
 

Quantum backreaction of OðNÞ-symmetric scalar fields and de Sitter
spacetimes at the renormalization point: Renormalization schemes and the

screening of the cosmological constant

Diana L. López Nacir and Julián Rovner
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We consider a theory of N self-interacting quantum scalar fields with quarticOðNÞ-symmetric potential,
with a coupling constant λ, in a generic curved spacetime. We analyze the renormalization process of the
semiclassical Einstein equations at leading order in the 1=N expansion for different renormailzation
schemes, namely: the traditional one that sets the geometry of the spacetime to be Minkowski at the
renormalization point and other schemes (originally proposed in [1,2]) that set the geometry to be that of a
fixed de Sitter spacetime. In particular, we study the quantum backreaction for fields in de Sitter spacetimes
with masses much smaller than the expansion rate H. We find that the scheme that uses the classical de
Sitter background solution at the renormalization point, stands out as the most convenient to study the
quantum effects on de Sitter spacetimes. We obtain that the backreaction is suppressed by H2=M2

pl with no

logarithmic enhancement factor of ln λ, giving only a small screening of the classical cosmological constant
due to the backreaction of such quantum fields. We point out the use of the new schemes can also be more
convenient than the traditional one to study quantum effects in other spacetimes relevant for cosmology.

DOI: 10.1103/PhysRevD.103.125002

I. INTRODUCTION

The motivations for studying quantum fields in de Sitter
(dS) spacetime are diverse. The understanding of the
predictions and the robustness of the inflationary models
usually requires us to assess the importance of quantum
effects for light scalar fields on a (quasi) de Sitter back-
ground geometry. For a pedagogical introduction to the
main issues and the relevance of the IR behavior of
quantum fields in inflationary cosmology, see
Refs. [3,4]. In the base cosmological model the accelerated
expansion of the Universe can be described by adjusting the
value of the so-called cosmological constant, Λ, for which
there is no fundamental explanation nor understanding of
the inferred particular value [5–8]. Being as Λ is a constant,
if the classical predictions of the model are extrapolated to
future times, the geometry of the Universe would approach
to that of dS. There are arguments in the literature
indicating the adjusted value is too small compared to
the theoretical estimates. An interesting concept that aims
at overcoming this discrepancy is that of the “screening of

the cosmological constant,” which is based on the expect-
ation that large infrared quantum effects produce an
effective reduction (or screening) of the classical value
[9–13]. dS stands out among other possible curved geom-
etries for its symmetries, which in quantity equal those of
the flat Minkowski spacetime. Therefore, it should be a
good starting point for the exploration of field theories in
more generic backgrounds with nonconstant curvatures,
such as Friedman Robertson Walker spacetimes. However,
there are certain characteristics of dS that hinder the
development of computational methods as powerful as
those known for Minkowski. One of them is the breakdown
of the standard perturbation theory for light quantum fields,
such as for scalar field models with (self-) interaction
potentials, which are widely used in cosmology [14].
Several nonperturbative approaches have been consid-

ered in the literature to address this problem, including
stochastic formulations based on [15–17], the so-called
Hartree approximation [1,18,19], the 1=N expansion [20–
22], renormalization group equations [23,24], or the con-
nection to the theory formulated on the sphere (i.e., on the
Euclidean version of dS space) [25–32].
In this paper, we assess the impact of choosing the

ultraviolet (UV) renormalization scheme in the physical
understanding and robustness of the nonperturbative
results. The approach we use is based on the work done
previously in [1,2]. This consists in using the two-particle
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irreducible effective action (2PI-EA) method [33] to derive
finite (renormalized) self-consistent equations for the mean
fields, the two point functions, and the metric tensor gμν,
which are nonperturbative in the (self-)coupling of the
scalar fields. In Refs. [1,2], the study was done for the more
difficult case of only one scalar field, where there is no
parameter controlling the truncation of the diagrammatic
expansion. Here we focus on the large N limit of an OðNÞ-
symmetric scalar field theory.
In Sec. II, we summarize the nonperturbative formalism

we consider, following [34], and we derive the effective
action in the largeN limit. In Sec. III, we critically study the
renormalization process for the so-called gap equation,
from which a nonperturbative dynamical mass is obtained.
We consider three different renormalization schemes,
namely: the minimal subtraction (MS) scheme, the
Minkowski renormalization (MR) scheme, and the de
Sitter renormalization (dSR) scheme. A sketch of the
derivation of the renormalized semiclassical Einstein equa-
tions (SEE) is provided in Sec. IV, which closely follows
previous studies for N ¼ 1 field in the Hartree approxi-
mation [2] (see also [1]). The renormalized SEE for a
generic metric gμν are obtained in the dSR scheme, using a
fixed dS metric with a curvature R0. These equations
reduce to the traditional renormalized SEE when
R0 → 0. In Sec. V, we specialize the results for a dS
background metric, for which dS self-consistent solutions
are studied in Sec. VI. In this study, we show that, given the
role of dS curvature in generating a nonperturbative
dynamical mass, the introduction of the dSR scheme is
crucial in understanding the infrared effects for light
quantum fields.
Our results agree with those found in Ref. [24], using

nonperturbative renormalization group techniques, on that
the expected large infrared corrections to the curvature of
the spacetime show up as a manifestation of the breakdown
of perturbation theory (rather than an instability). The
corrections are screened when nonperturbative (mainly,
the dynamical generation of a mass) effects are accounted
for. Indeed, the infrared corrections to the dS curvature turn
out to be controlled by the ratio H2=M2

pl, which is small by
assumption in the semiclassical regime. In particular, in
contradiction with the results reported in [19], we find no
logarithmic enhancement factor of ln λ in the renormalized
stress energy tensor (we clarify the reason of this disagree-
ment in Sec. VII).
Everywhere we set c ¼ ℏ ¼ 1 and adopt the mostly plus

sign convention.

II. THE 2PI EFFECTIVE ACTION AT LEADING
ORDER IN 1=N

We consider anOðNÞ-symmetric scalar field theory in de
Sitter spacetime with an action,

SF½ϕi; gμν� ¼ −
1

2

Z
ddx

ffiffiffiffiffiffi
−g

p �
ϕið−□þm2

B þ ξBRÞϕjδij

þ λB
4N

ðϕiϕjδijÞ2
�
; ð1Þ

where i, j are the index of the N scalar fields ϕi of the
theory (where the sum convention is used), mB is the bare
mass of the fields, ξB is the bare coupling to the curvature
R, λB is the bare parameter controlling the fields (self-)
interaction, and δij is the identity matrix in N dimensions.
A systematic 1=N expansion can be obtained in the

framework of the so-called two-particle irreducible effec-
tive action (2PI EA). The definition of the 2PI EA along
with the corresponding functional integral can be found in
both papers and textbooks (see, for instance, [4,33–35]). In
this section, we briefly summarize the main relevant aspects
of the formalism for the model we are considering and the
results obtained in [34] using the 1=N expansion.
We work in the “closed-time-path” (CTP) formalism

[33] and introduce a set of indexes a, b that can be either þ
or − depending on the time branch. The starting point to
obtain the 2PI EA is the introduction of a local source JðxÞ
as well as a nonlocal one Kðx; x0Þ in the generating
functional Z½J; K�. The 2PI EA is the double Legendre
transform with respect to that sources and is a functional of
the mean fields ϕ̂i

a and the propagators Gij
ab. The result can

be written as [34]

Γ2PI½ϕ̂i; G; gμν�

¼ SF½ϕ̂i; gμν� − i
2
ln det½Gij

ab�

þ i
2

Z
d4x

ffiffiffiffiffiffi
−g

p Z
d4x0

ffiffiffiffiffiffiffi
−g0

p
Aab

ij ðx0; xÞGij
abðx; x0Þ

þ Γ2½ϕ̂i; G; gμν�; ð2Þ
where Γ2½ϕ̂i; G; gμν� is −i times the 2PI vacuum Feynman
diagrams with the propagator Aab given by

iAab
ij ðx; x0Þ ¼

1ffiffiffiffiffiffi−gp
�

δ2SF

δϕi
aðxÞδϕj

bðx0Þ

�
1ffiffiffiffiffiffiffi
−g0

p
����
ϕ¼ϕ̂

; ð3Þ

and with a vertex defined by SF
int½φi; gμν�, which is the

interaction action obtained after recollecting the cubic and
higher orders in ϕ̂i that emerged when expanding SF½ϕ̂i þ
φi; gμν� (with φi ¼ ϕi − ϕ̂i),

SF
int½φi; gμν� ¼ −

λB
2N

Z
ddx

ffiffiffiffiffiffi
−g

p �
1

4
ðφiφjδijÞ2

þðϕ̂iφjδijÞ:ðϕ̂kφlδklÞ
�
: ð4Þ

Following [34], the leading order in the 1=N expansion
in the unbroken symmetry case (hϕii ¼ 0) result,
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Γ2PI½ϕ̂; G; gμν�
¼ SF½ϕ̂; gμν� − iN

2
ln det½Gab�

þ iN
2

Z
d4x

ffiffiffiffiffiffi
−g

p
a

Z
d4x0

ffiffiffiffiffiffi
−g

p
bA

abðx0; xÞGabðx; x0Þ

−
λBN
8

cabcde
Z

d4x
ffiffiffiffiffiffi
−g

p
eGabðx; xÞGcdðx; xÞ þOð1Þ;

ð5Þ

where cabcde is equal to �1, if a ¼ b ¼ c ¼ d ¼
e ¼ �, and zero otherwise.
By setting to zero the variation of this 2PI EA

with respect to the scalar field and the propagators, we
obtain�

−□þm2
B þ ξBRþ λB

2
ϕ̂2 þ λB

4
½G1�

�
ϕ̂ðxÞ ¼ 0; ð6Þ

�
−□þm2

B þ ξBRþ λB
2
ϕ̂2 þ λB

4
½G1�

�
G1ðx; x0Þ ¼ 0;

ð7Þ

where ϕ̂2¼ϕ̂iϕ̂jδij=N and ½G1�¼2Gðx;xÞ¼2Gijðx;xÞδij=N
is the coincidence limit of the Hadamard propagator,
which is a divergent quantity. Therefore, the two equations
above contain divergences. In this paper, we use dimen-
sional regularization together with an adiabatic expansion.
In the next section, we analyze the renormalization process.

III. RENORMALIZATION IN CURVED
SPACETIMES AND RENORMALIZATION

SCHEMES

In this section, we describe the renormalization process
of Eqs. (6) and (7) in three different renormalization
schemes, which we refer to as the minimal subtraction
(MS) scheme, the Minkowski renormalization (MR)
scheme, and the de Sitter renormalization (dSR) schemes.

A. Minimal subtraction scheme

In the MS scheme, we split each bare parameter (m2
B, ξB,

λB) into the MS scheme parameter (m2, ξ, λ), which defines
the finite part, and the divergent contribution (δm2, δξ, δλ),
which contains only divergences and no finite part,

m2
B ¼ m2 þ δm2; ξB ¼ ξþ δξ; λB ¼ λþ δλ: ð8Þ

In order to renormalize the equations, we rewrite them as

ð−□þm2
ph þ ξRRÞϕ̂ðxÞ ¼ 0;

ð−□þm2
ph þ ξRRÞG1ðx; x0Þ ¼ 0; ð9Þ

defining the physical mass mph as the solution to the
following gap equation:

m2
ph þ ξRR ¼ ðm2 þ δm2Þ þ ðξþ δξÞRþ 1

2
ðλþ δλÞϕ̂2

þ 1

4
ðλþ δλÞ½G1�: ð10Þ

We now use the well-known Schwinger-DeWitt expansion
for ½G1� to split the propagator into its divergent and finite
terms [20],

½G1� ¼
1

4π2ϵ

�
m2

ph þ
�
ξR −

1

6

�
R

�
þ 2TFðm2

ph; ξR; fRg; μ̂Þ;

ð11Þ

where ϵ ¼ d − 4, which is factored out in the first term
making explicit the divergence as d → 4, TF is a finite
function that depends on the spacetime (here fRg denotes
the curvature tensors), where a scale μ̂ with units of mass
must be included in order for the physical quantities to have
the correct units along the dimensional regularization
procedure.
Introducing Eq. (11) into Eq. (10) and demanding that

the divergent terms cancel out with the contributions of the
counterterms, we obtain a finite equation for the physical
mass (i.e., the renormalized gap equation),

m2
ph ¼ m2 þ 1

2
λϕ̂2

þ λ

32π2

��
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

μ̂2

�

þ
�
ξR −

1

6

�
R − 2Fðm2

ph; fRgÞ
	
; ð12Þ

where the function Fðm2
ph; fRgÞ is defined by

TFðm2;ξR;fRg; μ̂Þ¼
1

16π2

��
m2þ

�
ξ−

1

6

�
R

�

×ln

�
m2

μ̂2

��
ξ−

1

6

�
R−2Fðm;fRgÞ

	
;

ð13Þ

and has the following properties:

Fðm2; fRgÞjRμνρσ¼0 ¼ 0;

dFðm2; fRgÞ
dm2

����
Rμνρσ¼0

¼ 0;

dFðm2; fRgÞ
dR

����
Rμνρσ¼0

¼ 0: ð14Þ

In Appendix A, we provide the expression for the
counterterms.
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Therefore, the gap equation in the MS scheme depends
on the mass scale μ̂, which is an arbitrary scale with no
obvious physical interpretation. A way to define renormal-
ized parameters with a physical meaning is to use the
effective potential,1 which can be obtained by integrating
the following equation with respect to ϕ̂, following Eq. (9):

dVeff

dϕ̂
¼ ðm2

ph þ ξRRÞϕ̂: ð15Þ

In this way, a natural definition for the renormalized
parameters (mR, ξR λR) is to set them to be equal to the
corresponding derivatives of the effective potential as a
function of ϕ̂ and R evaluated at ϕ̂ ¼ 0 and R ¼ 0 (that is,
as defined in Minkowski space) and more generally, at
R ¼ R0. This is the option we adopt next.

B. Minkowski renormalization scheme

Choosing Minkowski geometry at the renormalization
point corresponds to setting R0 to zero. Therefore, from the
effective potential Veff , the renormalized parameters are
obtained from Eq. (12) as follows:

m2
R ≡ d2Veff

dϕ̂2

����
ϕ̂¼0;R¼0

¼ m2
phjϕ̂¼0;R¼0; ð16Þ

ξR ≡ d3Veff

dRdϕ̂2

����
R¼0

¼ dm2
ph

dR

����
R¼0

þ ξR; ð17Þ

λR ≡ d4Veff

dϕ̂4

����
ϕ̂¼0;R¼0

¼ 3
d2m2

ph

dϕ̂2

����
ϕ̂¼0;R¼0

: ð18Þ

And the result is

m2
R ¼ m2

½1 − λ
32π2

lnðm2
R

μ̂2
Þ�
; ð19Þ

�
ξR −

1

6

�
¼ ðξ − 1

6
Þ

½1 − λ
32π2

− λ
32π2

lnðm2
R

μ̂2
Þ�
; ð20Þ

λR ¼ 3λ

½1 − λ
32π2

− λ
32π2

lnðm2
R

μ̂2
Þ�
: ð21Þ

From these equations, we can find the following useful
relations between the MR parameters defined above and the
MS parameters:

ðξB − 1
6
Þ

λB
¼ ðξ − 1

6
Þ

λ
¼ 3ðξR − 1

6
Þ

λR
; ð22Þ

m2
B

λB
¼ m2

λ
¼ m2

R

�
1

32π2
þ 3

λR

�
≡m2

R

λ�R
; ð23Þ

where we introduced λ�R to simplify the notation. Then, we
can write the equation for m2

ph, using solely one set of
parameters,

m2
ph ¼m2

R þ
λ�R
2
ϕ̂2 þ λ�R

32π2

��
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�

− 2Fðm2
ph;fRgÞ

	
: ð24Þ

One can easily check that in the free field limit (λR → 0,
and therefore λ�R → 0), the physical mass reduces to the
renormalized mass, m2

ph → m2
R.

C. de Sitter renormalization schemes

Now we set the geometry of the spacetime at the
renormalization point to be that of a fixed de Sitter
spacetime, corresponding to R ¼ R0 ¼ constant. As above,
the renormalized parameters (m2

R, ξR, λR) are defined in
terms of the effective potential,

m2
R ¼ d2Veff

dϕ̂2

����
ϕ̂¼0;R¼R0

¼ m2
phjϕ̂¼0;R¼R0

þ ξRR0; ð25Þ

ξR ¼ d3Veff

dRdϕ̂2

����
ϕ̂¼0;R¼R0

¼ dm2
ph

dR

����
ϕ̂¼0;R¼R0

þ ξR; ð26Þ

λR ¼ d4Veff

dϕ̂4

����
ϕ̂¼0;R¼R0

¼ 3
dm2

ph

dϕ̂2

����
ϕ̂¼0;R¼R0

: ð27Þ

Therefore, the generalization of the expressions (19), (20),
and (21) that relate these parameters to the MS parameters
are

�
1−

λ

32π2
ln

�
m2

R

μ̂2

��
m2

R

¼ðξ−ξRÞR0þm2þ λ

32π2

�
ðξR−1=6ÞR0

�
1þ ln

�
m2

R

μ̂2

��

−2FdSðm2
R;R0Þ

�
; ð28Þ

�
ξR −

1

6

�
¼

ðξ − 1
6
Þ − λ

16π2
dFdS
dR jm2

R;R¼R0

½1 − λ
32π2

− λ
32π2

lnðm2
R

μ̂2
Þ�

; ð29Þ
1Alternatively, one can use the stress-energy tensor; see, for

instance, [36].
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λR ¼ 3λ

�
1 −

λ

32π2

�
1þ ln

�
m2

R

μ̂2

�

þðξR − 1=6ÞR0

m2
R

− 2
dFdS

dm2

����
m2

R;R¼R0

	�
−1
: ð30Þ

As for the MR case, one can derive the following
relations between these renormalized parameters and the
MS ones:

m2
B

λB
¼ m2

λ
¼ m2

R

�
1

32π2
þ 3

λR

�
þ ðξR − 1=6ÞR0

32π2

≡m2
R

λ�R
þ ðξR − 1=6ÞR0

32π2
; ð31Þ

ðξB − 1=6Þ
λB

¼ ðξ− 1=6Þ
λ

¼ 3
ðξR − 1=6Þ

λR

þ 1

16π2
dFdS

dR

����
m2

R;R¼R0

þ ðξR − 1=6Þ
32π2

�ðξR − 1=6ÞR0

m2
R

− 2
dFdS

dm2

����
m2

R;R¼R0

�

≡ 3
ðξR − 1=6Þ

λR
þ JðR0;m2

R; ξRÞ; ð32Þ

where the function JðR0; m2
R; ξRÞ is defined by the last

equality and goes to zero when R0 → 0.
Then, using the Eqs. (28), (29), and (30), the new

expression for the physical mass m2
ph is found,

m2
ph ¼ m2

R þ λ�R
32π2

��
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�

þ ðm2
ph −m2

RÞ
�
2
dFdS

dm2
ph

����
m2

R;R0

−
ðξR − 1=6ÞR0

m2
R

�

þ 2

�
FdSðm2

R; R0Þ þ
dFdS

dR

����
m2

R;R0

ðR − R0Þ

− Fðm2
ph; fRgÞ

�	
þ λ�R

2
ϕ̂2: ð33Þ

This result reduces to the previous one [in the MR
scheme, given in Eq. (24)], when R0 → 0. Finally, the
resulting counterterms are given by

δm̄2 ≡m2
B −m2

R

¼ −
m2

Bm
2
R

32π2

½2ϵ þ lnðm2
R

μ̂2
Þ − 2dFdS

dm2 jm2
R;R0

�
ðm2

R
λ�R

þ ðξR−1=6ÞR0

32π2
Þ

; ð34Þ

δξ̄≡ξB−ξR

¼−
ðξB−1

6
Þ

32π2

fðξR−1
6
Þ½2ϵþ1þlnðm2

R
μ̂2
Þ�þ2dFdS

dR jm2
R;R0

g
½3ðξR−1

6
Þ

λR
þJ�

; ð35Þ

δλ̄≡ ðλB − λRÞ

¼ −2λB −
λBλR
32π2

�
2

ϵ
þ 1þ ln

�
m2

R

μ̂2

�

þðξR − 1
6
ÞR0

m2
R

− 2
dFdS

dm2

����
m2

R;R0

�
: ð36Þ

Before proceeding any further, we present the expression
of the function FdSðm2; RÞ which is the one defined in
Eq. (13) evaluated in the de Sitter spacetime. To see a more
detailed derivation, we encourage the reader to read [1,2]

FdSðm2; RÞ ¼ −
R
2

��
m2

R
þ ξ −

1

6

��
ln

�
R

12m2

�

þ gðm2=Rþ ξÞ
�
−
�
ξ −

1

6

�
−

1

18

	
; ð37Þ

with

g

�
m2 þ ξR

R

�
≡ ψþ þ ψ− ¼ ψ

�
3

2
þ ν4

�
þ ψ

�
3

2
− ν4

�
;

ð38Þ

where ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the DiGamma function, and
we define ν4 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − 12ðm2 þ ξRÞ=R

p
. One important

property of the function g is that, in the infrared limit
m2 þ ξR ≪ R,

g

�
m2 þ ξR

R

�
≃ −

R
4ðm2 þ ξRÞ þ

11

6
− 2γE

þ 49

9

ðm2 þ ξRÞ
R

: ð39Þ

IV. RENORMALIZATION OF THE
SEMICLASSICAL EINSTEIN EQUATIONS

We are halfway to our goal; the procedure below
corresponds to the other half. The equations obtained
above from the 2PI EA describe the dynamics of ϕ̂ and
G for a generic metric gμν. In order to assess the effect of the
quantum fields on the spacetime geometry, we need to set
to zero the variation of the 2PI EA action, including the
gravitational part with respect to gμν. This is equivalent to
computing the expectation value of the stress-energy tensor
hTμνi and use it as a source in the semiclassical Einstein
equations (SEE). The resulting SEE are given by [20]
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k−1B Gμν þ ΛBk−1B gμν þ αð1Þ1BHμν þ αð2Þ2BHμν þ α3BHμν

¼ hTμνi; ð40Þ

where

ð1ÞHμν ¼ 2R;μν − 2gμν□Rþ 1

2
gμνR2 − 2RRμν; ð41Þ

ð2ÞHμν ¼ R;μν −
1

2
gμν□R −□Rμν þ

1

2
gμνRαβRαβ

− 2RαβRαβμν; ð42Þ

Hμν ¼
1

2
gμνRρσγδRρσγδ − 2RμρσγRν

ρσγ − 4□Rμν

þ 2Rμν þ 4RμρRρ
ν þ 4RρσRρμσν: ð43Þ

When the dimension is set to d ¼ 4, the Gauss-Bonet
theorem implies that these tensors are not all independent
from each other, and hence, we have that [20] Hμν ¼
−ð1ÞHμν þ 4ð2ÞHμν.
The stress energy tensor hTμνi in the large N approxi-

mation can be obtained from the 2PI EA in Eq. (5). The
computation is described in [34,2], and the result for a
generic metric is

hTμνi ¼ NhT̃μνiB þ λBN
32

½G1�2; ð44Þ

where

hT̃μνiB ¼ −
1

2
½G1;μν� þ

�
1

4
−
ξB
2

�
½G1�;μν

þ
�
ξB −

1

4

�
gμν
2

□½G1� þ
1

2
ξBRμν½G1�; ð45Þ

with square brackets denoting the coincidence limit (see,
for instance, [37] for the formal definition of such limit),
and the index B only states that the parameters there
involved are the bare ones.
Let us now separate hT̃μνiB into

hT̃μνiB ¼ hT̃μνiR þ δξ̄

2
ð−½G1�;μν þ gμν□½G1� þ Rμν½G1�Þ;

ð46Þ

where hT̃μνiR depends not only on the renormalized
parameters, but contains divergences coming from G1

and its derivatives. As is well known, these divergent
contributions can be properly isolated by computing the

adiabatic expansion of hT̃μνiR up to the fourth order. The
sum of such contributions are a tensor we call hT̃μνiad4,
which is given by [20,34]

hT̃μνiad4 ¼
1

16π2

�
m2

ph

μ2

�ϵ=2�1
2
Γ
�
−2 −

ϵ

2

�
m4

phgμν

þm2
phΓ

�
−1 −

ϵ

2

��
1

2
½Ω1�gμν þ

�
ξR −

1

6

�
Rμν

	

þ Γ
�
−
ϵ

2

���
ξR −

1

6

�
Rμν½Ω1� − ½Ω1;μν�

þ
�
1

2
− ξR

�
½Ω1�;μν þ

�
ξR −

1

4

�
gμν□½Ω1�

	

þ 1

2
Γ
�
−
ϵ

2

�
½Ω2�gμν

�
; ð47Þ

where the expressions for ½Ω1�, ½Ω2�, and ½Ω1;μν� are

½Ω1� ¼
�
1

6
− ξR

�
R; ð48Þ

½Ω2� ¼
1

180
ðRαβμνRαβμν − RμνRμνÞ þ 1

2
R2

�
1

6
− ξR

�
2

þ 1

6

�
1

5
− ξR

�
□R;

ð49Þ

½Ω1;μν� ¼
1

3

�
3

20
− ξR

�
R;μν þ

1

60
□Rμν −

1

45
RμαRα

ν

þ 1

90
ðRμανβRαβ þ RμαβγRν

αβγÞ: ð50Þ

The renormalization process follows closely that
described in Ref. [2] for N ¼ 1 in the Hartree approxima-
tion. To proceed, we need to use the counterterms for (mB,
ξB, λB) obtained as described above. In what follows, we
write the results in terms of the renormalized parameters
(mR, ξR, λR) in the dSR scheme. The expressions in the
other schemes can be found using the relations derived in
the previous section. Then, by separating the full expres-
sion of the fourth adiabatic order of the hTμνi given in
Eq. (44) (which we call hTμνiad4) into its divergent and
finite terms, we can write hTμνiad4 ¼ hTμνidivad4 þ hTμνiconad4.
After performing carefully the limit when ϵ → 0 of
Γð−ϵ=2 − aÞxϵ=2, the convergent part results [2]
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hTμνiconad4 ¼ N
��

m2
R

2
−m2

ph

��
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
gμν þ

m4
ph

64π2

�
32π2

λ�R
þ 1

2
þ
�
ξR −

1

6

�
R0

m2
R
− 2

dFdS

dm2
ph

����
m2

R;R0

�
gμν

þ 1

16π2

�
2m2

phGμν −
�
ξR −

1

6

�
ð1ÞHμν

�
dFdS

dR

����
m2

R;R0

þ 1

32π2
ln

�
m2

ph

m2
R

��
−
m4

ph

2
gμν þ 2m2

ph

�
ξR −

1

6

�
Gμνþ

1

90
ðð2ÞHμν −HμÞ − ð1ÞHμν

�
ξR −

1

6

�
2
�

−
m2

ph

16π2

�
ξR −

1

6

�
Gμν þ

m4
R

64π2
gμν

	
; ð51Þ

and the divergent terms can be absorbed into the following
redefinition of the gravitational constants on the lhs of the
SEE:

k−1B ¼ k−1R

þ m2
B

8π2

��
ξR −

1

6

��
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

μ̂2

��

−
dFdS

dR

����
m2

R;R0

	
; ð52Þ

ΛBk−1B ¼ ΛRk−1R

−
m2

Bm
2
R

32π2

�
1

ϵ
þ 1

2
ln

�
m2

R

μ̂2

�
−
dFdS

dm2
ph

����
m2

R;R0

�
−

m4
R

64π2
;

ð53Þ

α1B ¼ α1R

−
ðξB − 1

6
Þ

16π2

��
ξR −

1

6

��
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

μ̂2

��

−
dFdS

dR

����
m2

R;R0

	
; ð54Þ

α2B ¼ α2R þ 1

1440π2

�
1

ϵ
þ 1

2
þ 1

2
ln
�
m2

R

μ̂2

��
; ð55Þ

α3B ¼ α3R −
1

1440π2

�
1

ϵ
þ 1

2
þ 1

2
ln

�
m2

R

μ̂2

��
: ð56Þ

Hence, we can now write a finite expression for the SEE,

k−1R Gμν þ ΛRk−1R gμν þ αð1Þ1RHμν þ αð2Þ2RHμν þ α3RHμν

¼ hTμνiren þ hTμνiconad4; ð57Þ

where ½hTμνi − hTμνiad4� ¼ hTμνiren.
Notice the above renormalization procedure only uses dS

spacetime at the renormalization point. This is the main
difference with respect to the traditional renormalization

procedure for which a Minkowski spacetime is used. The
metric gμν involved in both sides of the SEE (in the
geometric tensors and in the stress energy tensor), which
is the solution of the SEE, is unspecified. The traditional
equations are recovered in the MR scheme (i.e.,
when R0 → 0).

V. RENORMALIZED SEMICLASSICAL EINSTEIN
EQUATIONS IN DE SITTER

Let us now specialize these results for de Sitter space-
times. In dS, the geometric quantities appearing on the lhs
of the SEE are proportional to the metric gμν, with a
proportionality factor that depends on R and the number of
dimensions d,

Rμν ¼
R
d
gμν;

Gμν ¼
�
1

d
−
1

2

�
Rgμν;

ð1ÞHμν ¼
1

2

�
1 −

4

d

�
R2gμν;

ð2ÞHμν ¼
1

2d

�
1 −

4

d

�
R2gμν;

Hμν ¼
1

dðd − 1Þ
�
1 −

4

d

�
R2gμν: ð58Þ

Moreover, for any other tensor of range two, we have
similar properties, for example,

½G1;μν� ¼
1

d
½□G1�gμν: ð59Þ

de Sitter invariance also implies that every scalar invariant
is constant, and particularly ½G1� is independent of the
spacetime point. Using this and Eq. (59) in Eq. (45), it is
immediate to conclude that the tensor hTμνi in Eq. (44) is
also proportional to gμν and given by
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hTμνi ¼ Ngμν

�
−

1

2d
½□G1� −

m2
B

4
½G1�

þξB
½G1�
2

�
1

d
−
1

2

�
R −

λB
32

½G1�2
�
: ð60Þ

Using the definition of m2
ph in Eq. (10),

λB
4
½G1� ¼ m2

ph − δξ̄R −m2
B; ð61Þ

we obtain

hTμνi ¼ Ngμν

�
ξBR

2ð4þ ϵÞ
�
4

λB
ðm2

ph − δξ̄R −m2
BÞ
�

−
1

2
ðm2

ph þ ξRRÞ þ
λB
32

�
4

λB
ðm2

ph − δξ̄R −m2
BÞ
�
2
	
;

ð62Þ

where ϵ ¼ d − 4. Notice we cannot yet take ϵ → 0 in the
denominator, due to the fact that it is multiplied by bare
parameters. In order to perform such a limit, first we need to
remind the expressions (30), (31), and (32). After some
algebra and after neglecting the OðϵÞ terms, we obtain

hTμνi ¼ Ngμν

�
1

128π2

�
m2

ph þ
�
ξ−

1

6

�
R

�
2

þ 1

2

�
δm̄2 þ

�
1þ ϵ

4þ ϵ

�
δξ̄R

��
m2

R

λ�R
þ ðξR − 1

6
R0Þ

32π2

�

þ
�

4

4þ ϵ

�
ϵδξ̄

8

�
3ðξR − 1

6
Þ

λR
þ J

�
R2

×
1

2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
ðm2

R −m2
phÞ

	
: ð63Þ

To compute the renormalized expectation value,
hTμνiren ¼ hTμνi − hTμνiad4, we must evaluate hTμνiad4
from Eq. (47) for the de Sitter spacetime. It is then when
we use the expressions in Eq. (58). We now use that
hTμνiad4 ¼ hTμνidivad4 þ hTμνiconad4, where

hTμνiconad4 ¼ Ngμν

�
m2

R

2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2
þ m2

R

32π2

�

þ m2
ph

64π2

�
ξR −

1

6

�
R−

m2
ph

32π2
R
dFdS

dR

����
m2

R;R0

þ m4
ph

64π2

�
32π2

λ�R
þ 1

2
þ ðξR − 1

6
ÞR0

m2
R

− 2
dFdS

dm2
ph

����
m2

R;R0

�

−
m2

ph

64π2

�
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�

−m2
ph

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�	
ð64Þ

hTμνidivad4 ¼ Ngμν

�
1

64π2
R2

2160
−

m4
R

64π2

þ
�

4

4þ ϵ

�
ϵδξ̄

8

�
3ðξR − 1

6
Þ

λR
þ J

�
R2

þ 1

2

�
δm̄2 þ

�
1þ ϵ

4þ ϵ

�
δξ̄R

�

×

�
m2

R

λ�R
þ R0

ðξR − 1
6
Þ

32π2

�	
: ð65Þ

Then, after subtracting the tensor hTμνiad4 given in
Eq. (47), and neglecting the terms that are OðϵÞ, the result
can be written as

hTμνiren ¼ −N
gμν
64π2

�
m2

ph

��
32π2

λ�R
þ ðξR − 1

6
ÞR0

m2
R

−2
dFdS

dm2
ph

����
m2

R;R0

�
ðm2

ph −m2
RÞ
�

− 2m2
ph

�
R
dFdS

dR

����
m2

R;R0

þm2
R
dFdS

dm2
ph

����
m2

R;R0

�

−
1

2

�
ξR −

1

6

�
2

R2 þ R2

2160

−m2
ph

�
m2

ph þ
�
ξR −

1

6

�
R

�
ln

�
m2

ph

m2
R

�	
: ð66Þ

Therefore, the rhs of the SEE in de Sitter is given by

hTμνiren þ hTμνiconad4

¼ −Ngμν
1

64π2

�
32π2

�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
ðm2

ph −m2
RÞ

−m4
R þ R2

2160
−
1

2

�
m2

ph þ
�
ξR −

1

6

�
R

�
2
	
: ð67Þ

The lhs is simply

k−1R Gμν þ ΛRk−1R gμν ¼ k−1R

�
−
R
4
þ ΛR

�
gμν: ð68Þ

The quadratic tensors that were introduced, ð1ÞHμν, ð2ÞHμν,
and Hμν, vanish for d ¼ 4. However, their presence was
important for the renormalization procedure (and there is a
finite remnant on the rhs of the SEE due to the well-known
trace anomaly). Then, as seen in Eq. (67) and in Eq. (68),
we can factorize the metric gμν from both sides, obtaining a
scalar and algebraic equation with a sole degree of freedom
of the metric, R,
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8πM2
pl

�
−
R
4
þ ΛR

�

¼ −
R2

2160
þ 1

2

�
m2

ph þ
�
ξR −

1

6

�
R

�
2

− 32π2
�
m2

R

λ�R
þ ðξR − 1

6
ÞR0

32π2

�
ðm2

ph −m2
RÞ þm4

R; ð69Þ

where we have divided both sides by N and defined a
rescaled Planck mass Mpl, that respects NkR ¼ 8π=M2

pl ¼
8πGN .

VI. DE SITTER SELF-CONSISTENT SOLUTIONS

We are now ready to study the backreaction effect on the
spacetime curvature due to the computed quantum correc-
tions. In Sec. II, we found that a dynamical physical mass
mph is generated, which obeys Eq. (33) with ϕ̂ ¼ 0. Notice

that mph depends not only on the curvature scalar R, but
also on the parameters mR, ξR λR, and the curvature R0

defined at the renormalization point. In Sec. III, the
renormalized SEE were derived, which reduce to the
algebraic equation for R given in Eq. (69).
Our goal in this section is to solve both Eq. (33), in the

symmetric phase (ϕ̂ ¼ 0), and Eq. (69) self-consistently,
for different renormalization schemes and values of the free
parameters. We do this numerically. First, in Sec. VI A, we
analyze the effects on the physical mass characterizing its
departures from the renormalized value mR. Then, in
Sec. VI A, we concentrate on the effects on the spacetime
curvature R, which can be characterized as departures from
the classical solution ðR − RclÞ=Rcl and/or from its value at
the renormalization point ðR − R0Þ=R0. We focus on the
infrared limit, namely m2

ph þ ξRR ≪ R, so that, after using
Eqs. (37) and (39), Eq. (33) can be approximated by

m2
ph þ ξRR ¼ m2

R þ ξRRþ λ�R
32π2

�
R2

24ðm2
ph þ ξRRÞ

− ξRR −
5R
36

−
R
6
½κ þ logðR=12m2

RÞ�

− ðm2
R þ ξRRÞ

�
2
dFdS

dm2

����
m2

R;R0

−
ðξR − 1

6
ÞR0

m2
R

�
þ 2

�
FdSðm2

R; R0Þ þ
dFdS

dR

����
m2

R;R0

ðR − R0Þ
�

þ
�
κ þ logðR=12m2

RÞ −
46

54
þ 2

dFdS

dm2

����
m2

R;R0

−
ðξR − 1

6
ÞR0

m2
R

�
ðm2

ph þ ξRRÞ
	
; ð70Þ

where we remind that κ ¼ 11=6 − 2γE. This is a quadratic equation for ðm2
ph þ ξRRÞ=R

AdS

�ðm2
ph þ ξRRÞ2

R2

	
þ BdS

�ðm2
ph þ ξRRÞ

R

	
þ CdS ¼ 0; ð71Þ

where the functions AdS, BdS and CdS are defined as

AdS ¼ 1 −
λ�R
32π2

�
κ þ logðR=12m2

RÞ −
49

54
þ2

dFdS

dm2

����
m2

R;R0

−
ðξR − 1

6
ÞR0

m2
R

�
;

BdS ¼ −
�
m2

R

R
þ ξR

�
þ λ�R
32π2

�
κ

6
þ 1

6
logðR=12m2

RÞ þ
5

36
þ ðm2

R þ ξRRÞ
R

�
2
dFdS

dm2

����
m2

R;R0

−
ðξR − 1

6
ÞR0

m2
R

�

þξR −
2

R

�
FdSðm2

R; R0Þ þ
dFdS

dR

����
m2

R;R0

ðR − R0Þ
�	

;

CdS ¼ −
λ�R

768π2
:

So, the physical mass m2
ph in the infrared limit can be

expressed as

m2
ph ¼

−RBdS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRBdSÞ2 − 4R2AdSCdS

p
2AdS

− ξRR; ð72Þ

which is consistent with the results previously obtained in
[1].

A. m2
ph analysis

First of all, we need to make sure that the parameters of
the problem ensure that the quantity m2

ph is real and
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positive; otherwise, the de Sitter-invariant propagator
solution would not be valid. Besides, it is necessary to
recall we are restricting the analysis to the infrared regime,
meaning m2

ph þ ξRR ≪ R. We define the variable,

Δm2 ¼ m2
ph −m2

R

m2
R

: ð73Þ

Recall the renormalized mass is, by definition, the physical
mass evaluated at the renormalization point. So, this
variable characterizes how much the physical mass departs
from the renormalized one when the values of the curvature
are beyond that point (which is generically the case if R0 is
not the full solution of the problem including quantum
effects—which is unknown beforehand). Assuming
ξR ≪ 1, the condition m2

ph þ ξRR ≪ R can be replaced
by m2

ph ≪ R. In order to check whether this condition is
satisfied, in what follows we use the following inequality:
m2

ph ≤ R=10, or equivalently,2

Δm2 ≤ Δc2 ≡ 1

10

R
m2

R
− 1: ð74Þ

Throughout this section, we study three cases: the R0 ¼
0 case that corresponds to a flat curvature or a Minskowski
spacetime, the case R0 > 0 with R0 ¼ 10−6M2

pl or R0 ¼
10−2M2

pl as examples of possible values for a curved
spacetime in the semiclassical regime. One can see that
the results do not depend strongly on the particular value of
R0 as long as R0 ≪ M2

pl, and the case R0 ¼ Rcl, where Rcl

is the solution to the background curvature with the
quantum effects neglected. We present the plots for two
values of the renormalized mass, corresponding to m2

R ¼
10−7M2

pl and m2
R ¼ 10−3M2

pl. For the case R0 > 0, we take
R0 ¼ 10−6M2

pl for the smaller mass, and we focus on R0 ¼
10−2M2

pl for the larger mass. We make this choice form2
R ¼

10−7M2
pl because whereas for R0 ¼ 10−6M2

pl, the physical
mass is well defined (it is real and positive) for all values of
the parameters and range of R we study, for R0 ¼ 10−2M2

pl,
this is not always true if R < R0. For m2

R ¼ 10−3M2
pl, the

physical mass is well defined for both valuesR0 ¼ 10−6M2
pl

and R0 ¼ 10−2M2
pl, but for R0 ¼ 10−2M2

pl, the curves can
be easily distinguished from the ones with R0 ¼ 0.
From Fig. 1, one can see that for the same values of the

curvature R (shown on the common horizontal axes), the
order of magnitude of the vertical axes change significantly
depending on R0 (the value of R at the renormalization
point). For intermediate values of the parameters, the

obtained results are similar and lay between the corre-
sponding curves. The departures characterized by Δm2 are
significantly larger for lighter fields, as can be seen by
comparing the right panel (which corresponds to
m2

R ¼ 10−3M2
pl) to the left one (where m2

R ¼ 10−7M2
pl).

This means that when the fields are light, the physical mass
is less robust against corrections beyond the renormaliza-
tion point. This result is an expected manifestation of the
infrared sensitivity of light fields to the spacetime
curvature.
From Fig. 1, one can also see that jΔm2 j is larger the

larger the coupling constant λR. For the plots on the top and
in the middle, since m2

R does not depend on R, this means
that when the interaction between the scalar fields inten-
sifies, the physical mass becomes more sensitive to changes
of the curvature. This can also be seen analytically from
Eq. (33). Indeed, under the same condition, we are
assuming to make the plots, m2

ph þ ξRR ≪ R, using
Eqs. (37) and (38), from Eq. (33), one can immediately
conclude that the physical mass scales almost linearly with
the curvature. Using the same formulas, one can also see
that the dependence on λR is suppressed when the physical
mass is close to the renormalized one and R is close to R0.
Notice the part of FdS that is linear in R cancels out in the
last square bracket of Eq. (33). For the plots on the bottom,
the interpretation is not so straightforward. This is because
the renormalization point is fixed by the classical back-
ground curvature, R0 ¼ Rcl, which is determined by the
cosmological constant, Rcl ¼ 4ΛR. For each value of R on
the horizontal axes, the value of ΛR is such that the
quantum corrections to Rcl yield such value of R as the
self-consistent solution of the gap equation (33) and the
SEE (69). Therefore, the value of ΛR is different for each
point in the curves. So, for such plots, the renormalized
mass defined at R0 ¼ 4ΛR can be thought as a function of
R. Notice that taking into account that the physical value of
R is obtained by solving the renormalized SEE self-
consistently, the corresponding value of ΛR is also different
for each point in the curves drawn in the plots at the top and
in the middle of Fig. 1. In other words, in those plots the
value of ΛR is assumed to be independent of R0, so by
properly choosing ΛR, one can make all values of R to
correspond to a solution of the SEE. For this reason, it is not
necessary to use explicitly the SEE to make those plots.
The use of the scheme with R0 ¼ 4ΛR, where the

parametrization of the theory is done in the classical
background metric, has remarkable properties. In particu-
lar, for the scheme with R0 ¼ 4ΛR, if the IR approximation
is valid form2

R (m2
R þ ξRR ≪ R), it remains to be valid also

for mph (m2
ph þ ξRR ≪ R), even for large values of the

coupling constant. This is a nice property of the scheme,
since in practice, when studying the backreaction problem,
the approximation is in general very useful. As we argue
below, these properties make this case ultimately the most

2The factor 1=10 roughly corresponds to an order 1%t error in
the approximation Eq. (39) of the function FdS defined in
Eq. (37).
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convenient to study the self-consistent solutions and to
assess the quantum backreaction effects produced by the
quantum fields.
Let us now study what happens to Δm2 when ξR varies.

Figure 2 shows plots of Δm2 as a function of R, where we
fixed λR ¼ 0.1 for m2

R ¼ 10−7M2
pl (on the left) and m2

R ¼
10−3M2

pl (to the right). The sensibility of Δm2 against
changes of R turns out to be minimal when setting
R0 ¼ Rcl. A similar conclusion to the previous cases can
be drawn when we vary λR.

B. Backreaction solutions

Once the limits upon the physical mass in Eq. (74) are
established, we can proceed to find the ΛR values, by
solving self-consistently the system formed by the gap
equation form2

ph Eq. (33), with ϕ̂ ¼ 0, and the SEE (69). To
measure the departures of the scalar curvature from the
classical one, we use the variable,

ΔR ¼ R − Rcl

Rcl
¼ R − 4ΛR

4ΛR
: ð75Þ

In what follows, we present plots of ΔR as a function of ΛR,
for different values of the parameters.
In order to interpret the plots, it is useful to have in mind

that the backreaction of the quantum fields depends on the
renormalized parameters and R0 as shown explicitly in
Eq. (69). There is always a scale to be fixed in addition to
the renormalized parameters associated to the bare param-
eters of the theory (in the MS scheme, the scale is μ̂,
whereas in the other schemes we are considering, it is R0).
For a given value of mR, when the physical mass is close to
mR, as can be seen from the right-hand side (rhs) of
Eq. (69), the λR and R0 dependence are suppressed. From
there, one can also see that for sufficiently large values of R
all solutions should approach to each other.
In our study, we are restricting to IR fields, meaning

m2
ph þ ξRR ≪ R, but notice that we have not used such
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FIG. 1. The variable Δm2 defined in Eq. (73) as a function of R, for ξR ¼ 0 and two different values of λR: λR ¼ 0.1 (green dashed
lines) and λR ¼ 1 (red solid lines). The first column corresponds tom2

R ¼ 10−7M2
pl and the second one tom

2
R ¼ 10−3M2

pl. The first row is

for R0 ¼ 0. In the second row, the case R0 ¼ 10−6M2
pl is shown for the smaller mass, whereas for the larger mass, the curve is for

R0 ¼ 10−2M2
pl. The last row is for R0 ¼ 4ΛR. The grey area corresponds to values for which the restriction Δm2 < Δc2 is violated [see

Eq. (74)]. On the left panel, the two curves in the bottom plot are almost superimposed and cannot be distinguished by eye.
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assumption to arrive at Eq. (69). Here we make use of the
IR approximation with ξR ≪ 1 to compute the physical
mass. Therefore, it is necessary to take into account the
upper limit on the physical mass obtained from the analysis
of the previous section [see Eq. (74)]. In this case, this
shows up as a restriction for the possible values that R can
take, which corresponds to a lower limit on R that we call
Rmin. In order to indicate the part of the curves for which the
restriction is not valid, we use grey dotted lines, and solid or
dashed lines otherwise.
The top plot of Fig. 3 shows ΔR vs ΛR, for λR ¼ 0.1,

ξR ¼ 0, for the three R0 cases we are considering and two
values of the mass: m2

R ¼ 10−7M2
pl (on the left) and m2

R ¼
10−3M2

pl (to the right). For the heavier case, we obtain
relatively larger variations with respect to the renormaliza-
tion point. A relatively strong R0 dependence is expected as
the absolute difference between the physical mass and the
renormalized mass is larger. On the other hand, for
R0 ¼ Rcl, since the physical mass is close to the renor-
malized one for all plotted values of R (we are restricting to
sub-Planckian values), the R0 dependence is suppressed.
For the higher mass case, in the plotted (sub-Planckian)

range of R, the quantity R − Rcl is only negative for the case
R0 ¼ 4ΛR. On the contrary, for the lighter case, R − Rcl is
in all cases negative, meaning that the curvature scalar that
includes the quantum effects is smaller than the classical
one. For the smaller mass, the violet curves cannot be
distinguished by eye because they are almost superimposed
with the green ones. It can be seen the green and violet
curves depart from the others more as R increases, which is
also compatible with the fact that, for those values of R,mph

becomes significantly different from mR for such schemes.
For R0 ¼ 0 and R0 ¼ 10−2M2

pl in the heavier case, it can be
shown that if R is allowed to take super-Planckian values,
as ΛR increases the curves go down and approach to each
other, obtaining also R < Rcl in such regime. This indicates
the screening of the classical solution is recovered in the IR
regime. This result, R < Rcl, is obtained for smaller values
of R when the coupling is larger, as can be seen from the
plot in the middle, where the case λR ¼ 1 is also shown.
The λR dependence is stronger in the cases R0 ¼ 0 and
fixed R0 > 0 than for R0 ¼ Rcl. In view of Fig. 1, this result
is consistent with what we have concluded above from
Eq. (69). For the lighter case, no significant variations are
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obtained, whereas once again R − Rcl turns out to be
negative. In the plot on the bottom of Fig. 3, the curves
for ξR ¼ 0.01 are shown in addition to the ones for ξR ¼ 0.
One can see that the absolute value of ΔR is smaller for
ξR ¼ 0.01, which can be expected from the arguments
above and Fig. 2. Notice for the lighter case, all curves with
ξR ¼ 0.01 are indistinguishable by eye.
Here, we focus on square masses below 10−3M2

pl. The
reason is because although the IR approximation is
expected to be good for m2

ph ¼ 10−3M2
pl, one may expect

deviations from the approximate solutions if m2
ph is larger.

For m2
R ¼ 10−7M2

pl, from Fig. 1, we see that although Δm2

reaches values as large as 104 for R0 ¼ 0 and λR ¼ 0.1, in
the plotted range of R, the physical mass reaches values at
most of order 10−3M2

pl. However, for m
2
R ¼ 10−3M2

pl (also
for λR ¼ 0.1 in the plotted range of R), we obtain the
physical mass can reach values about 2 × 10−3M2

pl for both

R0 ¼ 0 and R0 ¼ 10−2M2
pl, or remain closer to 10−3M2

pl

for R0 ¼ 4ΛR.
As in Fig. 1, in Fig. 3, the case R0 ¼ 4ΛR is to be

interpreted with care, since each point on the (red) curves,
corresponds to a different ΛR and therefore to a different
R0, that is, to a different definition of the parameters mR,
λR, and ξR. Notice however, this does not alter the
conclusions one can deduce for each fixed ΛR.
From the analysis above, we conclude the backreaction

of quantum fields in the IR regime is in all cases
perturbatively small. We also conclude that to study the
quantum backreaction effects, the most convenient choice
for R0 at the renormalization point is R0 ¼ Rcl. This choice
allows for a physically meaningful way of defining the
parameters of the theory, providing a robust characteriza-
tion of fields in the IR regime (once the renormalized mass
of the field is given, in the absence of large quantum effects,
the physical mass remains close to the renormalized one, as
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expected). Using this choice, in this section, we obtained
the resulting curvature is in all cases smaller than the
classical one (and this does not occur for the other studied
R0 values). According to the parametrization of the theory
in such a scheme, this result can be interpreted as the so-
called “screening of the cosmological constant ΛR" by
quantum effects of IR fields.

VII. COMPARISON WITH PREVIOUS WORKS

Some of the results we have obtained can be compared
with previous work. In particular, we consider here the
results presented in [19,38]. Both papers consider the same
scalar field theory as we are considering here [given by
Eq. (1)] in the semiclassical large N approximation, and
both found a screening phenomenon of the cosmological
constant, but using alternate approaches. In [19], the same
2PI EA formalism in the large N limit is considered, while
in [38], the analysis of the backreaction is done using the
so-called Wilsonian renormalization group framework. The
main difference is in their conclusion on the size and
parametric dependence of the quantum backreaction effects
for light fields. While [19] concludes the backreaction is
nonpertubatively large, obtaining an unsuppressed effect
proportional to a logarithmic enhancement factor log λ, the
conclusion in [38] indicates there is no enhancement factor
as λ → 0 and that the corrections are controlled in the
semiclassical approximation by a factor of R=M2

pl.
As we have shown above, by computing the renormal-

ized parameters, finding both the physical mass equations
and the SEE as a function of these and numerically solving
both of these equations, we have ultimately found the
screening. However, in [19,38], the results are shown in
terms of the minimal subtraction (MS) parameters. In order
to compare our result with theirs, we set m ¼ 0, ξ ¼ 0 and
write our results [now expressed in terms of the dSR
renormalized parameters (mR, ξR, λR) and R0], in terms of λ
and μ̂. It is important to remember a couple of things. The
fact that the MS mass m is set to zero is possible here, as
long as mph remains a real and positive. When setting R ¼
R0 (at the renormalization point), we obtain mR ¼ mph, as
seen in (33). Therefore, by fixing the curvature R to be
equal to the one at the renormalization point R0 (i.e., by
setting R ¼ R0), we can obtain the physical mass (also
called dynamical mass in the literature) as a function of R0

from the relations given in Eqs. (28), (29), and (30). The
computations of mR and ξR in this limit can be seen in
Appendix B. In this case, our result for the so-called
dynamical mass (mdyn ¼ mR ¼ mph for R ¼ R0) can be
immediately compared with previous calculations per-
formed in the literature in the MS scheme, and one finds
it agrees with them. After inserting them in our expression
for hT 0

μνi ¼ hTμνiren þ hTμνiconad4 and expanding in
ffiffiffi
λ

p
, we

obtain

hT 0
μνi≃gμνN

�
29

17280π
R2−

R2

384
ffiffiffi
3

p
π

ffiffiffi
λ

p

þ R2

110592π3

�
95−24γEþ12 log

�
R

12μ̂2

�	
λþ���

�
;

ð76Þ

where we have used that R0 ¼ R.
Therefore, our result disagree with the one presented in

[19], on that we do not find a term proportional to
R2
0 logðλÞ, which would generate a large backreaction effect

for small values of λ. As one can see in (76), the
contributions involving the coupling constant are sup-
pressed by

ffiffiffi
λ

p
and do not result in a large backreaction

effect. Notice that Eq. (76) shows the next to leading order
in

ffiffiffi
λ

p
is the one depending on μ̂, but the leading order is

independent on μ̂. We see that, provided λ ≪ 1, the
dominant contribution to the lhs of the SEE [see
Eq. (69)] is positive, leading to the phenomenon of
screening (i.e., R is smaller than Rcl ¼ 4ΛR). All contri-
butions are suppressed by R=M2

pl. Therefore, our results
agree with the ones presented in [38] and differ from those
in [19].
As far as we understand, the discrepancy is due to a

mistake in the procedure followed in [19] to compute the
SEE from the 2PI EA, after having evaluated the action for
a dS metric. Indeed, the effective action (which in dS is
given by the effective potential) obtained in [19] is
compatible with ours. The expression for the physical
mass (named dynamical mass in [19]) also agrees.
However, as done in [38], the correct procedure to obtain
the SEE from the effective action evaluated in a dS
metric, with a curvature R ¼ 12H2, is to perform the
derivative ∂HðH−dVÞ ¼ 0, with d ¼ 4 and V ¼ VðHÞ ¼
ð2kRÞ−1ð12H2 − 2ΛRÞ þ VeffðHÞ, where Veff is the (H–
dependent) scalar field effective potential. In [19], however,
it seems the factor H−d was not included in the derivation,
and this gives the extra term with the logarithmic factor.
As a final remark of the section, it is worth noticing that

our results agree with the conclusion of [1,2] where, as
mentioned above, the analysis of renormalization schemes
with different values of R0 was done for a single field in the
Hartree approximation. In particular, in [2], a conclusion
was that for sufficiently large values of R0 the approxi-
mation m2

ph þ ξRR ≪ R does not break down as ΛR → 0

(i.e., as Rcl → 0), and there is a divergence of the relative
deviation ΔR in this limit due to the backreaction. In that
case, it can be seen that as Rcl → 0, the curvature R goes to
a finite positive value. Therefore, there are parameters for
which the backreaction is crucial to determine the space-
time curvature.
Indeed, as can be seen in Fig. 4, we obtain solutions for

which ΔR diverges at small ΛR for the corresponding
parameters (m2

R ¼ 10−7M2
pl, λR ¼ 0.1, and for two values
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of ξR: ξR ¼ 0.01 and ξR ¼ 0.0013) for the largest value of
R0 ¼ 10−2M2

pl. For the smaller values of R0 (R0 ¼ 0 and
R0 ¼ 10−6M2

pl in the plot), the approximation m2
ph þ

ξRR ≪ R breaks down for small values of R, as is also
seen in Fig. 3.
We notice however that the solutions for which ΔR

diverge only show up in cases where R0 is fixed to be
sufficiently large and therefore very different from Rcl ¼
4ΛR (as ΛR → 0). The physical interpretation of the para-
metrization of the theory obtained as ΛR → 0 and the
corresponding characterization of the quantum corrections
is unclear to us. Our main focus here has been to study the
importance of quantum effects in a physically meaningful
parametrization of the theory, in order to understand
whether or not (or under which conditions) the quantum
backreaction (although small in size) contribute to screen
the classical solution.

VIII. CONCLUSIONS

The main subject of the present work has been the
problem of the backreaction of quantum fields on the
spacetime curvature through the SEE. We focus on the
OðNÞ theory defined in Eq. (1) in the symmetric phase of
the field (i.e., for vanishing vacuum expectation values of
the scalar fields), in the large N approximation.
A main result of this paper is a set of finite (renormal-

ized) self-consistent equations for backreaction studies in a
general background metric in the de Sitter renormalization
(dSR) schemes defined in Sec. III C, namely: the renor-
malized gap equation in Eq. (33), necessary to obtain finite
equations for the fields and the two point functions [i.e.,
Eqs. (6) and (7)], and the renormalized SEE presented in

Sec. IV. For N ¼ 1, these equations reduce to the ones
obtained in Ref. [2] in the Hartree approximation, in the
symmetric phase, up to a rescaling of the coupling constant
by a factor 3 (i.e., λR → 3λR). We emphasize the fact that
these equations can be used as a starting point to study the
quantum backreaction problem beyond dS spacetimes,
since dS is used only as an alternative spacetime at the
renormalization point. This choice generalizes the tradi-
tional one that uses Minkowski geometry at the renorm-
alization point. As happens for the light fields in dS
spacetime considered in this paper, this generalization
could be significantly useful when infrared effects are
sensitive to the curvature of the spacetime. We point out the
use of dSR schemes may be also useful for non-dS
geometries, such as for more generic Friedman
Robertson Walker spacetimes used in cosmology.
Another important result is the specific study of the

quantum backreaction problem for dS spacetimes. This has
allowed us to explicitly illustrate the importance of the dSR
schemes in the understanding of the physical results. More
specifically, we have obtained a system of two equations
[Eq. (33) and Eq. (69)] that can be solved numerically to
assess the effects on the curvature due to the presence of
quantum fields for different values of the renormalized
parameters of the fields (i.e., the mass mR, the coupling
constant λR and the coupling to the curvature ξR) and the
renormalized cosmological constant ΛR.
First, we have analyzed the impact of choosing the

geometry at the renormalization point in the relative
difference between the physical mass and the renormalized
mass as the physical background geometry (characterized
by the curvature scalar R in this case) changes. We have
obtained the difference is minimal, for a wide range of
values of R in the semiclassical approximation, when
the dS geometry fixed at the renormalization point is the
classical solution, R0 ¼ Rcl ¼ 4ΛR. This indicates
the definition of the physical mass is less sensitive to
curvature variations and changes in the interaction between
the quantum fields and their coupling to the curvature.
Hence, we conclude the choice of this dSR scheme (with
R0 ¼ Rcl) is more convenient to study the quantum back-
reaction effects than choosing the plane geometry R0 ¼ 0
or another fixed value for R0.
Then, we have studied the relative difference between the

curvature (that is affected by the quantum interactions
between the fields) and its classical approximation (where
the quantum effects are neglected). We have found that for
light fields this difference is always negative, that is, that
the curvature is smaller than the classical one. For the other
mass values analyzed, this phenomenon has also been
found, but only for the dSR scheme with R0 ¼ Rcl case.
Given the previous conclusion on this dSR scheme regard-
ing the sensitivity to quantum physics, we consider this
result can then be interpreted as an screening of the
cosmological constant induced by quantum effects.
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FIG. 4. ΔR vs ΛR for m2
R ¼ 10−7M2

pl, ΛR ¼ 0.1, two different
values of ξR (ξR ¼ 0.01 with dashed lines and ξR ¼ 0.001 with
solid lines) and three values of R0: R0 ¼ 0 (green), R0 ¼ 10−6M2

pl

(violet), and R0 ¼ 10−2M2
pl (blue). The curves for R ¼ 0 and R ¼

10−6Mpl are almost superimposed.

3Recall that when R0 ¼ 10−2M2
pl, as we mentioned in Sec. VI

A, for m2
R ¼ 10−7M2

pl and ξR ¼ 0 the physical mass is not well
defined for small values of R. For this reason, here we only
consider cases with ξR ≠ 0.
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APPENDIX A: RENORMALIZATION
COUNTERTERMS

In order to obtain a nondivergent equation for the
physical mass, we absorb the divergencies into the bare
parameters of the theory (mB, ξB and λB). We have

m2
phþξRR¼m2þδm2þðξþδξÞRþ1

4
ðλþδλÞ½G1�: ðA1Þ

Therefore, using Eq. (11) for ½G1�,

m2
ph þ ξRR ¼ m2 þ δm2 þ ðξþ δξÞR

þ 1

16π2ϵ
ðλþ δλÞ

�
m2

ph þ
�
ξR −

1

6

�
R

�

þ 1

2
ðλþ δλÞTF; ðA2Þ

and demanding that the divergent terms cancel out, we
obtain

0 ¼
�
δm2 þ m2

16π2ϵ
ðλþ δλÞ

�
þ 1

2

�
λ

16π2ϵ
ðλþ δλÞ

þ δλ

�
TF þ

�
δξþ 1

16π2ϵ

�
ξ −

1

6

�
ðλþ δλÞ

�
R: ðA3Þ

Therefore, the required counterterms are

δm2 ¼ −
λ

16π2ϵ

�
m2

1þ λ
16π2ϵ

�
; ðA4Þ

δξ ¼ −
λ

16π2ϵ

� ðξ − 1
6
Þ

1þ λ
16π2ϵ

�
; ðA5Þ

δλ ¼ −
λ

16π2ϵ

�
λ

1þ λ
16π2ϵ

�
: ðA6Þ

APPENDIX B: hTμνi AT LO IN
ffiffiffi
λ

p

In Refs. [19,38], the results are presented in terms of the
MS parameters ðm; ξ; λÞ and μ̂. However, we present our
results in terms of renormalized parameters ðmR; ξR; λRÞ in
the dSR scheme with a generic R0. In order to compare the
results, in this Appendix, we set m ¼ ξ ¼ 0 and R ¼ R0,
and provide a relation between ðmR; ξR; λRÞ and λ and μ̂,
valid at the next to leading order in an expansion in

ffiffiffi
λ

p
.

Recall that, by definition and since we are setting ϕ̂ ¼ 0,
the renormalized mass mR is the physical mass mph at
R ¼ R0. From Eq. (28), using Eq. (37) and Eq. (39), we
have [1]

m2
R ¼ −R0

�
ξR −

1

6

�
−

R0

6
þ λR0

576π2

1 − λ
32π2

½logð R0

12μ̂2
Þ þ gðm2

RþξRR0

R0
Þ�
:

ðB1Þ

Then, at NLO in
ffiffiffi
λ

p
, it is reduced to a quadratic equation

on m2
R, whose solution is

m2
R ≃

R0

ffiffiffi
λ

p

16
ffiffiffi
3

p
π
þ λR0

�
12γE − 13þ 6 logð R0

12μ̂2
Þ

2304π2

�
: ðB2Þ

Performing the analogous procedure for ξR, we obtained

ξR ≃
ffiffiffi
λ

p

16
ffiffiffi
3

p
π
þ λ

�
6γE − 14 − 3 logð R0

12μ̂2
Þ

1152π2

�
: ðB3Þ

Hence, when inserting these results for mR and ξR into
Eq. (67), and considering the NLO terms in

ffiffiffi
λ

p
expansion,

we get the result shown in Eq. (76).
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