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Abstract

The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact
solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formu-
lation of DFT, considering up to four-derivative terms in the action principle, while the
field content is perturbed by the GKSA. We study the inclusion of the generalized ver-
sion of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy
effective heterotic supergravity upon parametrization. This formalism reproduces higher-
derivative heterotic background solutions where the metric tensor and Kalb-Ramond field
are perturbed by a pair of null vectors. Next we study higher-derivative contributions to
the classical double copy structure. After a suitable identification of the null vectors with
a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus

higher derivative corrections in agreement with the KLT relation.
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1 Introduction

Double Field Theory (DFT) [1, 2] is a duality symmetric formalism that can be understood
as a generalization of D-dimensional Riemannian geometry, manifestly invariant under the
action of O(D, D). This group is closely related with an exact symmetry of String Theory
[3]. Ome of the most exciting features of this formalism is that the space-time must be
doubled to accomplish O(D, D) as a global symmetry of the theory [4]. The generalized
coordinates of the double space XM = (a#,%,) are in the fundamental representation of
O(D, D), where Z,, is the extra set of coordinates and M = 0,...,2D — 1. However, the
theory is constrained by the section condition (or strong constraint), which effectively
removes the dependence on Z,,.

The fundamental bosonic fields consist of a symmetric generalized tensor Hpn(X)
and a generalized scalar d,(X). While the former is a multiplet of the duality group,
the latter is an invariant, and they are usually referred as the generalized metric and the
generalized dilaton. On the other hand, DFT can easily describe the low energy limit of
heterotic string theory [5]. This formalism requires a generalized frame [6] instead of a
generalized metric to embed the gravitational degrees of freedom of the theory. A similar
approach is the flux formulation of DFT [7].

One important issue that can be studied with DFT is the incorporation of higher
derivative terms in supergravity frameworks. In [8] a biparametric family of higher-
derivative duality invariant theories was presented. For particular values of the param-
eters, the higher-derivative contributions reproduce the o’-corrections of the heterotic
supergravity, also studied in [9].

In this work we are interested in considering Hj;y and d, as arbitrary background fields
that can be perturbed. We focus in the generalized Kerr-Schild ansatz (GKSA) introduced
in [10], which is an exact and linear perturbation of the generalized background metric

given by
HMN:HMN—FHKMKN—FKKMKN, (11)

where k is an arbitrary parameter that allows to quantify the order of the perturbations



and Ky = PyNKy and Ky = Py/V Ky are a pair of generalized null vectors
nMNKMKN = HMNKMKN ZHMNKMKN :O s (12)

where nyy is an O(D, D) invariant metric and Py = %(nMN + Hyn) and Pyy =
+(nmun — Haw) are used to project the O(D, D) indices. This ansatz (plus a generalized
dilaton perturbation) is the duality invariant analogous of the ordinary Kerr-Schild ansatz
[11] [12], and the inclusion of a pair of generalized null vectors is closely related with
the chiral structure of DFT. This duality invariant ansatz was recently used in different
context as exceptional field theory [13], supersymmetry [14], among others [15].

In [16] a consistent way to impose the GKSA in a two-derivative heterotic DFT frame-
work was described. In that work the authors considered a generalized metric approach
to recover the leading order contributions. Here we extend the formalism by considering
higher-derivative terms in the flux formulation of DFT. We use a systematic method for
obtaining these corrections, closely related with [17]. Higher-derivative contributions re-
quiere agreement between the ansatz and the generalized version of the Green-Schwarz
mechanism as we show.

As an application we study higher-derivative contributions to the classical double copy

[18] [19] [20] ! in a heterotic supergravity background. We consider,

g = g+ R, (1.3)
9w = YGouw — %l_(ul,/) 5 (14)
where Kk = Hi—’?”—) and [ and [ are a pair of null vectors with respect to the background

metric. We compute the Riem?

contributions and we obtain the leading four-derivative
corrections to the single copy, given by k corrections to the Maxwell-like equations that
described the gravity sector after identifying the null vectors with a pair of U(1) gauge
fields, in agreement with the KLT relation for heterotic string theory.

This work is organized as follows: In Section 2 we introduce the field content, the

symmetries and the action principle of the low energy effective heterotic supergravity,

considering up to four-derivative terms in the action principle. Section 3 is dedicated to

1See also [21] for recent approaches to this topic.



explore the extension of the GKSA to the flux formalism of DFT. First we review the
generalized metric formalism and then we discuss the generalized frame formalism that is
necessary to construct the generalized fluxes. In Section 4 we start by considering mul-
tiplets of O(D, D 4+ K), and we perform a suitable breaking to O(D, D) by identifying
the extra gauge field with a particular flux component. With this method we obtain
the higher-derivative extension to DFT. Here we choose the free parameters of the con-
struction to match with the heterotic DFT formulation. In Section 5 we parametrize the
theory in terms of the field content of heterotic supergravity. We discuss about the ten-
sion between the perturbation of the gravitational sector in terms of a pair of null vector
with respect to the absence of a perturbation for the gauge sector. Then we apply our
formalism in Section 6 to explore higher-derivative corrections to the heterotic Classical

Double Copy. Finally, in Section 7, we present the conclusions of the work.

2 Higher-derivative heterotic supergravity

In the first part of this section we review the D = 10 heterotic supergravity considering

« and 3 contributions, according to [22] 2. Then we impose the supergravity version of

the GKSA to perturbe the background fields.

2.1 Action and field content for background fields

The low energy effective action that describes D = 10 heterotic string theory to first order
in o is

1. . 1 |
S= [ 2 (RO — 40,60 6 = 5 Hopg H" = 7 (o P4 + R<—>abR5;>Wab)) (2.1
Mo

ouv

where p = 0,...,9, a =0,...,9, ¢ = 1,...,n with n the dimension of the Yang-Mills
group, typically n = 496. The 10-dimensional field content consists of a background
metric o = eouan“beo,,b, the background Kalb-Ramond field b,,, , the background gauge
field A,,; and the background dilaton ¢,. The action (2.1) is written in terms of the

2We take a = 1 and 3 = 1 to simplify notation. Conventions for the field content follows [14].



curvatures of the previous fields, i.e.,

~

1
Hopp = {@Mbw (AZ Oy Aopli — 3 f,-jkAg“AgyAk)

<0[NQ( Con cd+3Q( anguchgp a):| ’

Fguu = 28 01/] fZJkAo,u ov )
Ri;z)/ab = (_2a[uwm/]ab + 2wo[,u|ac'wo|u}cb) ) (22)

where the spin and Hull connections are defined as

wouab = _egaﬁueou + FCr,u,zjeocr eoav (23)
1 -
Qg,uab = Wopab — §Houupegaegb ) (24)

and the Christoffel connection is

(o 1 ag
Lo = §gop (OuGovp + OvGoup — Opopr) - (2.5)

The action principle (2.1) is invariant under Lorentz transformations. These transfor-

mations acting on a generic vector V, reads
5/\‘/(1 = ‘/bAbaa (26)

where A, = —Ay, is the Lorentz parameter. Contraction of indices in (2.6) make use
of the Lorentz metric 7,. The invariance of (2.1) requires that the Kalb-Ramond field

transforms with a non-covariant transformation, namely,
Onboy = =)0, A, (2.7)

The previous transformation is known as the Green-Schwarz mechanism and it is a higher-

derivative transformation that cannot be removed with field redefinitions.



The equations of motion for this setup are given by

1
A¢o - Ro +4géw(vuvu¢o - u¢o V¢O) - gngZTgofHow/pH o1& (28)

—igﬁ”gZ"FwiFopni - igo go"RoWabRopc’r“b =0,

Aoy = Rop + 2V, V.0 — 190 90 Hoory Horer
; O Foopi Fors' — ‘”Rgmme =0, (2.9)
Abow = 97V, (e—Q%FIOW) _ 0, (2.10)
AA,' = gVl (e F,,") = 0, (2.11)

where we have defined

VEYE,L = 0F o' =TS oy =TS F, 0" — fin Aol Fo®,  (2.12)
T = F§W+%Houuag§,”’, (2.13)

which covariantizes the derivative with respect to ten dimensional diffeomorphisms and
gauge transformations using the Christoffel and gauge connection respectively. Here we
mention that the equations (2.8)-(2.11) are not strictly the ones obtained from variations

of the action with respect to the fundamental fields, but combinations of them.

2.2 Perturbing the background

Now we are interested in imposing the supergravity version of the GKSA on the previous
formulation. We do not consider perturbations of the gauge field, i.e., A, = A,,;. The

inverse of the 10-dimensional background metric is perturbed as
g = g 4 kW) (2.14)
where [, and Zu are null vectors with respect to ¢g"” and g~*, i.e.,

Ll,g™ =1,g"™1, =0, (2.15)

Ll,g" =1,9,"1,=0. (2.16)
The previous objects also satisfy the following relations

PVol, =0, 1"Vol, =0, (2.17)



which reduce to the standard geodesic conditions when [ and [ are identified [10]. The

perturbation of the Kalb-Ramond field is given by

b;u/ = boul/ - "‘%l[,ulu] ) (218)

where kK = 2+,2-e—’211’) and the dilaton is perturbed as showed in [14]. Moreover, the first order

Lorentz transformation for the exact b-field now takes the following form
oabu = =0 A, (2.19)

while the other exact fields are Lorentz invariant.

3 Double Field Theory and the generalized Kerr-
Schild Ansatz

3.1 Generalized metric formulation

In this section we review DFT and the GKSA following the conventions of [14]. The
GKSA was formulated in [10] as an exact and linear perturbation of the generalized back-
ground metric Hy;n (M, N =0,...,2D —1) and an exact perturbation of the generalized
background dilaton d,. We work with arbitrary D until parametrization.

Since the generalized metric is an O(D, D) element, its perturbation has the following

form
Hun = Hun + 6(Ky Ky + Ky Ky) (3.1)
where Ky, = PV Ky and Ky = PyN Ky are a pair of generalized null vectors
"MVKyKy = n?"YKyKy =0"V"KyKy =0. (3.2)
According to (3.1), the DFT projectors are

1 - _
PMN = PMN_iﬁ(KMKN‘i‘KMKN)

_ 1 _
PMN = PMN+§K'(KMKN+KMKN) (33)



Each O(D, D) multiplet can be written as a sum over its projections,
Vi = PuN Vi + Py Viy = Var + Vi, (3.4)

where V), is a generic double vector. When we use the underline and overline notation,
we consider the background projectors Pyn and Py .

The generalized background dilaton can be perturbed with a generic x expansion,
d=d,+rf, f=Y &"fa, (3.5)
n=0

with n > 0.

Mimicking the ordinary Kerr-Schild ansatz, the generalized vectors Kj;, Kj; and f
obey some conditions in order to produce finite deformations in the DFT action and
EOM’s. If we consider a generic double vector Vi, the covariant derivative can be defined

as

VaVy =0V — Tun"Vp, (3.6)
where I'y;yp is the generalized affine connection. Demanding

VuHne = 0, Vuynyp =0, (3.7)

and a vanishing generalized torsion

Pivney =0, (3.8)
the following projections of I'y;yp = —I'jyrpny are well-defined and can be perturbed,
yvo = _ﬁQRPMSaSPRNa FWQ = ﬁNRﬁMsasPRQ,
Tunvg = 275[NR75Q]S03PRM’ Fﬁﬂg = QﬁMRP[NSasPQ}R. (3.9)

Similarly to Riemannian geometry, the generalized Ricci scalar and the generalized
Ricci tensor can be constructed from different (determined) projections of the generalized

affine connection. Following the original construction of the GKSA we impose,
KPaPKM + Kp&MKP - KpﬁpKM = 0,
KP0p KM + KpoM K" — KPop KM = 0, (3.10)

8



and
KMoy f=KMouf=0. (3.11)
Using (3.8), we can change 0 — V in (3.10) obtaining,
KPVpEKM + KpVMK? — KPVpKM = 0,
KPVpEM 4+ KpVMKY — KPVpEM = 0. (3.12)

In the next part we explore how the previous conditions appear in the flux formalism of
DFT [7]. Then we explicitly compute the EOM’s of the field content of DET when we

impose the GKSA in this formalism.

3.2 Generalized flux formulation

The generalized flux formulation of DFT is closely related with the generalized frame
formulation introduced in [6]. The latter is compatible with the GKSA if we consider

perturbations of the form,
_ -1 _
Ev?t = Ev? + §f<aEM§K§KA ,
1 = -
Evd = By — §HEMBK§KA, (3.13)

where Ky = EM Ky = EM Ky and Ky = EM5K)y = EM4K)y and Eya is an
O(D,D)/O(D — 1,1);, x O(1,D — 1)g frame. In this formulation A = 0,...,D — 1
and A=0,...,D—1are O(D—1,1); and O(1, D — 1) indices, respectively.

We can define flat invariant projectors as follows,

Pap = EmaEMp = Pug,

Pap = EyafM5= Pag, (3.14)

where Pap = EyaEMp and Pip = E1EM5 are the standard DFT flat projectors.

Using these projectors we can construct two invariant metrics,

nap = Evan™NEnp = Eppan™ Y Eng, (3.15)

Hup = EyaHMNEnp = EyaHY N Enp . (3.16)

9



The flat covariant derivative acting on a generic vector Vg is
DaVp = EaVp + Wap Ve, (3.17)
where £4 = v2EM 405 and W45C is the generalized spin connection that satisfies
Wape = —Wacs and  W,ygo =W,z =0. (3.18)

With the help of the generalized frames we can construct the generalized fluxes, which

are defined as

Fape = 3Ea(EYB)Eme,
Fa = V220 (EM 4e72) . (3.19)
In the flux formulation of DFT, conditions (3.10) and (3.11) become
KAE,RC + KAKPF,% = 0,
RAB;KC + KA KPP ¢ = 0, (3.20)
and
KAE,f = KAE;f =0. (3.21)

It is straightforward to check that the previous conditions are double Lorentz invariant

using
6r€na = EuTpa, O6rEya = Eyn®Tpa (3.22)

where ['yg = —I'g4 is the double Lorentz parameter.

Only the totally antisymmetric and trace parts of Wxpc can be determined in terms

of &4 and d,

1
Wpe) = —§]:ABC , (3.23)
Weal = —Fu, (3.24)

the latter arising from partial integration with the dilaton density. Using these identifi-

cations, conditions (3.20) and (3.21) can be written as
K, DAK? = K4DAKE =0,
K DAf = K;DAf=0, (3.25)

10



where D, is the background covariant derivative. As we mentioned before, the gener-
alized Ricci scalar and the generalized Ricci tensor are completely determined in terms
of the degrees of freedom of DFT and, particularly, can be written in terms of different

projections of the fluxes,

1 1 —
R = 26T+ FaF" = cFapcF A5 — - Fape FH5C, (3.26)
RZB = ngg — EQ.FZEQ + fgﬂfﬁgg — .FQ.FZEQ. (327)

The previous projections of the fluxes can be computed using (3.13) and imposing

(3.20) and (3.21),

3 —D
Fapc = Fapc — 5K Kulpop (3.28)
_ — 1—-p
I 1
Fape = Fapc—Fk (K[CDB]KA+ KzEpKc) — §K2KAFD_BC) , (3.30)
1 _B B
Fa = Fa=gw (KADEK + Py oK RS + 4DAf) . (3.31)

Replacing the previous expressions in (3.26) the generalized Ricci scalar can be written

as

R = Ren|-KyK Egbd— Dy (KADGR" + FAYK  Kg) + FECK DT

+FABCR G Ep K — AD4DAY| + w2 [4BAf BAY] | (3.32)

and therefore in the case f = const., the generalized Ricci scalar can be linearized.

With a similar procedure the generalized Ricci tensor can be written as,

Rap = Rap + £Ryap + ’f273(,.@2)z ) (3.33)

11



1 o 1 1 1
Rwas = —5Pa (KBD—KC> + §EQ (KeDpK7) — §EQ (KpDcK7) + §EQ (KzEpKc)

1 1 1 . o 1_5
—5 B (K4Eckp) - 5K P KCB Fope — 2EZKDKQFBB_C — K EK  Fppe

b

1 — 1 — - D
—S ECKPR 3 Fppo — SKPECK xFppo — 5 KPK zEFppe + §KDKQE§FZ 5o
1 — o 1 — o5 1 5 1 =
—5KeDpKgF" 5+ S KpDo Kb s — SKpEp K" 5 + S KpEcKp P 5

1— 51— ! — o 1 — 5
+§K2D5KQF§QD - §K5DZKQF§QD + §KQE§KZF§QD - 5KgEzKﬁFEQD

1 — (Q— 1 — 1
+5KeDpKzFC + SKCK3EcFp — S KpDo Kz P + SKzEpKol©

1— 1—F 5 1 _p= =
—iKZEQKBFQ - 5K KoFepiFp4P + 5KQKEFMFQEZ
- 1
~5 KPR xFppeF® - §KEKQFEQQFZ& — 2D+Dgf, (3.34)
and
1 _
R2yap = §K PKe (BpK3) (EcKp) + KQKK(D*ECKB)
—EKQ?ZKE (EC ) KCKAKEEC (K P )
—K9K 4 (EcDgf) + (K DCKA) (DSf) — (KxEsKc) (DEf)
+ (K4EcKg) (D9f) + (K2K+Fpgc) (DCf) . (3.35)

As can be appreciated, the EOM of the generalized metric contains quadratic terms
even if f = 0, and unlike general relativity there no exist a; and as such that the quadratic

terms can be written as

R(,@) = allﬁkzké']—\),(,{)éﬁ + O‘2/‘€K§KQR(/§)ZQ

AB

The previous equation shows that the equation of motion of the generalized metric
cannot be linearized when the GKSA is considered. Nevertheless, upon breaking the global
O(D, D) invariance and using the equation of motion of g,, and b,,, it is straightforward

to probe that the quadratic contributions vanish when f = 0, as showed in [10].

12



4 Higher-derivative Double Field Theory

Higher-derivative extensions in DFT were analyzed in several works [8] [9]. An iterative
procedure to find an infinite tower of this kind of terms was recently given in [17]. In that
work the authors consider an O(D, D + K') multiplet H oy A, which is a generalized metric

constrained to be an element of O(D, D + K) with invariant metric M

Haup 172 Hyo = Timw (4.1)

M,N =0,...,2d — 1+ K. In this formulation, K is the dimension of a gauge group
K and therefore H is parametrized by a generalized metric which is an O(D, D) element
and by a generalized constrained O(D, D) vector field.

The generalized frame g v relates the generalized metric H My with the flat gener-
alized metric H A5, and the O(D, D + K) invariant metric a with its flat version nyz

(which we assume to be constant) as follows

Huy = En* HasEN® (4.2)

vy = EnTas €N . (4.3)

Since the idea of this formalism is to cast the O(D, D 4+ K) formulation in terms of
O(D, D) frame multiplets, the extended Lorentz subgroup O(1,D — 1+ K) — O(1,D —
1) x O(K) is broken such that the flat indices now split as A = (A, A) = (4, A, @), and
transform respectively under O(D —1,1) x O(1,D — 1) x O(K) .

Under this splitting we have

Huw = —En2Ena+EEva+EnEna (4.4)

ﬁM/\/’ = EMAENA—I—EMZgNz—G—gMagNa , (4.5)

where we use the convention that Pag, Pap and KB raise and lower indices once we

parametrize the O(D — 1,1) x O(1, D — 1 4+ K) projectors as

Pag 0 0 0 0 0
Pus=| 0 00|, Pas=]0 Py 0| (4.6)
0 00 0 0 ka

13



We introduce the following O(D, D) multiplets
Hun, Cu®, d, (4.7)

and the O(D, D)/O(D —1,1) x O(1, D — 1) frames which satisfy

nmunv = Hupr 1" Hug
Hun = —Eu2Ena—+ En’Eng
muny = EntEna+ EvEna (4.8)
and we demand
PuNCn® = 0, PyCy® = Cu°. (4.9)

It is straightforward to find the relation between the O(D, D) multiplets and the

components of the O(D, D + K) multiplets. Given the following parameterization [24]

~ ﬁMN 5]\/16 . nun 0
Hwv = | - N , o mwy = ; (4.10)
(CTYoy N9 0 kK

one obtains a non-polynomial relation given by

Hyuy = Hun + 2Cua (k+ CTU_IC)_MB (CM)sn
Ciia = 2Cuip (K + CTn_IC)_wV Ko s (4.11)

Naﬁ = —Kag+ 2'%017 ('L€ + CTn_lc)_M& Ksp -

The tilded fields are also O(D, D) multiplets, which are constrained by the requirement
(4.1), that reads

Hu"Hyp + Co“Cna = Ty (4.12)
ﬁMPévpa + 5]\46./’\75& = 0, (4.13)
5PQC~P5 + ./f\v/‘«/a./iv/’ﬁ{g = Rag - (414)

On the other hand introducing the following definitions

A = kS + CpaCMP (4.15)

EMN = T]MN—l-CMaCNa (416)

14



we can parametrize

Ev’' = En
Evt = E)ul &

Ev® = Cu' (A7), e

&4 =0

EA = —EM4(Z72)p%Cqa

.7 = (A2) es” (4.17)

which verify (4.4) and (4.5). Here we have introduced a constant e,” that identifies the

gauge indices a with @ and satisfies eaa/{agﬁ’gﬁ = Kag-

4.1 Biparametric corrections

In this work, we explicitly implement the following identification for the gauge group K,
K=0(1,D-1)cO(1,D-1+K), (4.18)

which is enough to include 4-derivative terms in the ordinary DF'T action, as was discussed
in appendix A of [17]. The idea is to identify the gauge degrees of freedom Cy/“ with
(derivatives of) the generalized frame &y”.

Let us first begin by introducing the generators (ta)zg that relate objects with gauge

and P-projected adjoint Lorentz indices

Ao =—(ta)g" Az" ,  Az" = —Aa(t)7" . (4.19)
This implies that
(1) (ta)op = 005+ (ta)a” (ta)5" = Fap - (4.20)
and
[t 1] = fap' - (4.21)
We define
Cipe = —V2EM ACH" (to) e (4.22)

15



which we identify with F ABo» a8 its index structure suggests. It is important to remark
that this method is valid only to include four-derivative terms in the action principle, as
discussed in [17].

Mimicking the previous procedure, but starting with an O(D + K, D) invariant theory
results in an equivalent O(D, D) formalism up to a Zy transformation. Therefore, the
most general higher-order action principle in terms of O(D, D) fields is a biparametric

action with the following form,
5— / 2D X =2 — / PP X (R 4+ aRO) +1RO) (4.23)
where R is

RE) — _% [(gégﬁ}-%)}—ACD (EASB]_—ACD)}—BCD + 2(5A]_—BCD)]_— ~FB
+(EaTFAP)(EFPep) + (EaF57") (€4 FPop) + 2(EaFp) FlepFAP
+H(EaF pop) Fe P FEE — (EF pop) FETPFAEE + 2(EaF o) Fs P F2
—A(EQF5P) FAZFEP S + éﬁA@fBﬁfQ@f@ + FE S F P FpFA

F CEIBEDFA GfBGD FBCEIAEDFA GfBGD FZ@IDCDIQ@IZ& ’

in agreement with [8], and was determined through the corrections to the extended gen-

eralized fluxes using (4.17),

ﬁZ& = ‘FABC+ <8A.FCD +.FECD.FAE >‘FQ]@7

2
. 3 __
Fape = Fape = 3 FperF " 1aF gy
. 3 1 oD 2.0 D
]:M = ]:ABC + = (5[A]:CD Q'F [AlfQCD — ngE[AfEED) FQ]@,
Fa = Fa- 7 [FlenFi P Fn+ & (FoanFa)] (124)

R coincides with R(T) modulo a Z, transformation. Here a and b are undetermined
constants and there exists an infinite amount of first-order duality invariant theories, some
of them not related to String Theory [25]. In this work we focus in the case a = 0 and b = 1
in order to match with the higher-derivative heterotic supergravity after parametrization.

The explicit form of the x terms of the 4-derivative Lagrangian is given in appendix A.

16



4.2 Equations of motion

Using the procedure discussed in the previous section, the equations of motion of higher-

derivative heterotic DFT can be recast in the following compact form,

R=R+RH =0, (4.25)
Rpa=Rpa+ Rg; =0, (4.26)
where
RY) = —253 o (FapeF ) + Fupp FEPF e — geg (6F4™ + F2F Fyp) Feyie |
+g (EaFiu™ + FEF Fopia ) ForF<n + ZJ@GIBTDIDEFIQW
+§5DfBAQfQEFf2W + VAT prls FEET — bEuFomrF T Fp2
- gstCWféEéfQGF + gstCWfQEFfAcD - gféffﬁfcﬁfgw
+ngwf§@fgﬁfGﬁ - g (BpFu™ + PP Fapy ) FomnF

+Z (0 (Fear PP + FegrF PP Fp | i

and R given in the previous section. The former equation corresponds to the first-order
correction to the equation of motion of the generalized frame in the flux formalism of
heterotic DFT. As far as we know, this result was not previously reported in the literature

considering the flux formulation of DFT.

4.3 Generalized Green-Schwarz transformations

The biparametric higher-derivative DFT action (4.23) is invariant under generalized Lorentz
transformations only if the generalized frame receives a higher-derivative correction to its

Lorentz transformation,
Ve = —EnEFEPET 5,

§WEA = EPFAPET op | (4.28)

where I"4p was defined in (3.22). Equations (4.28) mimic a Green-Schwarz mechanism,

but in a DFT scenario. Using the previous expressions it is straightforward to obtain the
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following transformations
W Fipe = V26WE(ONEM )Enc + 285EN 0V Ep
+2vV26WEN N EM 1€ — 2(Ecd WV Eng) ) EN 5,
SV F e = V20D ENA(ONEY5)E iz + 265EN 50 M Ena

+2V26EN N EM i Eria — 2(E0 MV Enp)EN 4. (4.29)
When one imposes the GKSA, the generalized background E);4 and the generalized null
vectors K, Ky receive a first-order Lorentz transformation coming from (4.28). This

transformation can be interpreted as a generalized Green-Schwarz transformation and it

must respect the constraints of the GKSA. Inspecting the null condition we need,
SW(Ky)EM = 0, 0W(Ky)KM=0. (4.30)
Similar relations can be found inspecting the generalized geodesic equations,
5 (KADAK5> —0, oW (KZDZKQ) ~ 0. (4.31)

The previous conditions cannot be satisfied with the zeroth-order constraints for a generic
solution, and therefore equations (4.30) and (4.31) can be interpreted as extra constraints
of the theory. In the next part of the work we break the duality group in order to obtain

the low energy effective heterotic supergravity with higher-derivative terms.

5 Heterotic parametrization

5.1 Parametrization

We start by taking D = 10 and promoting the duality group to H = O(9,1),xO(1,9+n)r
with n = 496 in order to describe the 10-dimensional heterotic supergravity. We admit
the inclusion of heterotic vectors in a duality covariant formulation as in [26]. We split
the indices as M = (,,#,i) and A = (a,a,). The generalized frame is parametrized in

the following way,

Eug Eug Eig _éoua o Cor)uéga éfja _AOpiéga )
. 1 - - - -
EMA = Eu_ Ers E'g = ﬁ Eo;uz - CopMEZa Ega _AopZEZa ) (51)
E/ﬁ E“ZT EZ; \/EAOMBZ‘ZT 0 \/56%
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where Cy, = bopw + %AouiAoyi. The invariant projectors of DFT are parametrized in the

following way

P, p — —77(11)5;55, FE = nabdgég. (52)

According to the previous parametrization, the generalized metric takes the following

form,
96" — 35 Copy =G Aopi
Hun = | =3 Copp Gopw + CoppuCorn 27 + Aop'kiij Ao’ Coppdl? Avwi + Aoyl riji | - (5.3)
—Go" Aopi CopJ87 Avoi + Ao Kij Kij + AopiGh’ Aosj

On the other hand K, and K, can be parametrized as

s s
1 _ 1 _ _
KM = E —l“ — Copy,lp ) KM = E lﬂ — Cop“lp . (54>
_Aoiplp _Aoipl_p

We impose the standard gauge fixing for the double Lorentz group,
~ ab ~ = ab> o~
€ouall  €ovb = €opall €ovb = Guv (55)

with 7, the ten dimensional flat metric, a,b = 0,...,9. Finally, the parametrization of

the generalized dilaton is,

e 2 =\ /Ge 2. (5.6)

The previous parametrization reproduce the low energy heterotic supergravity with
higher-derivative terms. While g,, and b,, are consistently perturbed by a pair of null
vectors [ and [ as in (2.14) and (2.18), the perturbations of the gauge field A,,; are
suppressed by the O(10,10 + n) invariance.

5.2 Field redefinitions

One of the most interesting aspects of higher-derivative DFT is the need of field redefini-
tions to match with standard heterotic supergravity using (5.1). It is straightforward to

show that g"” transforms under Lorentz transformations as,
52" = Oa(GE + KIVT) = —Q, 0, Ay - (5.7)
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We stress that this field redefinition is independent of the GKSA and therefore it is

mandatory to consider an exact metric and dilaton redefinition of the form [8],

. 1 (O Aa
Gw = G — 5(2( ) b (5.8)

pab® v

\/fge—zi’ = J—ge ¥, (5.9)

and hence dpg,, = 0 as in (2.19). The previous field redefinitions can be imposed at
the level of perturbative double field theory and, in particular, when one considers the
GKSA. Parametrizing the generalized frame perturbations we find (before imposing the

gauge fixing),

€. = Eop” — %%Zuz,,égﬁ, (5.10)
€% = % — %%zuz‘yéga, (5.11)
eht = g, + %nl“l”éof, (5.12)
EHe = g, M 4 %nl_“l”éo,,“, (5.13)
where
K= Hijlel) (5.14)

In the limit x* ~ 0 we can identify €, — ¢€,* (and é"* — é#*). Moreover, since the
field redefinition (5.8) contains two explicit derivatives we can construct the torsionful

connection using e, instead of €,,. The former is perturbed as

1 - _
e, = o — imlul,,eza (5.15)

and the torsionful connection can be easily constructed considering the perturbations of

the spin connection

1

Wyab = Wopab — 5"’{' [Vou (ZVZJ) + V01/ (ZJZM) - VOU (luzu)} 6Z[aegb] + O('I{?) ’ (516)
and the 3-form
Hywp = Hopp — 36V4) (Lly) + O(K?) . (5.17)
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In this case the gauge fixing implies €,,%0," = €,," — Fol_[ulu} e,’®, where the left background
vielbein is related to right one through [ and [ terms.

In what follows we use the present formulation to find higher-derivative corrections in
the context of heterotic supergravity considering the GKSA. We restrict our study to the

leading order in k terms in order to be compatible with the gauge fixing here presented.

6 Classical Double Copy

The double-copy structure of perturbative gravity originates from string theory in the so
called KLT formalism, where one identifies universal relations between open- and closed-
string tree-level amplitudes [18]. The KLT relations have been later on reformulated
in a field-theory framework by Bern, Carrasco and Johansson (BCJ) noticing a hidden
symmetry of gauge-theory amplitudes which is a duality between color and kinematics
[19]. In heterotic supergravity, the identification of the null vectors with a pair of U(1)
gauge fields reproduce a pair of Maxwell-like equations to describe the dynamics of the
system, as showed in [16]. In this part of the work we inspect higher-derivative corrections

to these equations.

6.1 Double null vector ansatz

Higher-derivative terms can be easily incorporated in the classical double copy prescription
of the low energy limit of heterotic string theory. We assume that the geometry admits

one Killing vector {# such that the Lie derivative L¢ acting on an exact field vanishes,

LeT,

P23

=0 (6.1)

where T}, ,1,,... 1s an arbitrary tensor. Moreover we choose a coordinate system where §*

is covariantly constant, i.e.,

vou&u = vo[ugu} =0, (62)
and then condition (6.1) is

guvamuws... =0. (6-3)
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We normalize the null vectors to satisfy,

&l =Em"l, =1, (6.4)

In order to obtain the leading order terms with up to four derivatives in the single
and zeroth copy, we perturbe the gravity contributions to (2.9) by considering A,,; = 0,
¢ = ¢, = const. and H wwp = f[ow = 0. Then we contract the equation of motion for the

metric tensor with # and £HEY,

1
é—ﬂA(l)guy == _igugUTRo,u,abRTllab 9 (65>
1
é—pé—le(l)guy == _igugugJTRouabRTVab ’ (66>

to find the single copy and the zeroth copy, respectively. We perturb around a generic

background,

g = g + kel

G = Gov — Kpl 1) (6.7)

keeping only x terms to be compatible with the previous section, and we include the scalar
function ¢ in the ansatz.

After imposing the previous ansatz the connection takes the following form

1 - .
Chw = 10w = 55957 [Vou (Plol) + Voo (Pliuly) = Voo (Pliuln)] - (6:8)

The Riemann tensor for this configuration can be written in the following covariant way,

1 , , .
R = Bonw = 5895 Vou [Vou (¢loln) + Vor (¢loln) = Voo (Plily)]

1 ; ] ]
+5595"Vou [Vou (#laly) + Vor (@liuls)) = Vep (@linly) ] + O(+%).

The leading order contributions to the equation of motion of the metric tensor were studied
in [16] and match with Maxwell-like equations after identifing ¢l, = A, and ¢l, = A,
where A, and A, are a pair of U(1) gauge vectors,

“VLEu = 0, (6.9)

%VZF;M = 0. (6.10)
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The curvatures for the abelian gauge fields are F),,; = 20,,A,}; and FH,,Z- = 28[NAV],~. The
first correction to these equations are x terms that come from the linear perturbation of

the Riemann tensor in (6.6). Explicitly,

g (VoFuw + (Vopllue) Ro] = 0, (6.11)
g [VgFuV _'_ (VOpF,uo)Rou‘upg} = O, (612)

where we have used
[VO[M Voa]ﬁ“ = RgApag)\ =0. (613)

The zeroth copy dynamics does no receive a higher-derivative correction in this approxi-

mation,
Ron
ZVOVOMQO =0. (6.14)

Finally we mention that the contributions found in this paper are consistent with the
KLT relation but they do not satisfy the color-kinematics duality. The gauge contributions
that satisfy this duality are [27]

1 92
Lopen = T F P4 gFWFVAFw + O(F*), (6.15)

where Lopen is the effective open string Lagrangian. The second contribution in (6.15) is
a O(d’) contribution that requires non-abelian contributions from the structure constants
of the heterotic gauge group. We left the study of these color-kinematics terms for future

work.

7 Conclusions

We study the heterotic formulation of DFT when higher-derivative terms are included,
and the field content is perturbed with the GKSA. We start by adapting the GKSA
to the flux formulation of DFT. Then we compute a higher-derivative extension for DFT
considering multiplets of O(D, D+ K) and we choose the free parameters of the formalism
to match with the heterotic case. At this stage we review the four-derivative corrections to

the action principle of DF'T and we compute the full first order equations of motion. Then
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we impose the GKSA to compute the leading-order contributions to the action principle
and we study the first order symmetry corrections in this framework. The double Lorentz
symmetry is deformed by a generalized Green-Schwarz transformation that must respect
the constraints of the GKSA and these are new conditions for generic double backgrounds.

Upon parametrization, we reproduce the low energy heterotic supergravity with higher-
derivative terms. Higher-derivative field redefinitions are required to match with the stan-
dard transformation rules. The gravitational field content, g, and b,,, is consistently
perturbed by a pair of null vectors [ and [. Interestingly enough, the perturbations of the
gauge field A,; are suppressed by the O(10, 10+ n) invariance, using the flux formulation
of DFT. This last point indicates a tension between the generalized metric formalism and
the generalized frame formalism upon parametrization. Moreover the generalized frame
formulation requires to impose gauge fixing to relate the vielbeins needed to construct
the torsionful spin connection. Here we solve this issue considering x% ~ 0.

As an application we study higher-derivative contributions to the classical double copy.
We focus in the single and zeroth copy coming from the Riem? starting from a generic
background. In this scenario we obtain four-derivative corrections to the x Maxwell-like

equations previously discussed in [16] in agreement with the KLT relation.
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A Corrections to the DFT action

The four-derivative contributions to the DF'T Lagrangian when the GKSA is imposed are
given by

R =R+ bk(Ty + T + Ty + T3) + bO(K?), (A1)
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where

To

T

KAK ( 2FAFBF BCFABC 2FBBAFBC FC CFD A_EFBFAFBCAF 5o
_FBCAFBDEF FB D 2FBBAFCCAFBDCFC — +FBCAFBCDF FB E
_%FBFBCDFBETCFA A FBBAFC@FBCAFC D + FBB_AFEECF_B FC‘Cﬁ
_%FBBAFCC_DFBCDFC A %FﬁgéFmFiﬂFQC_D + FZ&F CFBBDFADC
_EFQFZC_AFQﬁFBBC FBRCRB AFCB _ EFEB FBBAF_CDFA

2

BCA A B D ABC BC D CC A BD A
W FBOAp, AR __pB D 4 lpascp, FipFPpe + PppCFC pAFPEDE,

2

— - 1 — 1 [

—2B4fFP FpapFa’? + KAKZ(—iEAF—ABCFQFBBC + S B e FPFAPE
1 A A A A BC A A

—§E—F§FBC FPge — BEAF e FACPFoPC — E Fae"FEFRPC

1 5 Do a4, 1 5C
—§EBFACDF§CDF%A + —EAFEB—CFDABFB—Dc + —EAFEB—CFEFABC
1 1

. B L1

+EE EEAFQFQE + §E§F—ABCFZF§ETC + EEEFﬁZFAFE?C
1 S Ter 5 4o 1
—§E§FAFBCAF§ﬁ—EBFggéFB—CBFQAC—EE BpA_ FAgCF,BC
L b ApABC _ 1B ApABC _loppn A DBpa ©
— 3 BEFpe PARAPC — S BEFpe PARAPC — S BRER A FpPP P

— — J— — J— 1 — — J—
1 B A DAB B A A BC nC A AB
— 5 EPPAGEF FypC — S BPFAGAFR PO RO + BAF e Fe AP FEPC

+BEF A FCFPpd  BE FBQAFQFEAB EBF FPpAFcy

=N =

[\
hN

+EBFgFPACE A 4 EBpy AFp,CFPAS _ B Fp5 FEFP A
1 S = 1 o _—
+5 BEF g FOACF e + S BEF 5" POt PEs — —EEFQB—CFAﬂFBBC

1 1
B A B CCA B A _CpABC B ABC
+EP Fye PP POCA + 5 B F oo A pCFA —§E FpeF* PO Fpic
1

— R 1 — — — J—
~EBFsAFpcAFCPY — EBF e FACAF PO —EﬁFgﬁFBﬂFEAC

2 2
1 B B Aprcic 1. Ap CBpc 4, 1 .B Ap CApC_ B
+§E—FQEF BEF=Y — EE—FEQ—FE F_c + EE—FEQ—FE F_c

), (A.2)

T.5 R - 5C 1—
—EBF 5" FPPAFpC) - EKGEAKZFQFQBCFA—BC - 5K7 EAK A FEFBCAR

+FBCBF FBCD+2F CBF ~FBD FCBAF —CFQZE
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