2 we infer that it is
enough to show only the inclusion

g′(X) ⊂ g(X) ⊗Q C.

A straightforward calculation shows that

(eσ, hp, eσ̌)

is an sl2-triple, where σ̌ ∈ H0(
∧2(TX)) is the dual symplectic form (note that

the Lefschetz operator eσ acts via cup product, whereas eσ̌ acts by contraction of
polyvector fields).

Analogously or using Hodge symmetry, for the complex conjugate form σ̄ ∈
H2(X, OX) the operator eσ̄ has the Hard Lefschetz property for the grading op-
erator hq. The Jacobson–Morozov Theorem grants the existence of an operator
g ∈ End(H∗(X,C)) such that

(eσ̄, hq, g)

forms an sl2-triple. An easy check shows that all elements from the sl2-triple (eσ, hp, eσ̌)
commute with all elements from the sl2-triple (eσ̄, hq, g). For example, eσ and eσ̄

commute as the de Rham cohomology is graded-commutative and the operators eσ

and eσ̌ commute with hq, because they does not change the antiholomorphic degree
of a form. Similar arguments apply to the other operators. Thus we obtain two new
sl2-triples

(eσ + eσ̄, h, eσ̌ + g), (eσ − eσ̄, h, eσ̌ − g).

This gives that eσ̌ ∈ g(X) ⊗Q C. Since [eσ, eσ̌] = hp and hp + hq = h, we deduce
furthermore that hp, hq and therefore h′ = hq−hp are all contained inside g(X)⊗QC.

Since evidently eσ̄ is also contained in g(X) ⊗Q C (the action via contraction
of polyvector fields agrees with the cup product), it is left to show that for almost
all μ ∈ H1(X, TX) the operator eμ lies in g(X)⊗QC. This follows from the identity

[eσ̌, eη] = eμ

for η ∈ H1(X, ΩX) satisfying

μ = σ̌�η ∈ H1(X, TX)

which follows from a straightforward calculation, see [12, Lem. 2.13]. �
The theorem implies that the isomorphism Φg from Proposition 5.3 is already

defined over Q, since the same holds for the induced isomorphism on singular coho-
mology. We thus have proved Theorem 1.1 which we state her again for the reader’s
convenience.

Corollary 5.5. A derived equivalence Φ: Db(X) ∼− �� Db(Y ) between hyper-Kähler
manifolds induces naturally a Lie algebra isomorphism

Φg : g(X) ∼− �� g(Y )

such that the induced isomorphism

ΦH : H∗(X,Q) ∼− �� H∗(Y,Q)

is equivariant with respect to Φg.
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6. Verbitsky Component and Extended Mukai Lattice

We want to draw consequences of Theorem 5.4 for the study of derived equivalences
of hyper-Kähler manifolds and their induced actions on cohomology.

Definition 6.1. The Verbitsky component SH(X,Q) ⊂ H∗(X,Q) is the subalgebra
generated by H2(X,Q).

It is easy to see that the Verbitsky component is an irreducible representation
of the LLV Lie algebra g(X) and it is characterized as such as the irreducible
representation whose Hodge structure attains the maximal possible width. It is
equipped with the Mukai pairing bSH defined via

bSH(λ1 . . . λm, μ1 · · ·μ2n−m) := (−1)m

∫

X

λ1 · · ·λmμ1 · · · μ2n−m

for classes λi, μj ∈ H2(X,Q) which agrees with the generalized Mukai pairing al-
luded to in Remark 2.2.

Corollary 6.2. For a derived equivalence Φ: Db(X) ∼− �� Db(Y ) between hyper-Kähler
manifolds the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼− �� SH(Y,Q).

Proof. Since the Verbitsky component is the unique irreducible representation whose
Hodge strucutre attains the maximal possible width and by Theorem 1.1 the iso-
morphism ΦH respects the LLV algebra, we conclude that ΦH must restrict to an
isomorphism of the Verbitsky component. The Mukai pairing on the Verbitsky com-
ponent agrees with the generalized Mukai pairing, which is a derived invariant. �

We want to study the Verbitsky component and the LLV Lie algebra more
closely to further refine the study of Aut(Db(X)).

Definition 6.3. The rational quadratic vector space defined by

H̃(X,Q) := Qα ⊕ H2(X,Q) ⊕ Qβ.

is called the extended Mukai lattice. Its quadratic form b̃ restricts to the Beauville–
Bogomolov–Fujiki form b on H2(X,Q) [6, Sec. 23] and the two classes α and β are
orthogonal to H2(X,Q) and satisfy b̃(α, β) = −1 as well as b̃(α, α) = b̃(β, β) = 0.

Furthermore, we define on H̃(X,Q) a grading by declaring α to be of degree
−2, H2(X,Q) sits in degree zero and β is of degree two. Finally, the extended Mukai
lattice is equipped with a weight-two Hodge structure

(H̃(X,Q) ⊗ C)2,0 := H2,0(X)

(H̃(X,Q) ⊗ C)0,2 := H0,2(X)

(H̃(X,Q) ⊗ C)1,1 := H1,1(X) ⊕ Cα ⊕ Cβ.

There exists a graded morphism ψ : SH(X,Q)[−2n] �� Symn(H̃(X,Q)) sitting
in the following short exact sequence

0 �� SH(X,Q)[−2n] ψ− �� Symn(H̃(X,Q)) Δn− �� Symn−2(H̃(X,Q)) �� 0.
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Here, the map Δn is the Laplacian operator defined on pure tensors via

v1 · · · vn
� ��

∑

i<j

b̃(vi, vj)v1 · · · v̂i · · · v̂j · · · vn.

Surjectivity follows easily from the fact that the symmetric power SymkV of a vector
space V is generated by v · · · v for all v ∈ V . The map ψ is uniquely determined
(up to scaling) by the condition that it is a morphism of g(X)-modules. The g(X)-
structure of H̃(X,Q) is defined by eω(α) = ω, eω(μ) = b(ω, μ)β and eω(β) = 0 for all
classes ω, μ ∈ H2(X,Q). The n-th symmetric power Symn(H̃(X,Q)) then inherits
the structure of a g(X)-module by letting g(X) act by derivations. We fix once and
for all a choice of ψ by setting ψ(1) = αn/n!. By Schur’s lemma, ψ is injective.

Taelman [12, Sec. 3] showed that the map ψ is an isometry with respect to the
Mukai pairing on SH(X,Q) and the pairing

b[n](x1 · · · xn, y1 · · · yn) = (−1)ncX

∑

σ∈Sn

n∏

i=1

b̃(xi, yσ(i))

on Symn(H̃(X,Q)), where cX is the Fujiki constant characterized by the property
∫

X

ω2n = cX
(2n)!
2nn!

b(ω, ω)n

for all ω ∈ H2(X,Q). Note that our definition of b[n] differs from Taelman’s definition
by the Fujiki constant. Ours has the advantage that ψ is always an isometry.

Summing up, the inclusion ψ respects the
• g(X)-module structure,
• quadratic forms,
• Hodge structures,
• gradings.

7. Action of Derived Equivalences on the Extended Mukai

Lattice

Recall that we have deduced the existence of a representation

ρSH : Aut(Db(X)) ��O(SH(X,Q)) (7.1)

and the isometries in the image of this representation normalize the action of the
LLV algebra g(X), i.e. for these g ∈ O(SH(X,Q)) we have

gg(X)g−1 = g(X) ⊂ End(SH(X,Q)).

Let us study these automorphisms a bit further.

Definition 7.1. The group Aut(SH(X,Q), bSH, g(X)) is the group of all isometries
of the Verbitsky component that normalize the action of the LLV algebra.

The main representation-theoretic input for our discussion is the following re-
sult [12, Sec. 4].
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Proposition 7.2. If n is odd or the second Betti number is odd, then

Aut(SH(X,Q), bSH, g(X)) � O(H̃(X,Q)).

We make this isomorphism more explicit. Let X and Y be deformation-equival-
ent hyper-Kähler manifolds together with a derived equivalence Φ: Db(X) ∼− ��

Db(Y ). Then there exists a unique Hodge isometry

ΦH̃ : H̃(X,Q) ∼− �� H̃(Y,Q)

inducing the following commutative diagram

SH(X,Q) SH(Y,Q)

Symn(H̃(X,Q)) Symn(H̃(Y,Q)).

ε(ΦH̃)ΦSH

ψ ψ

SymnΦH̃

(7.2)

The scalar ε(ΦH̃) ∈ {±1} depends on defining orientations on the vector spaces
H̃(X,Q) respectively H̃(Y,Q) and for X = Y we simply have ε(ΦH̃) = det(ΦH̃)n+1.
In particular, in the case X = Y , the representation (7.1) factors via the commuta-
tive diagram

O(H̃(X,Q))

Aut(Db(X))

O(SH(X,Q)).

ρH̃

ρSH

(7.3)

Remark 7.3. In all known examples, derived equivalent hyper-Kähler manifolds are
deformation-equivalent, but this is not known in general. Without this assumption,
the above proposition has to be weakened as we shall demonstrate.

One can, using similitudes, still formulate a version of Proposition 7.2 in the
general case. This will be needed in the next section for the application to Hodge
structures.

Theorem 7.4. Let X and Y be arbitrary hyper-Kähler manifolds and Φ: Db(X) ∼− ��

Db(Y ) be a derived equivalence. Then there exists a Hodge similitude ΦH̃ : H̃(X,Q)
�� H̃(Y,Q) and a scalar λ ∈ Q∗ such that

SH(X,Q) SH(Y,Q)

Symn(H̃(X,Q)) Symn(H̃(Y,Q))

ΦSH

ψ ψ

λSymnΦH̃

(7.4)

commutes.
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8. Hodge Structures

In this section we want to give one application of the results presented so far re-
garding derived equivalent hyper-Kähler manifolds and their Hodge structures. We
first want to recall a recent result of Soldatenkov [11],1 whose statement and proof
are similar in flavour to what we will discuss afterwards for derived equivalences.

Theorem 8.1. Let X and Y be arbitrary hyper-Kähler manifolds and ϕ : H2(X,Q) ∼− ��

H2(Y,Q) be an isomorphism of Q-Hodge structures, which is the restriction of a
global algebra automorphism φ : H∗(X,Q) ∼− �� H∗(Y,Q). Then for all i ∈ Z the
restrictions

φ : Hi(X,Q) ∼− �� Hi(Y,Q)

are isomorphisms of Q-Hodge structures.

Proof. We briefly sketch the argument. Since φ is a graded algebra automorphism,
the adjoint action produces an isomorphism

ad(φ) : g(X) ∼− �� g(Y ).

The fact that φ is graded implies that ad(φ)(h) = h. Moreover, the restriction of φ
to H2(X,Q) respects the Hodge structures. This implies that ad(φ)(h′) = h′, where
again h′ = hq −hp. Indeed, the adjoint action of φ is determined by its restriction to
the degree two component [11, Prop. 2.11]. As the morphism φ respects the Hodge
structure on the second cohomology, the claim follows.

Since h+h′ = 2hq and h−h′ = 2hp we deduce ad(φ)(hp) = hp and ad(φ)(hq) =
hq. This is equivalent to φ being a morphism of Q-Hodge structures. �

The assertion that the isomorphism of Hodge structures is the restriction of
a global algebra automorphism is frequently met. For example, Hodge isometries
with positive determinant can be extended to algebra automorphisms of the even
cohomology by integrating the LLV action. For more details and examples we refer
to [11].

With this in mind, we can now prove the following result of Taelman [12, Sec.
5]. It also establishes a conjecture of Orlov in the case of hyper-Kähler manifolds
[10] stating that derived equivalent varieties have the same Hodge numbers.

Theorem 8.2. Let X and Y be derived equivalent hyper-Kähler manifolds. Then for
all i ∈ Z we have an isomorphism

Hi(X,Q) � Hi(Y,Q)

of Q-Hodge structures.

Proof. Let us denote by Φ a derived equivalence between X and Y . Recall from [8,13]
the Lie algebra isomorphism g(X) � so(H̃(X,Q)) (in loc. cit. the isomorphism is
only stated over R. For the statement with rational coefficients, see [11, Prop. 2.9].).
Composing this isomorphism with Φg we obtain a Lie algebra isomorphism

so(H̃(X,Q)) � so(H̃(Y,Q)).

1We thank Andrey Soldatenkov for a stimulating conversation about his results.
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Every such Lie algebra isomorphism is equal to ad(φ) for some φ : H̃(X,Q) �� H̃(Y,Q),
see [12, Prop. 4.1] which is the analogue of Proposition 7.2 in this case. Theorem 7.4
now implies that φ must be a Hodge similitude. More precisely, it differs from ΦH̃

only by a scalar.
Using

H̃(X,Q) � Qα ⊕ Qβ ⊕ NS(X)Q ⊕ T(X)Q

and Witt cancelation for quadratic spaces, one easily shows that there exists a Hodge
isometry γ ∈ SO(H̃(Y,Q)) such that the composition γ ◦ φ is now a graded Hodge
similitude, i.e. α and β are mapped to multiples of themselves. By definition, this
implies that the adjoint morphism of γ ◦ φ satisfies

ad(γ ◦ φ)(h) = h, ad(γ ◦ φ)(h′) = h′. (8.1)

Let us for the moment assume that we can find a global algebra isomorphism
η : H∗(Y,Q) ∼− �� H∗(Y,Q) whose adjoint action equals γ as isomorphisms of the
LLV Lie algebra g(Y ). Then we can consider the composition

η ◦ ΦH : H∗(X,Q) ∼− �� H∗(Y,Q).

From (8.1) we infer again that ad(η ◦ ΦH)(h) = h and ad(η ◦ ΦH)(h′) = h′. As in
the proof of Theorem 8.1 this implies that η ◦ΦH induces in each degree the desired
isomorphism of Hodge structures.

It is left to prove the existence of the global algebra isomorphism η. In general,
integrating the action of the LLV algebra g(X) produces an action of SO(H̃(Y,Q))
on the even cohomology H2∗(Y,Q) [11, Prop. 2.10]. To construct an algebra auto-
morphism of the full cohomology H∗(Y,Q) one uses the Q-algebraic group GSpin.
More precisely, one uses the natural surjection

GSpin(H̃(Y,Q)) �� �� SO(H̃(Y,Q))

to lift γ and constructs an action of GSpin(H̃(Y,Q)) on the full cohomology such
that the induced action of Spin(H̃(Y,Q)) ⊂ GSpin(H̃(Y,Q)) is the integrated action
of the LLV algebra. For details we refer to [12, Sec. 5]. �

9. Further Results

We have presented the first six sections of [12]. In the remaining part of loc. cit. the
representation ρH̃ from (7.3) is further studied. The main result is a bound on the
image of ρH̃ in terms of (subgroups) of the orthogonal group O(Λ) some lattice

Λ ⊂ H̃(X,Q)

for X (a deformation of) the Hilbert scheme of two points on a K3 surface.
In [1], building upon the results presented so far, the study of derived cate-

gories of projective hyper-Kähler manifolds is further refined. The main technical
tool is a Mukai vector taking values in the extended Mukai lattice H̃(X,Q). This
yields structural results for derived categories and derived equivalences for general
hyper-Kähler varieties as well as many generalisations of results known for derived
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categories of K3 surfaces to the case of higher-dimensional deformations of Hilbert
schemes.
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