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Abstract
Patients with non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) have shown benefit from anti-PD-1 thera-
pies. However, not all patients experience tumor shrinkage, durable responses or prolonged survival, demonstrating the need 
to find response markers. In blood samples from NSCLC and RCC patients obtained before and after anti-PD-1 treatment, 
we studied leukocytes by complete blood cell count, lymphocyte subsets using flow cytometry and plasma concentration 
of nine soluble mediators, in order to find predictive biomarkers of response and to study changes produced after anti-PD-1 
therapy. In baseline samples, discriminant analysis revealed a combination of four variables that helped differentiate stable 
disease-response (SD-R) from progressive disease (PD) patients: augmented frequency of central memory CD4+ T cells and 
leukocyte count was associated with response while increased percentage of PD-L1+ natural killer cells and naïve CD4+ T 
cells was associated with lack of response. After therapy, differential changes between responders and non-responders were 
found in leukocytes, T cells and TIM-3+ T cells. Patients with progressive disease showed an increase in the frequency of 
TIM-3 expressing CD4+ and CD8+ T cells, whereas SD-R patients showed a decrease in these subsets. Our findings indi-
cate that a combination of immune variables from peripheral blood (PB) could be useful to distinguish response groups in 
NSCLC and RCC patients treated with anti-PD-1 therapy. Frequency of TIM-3+ T cells showed differential changes after 
treatment in PD vs SD-R patients, suggesting that it may be an interesting marker for monitoring progression during therapy.
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CRP	� C-reactive protein
EM	� Effector memory
FSC-A	� Forward scatter-area
FSC-H	� Forward scatter-height
NLR	� Neutrophil-to-lymphocyte ratio
PD	� Progressive disease
RCC​	� Renal cell carcinoma
SSC-A	� Side scatter-area
SD-R	� Stable disease-response
TIM-3	� T cell immunoglobulin and mucin-domain 

containing-3
TE	� Terminal effector

Introduction

Cancer immunotherapies that target the programmed 
death 1 ligand (PD-L1)/PD-1 axis of immune regulation 
have shown remarkable efficacy, demonstrating improved 
progression-free survival (PFS) and overall survival (OS) 
in the treatment of many different tumor types [1–5]. In 
addition to clinical activity in cancers historically consid-
ered as immunogenic such as melanoma [6–9] and renal 
cell carcinoma (RCC) [4, 10–12], anti-PD-L1 and anti-
PD-1 agents can induce anti-tumor responses in a grow-
ing list of malignancies, including non-small cell lung 
cancer (NSCLC) [1, 13–17]. However, not all patients 
treated with PD-L1/PD-1-blocking antibodies experi-
ence tumor shrinkage, durable responses, or prolonged 
survival. Predictive treatment response biomarkers were 
first evaluated in tumor cells and in surrounding immune-
micro-environment [18]. Status of PD-L1, tumor-infiltrat-
ing lymphocytes, mutational burden, immune gene sig-
natures, and others are associated with clinical outcomes 
for anti-checkpoint therapies. However, their utility is still 
under discussion because of inconsistent results, difficulty 
to obtain tumor samples, technical approach, and costs 
[19, 20]. On the other hand, information about peripheral 
blood (PB) markers associated with response to immune-
checkpoint inhibition and changes in immune subsets 
induced by this treatment is currently limited. Determin-
ing PB changes that are associated with lack of response or 
acquired resistance could be very useful in the monitoring 
of patients during treatment.

Here, we studied peripheral immune cell populations 
and soluble mediators before and after therapy with PD-1 
blocking antibodies, pembrolizumab or nivolumab, in 
NSCLC and RCC patients. We aimed to describe poten-
tial biomarkers of response to anti-PD-1 therapies and to 
identify variations in peripheral immune cell populations 
that reflect the response against the tumor.

Materials and methods

Patient samples

Twenty-five patients with NSCLC (n = 18) or RCC (n = 7) 
from the Department of Clinical Oncology of the Alexan-
der Fleming Institute (Ciudad Autónoma de Buenos Aires, 
Argentina) provided samples for this study. Heparinized 
PB samples were collected before starting anti-PD-1 treat-
ment (PRE sample), and either after 6 cycles of nivolumab 
or 4 cycles of pembrolizumab or at disease progression, 
depending on whichever occurred first (POST sample). 
Patients were treated with 3 mg per kg body weight (mg/
kg) of nivolumab every 2 weeks or 2 mg/kg pembrolizumab 
every 3 weeks. Response was considered as the best clinical 
response in the course of treatment according to RECIST 
1.1, with the stable disease-response (SD-R) group defined 
by patients displaying stable disease, partial or complete 
response, and the progressive disease (PD) group defined 
by patients showing disease progression characterized by a 
measurable increase in tumor size, the presence of new met-
astatic sites, or the requirement of secondary treatment such 
as radiotherapy. Patients who received less than 4 weeks of 
treatment were not considered for response assessment.

Immunohistochemistry (IHC) on tissue samples

PD-L1 IHC was carried out on 4 μm tumor sections, using 
the test corresponding to the anti-PD-1 treatment received 
(Dako PD-L1 IHC 28-8 pharmDx for nivolumab and Dako 
PD-L1 IHC 22C3 pharmDx for pembrolizumab).

Complete blood cell count (CBC) and flow cytometry 
analysis on PB

Neutrophils, lymphocytes, monocytes and eosinophils were 
evaluated in PB samples using an automated cell blood 
counter. Peripheral blood mononuclear cells (PBMC) 
were isolated through a Ficoll–Paque density gradient (GE 
Healthcare, UK). For T and NK cell phenotyping, 2.5 × 105 
fresh PBMC were stained in PBS with Fixable viability Stain 
510 for 15 min at room temperature, washed with washing 
buffer (PBS with 2% FCS), incubated with the appropriate 
mAbs (Supplementary Table 1) for 30 min at 4 °C, and then 
washed twice with washing buffer. 1.0 × 106 cells were used 
to stain regulatory T cells (Tregs), following manufacturer’s 
recommendations (BD Pharmingen™ FoxP3 Staining Kit, 
catalog 560132). Isotype-matched irrelevant mAbs were 
used as negative controls.

Lymphocytes were gated using forward scatter-area 
(FSC-A) vs side scatter-area (SSC-A) plot, single cells using 
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FSC-A vs forward scatter-height (FSC-H), and viable cells 
(≥ 50,000 events) using Fixable Viability Stain 510 stain-
ing. Lymphocyte subsets were defined as CD3−CD56+ NK 
cells, CD3+CD56+ cells, CD4+ CD3+ T cells, CD8+ CD3+ T 
cells and CD4+CD25+FoxP3+ Tregs. A representative gating 
strategy is shown in Supplementary figure 1. Data acquisi-
tion was performed using a FACSCanto II cytometer and 
FACSDiva software (BD Biosciences). Data analysis was 
performed with FlowJo software.

CRP and cytokines evaluation

CRP was measured in patients’ plasma using the C-reac-
tive protein assay on the ARCHITECT cSystem following 
manufacturer´s instructions (Abbott, Chicago, USA). IL-8, 
IL-1β, IL-6, IL-10, TNF-α, and IL-12p70 cytokines were 
assessed using BD™ Cytometric Bead Array (CBA) Human 
Inflammatory Cytokine Kit, catalog 551811. Plasmatic con-
centrations of the proteins were determined using FCAP 
Array software (BD).

Statistical analysis

Individual datapoints representing the measurement from 
each patient were graphed using GraphPad v7.00 (GraphPad 
Software, USA). The mean value or box and whisker plots 
are shown, while paired PRE and POST-treatment samples 
are displayed using connecting lines. The variation (Δ) of 
each marker was calculated as POST minus PRE value of 
individual patients. To test the difference between SD-R and 
PD patients, we used general linear mixed models in Infostat 
2017 software [21]. Each marker (immune cell population 
or soluble mediator) was considered as a response variable 
and clinical benefit (SD-R or PD) as a fixed effect. To com-
pare paired PRE and POST-samples, patient ID was intro-
duced as a random effect. Homoscedasticity and normality 
of residuals were analyzed by visual assessment of plots. 
If homoscedasticity was not achieved, models were fitted 
using a constant variance function (VarIdent function) [22]. 
The best model was chosen by comparison of Akaike’s and 
Bayesian’s Information Criteria.

For multivariate analysis, partial least-squares discrimi-
nant analysis (PLS-DA) was used to identify the most impor-
tant markers that help classify patients into both response 
groups (SD-R or PD), using mixOmics library in R [23]. 
Two analyses were done, the first one with markers at base-
line and the second one with the variations of the markers 
after treatment (Δ: POST minus PRE values). PLS-DA can 
handle both, multicollinearity problem and datasets with 
the number of variables higher than that of samples [24]. 
To choose the optimal number of variables for each PLS-
DA, we use the estimation of the misclassification error rate 

using leave-one-out or stratified cross-validation [23]. Cor-
relation matrix was built using corrplot package in R [25].

Progression-free survival (PFS) was defined as the inter-
val between the date of treatment start to the date of disease 
progression or death. Kaplan–Meier graphs were used to 
estimate PFS and univariate differences in PFS were com-
pared with log rank test. 95% confidence intervals (95% CI) 
for the statistic of interest are informed. A p < 0.05 was con-
sidered to be statistically significant.

Results

Patient characteristics and clinical responses

Twenty-five patients were recruited, 18 with NSCLC and 
7 with RCC. Clinical and treatment characteristics are 
described in Table 1. Patients were divided into two groups 
according to their best clinical response: the SD-R group 
comprised one patient with complete response (CR), four 
patients with partial response (PR) and seven patients with 
stable disease (SD), while the PD group comprised nine 
patients with progressive disease. Four patients were left 
out from the analysis since they received less than 4 weeks 
of treatment and were therefore not considered for response 
assessment. The median follow-up was 6.97 months and the 
median PFS was 5.17 months. POST-samples were obtained 
in 18 patients: in the 12 patients of the SD-R group after 6 
cycles of nivolumab or 4 cycles of pembrolizumab (around 
12 weeks of treatment), and in six out of nine patients of 
the PD group at the time of progression (between 8 and 
12 weeks of treatment). In the other three patients of the PD 
group, POST sample could not be obtained.

Response rates according to pathology are presented 
in Table 1. No association between clinical or pathologi-
cal characteristics and anti-PD-1 treatment response was 
found. PD-L1 positivity was not associated with response 
(p = 0.29).

A combination of four variables in PRE‑treatment 
samples helped differentiate SD‑R and PD response 
groups

First, we studied markers in PRE-treatment PB samples 
that could be used as predictors of response by univariate 
analysis. We analyzed leukocytes by CBC, lymphocyte sub-
sets by FACS, and the plasma concentration of 9 soluble 
mediators. We looked for differences between SD-R and 
PD patients. Among the results from CBC, PD patients pre-
sented a lower absolute leukocyte count (ALC) than SD-R 
patients (mean [95% CI]: 6277/mm3 [5059–7496] vs 9541/
mm3 [6622–12,460]; p = 0.034) (Fig. 1a). We did not find 
differences in the relative number of the different leukocyte 
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subsets nor in the neutrophil-to-lymphocyte ratio (NLR) 
(Supplementary figure 2).

The analysis of FACS results showed no significant dif-
ferences between SD-R and PD patients in the frequency of 
T, NK or CD3+CD56+ cells, CD4+ or CD8+ T cells, nor in 
the frequency of Tregs (Supplementary figure 3a). In addi-
tion, the assessment of activation and exhaustion markers on 
CD4+ and CD8+ T cells showed no differences between both 
response groups (Supplementary figure 3b). Meanwhile, 
PD patients exhibited a non-significant higher proportion 
of PD-L1+ NK cells than SD-R patients (p = 0.054) (Sup-
plementary figure 3c).

Memory T cell subsets were studied by subdivid-
ing CD4+ and CD8+ T cells into CD45RO−CCR7+ 
naïve cells, CD45RO+CCR7+ central memory (CM) 
cells, CD45RO+CCR7− effector memory (EM) cells and 
CD45RO−CCR7− terminal effector (TE) cells (representative 

plots are shown in Supplementary figure 4a). The percentage 
of CM CD4+ T cells was higher in SD-R than in PD patients 
(mean [95% CI]: 40.5% [33.7–47.3] vs 28.3% [21.5–35.2]; 
p = 0.013) while a tendency towards a lower percentage of 
naïve CD4+ cells was observed in SD-R group (p = 0.074) 
(Fig. 1b). No differences were observed in memory CD8+ T 
cell compartment (Supplementary figure 4b).

We next performed a multivariate analysis including all 
immunological parameters assayed, which correlation is 
shown in Supplementary figure 5. A combination of four 
variables was optimal to differentiate both response groups 
(Fig. 1c): augmented frequency of CM CD4+ T cells and 
ALC was associated with SD-R patients while increased 
percentage of PD-L1+ NK cell and naïve CD4+ T cells was 
associated with PD group. The contribution of each vari-
able to the discriminant analysis is displayed on the right, 
with frequency of CM CD4+ T cells presenting the highest 

Table 1   Patients’ characteristics 
and clinical response to 
anti-PD-1 treatment

All (n = 25) NSCLC (n = 18) RCC (n = 7)

Age: median (IQR) 60 (54–68) 61 (54–68) 59 (53–78)
Sex: n (%)
 Male 15 (60) 9 (50) 6 (85.7)
 Female 10 (40) 9 (50) 1 (14.3)

Histology: n (%)
 Adenocarcinoma 13 (52) 13 (72.2) –
 Squamous cell carcinoma 5 (20) 5 (27.8) –
 Clear cell carcinoma 7 (28) – 7 (100)

Stage at diagnosis: n (%)
 I 1 (4) 1 (5.5) 0
 II 3 (12) 3 (16.7) 0
 III 5 (20) 2 (11.1) 3 (42.9)
 IV 16 (64) 12 (66.7) 4 (57.1)

Surgery of primary: n (%) 12 (48) 6 (33.3) 6 (85.7)
Previous radiotherapy: n (%) 15 (60) 11 (61.1) 4 (57.1)
Previous lines of treatment: n (%)
 1 18 (72.0) 13 (72.2) 5 (71.4)
 2 7 (28.0) 5 (27.8) 2 (28.6)

Anti-PD-1: n (%)
 Nivolumab 18 (72) 11 (61.1) 7 (100)
 Pembrolizumab 7 (28) 7 (38.9) –

PD-L1: n/cases evaluated (%)
 < 1% 9/17 (52.9) 6/13 (46.2) 3/4 (75)
 ≥ 1% 8/17 (47.1) 7/13 (53.8) 1/4 (25)
 ≥ 10% 5/17 (29.4) 5/13 (38.5) 0/4 (0)
 ≥ 50% 3/17 (17.6) 3/13 (23.1) 0/4 (0)

Response: n (%)
 Progressive disease (PD) 9 (36) 6 (33.3) 3 (42.8)
 Stable disease (SD) 7(28) 5 (27.8) 2 (28.6)
 Partial response (PR) 4 (16) 3 (16.7) 1 (14.3)
 Complete response (CR) 1 (4) 1 (5.5) 0
 Response not evaluable 4 (16) 3 (16.7) 1 (14.3)
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contribution. In this model, two patients could not be prop-
erly classified.

Variations in leukocytes after anti‑PD‑1 therapy 
were associated with treatment response

The same immunological parameters were studied in 
samples taken after several cycles of anti-PD-1 treatment 
(POST) and compared with PRE-treatment samples. CBC 
analysis revealed differential variations after treatment: 
SD-R patients showed a significant decrease in ALC and 
neutrophil percentage, while PD patients showed a sig-
nificant increase in ALC and neutrophil percentage and a 
decrease in lymphocyte and monocyte percentage (Fig. 2a).

We compared the variation (Δ: POST minus PRE value) 
of each marker between both response groups, and found 
significant differences in ALC (p < 0.001) and in neutrophil 
(p < 0.001), lymphocyte (p = 0.001) and monocyte percent-
age (p = 0.003) (Fig. 2b).

Changes in inflammatory proteins in plasma 
after treatment

Due to changes observed in leukocyte populations in SD-R 
and PD groups, we decided to evaluate soluble mediators 
associated with systemic inflammation in plasma: CRP 
and eight cytokines. Comparative analysis of the varia-
tion in concentration (Δ) showed significant differences 
between SD-R and PD patients in CRP (p = 0.035) and a 

Fig. 1   Analysis of PRE-treatment samples. NSCLC and RCC patients 
were divided into two groups according to their best clinical response 
to anti-PD-1 therapy: stable disease-response (SD-R) and progressive 
disease (PD) patients. a Absolute leukocyte count (ALC) by com-
plete blood cell count. b Frequency of memory CD4+ T cell subsets 
by FACS: CD45RO−CCR7+ naïve cells, CD45RO+CCR7+ central 
memory (CM) cells, CD45RO+CCR7− effector memory (EM) cells 

and CD45RO−CCR7− terminal effector (TE) cells. *p < 0.05. c Clus-
tered image map showing the model that best classifies patients (rep-
resented in columns) into both groups (SD-R or PD) based on mark-
ers at baseline (represented in rows). Barplot on the right displays 
the loading weights associated to each marker, with colors indicating 
the response group with the maximum average value. Partial least-
squares discriminant analysis (PLS-DA) was done
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tendency in IL-8 levels (p = 0.079) (Fig. 2c, d) but not in 
IL-6 (Supplementary figure 6a). IL-1β, IL-10, TNF-α and 
IL-12 were undetectable in plasma before and after treat-
ment (data not shown).

Changes in lymphocyte populations after treatment

FACS analysis of the frequency of lymphocyte populations 
in POST vs PRE treatment samples revealed a statistically 

Fig. 2   Variations in leukocytes and soluble mediators after anti-PD-1 
therapy were associated with treatment response. a Absolute leuko-
cyte count (ALC) and frequency of neutrophils, lymphocytes and 
monocytes from paired PRE and POST-treatment samples are shown 
for both response groups. b Comparison of the variation (Δ: POST 

minus PRE value) in these cell populations between both response 
groups. c C-reactive protein (CRP) and IL-8 plasma levels from 
paired PRE and POST-treatment samples. d Comparison of the varia-
tion (Δ) in the concentration of CRP and IL-8 between SD-R and PD 
patients. *p < 0.05, **p < 0.01, ***p < 0.001
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significant decrease in T cells in PD patients and an increase 
in NK cells both in PD and SD-R patients (Fig. 3a).

Comparatively, we found significant differences in the 
variation (Δ) of T cells (p = 0.007) and NK cells (p = 0.040) 
between PD and SD-R patients (Fig. 3b).

The frequency of CD3+CD56+ cells, CD4+ and CD8+ 
T cells, and Tregs did not change after treatment in either 
response group (Supplementary figure 6b).

TIM‑3 increased in PD patients after anti‑PD‑1 
therapy

We also characterized TIM-3, CD69 activation marker, 
the inducible co-stimulatory molecule (ICOS), and PD-L1 
through FACS in CD4+ and CD8+ T cells. Frequency of 
TIM-3+ T cells showed opposite changes after treatment in 
PD vs SD-R patients. PD patients showed an increase in 

TIM-3 expressing cells in CD4+ and CD8+ T cells whereas 
SD-R patients showed a decrease in these subsets (Fig. 4a). 
The variation (Δ) was statistically different between PD and 
SD-R patients (CD4+ p < 0.001; CD8+ p < 0.001) (Fig. 4b). 
Representative plots are shown in Fig. 4c. No differences 
were observed in the other markers studied (Supplementary 
figure 6c).

PFS analysis was carried out with patients dichotomized 
as those with either an increase or a decrease in TIM-3 
expressing cells. As shown in Fig. 4d, PFS was lower in 
patients presenting an increase in TIM-3+ cells, either within 
CD4+ T cells (12-month PFS 0% vs 81.5%, p < 0.001) or 
within CD8+ T cells (12-month PFS 20.8% vs 85.7%, 
p = 0.002).

Multivariate analysis of changes after treatment 
revealed a combination of six variables 
that differentiated SD‑R and PD patients

Finally, we performed a multivariate analysis including Δ 
values of all immunological parameters assayed, which cor-
relation is shown in Supplementary figure 7, to identify the 
variables that best differentiated SD-R and PD groups tak-
ing into account both the PRE and POST-samples. A model 
with a combination of 6 variables was best to differentiate 
both response groups: an increase in ALC and in the fre-
quency of neutrophils and TIM-3+ CD4+ and CD8+ T cells 
was associated with PD group, while an augmentation in 
the percentage of lymphocytes and monocytes was associ-
ated with SD-R patients. The changes in the frequency of 
TIM-3+ CD4+ and CD8+ T cells contributed the most to the 
discriminant analysis (Fig. 5).

Discussion

The success of immunotherapy agents depends on the ability 
to select patients most likely to respond to treatment. In this 
work, we analyzed PB in the context of anti-PD1 therapy, 
looking for predictive markers and studying changes pro-
duced after treatment. We analyzed a cohort of 25 metastatic 
NSCLC or RCC patients, with PB samples taken before 
starting and after around 12 weeks of nivolumab or pem-
brolizumab treatment. In this cohort, PD-L1 positivity was 
not associated with response to anti-PD-1 therapy. This may 
be due to the size of the sample or to the fact that the cohort 
included RCC patients where this association seems weak 
[4, 26, 27]. Even in NSCLC, PD-L1 usefulness as a response 
predictor is under discussion [28, 29].

As univariate analysis did not allow for determination of 
a variable clearly associated with response, we performed 
a discriminant analysis. A combination of four variables 
helped differentiate SD-R and PD response groups: together 

Fig. 3   Changes in lymphocyte populations after anti-PD-1 treatment. 
a Frequency of T and NK cells within lymphocytes from paired PRE 
and POST-treatment samples are shown for both response groups. 
b Comparison of the variation (Δ: POST minus PRE value) in T 
and NK cell frequencies between SD-R and PD patients. *p < 0.05, 
**p < 0.01
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with higher frequency of CM CD4+ T cells, augmented ALC 
was associated with response. On the other hand, higher 
frequency of naïve CD4+ T cells and PD-L1+ NK cells was 
associated with lack of response. Previous reports have 
linked memory T cells with response to anti-PD-1 treatment. 
Krieg et al. (2018) reported higher frequencies of CM CD8+ 
T cells in circulation before and after anti-PD-1 treatment in 

melanoma patients responding to therapy [30]. In addition, 
high circulating CM/effector T cell ratios were associated 
with tumor inflammation, increased PD-L1 expression at 
tumor site, and longer PFS in response to nivolumab treat-
ment in NSCLC [31]. This shift of frequency from naïve to 
CM T cells is in line with the concept that anti-PD-1 treat-
ment supports functionally activated T cells [32]. In fact, 

Fig. 4   Frequency of TIM-3+ CD4+ and CD8+ T cells increased after 
treatment in PD but not in SD-R patients. a Frequency of TIM-3 
expressing cells in CD4+ (left) and CD8+ (right) T cells from paired 
PRE and POST-treatment samples is shown for both groups of 
response. b Comparison of the variation (Δ: POST minus PRE value) 
in the frequency of TIM-3+ CD4+ (left) and CD8+ (right) T cells 

between both response groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
c Representative density plots showing TIM-3 expression in CD4+ 
and CD8+ T cells from two patients. d PFS analysis with patients 
dichotomized as those with either an increase or a decrease in TIM-3 
expressing cells after anti-PD-1 treatments. Kaplan–Meier curves are 
shown and p-values were determined by log-rank test
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impaired formation of T-cell memory was described as a 
resistance mechanism to anti-PD-1 therapy [33, 34].

Different research groups have focused on increased NLR 
as a marker of chronic inflammation, which may lead to 
impaired immunity [35]. In this regard, some studies have 
shown that high NLR at baseline and during treatment is a 
poor prognostic factor in patients with advanced malignan-
cies receiving PD-1/PD-L1 blockade [35, 36]. However, in 
our cohort, neither relative neutrophil count nor NLR were 
different between response groups. Moreover, we did not 
find differences in other subsets previously described associ-
ated with response to anti-PD-1 therapy such as eosinophil 
and lymphocyte counts [37] and frequency of monocytes 
[30].

Concerning NK cells, only PD-L1 was evaluated, so we 
cannot rule out the existence of other NK markers associated 
with response. In this regard, Subrahmanyam et al. (2018) 
reported differences in CD69 and MIP-1β expressing NK 
cells between responders and non-responders in anti-PD-1 
melanoma-treated patients, suggesting that functionally 
active NK cells might play a role in the anti-tumor response 
triggered by anti-PD-1 [38]. These findings, together with 
ours, highlight the role of peripheral immune status in the 
prediction of anti-PD-1 therapy response. However, more 
studies with larger cohorts of patients and markers are 
needed to validate the results.

Additionally, we studied changes induced by treatment. 
The collection time of POST-samples was after at least 
8 weeks of anti-PD1 treatment, contrary to other works 
that evaluate changes after one dose of the anti-PD-1 agent. 
This choice allowed us to evaluate the changes induced after 
various doses, near the time when most clinical responses 
are seen. The variations observed indicate an increase in 

systemic inflammation in patients with PD displayed by 
an increase in ALC, neutrophil percentage and a tendency 
to increase CRP and IL-8 levels. Meanwhile, variations 
in patients in SD-R group indicate a decrease in systemic 
inflammation, with a decrease in leucocyte count, neutrophil 
percentage and a tendency to lower CRP levels. In support, 
Sanmamed et al. (2018) reported a significant increase in 
IL-8 levels upon disease progression, and that early changes 
in serum IL-8 levels (2–4 weeks after treatment initiation) 
were strongly associated with response [39].

Expression of alternative co-inhibitory immune check-
points (e.g., CTLA-4, TIM-3, LAG-3, and VISTA) has been 
associated with resistance to PD-1 blockade [40, 41]. TIM-3, 
the T cell immunoglobulin-3, was first identified as a cell 
surface molecule selectively expressed on IFN-γ-producing 
CD4+ T helper 1 (Th1) and CD8+ cytotoxic T cells, and 
marks dysfunctional or exhausted T cells in cancer [42]. 
Here, we found that TIM-3 expressing cells significantly 
increased in CD4+ and CD8+ T cells in PD patients but not 
in SD-R patients after anti-PD-1 therapy; and that this aug-
mentation was associated with poorer PFS. The kinetics of 
TIM-3 variation would be interesting to evaluate in further 
studies, in order to identify if the increase detected in the PD 
group is observed at earlier times as well, and thus could be 
used as an early-on treatment-predictive marker. In regard to 
this, Kato et al. (2018) reported an opposite variation after 
one dose of nivolumab in advanced esophageal squamous 
cell carcinoma patients. %TIM-3+ CD4 cells increased in 
CR/PR patients, but not in SD/PD patients, together with an 
increase in the %OX-40+ CD4 cells, which could reflect an 
activation of anti-tumor response instead of an exhaustion 
of T cells at early times [43]. On the other hand, Koyama 
et al. (2015) identified up-regulation of TIM-3 as a marker 

Fig. 5   Multivariate analysis 
of changes after treatment. 
Clustered image map showing 
the model that best classifies 
patients (represented in col-
umns) into both groups (SD-R 
or PD) based on the variations 
(Δ: POST minus PRE-values) 
of the markers after treatment 
(represented in rows). Barplot 
on the right displays the load-
ing weights associated to each 
marker, with colors indicating 
the response group with the 
maximum average value. Partial 
least-squares discriminant 
analysis (PLS-DA) was done
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of resistance to anti-PD-1 treatment in an animal model and 
in pleural effusions from two NSCLC patients [41]. The 
emergence of this potential mechanism of resistance pro-
motes the feasibility of its therapeutic blockade as demon-
strated by Koyama et al. [41]. Multiple cell line and murine 
models have shown the synergistic effect of anti-PD-1 and 
anti-TIM-3 antibodies in reducing tumor growth [44–46]. 
Nowadays, three antibodies against TIM-3 are being evalu-
ated in phase I trials (Sym023 NCT03489343, TSR022 
NCT02817633, MBG453 NCT02608268).

To take into account, the strengths of this study include 
the prospective recruitment of patients, with a careful col-
lection and manipulation of blood samples and a rigorous 
patient follow-up. In addition, parallel analysis at different 
levels (leukocytes, lymphocyte subsets and plasma pro-
teins) in pre- and after-treatment samples was done. On 
the other hand, the study design did not include taking an 
early sample after treatment, and the sample size was lim-
ited which implied a low chance of detecting those vari-
ables with small differences between SD-R and PD patients, 
particularly if occurred only in the RCC group. Regarding 
the joint analysis of patients with two different tumors, we 
first compared NSCLC and RCC patients in terms of all 
immunological variables assessed in PRE-treatment sam-
ples, and did not find any significant difference. Neither had 
we found a multivariate model able to separate patients from 
both tumor types (data not shown), meaning that they had a 
similar immunological profile. Second, we analyzed NSCLC 
patients separately looking for variables that differentiate 
SD-R and PD patients, and found similar tendencies than 
when studying all patients together (data not shown).

Our results indicate that a combination of PB vari-
ables rather than one alone was useful to differentiate both 
response groups, and are in line with previous reports indi-
cating an association between the basal presence of a subset 
of memory T cells and response to treatment. This encour-
ages further studies in larger cohorts and including other 
markers co-expressed in these populations. We also found 
differential variations after treatment in peripheral immune 
cells in SD-R vs PD patients. Noteworthy, patients with pro-
gressive disease showed an increased frequency of TIM-3 
expressing T cells after therapy, which may be useful for 
monitoring response during therapy and warrant additional 
studies.
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