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A B S T R A C T   

The vulnerability of species richness to several factors like, climate change, habitat fragmentation, resource 
exploitation, etc., poses a challenge to conservation biologists and agencies working to sustain the ecosystem 
services. Hence, there is a clear need for early warning indicators of species loss generated from empirical data. 

The tree community of the long-term 50-hectare plot on Barro Colorado Island (BCI), Panama, is one of the 
most intensively studied in the world. This plot was established in 1981 and fully censused in 1982 then every 5 
years from 1985 through 2015. This extensive dataset reveals that some tree species suffered steep population 
declines. 

Here we propose an early warning indicator of such tree population crashes and test it against the BCI dataset. 
The spatial covariance matrices, Cij, of the 20 most abundant tree species in BCI allow us to compute, via MaxEnt, 
the effective interaction matrices, Jij, among these species for the eight censuses available from 1982 to 2015. For 
each species i and each census c, the absolute value of the intraspecific competition coefficients Jii(c) are much 
larger than those of the interspecific interaction coefficients Jij(c) with i ∕= j. We show that this result can be 
derived from a similar empirical relationship observed for the matrices Cii(c). Our main finding is that for those 
tree species that suffered steep population declines (of at least 50%), across the eight tree censuses, the drop of Jii 
is always steeper and occurs before the drop of the corresponding species abundance Ni. Indeed, such sharp 
declines in Jii occur between 5 and 15 years in advance than comparable declines for Ni, and thus they serve as 
early warnings of impending population busts. Furthermore, this drop of Jii is linked to the anomalous variance, 
which is a known early warning of incoming catastrophic shifts.   

1. Introduction 

The rate of species loss we are observing around the world is much 
greater than anything experienced historically (Thompson and Star
zomski, 2006). Diversity loss, combined with environmental change, 
increases the risk of abrupt and potentially irreversible ecosystem 
collapse (Ives and Carpenter, 2007; Hooper et al., 2012; MacDougall 
et al., 2013). Such catastrophic ecological regime shifts may be 
announced in advance by early warning signals such as slowing return 
rates from perturbation and rising variance (Carpenter et al., 2011). 
Thus, it is difficult to overstate the importance of identifying early 
warning signals that would allow managers to predict catastrophic 
biodiversity losses before they happen so that they can take remedial 

action. 
The issue of fluctuations of biodiversity is closely related with a 

major debate in ecology of whether species coexistence emerges from 
equilibrium niche partitioning or from non-equilibrium stochastic 
dispersal-assembly (Clark and McLachlan, 2003; Ishida et al., 2003). 
According to the first hypothesis, in a community at equilibrium each 
species occupies a different niche that results from and reduces direct 
competition (Whittaker, 1975). Stabilizing mechanisms – like tradeoffs 
between species in terms of their capacities to disperse to sites where 
competition is weak, to exploit abundant resources effectively and to 
compete for scarce resources (Clark and McLachlan, 2003) – play an 
important role. Alternatively, the dispersal-assembly hypothesis as
sumes that communities are open nonequilibrium assemblages of 
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species that coexist only transiently through by chance, history, and 
random dispersal rather than by the stabilizing effects of niche differ
entiation, regarded as superfluous (Hubbell, 2008, 2009). This ‘neutral 
model’ thus emphasizes ‘equalizing’ mechanisms (Chesson, 2000), 
because competitive exclusion of similar species is slow. The relative 
importance of these two mechanisms is still a matter of discussion. It was 
argued that stabilizing processes and fitness inequality vary among 
communities and respond to anthropogenic changes (Adler et al., 2007). 
However, strong evidence was found that patterns of habitat association 
(and hence conclusions on the importance of niche vs neutral processes) 
are affected by the choice of sampling scale (Garzon-Lopez et al., 2014; 
Chase, 2014). Indeed, Garzon-Lopez et al. (2014) found that the very 
BCI tropical forest is highly niche-structured at large scales, and largely 
neutrally structured at small scales. 

The tree community of the long-term 50-hectare plot on Barro Col
orado Island (BCI), Panama, is one of the most intensively studied in the 
world. This plot was established in 1981 and fully censused in 1982 then 
every 5 years from 1985 through 2015. All stems ≥ 1 cm diameter-at 
breast-height (dbh) were mapped, measured, and identified in each 
census (Condit et al., 2017). These data from eight censuses of trees 
spanning 35 years is a period long enough to examine decadal changes 
in tree growth rates and death rates. They demonstrate that the BCI 
forest has exhibited considerable dynamism in this period. A variety of 
population trajectories can be observed: busts, recoveries and oscilla
tions (Condit et al., 2017). 

For this tree community of the 50-hectare BCI plot, using the 
maximum entropy (MaxEnt) principle, Volkov et al., 2009 estimated the 
effectivei interaction strengths between species for the 20 most abundant 
species for trees (dbh ≥ 1 cm) in the 50-hectare BCI plot at the first 
census (1982). Their estimates for interspecific interaction coefficients 
are generally an order of magnitude smaller than those for intraspecific 
coefficients (Volkov et al., 2009). Using the same MaxEnt procedure we 
recently verified that for the next seven available censuses (1985 and 
then every five years until 2015) the interspecific effective interaction 
coefficients are also generally much smaller than the intraspecific ones 
(Fort and Grigera, 2020). Indeed, this finding is in agreement with 
empirical evidences supporting that pairwise interspecific interaction 
strengths are often much weaker than the intraspecific ones from plants 
(Adler et al., 2018) and across several taxonomic groups (Fort and 
Segura, 2018). Larger intraspecific competition relative to interspecific 
competition is also a result expected from theoretical grounds, to ensure 
the stable coexistence of multispecies communities (Chesson, 2000). 

Here, we are interested in providing early warnings before crashes of 
species occur. There is increasing evidence that ecosystems can pass 
thresholds and go through catastrophic regime shifts (Scheffer and 
Carpenter, 2003) where sudden and large changes in their functions take 
place. Most importantly, these changes are very difficult and costly to 
reverse. Thus, an important problem in environmental sciences is to get 
early warning signals of these impending catastrophic regime shifts in 
ecosystems to allow addressing currently intractable problems in 
ecosystem management, such as the avoidance of ecological surprises, 
and the maintenance of systems in desired states (Fort, 2020). The issue 
of providing early warning signals of catastrophic events in ecosystems 
has been addressed by different methods (Dakos et al., 2010, Donangelo 
et al., 2010, Suweis and D’Odorico, 2014, Doncaster et al., 2016, Saravia 
and Momo, 2018). 

In addition to the above mentioned finding, that intraspecific 

interactions between trees in BCI are much larger than the interspecific 
interactions (Fort and Grigera, 2020), we also showed that self- 
regulation by intraspecific competition seems to control the trajec
tories (i.e. the corresponding sequences of abundances over censuses) of 
several species in the BCI plot (Fort and Grigera, 2020). This opens the 
possibility that the intraspecific interaction coefficients could provide 
early warnings for impending species crashes. Hence, firstly we derived 
analytically this result about the dominance of the intraspecific inter
action coefficients from a corresponding difference in size between co
variances and variances. Secondly, we focused on these diagonal 
elements of the estimated interaction matrices, analyzing if their 
behavior serve to provide early warnings for species that crashed before 
they did it. 

2. Methods 

2.1. Using the MaxEnt principle to estimate the effective interaction 
matrix between species of trees 

The maximum entropy (MaxEnt) principle is a general method to 
make the least biased inferences compatible with available data (Jaynes, 
1957a, 1957b). That is, the lack of knowledge we generally have on a 
real system can be modeled by a probability distribution for the different 
possible states of that system. However, a common problem on top of 
this is that this probability distribution is not known, and there are many 
different probability distributions for the states of the system which are 
compatible with available data. Of all such distributions, the recipe of 
MaxEnt is to choose the probability distribution that maximizes the 
Shannon’s information entropy (Shannon, 1948) subject to the con
straints of the information.ii 

In our case, the system is the community of trees of BCI composed of 
S coexisting species for each of which we have spatial information on the 
location of every individual. With the aim to use these data to infer the 
effective interaction strengths between the species we follow the pro
cedure of Volkov et al. (2009). That is, to deduce various correlations 
from such spatial data, we divide the 50-hectare plot into equally sized 
quadrats large enough to contain many individuals yet small enough to 
have a sufficient number of quadrats to facilitate statistical averaging. 
Quadrats of 20 m of side serve to solve this trade-off. Therefore we have 
a number of quadrats Q = 500,000 m2/400 m2 = 1250. The state of a 
quadrat is specified by the set of the densities for each species within this 
quadrat {xi}, where xi is the density of the ith species in this particular 
quadrat (a real variable). Let us arrange these densities into a row vector 
xT = [x1, x2,…,xS], where the superscript ‘T’ stands for ‘transpose’ which 
transforms an ordinary column vector into a row one £ (in such a that 
given two vectors a and b, the product aTb = Σiaibi is a scalar quantity). 
And denote the corresponding multivariate probability distribution of S 
random variables by P(x), which by definition obeys the normalization 
condition: 
∫

dxP(x) =
∫ ∏

i
dxiP(x) = 1. (1) 

The Shannon’s information entropy, H, is thus written in terms of P 
(x) as (Shannon, 1948; Jaynes, 1957a): 

H = −

∫

dxP(x)lnP(x) = −

∫ ∏

i
dxiP(x)lnP(x), (2)  

where ln denotes the natural logarithm. For simplicity of notation it is 
convenient to denote expected values of quantities X , by E[X]. For 

i We stress the effective character of these interaction coefficients since they 
result from the multiple biotic interactions among the species as well as from 
the abiotic interaction between species and the environment. Mathematically 
this arises because, as we show in the Methods section, this interaction matrix is 
minus the inverse of the covariance matrix, and therefore its elements include 
products over all the S species making up the community (rather than just pairs 
as in the case of the covariance matrix). 

ii Readers unfamiliar with the maximum entropy principle can find overviews 
about how concepts like, Shannon entropy, constraints, probability distribu
tions and the partition function are applied to ecology in either Volkov et al. 
(2009), Harte (2011) Brummer & Newman (2019) or Fort (2020), 
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example, equations (1) and (2) become 

E[1] = 1, (1 ′)  

− E[lnP(x)] = H. (2 ′) 

Here as known constraints, in addition to (1′), we consider that the 
first two statistical moments, the mean densities and covariances, match 
the corresponding sample mean values over Q measurements. These 
constraints on the distribution are then expressed as expected values as: 

E[xi] = xi ≡
∑Q

μ=1
xμ

i /Q, (3a)  

E
[
(xi − E[xi])

(
xj − E[xj]

) ]
= (xi − xi)(xj − xj) = xixj − xixj

=
∑Q

μ=1
xμ

i xμ
j /Q −

∑Q

μ=1
xμ

i

∑Q

ν=1
xν

j /Q2, (3b)  

where a bar over a quantity denotes its sample average and the indices μ 
and ν denote quadrats (we use Greek indices, running from 1 to Q, to 
distinguish them from Latin indices denoting species, thus running from 
1 to S). The idea is to obtain the effective interaction strengths between 
tree species from the expression of the probability distribution that 
maximizes the information entropy with constraints. A well known 
analytical technique to obtain the maximum entropy probability dis
tribution P(x) consistent with the constraints (1′), (3a) and (3b) is the 
method of the Lagrange multipliers (Arfken, 1985), which converts a 
constrained maximization problem into an unconstrained one by 
maximizing 

H ′

= H − λ0(E[1] − 1) −
∑S

i=1
hi(E[xi]− xi) −

1
2
∑S

i,j=1
Jij
(
E[xixj] − xixj

)
, (4)  

where λ0 is a scalar Lagrange multiplier, hi are the elements of a vector h 
of Lagrange multipliers and Jij the elements of a matrix J of Lagrange 
multipliers corresponding, respectively, to constraints (1), (3a) and (3b). 
As we will show in brief, Jij can be naturally interpreted as the inter
action coefficient of species j over species i. The maximizing probability 
distribution is obtained by setting the functional derivative H’ with 
respect to the unknown P(x) to zero (Jaynes, 1982): 

0 =
δH ′

δP(x)
= −

δ

(

E[lnP(x)] + λ0E[1] −
∑S

i=1hiE[xi] −
1
2

∑S
i,j=1JijE[xixj]

)

δP(x)

= −

δ

(
∫

dxP(x)

(

lnP(x) + λ0 −
∑S

i=1hixi −
1
2

∑S
i,j=1Jijxixj

))

δP(x)
(5) 

which produces lnP(x)+1+λ0 −
∑S

i=1hixi −
1
2
∑S

i,j=1Jijxixj = 0. From 
this equation we obtain the following expression for the probability 
distribution: 

P(x; h, J) = e
−

(

1+λ0 −
∑S

i=1
hixi −

1
2

∑S

i,j=1
Jijxixj

)

=
e
∑S

i=1
hixi+

1
2

∑S

i,j=1
Jijxixj

Z
(6)  

where Z in the denominator of Eq. (6) is the so-called partition function 
(Pathria and Beale, 2011), which ensures that the distribution is 
normalized and is given by: 

Z(h, J) =
∫ ∏

i
dxie

∑S

i=1
hixi+

1
2

∑S

i,j=1
Jijxixj

≡ e1+λ0 . (7) 

Eq. (5) can be written in a more compact way in terms of a new 
vector variable where the vector 

s = x + J-1h as 

P(s) =
e

1
2

∑S

i,j=1
Jijsisj

Z
=

e1
2sTJs

Z
, (6)  

and Z then becomes 

Z =

∫ ∏

i
dsie

1
2

∑
ij

Jij si sj
=

∫ ∏

i
dsie1/2sTJs. (7) 

Interestingly, the exponent of Eq. (7′) is reminiscent of the energy or 
hamiltonian of the widely used spin models in statistical physics (Pathria 
and Beale, 2011). These spin variables, si, correspond to microscopic 
magnetic dipole moments, while Jij are parameters associated to the 
interaction coefficients between pairs of spins si and sj. If Jij > 0 the 
variables tend to be positively correlated (i.e. the spins tend to be par
allel) while if Jij < 0 the variables tend to be negatively correlated (i.e. 
the spins tend to be anti-parallel). 

Eq. (7) is a Gaussian integral, which its result is given by an expo
nential involving the inverse of matrix J: 

Z =
(2π)S/2

̅̅̅̅̅̅̅̅̅
detJ

√ e− 1/2
∑

ij
J− 1

ij hihj
=

(2π)S/2

̅̅̅̅̅̅̅̅̅
detJ

√ e− 1/2hTJ− 1h. (8) 

Now we will show how to relate the unknown vector h and matrix J 
to the known vector m, with components xi, and the known covariance 
matrix C, with components xixj − xixj. This allows to infer model pa
rameters hi and Jij from empirical observations such as the means and 
covariances of the abundances. These relationships can be conveniently 
obtained from the derivatives of the partition function, which is the 
standard approach in statistical physics. Indeed, the mean densities can 
be expressed as 

mk ≡ xk =

∫ ∏
idxixke

∑
i
hixi+

1
2

∑
ij

Jijxixj

Z  

=

∂
∂hk

∫ ∏
idxie

∑
i
hixi+

1
2

∑
ij

Jijxixj

Z  

=
∂lnZ
∂hk

. (9a) 

And, a similar relationship holds for the covariance matrix: 

Cij ≡ xixj − xixj =
∂2lnZ
∂hi∂hj

. (9b) 

Substituting Eq. (8) into Eq. (9a) and (9b) we get: 

m = J− 1h, (10a)  

C = − J− 1, (10b) 

which can be inverted to give: 

h = − C− 1m, (11a)  

J = − C− 1. (11b) 

Therefore, using the analogy with the spin models, the matrix J, 
which has the natural interpretation of an effective interaction matrix 
between species, can be obtained as minus the inverse of the covariance 
matrix. Indeed, the magnitude of Jij corresponds to the strength of the 
net interaction of species j over species i and that the sign of Jij corre
sponds to whether this effect is positive or negative (Volkov et al., 2009). 
Notice that, since the covariance matrix C has positive elements along 
the diagonal, the minus sign in the r.h.s. of Eq. (11b) implies that the 
diagonal elements of J – corresponding to the intraspecific interaction 
coefficients – must be negative and thus correspond to intraspecific 
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competition. 

2.2. The covariance matrix exhibits intraspecific elements (variances) 
much larger than the interspecific ones and this implies the same for the 
effective interaction matrix 

For the eight available censuses – 1982, 1985 and then every five 
years until 2015 – we observed these two facts about the interspecific 
elements of the covariance matrix (Fort and Grigera, 2020): 

a) They take both positive and negative values, corresponding respec
tively to positive and negative correlations (the intraspecific ele

ments Cii = (xi − xi)
2, equal to variances σ2

i , are by definition always 
positive).  

b) They are much smaller than the intraspecific ones, by approximately 
an order of magnitude when taking their absolute values (Table 1). 

We will present an heuristic argument, in terms of averages over the 
S species, denoted by, to show that b) implies that a similar relationship 
holds for the interspecific interaction coefficients compared with the 
intraspecific ones. Let us approximate, for each census, the covariance 
matrix with matrix Cav in which all the diagonal elements are equal to 
〈Cii〉 and all off-diagonal elements equal to〈Cii〉, where 〈Cii〉 is the 
average of the intraspecific covariances (variances), and 〈Cii〉 the 
average of the absolute value of the interspecific ones. The absolute 
value for interspecific elements is taken by a), to avoid cancelations of 
interspecific covariances with opposite signs when computing averages 
over species. Therefore, Cav can be written as: 

Cav = 〈Cii〉

⎛

⎜
⎜
⎝

1
⋱

〈⃒
⃒Cij|

〉/
〈Cii〉〈⃒

⃒Cij|
〉/

〈Cii〉 ⋱
1

⎞

⎟
⎟
⎠

=
〈
σ2

i

〉

⎛

⎜
⎜
⎝

1
⋱ ε

ε ⋱
1

⎞

⎟
⎟
⎠, (12)  

where ε ≡
〈⃒
⃒Cij|

〉/
〈Cii〉. The inverse of matrix Cav can be calculated and 

produces a simple expression for the effective interaction matrix Jav 

matrix, given by: 

Jav =
1

〈σ2
i 〉

1 + (S − 2)ε
1 + (S − 2)ε − (S − 1)ε2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1

⋱
− ε

1 + (S − 2)ε
− ε

1 + (S − 2)ε ⋱

− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13) 

Thus, 

⃒
⃒
⃒Jav

ij

⃒
⃒
⃒

⃒
⃒Jav

ii

⃒
⃒
=

ε
1 + (S − 2)ε (14) 

For S = 20, we have: 
⃒
⃒
⃒Jav

ij

⃒
⃒
⃒

/⃒
⃒Jav

ii

⃒
⃒ =

ε
1 + 18ε, (15) 

and ε varies between 0.046 and 0.058 across censuses (Table 1), 
therefore 1 + 18 ε is always ≈ 2 and thus the ratio 〈Jii〉/〈Jii〉 computed 

from J = C-1, is always (smaller but) comparable to ε ≡

⃒
⃒
⃒Cav

ij

⃒
⃒
⃒

/⃒
⃒Cav

ii

⃒
⃒. 

Hence, on average, the empirically observation that the variances of 
the species abundances are much larger than the covariances between 
the abundances of different species implies that the intraspecific effec
tive interaction coefficients are much larger than the interspecific ones. 

2.3. The intraspecific competition coefficients play a central role in 
controlling the dynamics of species 

The above conclusion that |Cij|/|Cii| ≪ 1 implies that |Jij|/|Jii| ≪1, 
together with the result that keeping only intraspecific competition is 
enough to predict the overall evolution of the abundances of tree species 
with remarkable accuracy (Fort and Grigera, 2020), lead us to focus on 
analyzing the dynamics of the intraspecific interaction coefficients along 
censuses to anticipate drastic changes in species abundances. Thus, we 
compare Jii(c), where c denotes the census number, against abundance 
trajectories Ni(c) = xi(c)A (where A = 50,000 m2 is the total area of the 
plot). 

3. Results 

The abundance trajectories Ni(c) for these 20 most abundant species 
varied from monotonic growth to oscillations and busts (Fig. 1a). 

Let us focus on those species that have experienced severe population 
crashes, i.e. decreases of their abundance greater than 50% respect to 
the first census in 1982. They comprise three species: Psychotria hori
zontalis, Piper cordulatum and Poulsenia armata (see Fig. 1a). Piper cor
dulatum is the species that experienced the most drastic bust; after an 
initial population growth from 1982 to 1985 its abundance crashed by 
almost 100% for the 5th census in 2000. 

Fig. 1b shows the variation of the species abundances vs. the intra
specific interaction coefficient Jii(c) for the eight censuses. Notice that in 
general they parallel the evolution of the corresponding abundance 
trajectory Ni(c) for i = 1,2,…,20. In particular the three crashing species 
also exhibit drastic drops of their effective intraspecific competition 
coefficients Jii(c). 

For these three species, in order to make a standardized comparison 
between the drops of Ni(c) and Jii(c), we computed the percentage 
variation along censuses 2 to 8 with respect to census 1 of the two 
quantities. Fig. 2 shows that the drop of Jii(c) is steeper than the corre
sponding one for the Ni(c). We show results both for dbh ≥ 25 mm 
(Fig. 2a), and dbh ≥ 10 mm (Fig. 2b). Notice that for all the three species 
the earliness of a 50% or larger decrease of Jii(c) with respect to the one 
for Ni(c) is bigger for dbh ≥ 10 mm than for dbh ≥ 25 mm. This earliness 
increases from 5 years (dbh ≥ 25 mm) to 15 years (dbh ≥ 10 mm) for for 
Psychotria horizontalis; from 0 to 5 years for Piper cordulatum and from 5 
to 10 years for Poulsenia armata. 

As we have shown in the previous section, the fact that the intra
specific elements of Jij are much larger than the interspecific elements is 
linked with the fact that the same happens for the covariance matrix. 
Fig. 3 compares for the three crashing species the evolution of Jii(c) and 
of σ2

i (c). Notice that the drop of Jii(c) is steeper than the corresponding 
one for σ2

i (c). 
Table 2 shows the percentage difference of 1/σi

2 relative to Jii for the 
20 most abundant species across the eight censuses. 

Table 1 
Mean values of interspecific over intraspecific matrix elements for the 
eight censuses (dbh > 10 mm). The In the third column the ratios 〈Jii〉/〈Jii〉 are 
computed from J = C-1; the last column is the formula (15).  

census # ε ≡

⃒
⃒
⃒Cav

ij

⃒
⃒
⃒

/⃒
⃒Cav

ii
⃒
⃒ 〈Jii〉/〈Jii〉 ε/(1 + 18ε) 

1  0.058  0.054  0.028 
2  0.058  0.055  0.028 
3  0.054  0.055  0.027 
4  0.050  0.046  0.026 
5  0.048  0.019  0.026 
6  0.046  0.013  0.025 
7  0.046  0.015  0.025 
8  0.047  0.017  0.026  
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Finally, we were interested in checking the well known empirical 
Taylor’s law (Taylor, 1961), i.e. that the variance of species population 
density scales as a power-law function of the mean population density 
for the set of selected 20 species. 

We found that all the 20 species verify that the variance for census # 
c scales with the population density for this census as 

σ2
i (c) = aixi(c)bi , (16)  

where ai > 0 and the exponents bi, obtained by linear regression, are 
listed in the last column of Table 2. 

4. Discussion 

The MaxEnt principle can be viewed as an inference method in which 
we have to select some set of empirical observations as constraints. In 

this study we took the spatial covariance matrix of species’ abundances 
in quadrats. The rationale for this was that pairwise species interactions 
are enough to capture the behavior of a tree community. In order to take 
this description seriously, the goodness of this choice must be tested. 
Indeed, it could be that the tangle of complex biotic and abiotic in
teractions cannot be correctly described by pairwise maximum entropy 
modeling. We have previously shown (Fort and Grigera, 2020; Fort, 
2020) that these models provide a reasonable description of the BCI tree 
community. Furthermore, in a first approximation, the effect of the 
interspecific interactions can be neglected compared to the intraspecific 
ones. 

As shown in Figs. 1 and 2, the effective intraspecific interaction co
efficient Jii, estimated via MaxEnt, provides a clear early warning indi
cator of impending population crashes for species of trees. There are 
three species that experimented population crashes (reductions of more 
than 50% in the number of individuals) along the last 35 years: 

Fig. 1. Variation of the abundances of the 20 most abundant species and of their corresponding intraspecific competition coefficients for dbh ≥ 10 mm 
along the eight censuses. The abundances are normalized by dividing with respect to the value at the first census (1982). Species # 7 Psychotria horizontalis 
(diamonds), species # 10 Piper cordulatum (triangles) and Poulsenia armata species # 19 (squares). a. Normalized abundances vs. census number. b. Normalized 
abundances vs. absolute value of the intraspecific competition coefficient (log scale) along different censuses. 

Fig. 2. Percentage variations of the abundances (dashed lines) and intraspecific competition coefficients (filled lines) for the three species that expe
rienced steep declines along the eight censuses, respect to the first census (1982). a: dbh ≥ 25 mm b:dbh ≥ 10 mm. Species # 7 Psychotria horizontalis (di
amonds), species # 10 Piper cordulatum (triangles) and Poulsenia armata species # 19 (squares). The insets are zoom-in plots to allow comparisons of the drops in both 
variables for each species. 
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Psychotria horizontalis, Piper cordulatum and Poulsenia armata. They all 
exhibit a steeper earlier drop of Jii(c) than their abundances Ni(c) (at 
least five years before). This can be easily explained from the empirical 
fact that the exponents of the Taylor’s power law for these three species 
are larger than 1 (see the last column of Table 2). As we have seen, due to 
the also empirical fact that the interspecific interactions in BCI are 
negligible respect to the intraspecific ones, the intraspecific effective 
competition coefficients can be approximated by the inverse of the 
variances (see Eq. (13)). And, combining this with the Taylor’s power 
law Eq. (16) we can approximate the intraspecific interaction co
efficients as: 

Jii(c) ≈ σ2
i (c) =

1
ai

xi(c)− bi . (17) 

From expression (17) it is easy to show that 

dJii(c)
Jii(c)

≈ − bi
dxi(c)
xi(c)

, (18) 

and thus, since bi > 1 for these three species (in fact bi > 1 for 18 out 
of the 20 considered species), the relative changes of the intraspecific 
effective competition coefficients are larger than the relative changes 
experimented by the population densities. This result, besides providing 
additional support to the rightness of the MaxEnt description, it offers an 
observable to monitor to anticipate population busts. 

From Fig. 2, it is seen that the early warning signal is stronger when 
using the full census (dbh > 10 mm, Fig. 2b) than when using only dbh 
> 25 mm (Fig. 2a). This corresponds to steeper abundance drops for the 
full census, and is probably connected that with the lower dbh threshold, 
more saplings are included in the population. Indeed, it has been found 
that population changes were most pronounced in saplings, and in 
particular, saplings of the species considered in Fig. 2 showed conspic
uously higher mortality (Condit et al., 2017). 

Looking at Eq. (6) one may wonder whether the other set of pa
rameters appearing in the probability distribution P(x;h,J), i.e. h, also 
provide an early warning signal for crashing species. Indeed it does. This 
is because, from Eqs. (9a), (11a) and (11b) we get hi(c) =
∑S

j=1Jij(c)xi(c) =
∑S

j=1Jij(c)Ni(c)/A. Therefore, as an early warning 
signal, it interpolates between Ni(c) and Jii(c): it is better that the first but 
worse than the second. 

It is worth noticing that the factor 1+(S− 2)ε
1+(S− 2)ε− (S− 1)ε2 appearing in Eq. 

(13) for ε varying empirically among censuses between 0.046 and 0.058, 
is always ≈ 1. Therefore, the average (over species) intraspecific effec
tive competition coefficient 〈Jii〉 is well approximated by 1/σ2

i . An 
interesting question is for each species i how close is Jii to 1/σi

2. Table 2 
shows that the percentage difference varies from the 20 species across 
the eight censuses between 4 and 46 % (mean of 20%). Hence, the early 
warning signal we are proposing is connected with the jump of the 
corresponding species variance (Fig. 3). This can be easily understood 
since the diagonal coefficients of matrix C, the variances σi

2, are much 
greater than the off-diagonal covariances explaining therefore their 
disproportionate contribution to the intraspecific interaction co
efficients. This is an interesting result since an anomalous (large) vari
ance is known to be a red flag anticipating an upcoming population drop 
(Fernández and Fort, 2009; Donangelo et al., 2010; Dakos et al., 2010). 

Fig. 3. Percentage variations of the variances (dotted lines) and intra
specific competition coefficients (filled lines) for the three species that 
experienced steep declines along the eight censuses (dbh ≥ 10 mm), 
respect to the first census (1982). Species # 7 Psychotria horizontalis (di
amonds), species # 10 Piper cordulatum (triangles) and Poulsenia armata species 
# 19 (squares). 

Table 2 
Percentage of difference of 1/σi 

2 relative to Jii and Taylor’s exponent in Eq. (16) for the 20 most abundant species (dbh > 10 mm). Highlighted in bold are 
those species which experimented population crashes.  

species name Census (year) Exponent b  

1982 1985 1990 1995 2000 2005 2010 2015  

Hybanthus prunifolius 21 19 14 13 11 13 12 12  1.21 
Faramea occidentalis 39 37 38 36 31 30 29 30  1.69 
Trichilia tuberculata 22 23 23 23 24 24 27 24  1.29 
Desmopsis panamensis 11 11 11 10 10 11 9 10  3.07 
Alseis blackiana 15 15 13 12 11 10 9 9  0.52 
Mouriri myrtilloides 34 36 33 30 25 24 25 30  1.72 
Psychotria horizontalis 18 17 18 16 14 13 12 13  1.78 
Hirtella triandra 31 28 26 24 22 23 24 24  1.81 
Garcinia intermedia 11 11 12 10 9 10 11 11  0.66 
Piper cordulatum 16 22 21 11 5 4 5 5  1.46 
Capparis frondosa 20 20 18 15 14 12 13 13  1.69 
Tetragastris panamensis 27 26 27 26 24 23 22 22  1.04 
Sorocea affinis 15 15 14 14 13 14 16 14  1.33 
Tachigali versicolor 19 19 21 18 15 12 6 7  1.37 
Protium tenuifolium 34 37 35 34 35 39 42 44  1.27 
Protium panamense 36 37 35 31 29 24 21 23  1.79 
Swartzia simplex 15 15 16 15 14 15 15 15  1.39 
Beilschmiedia pendula 28 22 23 24 24 25 23 22  2.72 
Poulsenia armata 46 40 39 39 34 33 32 29  1.47 
Rinorea sylvatica 5 5 4 4 4 4 4 4  2.28 
mean 23 23 22 20 19 18 18 18   
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That is, the variances may be used as early warnings in communities of 
coexisting species in cases in which covariances are not known. How
ever, Jii , which comes from the inverse of the covariance matrix, thus 
includes information from the whole community i.e. more information 
than σi

2. And, as shown by Fig. 3, Jii(c) provides an earlier warning signal 
than σi

2(c) of ongoing species population crashes. 
Changes in environmental conditions can trigger a sudden collapse of 

ecological communities (Scheffer et al., 2001; Boettiger et al., 2013), 
with serious consequences for human well-being (Millennium 
Ecosystem Assessment, 2005). There are empirical evidences that di
versity loss increases vulnerability to ecosystem collapse (MacDougall 
et al., 2013). This is why devising indicators that work as early warnings 
of severe decreases in the abundance of species, generated from 
empirical data, is an important task. 

5. Conclusion 

In summary, we found that: 

I) For each species i the absolute value of the intraspecific compe
tition coefficients for all census c, Jii(c) < 0, is much larger than 
those of the interspecific interaction coefficients Jij(c) with i ∕= j 
(which are of both signs).  

II) The above result, |Jii|≫|Jij|, can be derived from a similar 
empirical relationship observed for the covariance matrices, i.e. 
|Cij| <<Cii ≡ σ2

i .  
III) For those tree species that crashed or suffered steep population 

declines across the eight tree censuses the drop of Jii is always 
steeper than the drop of the corresponding abundance Ni.  

IV) Using the full population data (dbh ≥ 10 mm) improves the 
quality of the early warning signal respect when using just a 
subset of larger trees (dbh ≥ 25 mm). This is probably connected 
with the conspicuously higher mortality of saplings found for 
species that crashed (Condit et al., 2017).  

V) Indeed, for dbh ≥ 10 mm, 50%+ decreases in Jii occur between 5 
and 15 years in advance than comparable declines for the 
abundances Ni.  

VI) By II), the drop of Jii is linked to the anomalous variance, which is 
a known early warning of incoming catastrophic shifts. However, 
the sudden increase in the intraspecific competition, besides 
being more illuminating from a conceptual population dynamics 
modeling perspective, it provides a sharper signal than the jump 
inσ2

i . 

Therefore we conclude that the monitoring the intraspecific effective 
interaction terms Jii for tree species across censuses serves as an early 
warning indicator of an impending population bust; steep declines in Jii 
always occur several years in advance of comparable population drops. 
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