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Abstract

The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact

solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formu-

lation of DFT, considering up to four-derivative terms in the action principle, while the

field content is perturbed by the GKSA. We study the inclusion of the generalized ver-

sion of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy

effective heterotic supergravity upon parametrization. This formalism reproduces higher-

derivative heterotic background solutions where the metric tensor and Kalb-Ramond field

are perturbed by a pair of null vectors. Next we study higher-derivative contributions to

the classical double copy structure. After a suitable identification of the null vectors with

a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus

higher derivative corrections in agreement with the KLT relation.
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1 Introduction

Double Field Theory (DFT) [1, 2] is a duality symmetric formalism that can be understood

as a generalization ofD-dimensional Riemannian geometry, manifestly invariant under the

action of O(D,D). This group is closely related with an exact symmetry of String Theory

[3]. One of the most exciting features of this formalism is that the space-time must be

doubled to accomplish O(D,D) as a global symmetry of the theory [4]. The generalized

coordinates of the double space XM = (xµ, x̃µ) are in the fundamental representation of

O(D,D), where x̃µ is the extra set of coordinates and M = 0, . . . , 2D − 1. However, the

theory is constrained by the section condition (or strong constraint), which effectively

removes the dependence on x̃µ.

The fundamental bosonic fields consist of a symmetric generalized tensor HMN(X)

and a generalized scalar do(X). While the former is a multiplet of the duality group,

the latter is an invariant, and they are usually referred as the generalized metric and the

generalized dilaton. On the other hand, DFT can easily describe the low energy limit of

heterotic string theory [5]. This formalism requires a generalized frame [6] instead of a

generalized metric to embed the gravitational degrees of freedom of the theory. A similar

approach is the flux formulation of DFT [7].

One important issue that can be studied with DFT is the incorporation of higher

derivative terms in supergravity frameworks. In [8] a biparametric family of higher-

derivative duality invariant theories was presented. For particular values of the param-

eters, the higher-derivative contributions reproduce the α′-corrections of the heterotic

supergravity, also studied in [9].

In this work we are interested in considering HMN and do as arbitrary background fields

that can be perturbed. We focus in the generalized Kerr-Schild ansatz (GKSA) introduced

in [10], which is an exact and linear perturbation of the generalized background metric

given by

HMN = HMN + κK̄MKN + κKMK̄N , (1.1)

where κ is an arbitrary parameter that allows to quantify the order of the perturbations
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and K̄M = P̄M
NK̄N and KM = PM

NKN are a pair of generalized null vectors

ηMNK̄MK̄N = ηMNKMKN = ηMNK̄MKN = 0 , (1.2)

where ηMN is an O(D,D) invariant metric and P̄MN = 1
2
(ηMN + HMN) and PMN =

1
2
(ηMN −HMN) are used to project the O(D,D) indices. This ansatz (plus a generalized

dilaton perturbation) is the duality invariant analogous of the ordinary Kerr-Schild ansatz

[11] [12], and the inclusion of a pair of generalized null vectors is closely related with

the chiral structure of DFT. This duality invariant ansatz was recently used in different

context as exceptional field theory [13], supersymmetry [14], among others [15].

In [16] a consistent way to impose the GKSA in a two-derivative heterotic DFT frame-

work was described. In that work the authors considered a generalized metric approach

to recover the leading order contributions. Here we extend the formalism by considering

higher-derivative terms in the flux formulation of DFT. We use a systematic method for

obtaining these corrections, closely related with [17]. Higher-derivative contributions re-

quiere agreement between the ansatz and the generalized version of the Green-Schwarz

mechanism as we show.

As an application we study higher-derivative contributions to the classical double copy

[18] [19] [20] 1 in a heterotic supergravity background. We consider,

gµν = gµνo + κl(µ l̄ν) , (1.3)

gµν = goµν − κ̃l̄(µlν) , (1.4)

where κ̃ = 2κ
2+κ(l·l̄)

and l and l̄ are a pair of null vectors with respect to the background

metric. We compute the Riem2 contributions and we obtain the leading four-derivative

corrections to the single copy, given by κ corrections to the Maxwell-like equations that

described the gravity sector after identifying the null vectors with a pair of U(1) gauge

fields, in agreement with the KLT relation for heterotic string theory.

This work is organized as follows: In Section 2 we introduce the field content, the

symmetries and the action principle of the low energy effective heterotic supergravity,

considering up to four-derivative terms in the action principle. Section 3 is dedicated to

1See also [21] for recent approaches to this topic.
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explore the extension of the GKSA to the flux formalism of DFT. First we review the

generalized metric formalism and then we discuss the generalized frame formalism that is

necessary to construct the generalized fluxes. In Section 4 we start by considering mul-

tiplets of O(D,D + K), and we perform a suitable breaking to O(D,D) by identifying

the extra gauge field with a particular flux component. With this method we obtain

the higher-derivative extension to DFT. Here we choose the free parameters of the con-

struction to match with the heterotic DFT formulation. In Section 5 we parametrize the

theory in terms of the field content of heterotic supergravity. We discuss about the ten-

sion between the perturbation of the gravitational sector in terms of a pair of null vector

with respect to the absence of a perturbation for the gauge sector. Then we apply our

formalism in Section 6 to explore higher-derivative corrections to the heterotic Classical

Double Copy. Finally, in Section 7, we present the conclusions of the work.

2 Higher-derivative heterotic supergravity

In the first part of this section we review the D = 10 heterotic supergravity considering

α and β contributions, according to [22] 2. Then we impose the supergravity version of

the GKSA to perturbe the background fields.

2.1 Action and field content for background fields

The low energy effective action that describes D = 10 heterotic string theory to first order

in α′ is

S =

∫

M10

e−2φo

(
Ro − 4∂µφo∂

µφo −
1

12
ĤoµνρĤ

µνρ
o − 1

4
(FoµνiF

µνi
o +R(−)

oµν
abR(−)µν

o ab)
)
,(2.1)

where µ = 0, . . . , 9, a = 0, . . . , 9, i = 1, . . . , n with n the dimension of the Yang-Mills

group, typically n = 496. The 10-dimensional field content consists of a background

metric goµν = eoµaη
abeoνb, the background Kalb-Ramond field boµν , the background gauge

field Aoµi and the background dilaton φo. The action (2.1) is written in terms of the

2We take α = 1 and β = 1 to simplify notation. Conventions for the field content follows [14].
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curvatures of the previous fields, i.e.,

Ĥoµνρ = 3

[
∂[µboνρ] −

(
Ai

o[µ∂νAoρ]i −
1

3
fijkA

i
oµA

j
oνA

k
oρ

)

−
(
∂[µΩ

(−)cd
oν Ω

(−)
oρ]cd +

2

3
Ω(−)ab

oµ Ω
(−)
oνbcΩ

(−)
oρ

c
a

)]
,

F i
oµν = 2∂[µA

i
oν] − f i

jkA
j
oµA

k
oν ,

R
(−)
oµνab =

(
−2∂[µwoν]ab + 2wo[µ|a

cwo|ν]cb

)
, (2.2)

where the spin and Hull connections are defined as

woµa
b = −eνoa∂µeoν

b + Γσ
o µνeoσ

beνoa , (2.3)

Ω
(−)
oµab = woµab −

1

2
Ĥoµνρe

ν
oae

ρ
ob , (2.4)

and the Christoffel connection is

Γσ
o µν =

1

2
gσρo (∂µgoνρ + ∂νgoµρ − ∂ρgoµν) . (2.5)

The action principle (2.1) is invariant under Lorentz transformations. These transfor-

mations acting on a generic vector Va reads

δΛVa = VbΛ
b
a , (2.6)

where Λab = −Λba is the Lorentz parameter. Contraction of indices in (2.6) make use

of the Lorentz metric ηab. The invariance of (2.1) requires that the Kalb-Ramond field

transforms with a non-covariant transformation, namely,

δΛboµν = −Ω
(−)
o[µ

ab∂ν]Λab. (2.7)

The previous transformation is known as the Green-Schwarz mechanism and it is a higher-

derivative transformation that cannot be removed with field redefinitions.
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The equations of motion for this setup are given by

∆φo = Ro + 4gµνo (∇µ∇νφo − ∂µφo∂νφo)−
1

12
gµσo gντo gρξo ĤoµνρĤoστξ (2.8)

−1

4
gµρo gνσo Foµν

iFoρσi −
1

4
gµρo gνσo R

(−)
oµνabR

(−)
oρσ

ab = 0 ,

∆goµν = Roµν + 2∇µ∇νφo −
1

4
gστo gλξo ĤoσλµĤoτξν

−1

2
gστo FoσµiFoτν

i − 1

2
gστo R

(−)
oσµabR

(−)
oτν

ab = 0 , (2.9)

∆boµν = gρσo ∇ρ

(
e−2φoĤoµνσ

)
= 0 , (2.10)

∆Aoν
i = gρµo ∇(+,A)

ρ

(
e−2φoFoµν

i
)

= 0 , (2.11)

where we have defined

∇(+,A)
ρ Foµν

i = ∂ρFoµν
i − Γ(+)

oρµ
σFoσν

i − Γ(+)
oρν

σFoµσ
i − fjk

iAoρ
jFoµν

k , (2.12)

Γ(+)ρ
oµν = Γρ

oµν +
1

2
Ĥoµνσg

σρ
o , (2.13)

which covariantizes the derivative with respect to ten dimensional diffeomorphisms and

gauge transformations using the Christoffel and gauge connection respectively. Here we

mention that the equations (2.8)-(2.11) are not strictly the ones obtained from variations

of the action with respect to the fundamental fields, but combinations of them.

2.2 Perturbing the background

Now we are interested in imposing the supergravity version of the GKSA on the previous

formulation. We do not consider perturbations of the gauge field, i.e., Aµi = Aoµi. The

inverse of the 10-dimensional background metric is perturbed as

gµν = gµνo + κl(µ l̄ν) , (2.14)

where lµ and l̄µ are null vectors with respect to gµν and gµνo , i.e.,

lµlνg
µν = lµg

µν
o lν = 0 , (2.15)

l̄µl̄νg
µν = l̄µgo

µν l̄ν = 0 . (2.16)

The previous objects also satisfy the following relations

l̄ν∇oν lµ = 0 , lν∇oν l̄µ = 0 , (2.17)
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which reduce to the standard geodesic conditions when l and l̄ are identified [10]. The

perturbation of the Kalb-Ramond field is given by

bµν = boµν − κ̃l[µl̄ν] , (2.18)

where κ̃ = 2κ
2+κ(l·l̄)

and the dilaton is perturbed as showed in [14]. Moreover, the first order

Lorentz transformation for the exact b-field now takes the following form

δΛbµν = −Ω
(−)
[µ

ab∂ν]Λab , (2.19)

while the other exact fields are Lorentz invariant.

3 Double Field Theory and the generalized Kerr-

Schild Ansatz

3.1 Generalized metric formulation

In this section we review DFT and the GKSA following the conventions of [14]. The

GKSA was formulated in [10] as an exact and linear perturbation of the generalized back-

ground metric HMN (M,N = 0, . . . , 2D−1) and an exact perturbation of the generalized

background dilaton do. We work with arbitrary D until parametrization.

Since the generalized metric is an O(D,D) element, its perturbation has the following

form

HMN = HMN + κ(K̄MKN +KMK̄N) , (3.1)

where K̄M = P̄M
NK̄N and KM = PM

NKN are a pair of generalized null vectors

ηMNK̄MK̄N = ηMNKMKN = ηMNK̄MKN = 0 . (3.2)

According to (3.1), the DFT projectors are

PMN = PMN − 1

2
κ(K̄MKN +KMK̄N)

P̄MN = P̄MN +
1

2
κ(K̄MKN +KMK̄N) . (3.3)
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Each O(D,D) multiplet can be written as a sum over its projections,

VM = PM
NVN + P̄M

NVN = VM + VM , (3.4)

where VM is a generic double vector. When we use the underline and overline notation,

we consider the background projectors PMN and P̄MN .

The generalized background dilaton can be perturbed with a generic κ expansion,

d = do + κf , f =

∞∑

n=0

κnfn , (3.5)

with n ≥ 0.

Mimicking the ordinary Kerr-Schild ansatz, the generalized vectors KM , K̄M and f

obey some conditions in order to produce finite deformations in the DFT action and

EOM’s. If we consider a generic double vector VN , the covariant derivative can be defined

as

∇MVN = ∂MVN − ΓMN
PVP , (3.6)

where ΓMNP is the generalized affine connection. Demanding

∇MHNP = 0 , ∇MηNP = 0 , (3.7)

and a vanishing generalized torsion

Γ[MNP ] = 0 , (3.8)

the following projections of ΓMNP = −ΓMPN are well-defined and can be perturbed,

ΓMNQ = −P̄Q
RPM

S∂SPRN , ΓMNQ = P̄N
RP̄M

S∂SPRQ ,

ΓMNQ = 2P̄[N
RP̄Q]

S∂SPRM , ΓMNQ = 2P̄M
RP[N

S∂SPQ]R . (3.9)

Similarly to Riemannian geometry, the generalized Ricci scalar and the generalized

Ricci tensor can be constructed from different (determined) projections of the generalized

affine connection. Following the original construction of the GKSA we impose,

K̄P∂PK
M +KP∂

MK̄P −KP∂P K̄
M = 0 ,

KP∂P K̄
M + K̄P∂

MKP − K̄P∂PK
M = 0 , (3.10)
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and

KM∂Mf = K̄M∂Mf = 0 . (3.11)

Using (3.8), we can change ∂ → ∇ in (3.10) obtaining,

K̄P∇PK
M +KP∇MK̄P −KP∇P K̄

M = 0 ,

KP∇P K̄
M + K̄P∇MKP − K̄P∇PK

M = 0 . (3.12)

In the next part we explore how the previous conditions appear in the flux formalism of

DFT [7]. Then we explicitly compute the EOM’s of the field content of DFT when we

impose the GKSA in this formalism.

3.2 Generalized flux formulation

The generalized flux formulation of DFT is closely related with the generalized frame

formulation introduced in [6]. The latter is compatible with the GKSA if we consider

perturbations of the form,

EMA = EM
A +

1

2
κEM

BKBK̄
A ,

EMA = EM
A − 1

2
κEM

BK̄BK
A , (3.13)

where KA = EM
AKM = EM

AKM and K̄A = EM
AK̄M = EM

AK̄M and EMA is an

O(D,D)/O(D − 1, 1)L × O(1, D − 1)R frame. In this formulation A = 0, . . . , D − 1

and A = 0, . . . , D − 1 are O(D − 1, 1)L and O(1, D − 1)R indices, respectively.

We can define flat invariant projectors as follows,

PAB = EMAEM
B = PAB ,

P̄AB = EMAEM
B = P̄AB , (3.14)

where PAB = EMAE
M

B and P̄AB = EMAE
M

B are the standard DFT flat projectors.

Using these projectors we can construct two invariant metrics,

ηAB = EMAη
MNENB = EMAη

MNENB , (3.15)

HAB = EMAHMNENB = EMAH
MNENB . (3.16)
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The flat covariant derivative acting on a generic vector VB is

DAVB = EAVB +WAB
CVC , (3.17)

where EA =
√
2EM

A∂M and WAB
C is the generalized spin connection that satisfies

WABC = −WACB and WABC = WABC = 0 . (3.18)

With the help of the generalized frames we can construct the generalized fluxes, which

are defined as

FABC = 3E[A(EM
B)EMC] ,

FA =
√
2e2d∂M

(
EM

Ae
−2d

)
. (3.19)

In the flux formulation of DFT, conditions (3.10) and (3.11) become

KAEAK̄
C +KAK̄BFAB

C = 0 ,

K̄AEAK
C + K̄AKBFAB

C = 0 , (3.20)

and

KAEAf = K̄AEAf = 0 . (3.21)

It is straightforward to check that the previous conditions are double Lorentz invariant

using

δΓEMA = EMBΓBA , δΓEMA = EM
BΓBA (3.22)

where ΓAB = −ΓBA is the double Lorentz parameter.

Only the totally antisymmetric and trace parts of WABC can be determined in terms

of EMA and d,

W[ABC] = −1

3
FABC , (3.23)

WBA
B = −FA , (3.24)

the latter arising from partial integration with the dilaton density. Using these identifi-

cations, conditions (3.20) and (3.21) can be written as

KAD
AK̄B = K̄AD

AKB = 0 ,

KAD
Af = KAD

Af = 0 , (3.25)
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where DA is the background covariant derivative. As we mentioned before, the gener-

alized Ricci scalar and the generalized Ricci tensor are completely determined in terms

of the degrees of freedom of DFT and, particularly, can be written in terms of different

projections of the fluxes,

R = 2EAFA + FAFA − 1

6
FABCFABC − 1

2
FABCFABC , (3.26)

RAB = EAFB − ECFAB
C + FCDAFD

B
C − FCFAB

C . (3.27)

The previous projections of the fluxes can be computed using (3.13) and imposing

(3.20) and (3.21),

FABC = FABC − 3

2
κK

D
K[AFBC]D , (3.28)

FABC = FABC + κ

(
K [CDB]KA +KAE[BKC] −

1

2
K

D
KAFDBC

)
, (3.29)

FABC = FABC − κ

(
K[CDB]KA +KAE[BKC] −

1

2
KDKAFDBC

)
, (3.30)

FA = FA − 1

2
κ
(
KADBK

B
+ FBACK

B
KC + 4DAf

)
. (3.31)

Replacing the previous expressions in (3.26) the generalized Ricci scalar can be written

as

R = R + κ
[
−KAK

B
EBF

A −DA

(
KADBK

B
+ FB

ACK
B
KC

)
+ FABCKCDBKA

+FABCKAEBKC − 4DAD
Af

]
+ κ2

[
4EAfE

Af
]
, (3.32)

and therefore in the case f = const., the generalized Ricci scalar can be linearized.

With a similar procedure the generalized Ricci tensor can be written as,

RAB = RAB + κR(κ)AB + κ2R(κ2)AB , (3.33)
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where

R(κ)AB = −1

2
DA

(
KBDCK

C
)
+

1

2
EC

(
KCDBKA

)
− 1

2
EC

(
KBDCKA

)
+

1

2
EC

(
KAEBKC

)

−1

2
EC

(
KAECKB

)
− 1

2
K

D
KCEAFDBC − 1

2
EAK

D
KCFDBC − 1

2
K

D
EAK

CFDBC

−1

2
ECKDKAFDBC − 1

2
KDECKAFDBC − 1

2
KDKAE

CFDBC +
1

2
K

D
KCEDFABC

−1

2
KCDBKEF

CE
A +

1

2
KBDCKEF

CE
A − 1

2
KEEBKCF

CE
A +

1

2
KEECKBF

CE
A

+
1

2
KADDKCFB

CD − 1

2
KDDAKCFB

CD +
1

2
KCEDKAFB

CD − 1

2
KCEAKDFB

CD

+
1

2
KCDBKAF

C +
1

2
KCKAECFB − 1

2
KBDCKAF

C +
1

2
KAEBKCF

C

−1

2
KAECKBF

C − 1

2
K

E
KCFEDAFB

CD +
1

2
KDKEFDBCF

CE
A

−1

2
KDKAFDBCF

C − 1

2
K

E
KDFED

CFABC − 2DADBf , (3.34)

and

R(κ2)AB =
1

2
K

D
KC

(
EDKA

)
(ECKB) +

1

4
K

D
KCKA (DDECKB)

−1

4
KCKAKB

(
ECDDK

D
)
− 1

4
KCKAK

EEC

(
K

D
FDBE

)

−KCKA (ECDBf) +
(
KBDCKA

) (
DCf

)
−

(
KAEBKC

) (
DCf

)

+
(
KAECKB

) (
DCf

)
+
(
KDKAFDBC

) (
DCf

)
. (3.35)

As can be appreciated, the EOM of the generalized metric contains quadratic terms

even if f = 0, and unlike general relativity there no exist α1 and α2 such that the quadratic

terms can be written as

R(κ2)AB
= α1κK̄AK̄

CR(κ)CB
+ α2κKBK

CR(κ)AC
.

The previous equation shows that the equation of motion of the generalized metric

cannot be linearized when the GKSA is considered. Nevertheless, upon breaking the global

O(D,D) invariance and using the equation of motion of gµν and bµν , it is straightforward

to probe that the quadratic contributions vanish when f = 0, as showed in [10].
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4 Higher-derivative Double Field Theory

Higher-derivative extensions in DFT were analyzed in several works [8] [9]. An iterative

procedure to find an infinite tower of this kind of terms was recently given in [17]. In that

work the authors consider an O(D,D+K) multiplet ĤMN , which is a generalized metric

constrained to be an element of O(D,D +K) with invariant metric η̂MN

ĤMP η̂PQ ĤNQ = η̂MN , (4.1)

M,N = 0, . . . , 2d − 1 + K. In this formulation, K is the dimension of a gauge group

K and therefore Ĥ is parametrized by a generalized metric which is an O(D,D) element

and by a generalized constrained O(D,D) vector field.

The generalized frame ÊMA relates the generalized metric ĤMN with the flat gener-

alized metric ĤAB, and the O(D,D +K) invariant metric η̂MN with its flat version η̂AB

(which we assume to be constant) as follows

ĤMN = ÊMA ĤAB ÊNB (4.2)

η̂MN = ÊMA η̂AB ÊNB . (4.3)

Since the idea of this formalism is to cast the O(D,D + K) formulation in terms of

O(D,D) frame multiplets, the extended Lorentz subgroup O(1, D − 1 +K) → O(1, D −
1)×O(K) is broken such that the flat indices now split as A = (A , A) = (A , A , α), and

transform respectively under O(D − 1, 1)× O(1, D− 1)×O(K) .

Under this splitting we have

ĤMN = −ÊMA ÊNA + ÊMA ÊNA + ÊMα ÊNα , (4.4)

η̂MN = ÊMA ÊNA + ÊMA ÊNA + ÊMα ÊNα , (4.5)

where we use the convention that PAB, P̄AB and καβ raise and lower indices once we

parametrize the O(D − 1, 1)× O(1, D− 1 +K) projectors as

P̂AB =




PAB 0 0

0 0 0

0 0 0


 , ̂̄PAB =




0 0 0

0 P̄AB 0

0 0 καβ


 . (4.6)
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We introduce the following O(D,D) multiplets

HMN , CMα , d , (4.7)

and the O(D,D)/O(D− 1, 1)× O(1, D− 1) frames which satisfy

ηMN = HMP ηPQ HNQ

HMN = −EMA ENA + EMA ENA ,

ηMN = EMA ENA + EMA ENA (4.8)

and we demand

P̄M
NCNα = 0 , PM

NCNα = CMα . (4.9)

It is straightforward to find the relation between the O(D,D) multiplets and the

components of the O(D,D +K) multiplets. Given the following parameterization [24]

ĤMN =


 H̃MN C̃Mβ

(C̃T )αN Ñ αβ


 , η̂MN =


ηMN 0

0 καβ


 , (4.10)

one obtains a non-polynomial relation given by

H̃MN = HMN + 2CMα

(
κ+ CT η−1C

)−1αβ
(CT )βN ,

C̃Mα = 2CMβ

(
κ + CTη−1C

)−1βγ
κγα , (4.11)

Ñαβ = −καβ + 2καγ

(
κ+ CTη−1C

)−1γδ
κδβ .

The tilded fields are also O(D,D) multiplets, which are constrained by the requirement

(4.1), that reads

H̃M
P H̃NP + C̃MαC̃Nα = ηMN , (4.12)

H̃M
P C̃P α + C̃MβÑβ

α = 0 , (4.13)

C̃PαC̃P
β + ÑγαÑ γ

β = καβ . (4.14)

On the other hand introducing the following definitions

∆α
β = κα

β + CMαCMβ (4.15)

ΞM
N = ηM

N + CMαCNα (4.16)
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we can parametrize

ÊMA = EMA

ÊMA = (Ξ− 1

2 )M
P EPA

ÊMα = CMγ (∆− 1

2 )γ
β eβ

α

ÊαA = 0

ÊαA = −EPA (Ξ− 1

2 )P
Q CQα

Êαα = (∆− 1

2 )α
β eβ

α , (4.17)

which verify (4.4) and (4.5). Here we have introduced a constant eα
β that identifies the

gauge indices α with α and satisfies eα
ακαβeβ

β = καβ .

4.1 Biparametric corrections

In this work, we explicitly implement the following identification for the gauge group K,

K = O(1, D − 1) ⊂ O(1, D− 1 +K) , (4.18)

which is enough to include 4-derivative terms in the ordinary DFT action, as was discussed

in appendix A of [17]. The idea is to identify the gauge degrees of freedom CMα with

(derivatives of) the generalized frame EMA.

Let us first begin by introducing the generators (tα)A
B that relate objects with gauge

and P̄-projected adjoint Lorentz indices

Aα = −(tα)B
A AA

B , AA
B = −Aα(t

α)A
B . (4.19)

This implies that

(tα)AB (tα)CD = δA
[C
δB
D]

, (tα)A
B (tβ)B

A = καβ , (4.20)

and

[tα , tβ] = fαβ
γ tγ . (4.21)

We define

CABC = −
√
2EM

ACMα (tα)BC (4.22)
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which we identify with F̂ABC , as its index structure suggests. It is important to remark

that this method is valid only to include four-derivative terms in the action principle, as

discussed in [17].

Mimicking the previous procedure, but starting with an O(D+K,D) invariant theory

results in an equivalent O(D,D) formalism up to a Z2 transformation. Therefore, the

most general higher-order action principle in terms of O(D,D) fields is a biparametric

action with the following form,

S =

∫
d2DXe−2dR̂ =

∫
d2DXe−2d

(
R+ aR(−) + bR(+)

)
(4.23)

where R(+) is

R(+) = −1

2

[
(EAEBFB

CD)FACD + (EAEBFA
CD)FBCD + 2(EAFB

CD)FA
CDFB

+(EAFACD)(EBFB
CD) + (EAFB

CD)(EAFB
CD) + 2(EAFB)FB

CDFACD

+(EAFBCD)FC
CDFABC − (EAFBCD)FC

CDFABC + 2(EAFA
CD)FB

CDFB

−4(EAFB
CD)FA

CEFBE
D +

4

3
FE

ACFBEDFC
CDFABC + FB

CDFA
CDFBFA

+FA
CEF

BED
FA

CGFBGD − FB
CEF

AED
FA

CGF̂BGD − FABDFD
CDFC

CDFABC
]
,

in agreement with [8], and was determined through the corrections to the extended gen-

eralized fluxes using (4.17),

F̂ABC = FABC +
1

2

(
EAFCD

[B + FECDFAE[B

)
FC]CD ,

F̂ABC = FABC − 3

4
FDEFFEF

[AFD
BC] ,

F̂ABC = FABC +
3

2

(
E[AFCD

B − 1

2
FD[ABFDCD − 2

3
FC

E[AFB
ED

)
FC]CD ,

F̂A = FA − 1

4

[
FB

CDFA
CDFB + EB

(
FB

CDFA
CD

)]
. (4.24)

R(−) coincides with R(+) modulo a Z2 transformation. Here a and b are undetermined

constants and there exists an infinite amount of first-order duality invariant theories, some

of them not related to String Theory [25]. In this work we focus in the case a = 0 and b = 1

in order to match with the higher-derivative heterotic supergravity after parametrization.

The explicit form of the κ terms of the 4-derivative Lagrangian is given in appendix A.
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4.2 Equations of motion

Using the procedure discussed in the previous section, the equations of motion of higher-

derivative heterotic DFT can be recast in the following compact form,

R̂ = R+R(+) = 0 , (4.25)

R̂BA = RBA +R(+)

BA
= 0 , (4.26)

where

R(+)

BA
= − b

4
EB

[
EC

(
FAEFFCEF

)
+ FAEFFCEFFC

]
− b

2
EC

[(
EBF[A

EF + FDEFFBD[A

)
FC]EF

]

+
b

2

(
EGF[A

EF + FDEFFGD[A

)
FC]EFFCG

B +
b

4
FAC

GFBG
DFDEFFCEF

+
b

4
EDFBA

CFCEFFDEF + bE[AFC]EFEBFCEF − bE[AFC]EFFD
EFFB

CD

− b

2
EBFCEFFAE

GFCGF +
b

2
EBFCEFFDEFFAC

D − b

2
FAE

GFB
CDFC

EFFDGF

+
b

2
FA

CDFBCGFDEFFGEF − b

2

(
EBF[A

EF + FDEFFBD[A

)
FC]EFFC

+
b

4

[
ED

(
FCEFFDEF

)
+ FCEFFDEFFD

]
FBA

C , (4.27)

and R̂ given in the previous section. The former equation corresponds to the first-order

correction to the equation of motion of the generalized frame in the flux formalism of

heterotic DFT. As far as we know, this result was not previously reported in the literature

considering the flux formulation of DFT.

4.3 Generalized Green-Schwarz transformations

The biparametric higher-derivative DFT action (4.23) is invariant under generalized Lorentz

transformations only if the generalized frame receives a higher-derivative correction to its

Lorentz transformation,

δ(1)EMA = −EMBFB
CDEAΓCD ,

δ(1)EMA = EMBFA
CDEBΓCD , (4.28)

where ΓAB was defined in (3.22). Equations (4.28) mimic a Green-Schwarz mechanism,

but in a DFT scenario. Using the previous expressions it is straightforward to obtain the
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following transformations

δ(1)FABC =
√
2δ(1)ENA(∂

NEM
B)EMC + 2E[BEN

C]δ
(1)ENA

+2
√
2δ(1)EN [B∂

NEM
C]EMA − 2(E[Cδ(1)ENB])EN

A ,

δ(1)FABC =
√
2δ(1)ENA(∂

NEM
B)EMC + 2E[BEN

C]δ
(1)ENA

+2
√
2δ(1)EN [B∂

NEM
C]EMA − 2(E[Cδ(1)ENB])EN

A . (4.29)

When one imposes the GKSA, the generalized background EMA and the generalized null

vectors KM , K̄M receive a first-order Lorentz transformation coming from (4.28). This

transformation can be interpreted as a generalized Green-Schwarz transformation and it

must respect the constraints of the GKSA. Inspecting the null condition we need,

δ(1)(K̄M)K̄M = 0 , δ(1)(KM)KM = 0 . (4.30)

Similar relations can be found inspecting the generalized geodesic equations,

δ(1)
(
KADAK̄

C
)
= 0 , δ(1)

(
K̄ADAK

C
)

= 0 . (4.31)

The previous conditions cannot be satisfied with the zeroth-order constraints for a generic

solution, and therefore equations (4.30) and (4.31) can be interpreted as extra constraints

of the theory. In the next part of the work we break the duality group in order to obtain

the low energy effective heterotic supergravity with higher-derivative terms.

5 Heterotic parametrization

5.1 Parametrization

We start by takingD = 10 and promoting the duality group toH = O(9, 1)L×O(1, 9+n)R

with n = 496 in order to describe the 10-dimensional heterotic supergravity. We admit

the inclusion of heterotic vectors in a duality covariant formulation as in [26]. We split

the indices as M = (µ,
µ, i) and A = (a, a, i). The generalized frame is parametrized in

the following way,

EM
A =




Eµa Eµ
a Ei

a

Eµa Eµ
a Ei

a

Eµi Eµ
i Ei

i


 =

1√
2




−ẽoµa − Coρµẽ
ρ
oa ẽµo a −Aoρ

iẽρoa ,

ẽoµa − Coρµẽ
ρ

oa ẽ
µ

o a −Aoρ
iẽ

ρ

oa√
2Aoµie

i
i 0

√
2eii


 , (5.1)
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where Coµν = boµν +
1
2
Aoµ

iAoνi. The invariant projectors of DFT are parametrized in the

following way

Pab = −ηabδ
a
aδ

b
b , P ab = ηabδ

a
aδ

b
b
. (5.2)

According to the previous parametrization, the generalized metric takes the following

form,

HMN =




g̃µνo −g̃µρo Coρν −g̃µρo Aoρi

−g̃νρo Coρµ g̃oµν + CoρµCoσν g̃
ρσ
o + Aoµ

iκijAoν
j Coρµg̃

ρσ
o Aoσi + Aoµ

jκji

−g̃νρo Aoρi Coρν g̃
ρσ
o Aoσi + Aoν

jκij κij + Aoρig̃
ρσ
o Aoσj


 . (5.3)

On the other hand KM and K̄M can be parametrized as

KM =
1√
2




lµ

−lµ − Coρµl
ρ

−Aoiρl
ρ


 , K̄M =

1√
2




l̄µ

l̄µ − Coρµl̄
ρ

−Aoiρ l̄
ρ


 . (5.4)

We impose the standard gauge fixing for the double Lorentz group,

ẽoµaη
abẽoνb = ẽoµaη

abẽoνb = g̃µν , (5.5)

with ηab the ten dimensional flat metric, a, b = 0, . . . , 9. Finally, the parametrization of

the generalized dilaton is,

e−2d =
√

g̃e−2φ̃ . (5.6)

The previous parametrization reproduce the low energy heterotic supergravity with

higher-derivative terms. While g̃µν and bµν are consistently perturbed by a pair of null

vectors l and l̄ as in (2.14) and (2.18), the perturbations of the gauge field Aoµi are

suppressed by the O(10, 10 + n) invariance.

5.2 Field redefinitions

One of the most interesting aspects of higher-derivative DFT is the need of field redefini-

tions to match with standard heterotic supergravity using (5.1). It is straightforward to

show that g̃µν transforms under Lorentz transformations as,

δΛg̃
µν = δΛ(g̃

µν
o + κl(µ l̄ν)) = −Ω(µ

ab∂ν)Λab . (5.7)
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We stress that this field redefinition is independent of the GKSA and therefore it is

mandatory to consider an exact metric and dilaton redefinition of the form [8],

g̃µν = gµν −
1

2
Ω

(−)
µabΩ

(−)
ν

ab , (5.8)
√
−g̃e−2φ̃ =

√−ge−2φ , (5.9)

and hence δΛgµν = 0 as in (2.19). The previous field redefinitions can be imposed at

the level of perturbative double field theory and, in particular, when one considers the

GKSA. Parametrizing the generalized frame perturbations we find (before imposing the

gauge fixing),

˜̄eµ
a = ˜̄eoµ

a − 1

2
κ̃l̄µlν ˜̄e

νa
o , (5.10)

ẽµ
a = ẽoµ

a − 1

2
κ̃lµ l̄ν ẽ

νa
o , (5.11)

˜̄eµa = ˜̄eo
µa +

1

2
κlµ l̄ν ˜̄eoν

a , (5.12)

ẽµa = ẽo
µa +

1

2
κl̄µlν ẽoν

a , (5.13)

where

κ̃ =
2κ

2 + κ(l · l̄) . (5.14)

In the limit κ2 ∼ 0 we can identify ˜̄eµ
a → ẽµ

a (and ˜̄eµa → ẽµa). Moreover, since the

field redefinition (5.8) contains two explicit derivatives we can construct the torsionful

connection using eµa instead of ẽµa. The former is perturbed as

eµ
a = eoµ

a − 1

2
κl̄µlνe

νa
o (5.15)

and the torsionful connection can be easily constructed considering the perturbations of

the spin connection

wµab = woµab −
1

2
κ
[
∇oµ

(
lν l̄σ

)
+∇oν

(
lσ l̄µ

)
−∇oσ

(
lµ l̄ν

)]
eνo [ae

σ
o b] +O(κ2) , (5.16)

and the 3-form

Hµνρ = Hoµνρ − 3κ∇o[µ

(
lν l̄ρ]

)
+O(κ2) . (5.17)
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In this case the gauge fixing implies ẽoµ
aδa

a = eoµ
a− κ̃l̄[µlν]eo

νa, where the left background

vielbein is related to right one through l and l̄ terms.

In what follows we use the present formulation to find higher-derivative corrections in

the context of heterotic supergravity considering the GKSA. We restrict our study to the

leading order in κ terms in order to be compatible with the gauge fixing here presented.

6 Classical Double Copy

The double-copy structure of perturbative gravity originates from string theory in the so

called KLT formalism, where one identifies universal relations between open- and closed-

string tree-level amplitudes [18]. The KLT relations have been later on reformulated

in a field-theory framework by Bern, Carrasco and Johansson (BCJ) noticing a hidden

symmetry of gauge-theory amplitudes which is a duality between color and kinematics

[19]. In heterotic supergravity, the identification of the null vectors with a pair of U(1)

gauge fields reproduce a pair of Maxwell-like equations to describe the dynamics of the

system, as showed in [16]. In this part of the work we inspect higher-derivative corrections

to these equations.

6.1 Double null vector ansatz

Higher-derivative terms can be easily incorporated in the classical double copy prescription

of the low energy limit of heterotic string theory. We assume that the geometry admits

one Killing vector ξµ such that the Lie derivative Lξ acting on an exact field vanishes,

LξTµ1µ2µ3... = 0 (6.1)

where Tµ1µ2µ3... is an arbitrary tensor. Moreover we choose a coordinate system where ξµ

is covariantly constant, i.e.,

∇oµξν = ∇o[µξν] = 0 , (6.2)

and then condition (6.1) is

ξµ∇oµTµ1µ2µ3... = 0 . (6.3)
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We normalize the null vectors to satisfy,

ξµη
µνlµ = ξµη

µν l̄µ = 1 . (6.4)

In order to obtain the leading order terms with up to four derivatives in the single

and zeroth copy, we perturbe the gravity contributions to (2.9) by considering Aoµi = 0,

φ = φo = const. and Ĥµνρ = Ĥoµνρ = 0. Then we contract the equation of motion for the

metric tensor with ξµ and ξµξν,

ξµ∆(1)gµν = −1

2
ξµgστRσµabRτν

ab , (6.5)

ξµξν∆(1)gµν = −1

2
ξµξνgστRσµabRτν

ab , (6.6)

to find the single copy and the zeroth copy, respectively. We perturb around a generic

background,

gµν = gµνo + κϕl(µ l̄ν) ,

gµν = goµν − κϕl(µ l̄ν) , (6.7)

keeping only κ terms to be compatible with the previous section, and we include the scalar

function ϕ in the ansatz.

After imposing the previous ansatz the connection takes the following form

Γσ
µν = Γσ

oµν −
1

2
κgσρo

[
∇oµ

(
ϕl̄(ν lρ)

)
+∇oν

(
ϕl̄(µlρ)

)
−∇oρ

(
ϕl̄(µlν)

)]
. (6.8)

The Riemann tensor for this configuration can be written in the following covariant way,

Rσ
λµν = Rσ

o λµν −
1

2
κgσρo ∇oµ

[
∇oν

(
ϕl̄(λlρ)

)
+∇oλ

(
ϕl̄(νlρ)

)
−∇oρ

(
ϕl̄(ν lλ)

)]

+
1

2
κgσρo ∇oν

[
∇oµ

(
ϕl̄(λlρ)

)
+∇oλ

(
ϕl̄(µlρ)

)
−∇oρ

(
ϕl̄(µlλ)

)]
+O(κ2) .

The leading order contributions to the equation of motion of the metric tensor were studied

in [16] and match with Maxwell-like equations after identifing ϕlµ = Aµ and ϕl̄µ = Āµ,

where Aµ and Āµ are a pair of U(1) gauge vectors,

κ

4
∇µ

oFµνi = 0 , (6.9)

κ

4
∇µ

o F̄µνi = 0 . (6.10)
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The curvatures for the abelian gauge fields are Fµνi = 2∂[µAν]i and F̄µνi = 2∂[µĀν]i. The

first correction to these equations are κ terms that come from the linear perturbation of

the Riemann tensor in (6.6). Explicitly,

κ

4
[∇µ

oFµν + (∇oρFµσ)Roν
µρσ] = 0 , (6.11)

κ

4

[
∇µ

o F̄µν + (∇oρF̄µσ)Roν
µρσ

]
= 0 , (6.12)

where we have used

[∇oρ,∇oσ]ξ
µ = Rµ

o λρσξ
λ = 0 . (6.13)

The zeroth copy dynamics does no receive a higher-derivative correction in this approxi-

mation,

κ

4
∇µ

o∇oµϕ = 0 . (6.14)

Finally we mention that the contributions found in this paper are consistent with the

KLT relation but they do not satisfy the color-kinematics duality. The gauge contributions

that satisfy this duality are [27]

Lopen =
1

4
FµνiF

µνi +
2

3
FµνF

νλFλ
µ +O(F 4) , (6.15)

where Lopen is the effective open string Lagrangian. The second contribution in (6.15) is

a O(α′) contribution that requires non-abelian contributions from the structure constants

of the heterotic gauge group. We left the study of these color-kinematics terms for future

work.

7 Conclusions

We study the heterotic formulation of DFT when higher-derivative terms are included,

and the field content is perturbed with the GKSA. We start by adapting the GKSA

to the flux formulation of DFT. Then we compute a higher-derivative extension for DFT

considering multiplets of O(D,D+K) and we choose the free parameters of the formalism

to match with the heterotic case. At this stage we review the four-derivative corrections to

the action principle of DFT and we compute the full first order equations of motion. Then
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we impose the GKSA to compute the leading-order contributions to the action principle

and we study the first order symmetry corrections in this framework. The double Lorentz

symmetry is deformed by a generalized Green-Schwarz transformation that must respect

the constraints of the GKSA and these are new conditions for generic double backgrounds.

Upon parametrization, we reproduce the low energy heterotic supergravity with higher-

derivative terms. Higher-derivative field redefinitions are required to match with the stan-

dard transformation rules. The gravitational field content, gµν and bµν , is consistently

perturbed by a pair of null vectors l and l̄. Interestingly enough, the perturbations of the

gauge field Aµi are suppressed by the O(10, 10+n) invariance, using the flux formulation

of DFT. This last point indicates a tension between the generalized metric formalism and

the generalized frame formalism upon parametrization. Moreover the generalized frame

formulation requires to impose gauge fixing to relate the vielbeins needed to construct

the torsionful spin connection. Here we solve this issue considering κ2 ∼ 0.

As an application we study higher-derivative contributions to the classical double copy.

We focus in the single and zeroth copy coming from the Riem2 starting from a generic

background. In this scenario we obtain four-derivative corrections to the κ Maxwell-like

equations previously discussed in [16] in agreement with the KLT relation.
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A Corrections to the DFT action

The four-derivative contributions to the DFT Lagrangian when the GKSA is imposed are

given by

R = R + bκ(T0 + T1 + T2 + T3) + bO(κ2) , (A.1)
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where

T0 = KAKA
(−1

2
FAFBFB

BCFA

BC
− 2FBBAFBCDFC

B

CFD

C

A − 1

2
FBFAFBCAF

BBC

−FBCAF
BD

EFA

CE
FB

B

D − 2FBBAF
CC

AFB
DCFC

BD
+ FBCAF

BC

DFA

ED
FB

B

E

−1

2
FBFBCDF

BBC
FA

D

A − FBBAF
CCD

FB
CAFC

B

D + FBBAF
BB

CF
CD

AFC

C

D

−1

2
FBBAF

CCD
FB

CDFC

B

A +
1

2
F
BB

AFCDAFBBCF
CCD

+ FABCF
CB

CFB
BDFA

DC

−1

2
FBFACAF

CBC
FB

BC − FBFCFB
B
AF

CB

A − 1

2
FBBCF

BB

AFC
CDFA

CD

+FBCAFBC
AFC

CD
FB

B

D +
1

2
FABCFB

BCF
A

CD
FD

BC
+ F

BB

CFC
D

AFBBDF
CC

A) , (A.2)

T1 = −2EAfFBF
BAB

FA
AB +KAKA

(−1

2
EAFA

BC
FBFB

BC +
1

2
EAF

BBC
FBFABC

−1

2
EAFBF

BCAFB

BC
− EAF

BBC
FACBFC

BC − 1

2
EAF

BC

AFBFB
BC

−1

2
EBFA

CD
FB

CDFB

B

A +
1

2
EAF

BBC
FDABFB

D

C +
1

2
EAF

BBC
FBFABC

−1

2
EBFAFB

BCFA

BC
− 1

2
EAFBF

B

BC
FABC +

1

2
EAF

BBC
FB

D

BFADC

+EBF
BB

AFCFC
AB +

1

2
EBFA

BC
FAFB

BC +
1

2
EBF

BC

AFAFB
BC

−1

2
EBFAFBCAF

BBC
− EBF

CB

AF
B

CBFC
AC − 1

2
EBFA

BC
FA

B
CFC

BC

−1

2
EBF

BBC
FAFABC − 1

2
EBF

BBC
FAFABC − 1

2
EBF

BC

AFB
DBFA

D

C

+
1

2
EBF

BCD
FB

B

AFACD +
1

2
EBF

BCD
F
B

ABFACD +
1

2
EBF

CD

AF
B

BAFB
CD

−1

2
EBFA

BC
FDABF

BD

C − 1

2
EBFA

C
AFB

BCFC

BC
+ EAF

BBC
FC

ABFCBC

+EBF
CB

AFCFB
B
A − EBF

BC

AFCFB
AB − EBFCF

B
B
AFC

B

A

+EBFCF
BACF

BB

A + EBF
BC

AFBD
CFDAB − EBF

BB

AFCFB
C
A

+
1

2
EBF

CB

AFCACF
BC

B +
1

2
EBF

CB

AFC
B
AFC

C

B − 1

2
EBF

CBC
FAACFB

BC

+EBF
BC

AF
BC

BFCCA +
1

2
EBF

CBC
FA

B
CFABC − 1

2
EBF

CBC
FABCFB

AC

−1

2
EBF

BC

AFBC
AFCBC − 1

2
EBF

BBC
FACAFC

BC +
1

2
EBF

CBC
FBACFB

AC

+
1

2
EBF

CBC
FB

B
AFCAC − 1

2
EBF

BC

AFB
CBFC

C

A +
1

2
EBF

BC

AFB
CAFC

C

B

−EBF
CB

AFBDAFBD
C)− 1

2
KaE

AK
A
FBFB

BCFA

BC
− 1

2
K

A
EAKAF

BFBCAF
BBC

+KAE
AK

B
(
1

2
F
A

BAFCDBF
BCD

+ FBFAF
BA

B − F
BC

DFB

A

CFA

D

B

+F
BC

BFA

AD
FBCD + 2FB

CBFA

DC
FB

A

D − F
CB

AFCBCF
CA

B

−F
A

BCFC
B
AF

CC

B + 2FBC
AFBC

A
FC

C

B) +KAE
BK

A
(
1

2
FAFBCAF

BBC

25



−1

2
FAFB

BCFA

BC
− 1

2
FBCAF

BB

DFA

CD
+ FCFB

C
AF

BB

A

+FBCAFBCDFD

B

A − 1

2
FBCAFBC

AFC

BC
− FCFB

B
AF

CB

A

+
1

2
FBCAF

BB

CF
CC

A − 1

2
FBCAF

CBC
FB

CA +
1

2
FA

B
CFC

BCFA

BC
)

+K
A
EBKA(F

AFBF
BB

A − F
B

BCFC
B
aF

CC

A + 2FBC
AFB

B

CFC

C

A

+F
BC

AFA

BD
FBCD + 2FB

CAFA

DC
FB

B

D − F
CB

AFCBCF
CB

A

+
1

2
F
B

BAFCDAF
BCD

− F
BC

DFA

D

AFB

B

C) +K
A
EAKB(−

1

2
FAFA

BCFB

BC

+
1

2
FA

A
CFC

BCFB

BC
+ FCFB

C
BF

AB

A + FBCBFACDFD

B

A

−FCFB
A
BF

CB

A +
1

2
FBFBCAF

ABC
− 1

2
FBCAFAC

BFC

BC

+
1

2
FBCBF

AB

CF
CC

A − 1

2
FBCBF

CBC
FA

CA − 1

2
FBCAF

AB

DFB

CD
) (A.3)

T2 = 2EAF
BAB

EBfFA
AB − 2

√
2EAEM

BFA
ABFB

AB
∂Mf − 4EMAENBF

AAB
FB

AB∂MNf

−2EAF
AAB

EBfFB
AB +KAKA

(

√
2

4
EAEMBFABC∂MF

BBC
+ EMAENBFABC∂MNF

BBC

+
1

2
EBF

BBC
EAFABC +

1

2
EAFABCEBF

BBC
+

√
2

4
EAEM

BF
BBC∂MF

BC

A

+

√
2

4
EBEMAFB

BC∂MFA

BC
+

√
2

4
EAEMBFABC∂MF

BBC
+ EMAENBFB

BC∂MNFA

BC

+EMAENBFABC∂MNF
BBC

+

√
2

4
EBEMAFABC∂MF

BBC
+

1

4
EBEMAFABC∂MF

BBC

+

√
2

4
EAEM

B FBBC∂MFA

BC
− 1

2
EBF

A

BC
EBFABC − 1

2
EAFBBCEAF

BBC

+
√
2EBF

BB

AECFB
C
A + EBF

A

CB
EBFBAC +

√
2

4
EBEMAFB

BC∂MF
BC

A

+EMBENAFB
BC∂MNF

BC

A − 1√
2
EBEMCFB

AB∂MF
BC

A − 2EMBENCFB
AB∂MNF

BC

A

−1

2

√
2EBEM

CF
CAB∂MF

BB

A +
1√
2
EBEMCFB

B
A∂MF

CB

A + 2EMBENCFB
B
A∂MNF

CB

A

−1

2

√
2EBEM

CF
BAC∂MF

BB

A)− 1√
2
EAEMBFA

AB∂MF
BAB

− 2EMAENBFA
AB∂MNF

BAB

− 1√
2
EAEM

BF
BAB∂MF

AAB
− 1

2
EAF

AAB
EBFB

AB +
1√
2
EAFBABEAFBAB

+EAK
B
EAKAF

BF
BA

B − 1

2
EAKBE

AK
A
FA

BCFB

BC
+

1

2
EAK

A
EBKBF

BCAF
ABC

+EAKAE
BK

C
(−F

A

BAF
BB

C − F
B

BAF
BA

C) + EAKBE
AK

B
(−FBF

AA

B + FAC
BFC

A

B

−1

2
F
AA

CFB

C

B +
1

2
FA

CBFB

AC
) +

1

2
EAKBE

BK
A
FBCAF

ABC

+EAKBE
CK

A
(FB

C
BF

AB

A + FB
a
BF

CB

A) + EAK
A
EBKAF

BF
BB

A

26



+EAK
A
EBKB(−FBF

AB

A + FAC
BFC

B

A − 1

2
F
AB

CFB

C

A +
1

2
FA

CAFB

BC
)

+KAE
AK

A
(−1

2
EBF

BBC
FABC +

1

2
EBFA

BC
FB

BC) +KAE
AK

B
(−EAF

BA

BFB + EaFBF
B

A

B

+
1

2
EAF

BAC
FBCB − 1

2
EAF

BC

BFB

A

C + EBF
BA

BFA − ECF
BA

BF
C

AB

+EBF
CA

BFB
AC − 1

2
EBFA

AC
FB

CB + EBFAF
BA

B +
1

2
EBFA

C

BF
BA

C) +KAE
AK

A
(
1

2
FBCAEBF

BBC

+
1

2
EBF

BC

AFB
BC) +KAE

BK
A
(
1

2
EAF

BC

AFB
BC − 1

4
EAF

BBC
FABC + ECF

CB

AFB
B
A

+
3

4
EAFA

BC
FB

BC + ECF
BB

AFC
BA + ECF

BC

AFB
BA)

+KA∂MK
A
(

√
2

4
FBCAEAEM

BF
B

BC
− 1√

2
FBCAEBFA

BC
EM

B

+

√
2

4
FBCAEBEMAF

BBC
+
√
2EAEM

B
FBFB

BA − 1√
2
EBEMAFB

BCFA

BC

−
√
2EBEM

B
FAFB

BA −
√
2EBEM

C
F

BA

B
FB

CA +
1√
2
EBEM

B
FB

CBFA

C

A

− 1√
2
EBEM

B
FB

CAFA

C

B − 1√
2
EBEM

CF
BACF

BB

A +
1√
2
EBEM

CF
B
B
AFC

B

A

+
√
2EBF

CB

AEM
BF

BAC +
√
2EBEM

B
FBC

AFCBA) +KA∂MNK
A
(FBCAEMBENAF

BBC

+2EMBENAFBF
BB

A − EMAENBFB
BCFA

BC
− 2EMBENBFAF

BB

A

−2EMBENCF
B

BAF
BC

A − EMBENBF
BB

CFA

C

A + EMBENBFB
CAFA

BC

+2EMBENCFB
B
AF

CB

A + 2EMBENBFBC
AFC

B

A) +K
A
EBKA(E

AFBF
B

B

A

+EBFAF
BB

A +
1

2
EBFA

BC
FB

AC − 1

2
EAF

BBC
FBAC − EAF

BB

AFB − EBF
CB

AFB
CA

+EBF
BB

AFA − 1

2
EAF

BC

AFB

B

C +
1

2
EBFA

C

AF
BB

C + ECF
BB

AF
C

BA)

+K
A
EAKA(

1

2
FABCEBF

BBC
+

1

2
EBF

BC

AFB
BC) +K

A
EAKB(−

1

4
EAF

ABC
FBBC

+
3

4
EAFB

BC
FA

BC − ECF
BA

BFC
AB − ECF

BC

BFA
AB +

1

2
EBF

BC

AFA
BC + ECF

CB

AFB
A
B)

+K
A
∂MKA(−

1√
2
FABCEBFA

BC
EM

B +

√
2

4
FBCAEAEM

BF
B

BC
+

√
2

4
FBCAEBEMAF

BBC

−
√
2EAEM

B
FBFB

AB +
√
2EBEM

B
FAFB

AB +
1√
2
EBEM

CF
BCAF

BB

A +
1√
2
EBEM

CF
B
B
AFC

B

A

−
√
2EBEM

B
FBC

AFCAB +
√
2EBEM

C
F
B

BAFB
AC +

1√
2
EBEM

B
FB

CBFA

C

A

− 1√
2
EBEM

B
FB

CAFA

C

B −
√
2EBF

CB

AEM
BF

BCA) +K
A
∂MNKA(F

BCAEMBENAF
BBC

+2EMBENAFBF
BB

A − 2EMBENBFAF
BB

A + 2EMBENCFB
B
AF

CB

A

+2EMBENBFBC
AFC

B

A − 2EMBENCF
B

BAF
BC

A − EMBENBF
BB

CFA

C

A

+EMBENBFB
CAFA

BC
) , (A.4)

27



T3 = EAKA(−
1√
2
EBEMAF

BA

B∂MK
B
− 2EMAENBK

B
∂MNF

BAB
− 2EMAENBF

BA

B∂MNK
B

− 1√
2
EAEM

BF
B

A

B∂MK
B
+
√
2EBFA

A

BEBKB
)

+EAK
B
(− 1√

2
EAEMBF

AA

B∂MKB − 2EMAENBF
AA

B∂MNKB − 1√
2
EAEM

BF
B

A

B∂MKA

+
√
2EAFB

A

BEAKB) + EAKA(−2EMAENBF
BA

B∂MNK
B
−
√
2EBEM

A
FB

AB∂MK
B
)

+EAKB(−2EMAENBF
AA

B∂MNK
B
−
√
2EBEM

A
FA

AB∂MK
B
)

+EAK
A
(−2EMBENBF

AB

A∂MNKB − 2EMBENBF
BB

A∂MNKA −
√
2EBEM

B
FB

BA∂MKA

−
√
2EBEM

B
FA

BA∂MKB) +KA(−2EAK
B
EMAENB∂MNF

BAB

−2EAEM

A
ENBFB

AB∂MNK
B
− EAEMBF

BAB∂NK
B
∂MEN

A

−EAEM
BE

NAFB

A

B∂MNK
B
−
√
2EAEMAEBF

BA

B∂MK
B
+ 2

√
2EMBENAFB

AB∂PK
A
∂MNE

PB

−2EBEM

A
ENAFB

AB∂MNK
B
− 2

√
2EMAENBEPAF

BA

B∂MNPKB
− 2EBF

BA

BEMAENA∂MNK
B

−FB
ABEBEM

A∂NK
B
∂MEN

A
− EBEMAENAF

BA

B∂MNK
B
+ 2EBEMAEBF

A

A

B∂MK
B

+2EMAEN
BE

BFA

A

B∂MNK
B
) +K

A
(EAEM

BFA
AB∂NKB∂

MEN

B

+2
√
2EMAENBFA

AB∂PKB∂MNE
PB

+ EAEMBF
BAB∂NKA∂

MEN

B

−EAEMBENBF
AB

A∂MNKB + 2EAEM

B
ENBFA

AB∂MNKB + 2EAEM

B
ENBFB

AB∂MNKA

−2
√
2EMBENAEPBF

AB

A∂MNPKB − EAEM
BE

NBFB

B

A∂MNKA −
√
2EAEMBEBF

BB

A∂MKA

−2EAF
AB

AEMBENB∂MNKB − 2EAEMBEAF
BA

B
∂MKB + 2EMBEN

AE
AFB

B

A∂MNKB)

−EAK
B
EAKAE

BF
BA

B − EAK
A
EBKAE

BF
BB

A +KAE
AK

B
(− 1√

2
EAEMB∂MF

BA

B

− 1√
2
EBEMA∂MF

BA

B) +K
A
EBKA(−

1√
2
EAEMB∂MF

BB

A − 1√
2
EBEMA∂MF

BB

A) . (A.5)

References

[1] W. Siegel, “Two vierbein formalism for string inspired axionic gravity”, Phys. Rev.

D 47 (1993) 5453 [hep-th/9302036].

W. Siegel, “Superspace duality in low-energy superstrings”, Phys. Rev. D 48 (1993)

2826 [hep-th/9305073].

W. Siegel, “Manifest duality in low-energy superstrings”, In *Berkeley 1993, Pro-

ceedings, Strings ’93* 353-363, and State U. New York Stony Brook - ITP-SB-93-050

(93,rec.Sep.) 11 p. (315661) [hep-th/9308133].

28



[2] C. Hull and B. Zwiebach, “Double Field Theory”, JHEP 0909 (2009) 099 [hep-

th/0904.4664].

O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of Double Field

Theory”, JHEP 1008 (2010) 008 [hep-th/1006.4823].

I. Jeon, K. Lee and J. H. Park, “Stringy differential geometry, beyond Riemann”,

Phys. Rev. D 84 (2011) 044022 [hep-th/1105.6294].

I. Jeon, K. Lee and J. H. Park, “Differential geometry with a projection: Application

to Double Field Theory”, JHEP 1104 (2011) 014 [hep-th/1011.1324].

[3] A. Sen, “O(d)×O(d) symmetry of the space of cosmological solutions in string theory,

scale factor duality and two-dimensional black holes”, Phys. Lett. B 271 (1991) 295.

[4] G. Aldazabal, D. Marques and C. Nuñez, “Double Field Theory: A Pedagogical
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